Modélisation mathématique et numérique des comportements sociaux en milieu incertain. Application à l'épidémiologie

par Laetitia Laguzet

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Gabriel Turinici.

Soutenue le 20-11-2015

à Paris 9 , dans le cadre de Ecole doctorale de Dauphine (Paris) , en partenariat avec Centre de recherche en mathématiques de la décision (Paris) (laboratoire) .

Le président du jury était Roland Malhamé.

Le jury était composé de Roland Malhamé, Arnaud Ducrot, Emmanuel Trélat, Pierre Cardaliaguet, Daniel Lévy-Bruhl.

Les rapporteurs étaient Arnaud Ducrot.


  • Résumé

    Cette thèse propose une étude mathématique des stratégies de vaccination.La partie I présente le cadre mathématique, notamment le modèle à compartiments Susceptible - Infected – Recovered.La partie II aborde les techniques mathématiques de type contrôle optimal employées afin de trouver une stratégie optimale de vaccination au niveau de la société. Ceci se fait en minimisant le coût de la société. Nous montrons que la fonction valeur associée peut avoir une régularité plus faible que celle attendue dans la littérature. Enfin, nous appliquons les résultats à la vaccination contre la coqueluche.La partie III présente un modèle où le coût est défini au niveau de l'individu. Nous reformulons le problème comme un équilibre de Nash et comparons le coût obtenu avec celui de la stratégie sociétale. Une application à la grippe A(H1N1) indique la présence de perceptions différentes liées à la vaccination.La partie IV propose une implémentation numérique directe des stratégies présentées.

  • Titre traduit

    Mathematical and numerical modeling of social behavior in an uncertain environment


  • Résumé

    This thesis propose a mathematical analysis of the vaccination strategies.The first part introduces the mathematical framework, in particular the Susceptible – Infected – Recovered compartmental model.The second part introduces the optimal control tools used to find an optimal vaccination strategy from the societal point of view, which is a minimizer of the societal cost. We show that the associated value function can have a less regularity than what was assumed in the literature. These results are then applied to the vaccination against the whooping cough.The third part defines a model where the cost is defined at the level of the individual. We rephrase this problem as a Nash equilibrium and compare this results with the societal strategy. An application to the Influenza A(H1N1) 2009-10 indicates the presence of inhomogeneous perceptions concerning the vaccination risks.The fourth and last part proposes a direct numerical implementation of the different strategies.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Informations

  • Détails : 1 vol. (197 p.)

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Dauphine (Paris). Service commun de la documentation.
  • Non disponible pour le PEB
  • Bibliothèque : Université Paris-Dauphine (Paris). Service commun de la documentation.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.