Thèse soutenue

Reconstruction robuste de formes à partir de données imparfaites

FR  |  
EN
Auteur / Autrice : Simon Giraudot
Direction : Pierre Alliez
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 22/05/2015
Etablissement(s) : Nice
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Sophia Antipolis, Alpes-Maritimes)
Partenaire(s) de recherche : Laboratoire : Institut national de recherche en informatique et en automatique (France). Unité de recherche (Sophia Antipolis, Alpes-Maritimes) - Geometric Modeling of 3D Environments
Jury : Président / Présidente : Dominique Attali
Examinateurs / Examinatrices : Pierre Alliez, Dominique Attali, Niloy Mitra, Marco Attene, Gaël Guennebaud, Stéphane Nullans
Rapporteurs / Rapporteuses : Niloy Mitra, Marco Attene

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Au cours des vingt dernières années, de nombreux algorithmes de reconstruction de surface ont été développés. Néanmoins, des données additionnelles telles que les normales orientées sont souvent requises et la robustesse aux données imparfaites est encore un vrai défi. Dans cette thèse, nous traitons de nuages de points non-orientés et imparfaits, et proposons deux nouvelles méthodes gérant deux différents types de surfaces. La première méthode, adaptée au bruit, s'applique aux surfaces lisses et fermées. Elle prend en entrée un nuage de points avec du bruit variable et des données aberrantes, et comporte trois grandes étapes. Premièrement, en supposant que la surface est lisse et de dimension connue, nous calculons une fonction distance adaptée au bruit. Puis nous estimons le signe et l'incertitude de la fonction sur un ensemble de points-sources, en minimisant une énergie quadratique exprimée sur les arêtes d'un graphe uniforme aléatoire. Enfin, nous calculons une fonction implicite signée par une approche dite « random walker » avec des contraintes molles choisies aux points-sources de faible incertitude. La seconde méthode génère des surfaces planaires par morceaux, potentiellement non-variétés, représentées par des maillages triangulaires simples. En faisant croitre des primitives planaires convexes sous une erreur de Hausdorff bornée, nous déduisons à la fois la surface et sa connectivité et générons un complexe simplicial qui représente efficacement les grandes régions planaires, les petits éléments et les bords. La convexité des primitives est essentielle pour la robustesse et l'efficacité de notre approche.