Dynamique d'apprentissage pour Monte Carlo Tree Search : applications aux jeux de Go et du Clobber solitaire impartial

par André Fabbri

Thèse de doctorat en Informatique

Sous la direction de Salima Hassas, Frédéric Armetta et de Eric Duchêne.

Soutenue le 22-10-2015

à Lyon 1 , dans le cadre de École doctorale en Informatique et Mathématiques de Lyon , en partenariat avec LIRIS - Laboratoire d'Informatique en Image et Systèmes d'information (Rhône) (laboratoire) et de Systèmes Multi-Agents (laboratoire) .

Le président du jury était Marie-Pierre Gleizes.

Le jury était composé de Philippe Mathieu.

Les rapporteurs étaient Alain Dutech, Tristan Cazenave, Rita Maria da Silva Julia.


  • Résumé

    Depuis son introduction pour le jeu de Go, Monte Carlo Tree Search (MCTS) a été appliqué avec succès à d'autres jeux et a ouvert la voie à une famille de nouvelles méthodes comme Mutilple-MCTS ou Nested Monte Carlo. MCTS évalue un ensemble de situations de jeu à partir de milliers de fins de parties générées aléatoirement. À mesure que les simulations sont produites, le programme oriente dynamiquement sa recherche vers les coups les plus prometteurs. En particulier, MCTS a suscité l'intérêt de la communauté car elle obtient de remarquables performances sans avoir pour autant recours à de nombreuses connaissances expertes a priori. Dans cette thèse, nous avons choisi d'aborder MCTS comme un système apprenant à part entière. Les simulations sont alors autant d'expériences vécues par le système et les résultats sont autant de renforcements. L'apprentissage du système résulte alors de la complexe interaction entre deux composantes : l'acquisition progressive de représentations et la mobilisation de celles-ci lors des futures simulations. Dans cette optique, nous proposons deux approches indépendantes agissant sur chacune de ces composantes. La première approche accumule des représentations complémentaires pour améliorer la vraisemblance des simulations. La deuxième approche concentre la recherche autour d'objectifs intermédiaires afin de renforcer la qualité des représentations acquises. Les méthodes proposées ont été appliquées aux jeu de Go et du Clobber solitaire impartial. La dynamique acquise par le système lors des expérimentations illustre la relation entre ces deux composantes-clés de l'apprentissage

  • Titre traduit

    Learning dynamics for Monte Carlo Tree Search : application to combinatorial games


  • Résumé

    Monte Carlo Tree Search (MCTS) has been initially introduced for the game of Go but has now been applied successfully to other games and opens the way to a range of new methods such as Multiple-MCTS or Nested Monte Carlo. MCTS evaluates game states through thousands of random simulations. As the simulations are carried out, the program guides the search towards the most promising moves. MCTS achieves impressive results by this dynamic, without an extensive need for prior knowledge. In this thesis, we choose to tackle MCTS as a full learning system. As a consequence, each random simulation turns into a simulated experience and its outcome corresponds to the resulting reinforcement observed. Following this perspective, the learning of the system results from the complex interaction of two processes : the incremental acquisition of new representations and their exploitation in the consecutive simulations. From this point of view, we propose two different approaches to enhance both processes. The first approach gathers complementary representations in order to enhance the relevance of the simulations. The second approach focuses the search on local sub-goals in order to improve the quality of the representations acquired. The methods presented in this work have been applied to the games of Go and Impartial Solitaire Clobber. The results obtained in our experiments highlight the significance of these processes in the learning dynamic and draw up new perspectives to enhance further learning systems such as MCTS


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Claude Bernard. Service commun de la documentation. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.