Thèse soutenue

Broyage du silicium et particules fines : génération et comportement de particules fines de silicium métallurgique au cours du broyage pour l'industrie des silicones

FR  |  
EN
Auteur / Autrice : Eloi Kewes
Direction : Jean-Luc LoubetNicolas EstimeFranck Dahlem
Type : Thèse de doctorat
Discipline(s) : Science des matériaux
Date : Soutenance le 28/10/2015
Etablissement(s) : Ecully, Ecole centrale de Lyon
Ecole(s) doctorale(s) : Ecole doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de tribologie et dynamique des systèmes (Écully, Rhône ; 1970-)
Entreprise : Bluestar Silicones
Jury : Président / Présidente : Etienne Barthel
Examinateurs / Examinatrices : Louis Vovelle, Halvard Tveit
Rapporteurs / Rapporteuses : Florent Bourgeois, Khashayar Saleh

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

La poudre de silicium métallurgique (MG-Si, pureté 99 %) ont été étudiées, en se focalisant particulièrement sur les particules fines (taille comprise entre 1 et 10 μm) Ce matériau est utilisé dans l’industrie siliconière pour la synthèse directe du diméthyldichlorosilane et est obtenu par broyage de blocs de silicium. Les propriétés de cette poudre sont cruciales pour le procédé industriel, à la fois en termes de surface spécifique, composition chimique et coulabilité. Comprendre l’influence des particules fines, qui dégradent la coulabilité, et leur origine au cours du broyage est donc d’une importance cruciale. Une nouvelle caractérisation, chimique et cristallographique, des poudres de MG-Si montre que les particules fines sont en moyennes moins chargées en éléments d’alliage que les particules plus grosses. La structure cristalline du silicium est inchangée au cours du broyage, sauf pour les particules superfines (taille inférieure à 1 μm). Celles-ci présentent des zones amorphes : cela montre qu’elles sont soumises à des contraintes plus importantes au cours du broyage, comme cette transformation étant obtenue au-delà d’un seuil de pression. Le comportement du MG-Si en broyage a été étudié pour la première fois. A l’échelle de la particule unique, il est confirmé que les fissures suivent une propagation transgranulaire. De plus, des particules fines peuvent être produites au cours d’un unique événement de broyage, en raison de l’activation simultanée de multiples systèmes de fissures qui peuvent brancher entre elles. La taille critique en-deçà de laquelle la déformation plastique est énergétiquement plus favorable que la propagation de fissure a été estimée à environ 1 μm par une méthode basée sur l’indentation. Ces deux résultats sont cohérents avec la répartition des éléments d’alliages en fonction de la taille de particule. A l’échelle multiparticulaire, une étude pilote en broyeur à tambour tournant a été menée. Les résultats de cette étude ne sont pas disponibles dans cette version publique du manuscrit. Veuillez vous reporter au manuscrit complet. Les conséquences sur la coulabilité de la présence de particules fines dans la poudre de MG-Si produite par broyage ont été caractérisées par mesures d’angle de repos, de dynamique de compaction et en fluidisation. En particulier, un nouveau comportement d’élutriation a été identifié et décrit : l’élutriation séquentielle se produit lorsque des particules fines sont initialement présentes dans le lit fluidisé et se caractérise par l’envolement d’abord des inférieures à environ 30 μm puis seulement des particules de taille supérieure. Ce comportement n’est pas observé en l’absence de fines dans le lit initial. L’explication de ce phénomène pourrait se trouver dans la formation de clusters polydisperses, formés seulement en présence de particules fines. En parallèle de l’élutriation séquentielle, des mesures électrostatiques avec un électromètre externe à la colonne ont montré la présence de potentiels très importants (10 kV), dont le signe correspond à la gamme de taille de particules envolées. Ceci suggère que l’adhésion au sein des clusters pourrait être électrostatique.