Thèse soutenue

Synchronisation de nano-oscillateurs à transfert de spin

FR  |  
EN
Auteur / Autrice : Abbass Hamadeh
Direction : Olivier Klein
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 03/10/2014
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : École doctorale Physique de la région parisienne (....-2013)
Partenaire(s) de recherche : Laboratoire : Laboratoire Nano-Magnétisme et Oxydes (Gif-sur-Yvette, Essonne) - Service de physique de l'état condensé
Jury : Président / Présidente : André Thiaville
Examinateurs / Examinatrices : André Thiaville, Ursula Ebels, Stéphane Mangin, Andrei Slavin, Vincent Cros, Grégoire de Loubens
Rapporteurs / Rapporteuses : Ursula Ebels, Stéphane Mangin

Résumé

FR  |  
EN

Les nano-Oscillateurs à transfert de spin (STNOs) sont des dispositifs capables d'émettre une onde hyperfréquence lorsqu'ils sont pompés par un courant polarisé grâce au couple de transfert de spin. Bien qu'ils offrent de nombreux avantages (agilité spectrale, intégrabilité, etc.) pour les applications, leur puissance d'émission et leur pureté spectrale sont en général faibles. Une stratégie pour améliorer ces propriétés est de synchroniser plusieurs oscillateurs entre eux. Une première étape est de comprendre la synchronisation d'un STNO unique à une source externe. Pour cela, nous avons étudié une vanne de spin Cu60|NiFe15|Cu10|NiFe4| Au25 (épaisseurs en nm) de section circulaire de 200 nm. Dans l'état saturé perpendiculaire (champ appliqué > 0.8 T), nous avons déterminé la nature du mode qui auto-Oscille et son couplage à une source externe grâce à un microscope de force par résonance magnétique (MRFM). Seul un champ micro-Onde uniforme permet de synchroniser le mode oscillant de la couche fine car il possède la bonne symétrie spatiale, au contraire du courant micro-Onde traversant l'échantillon. Ce même échantillon a ensuite été étudié sous faible champ perpendiculaire, les deux couches magnétiques étant alors dans l'état vortex. Dans ce cas, il est possible d'exciter un mode de grande cohérence (F/ ∆F >15000) avec une largeur de raie inférieure à 100 kHz. En analysant le contenu harmonique du spectre, nous avons déterminé que le couplage non-Linéaire amplitude-Phase du mode excité est quasi nul, ce qui explique la grande pureté spectrale observée, et qu'en parallèle, la fréquence d'oscillation reste ajustable sur une grande gamme grâce au champ d'Oersted créé par le courant injecté. De plus, la synchronisation de ce mode à une source de champ micro-Onde est très robuste, la largeur de raie mesurée diminuant de plus de cinq ordres de grandeur par rapport au régime autonome. Nous concluons de cette étude que le couplage magnéto-Dipolaire entre STNOs à base de vortex est très prometteur pour obtenir une synchronisation mutuelle, le champ dipolaire rayonné par un STNO sur ses voisins jouant alors le rôle de la source micro-Onde. Nous sommes donc passés à l'étape suivante, à savoir la mesure expérimentale de deux STNOs similaires séparés latéralement de 100 nm. En jouant sur les différentes configurations de polarités des vortex, nous avons réussi à observer la synchronisation mutuelle de ces deux oscillateurs.