Thèse soutenue

Étude expérimentale et numérique du frittage-assemblage d’un composite conducteur l’Ag-SnO2 par courants pulsés

FR  |  
EN
Auteur / Autrice : Élodie Brisson
Direction : Philippe RogéonEric Feulvarch
Type : Thèse de doctorat
Discipline(s) : Sciences pour l'ingénieur
Date : Soutenance le 16/10/2014
Etablissement(s) : Lorient
Ecole(s) doctorale(s) : École doctorale Santé, information-communication et mathématiques, matière (Brest, Finistère)
Partenaire(s) de recherche : PRES : Université européenne de Bretagne (2007-2016)
Jury : Examinateurs / Examinatrices : Henri Desplats, Vincent Keryvin, Alain Couret, Alexandre Bonhomme, Claude Estournès
Rapporteurs / Rapporteuses : Jean-Luc Battaglia, Didier Bouvard

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Ces travaux de thèse s’inscrivent dans le cadre du projet "IMPULSE" qui traite du développement d’un procédé innovant d’élaboration de multi-matériaux par courant pulsé et est financé par l’Agence National de la Recherche. Ils ont pour objectif d’étudier et de mettre en évidence la faisabilité, du frittage-assemblage sous charge par courants pulsés, d’un composite conducteur l’AgSn-O2 sur un support en cuivre. Cette problématique, en lien avec les applications industrielles de Schneider Electric Industries, a été abordée au travers de simulations numériques du procédé de frittage-assemblage et d’essais expérimentaux. Les travaux sur les étapes de frittage et d’assemblage ont pu être traités séparément. Les phénomènes qui interviennent lors du frittage par effet Joule et les effets spécifiques liés à l’utilisation de certaines formes ou fréquences de courant, divisent encore la communauté scientifique. Des essais de frittage et frittage-assemblage par chauffage résistif avec différents types de courant (pulsé, continu, 50 Hz) ont été réalisés et ont permis de mettre en évidence l’absence d’effets spécifiques associés aux courants pulsés dans le cas de l’Ag-SnO2. Par conséquence, un modèle électrocinétique classique stationnaire a été retenu concernant les aspects électriques du modèle macroscopique de frittage. Ces essais ont également révélé l’importance des résistances de contact électrique, présentes entre les outillages (poinçons) et l’échantillon, et de la résistance de contact thermique qui existe entre l’échantillon et la matrice. Le modèle thermique instationnaire choisi est couplé fortement au modèle électrocinétique. Les lois de comportement utilisées pour la masse volumique et les conductivités (électrique et thermique), qui interviennent dans le modèle Electro-Thermique (ET), tiennent compte des changements de microstructure grâce à l’utilisation de variables internes de « densification » et de « cohésion ». Les évolutions des résistances de contact électrique et thermique, mesurées sur un dispositif ex-situ, sont aussi implémentées dans le modèle ET.D’un point de vue mécanique, un modèle de Norton associé au critère de Green a été choisi pour modéliser le comportement viscoplastique de la matière et la compressibilité irréversible du matériau lors du frittage sous charge de l’Ag-SnO2. Les fonctions intervenant dans le critère dépendent de la densité relative, dont la cinétique de densification est calculée à partir de la trace du tenseur des vitesses de déformation irréversible. Les paramètres de la loi de comportement mécanique ont été identifiés par méthodes inverses, à l’aide des logiciels SiDoLo et Abaqus, à partir d’essais thermomécaniques spécifiques réalisés sur la machine Gleeble du LIMatB. La loi de comportement mécanique a été implémentée dans une bibliothèque spécifique du code de calcul par éléments finis Sysweld qui est utilisé pour la simulation numérique d’essais de frittage instrumentés. La concordance entre les résultats numériques et expérimentaux (tensions, températures, mesure extensométrique), est satisfaisante et les écarts restent inférieurs aux erreurs expérimentales. Concernant l’étape d’assemblage, une campagne de caractérisation de la tenue de l’assemblage Ag-SnO2/Cu, a été menée sur la machine Gleeble grâce à des essais de frittage-assemblage anisothermes. Différentes cinétiques thermiques et différentes températures maximales, ont été testées afin de mettre en évidence l’effet du temps et de la température. Des tests de cisaillement de l’assemblage, ont permis le calcul d’un observable afin de juger de la qualité de la liaison. Au vu des résultats, un modèle dépendant uniquement de la température atteinte dans l’échantillon a été développé afin d’estimer la tenue de l’assemblage Ag-SnO2/Cu.