Thèse soutenue

Développement de dispositifs à base de graphène pour des applications hautes fréquences

FR  |  
EN
Auteur / Autrice : David Mele
Direction : Henri Happy
Type : Thèse de doctorat
Discipline(s) : Micro et nanotechnologies, acoustique et télécommunications
Date : Soutenance le 26/05/2014
Etablissement(s) : Lille 1
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)
Partenaire(s) de recherche : Laboratoire : Institut d'Electronique, de Microélectronique et de Nanotechnologie

Mots clés

FR

Mots clés contrôlés

Mots clés libres

Résumé

FR  |  
EN

Les propriétés électriques et mécaniques exceptionnelles du graphène font de ce matériau bidimensionnel à base de carbone, l’un des matériaux phare de la micro-électronique. L’objectif des ces travaux de recherche est de démontrer les possibilités nouvelles offertes par le graphène dans le domaine des transistors ultra-rapides et faible bruit. La fabrication de transistors RF a été réalisée sur des échantillons obtenus par graphitisation de substrat SiC. Ce travail s’est déroulé dans le cadre du projet ANR MIGRAQUEL, en partenariat avec le Laboratoire de Photonique et de Nanostructures (LPN), le Laboratoire Pierre Aigrain (LPA) de l’ENS, et l’Institut d’Electronique Fondamentale (IEF). Les couches de graphène utilisées dans cette thèse ont été synthétisées au LPN. Le développement et l’optimisation des différents procédés technologiques se sont déroulés en salle blanche. Les propriétés du matériau tels que la mobilité, la résistance par carré, ainsi que certaines caractéristiques technologiques comme les résistances de contact sont déduites de structures spécifiques. Ensuite, des caractérisations électriques en régime statique et dynamique effectuées sur des transistors graphène à effet de champ (GFET) ont été effectuées. Les meilleures performances hyperfréquence ont été obtenues sur des transistors à base de nano-rubans de graphène (GNRFET), avec une fréquence de coupure « intrinsèque » du gain en courant ft_intr=50GHz et une fréquence maximale d’oscillation fmax=29GHz; et ce pour une longueur de grille de Lg=75nm à Vds=300mV.