Thèse soutenue

Étude de matériaux composites à base de nanosiliciures de métaux de transition pour la thermoélectricité

FR  |  
EN
Auteur / Autrice : Katia Favier
Direction : Didier Ravot
Type : Thèse de doctorat
Discipline(s) : Chimie et physicochimie des matériaux
Date : Soutenance le 07/11/2013
Etablissement(s) : Montpellier 2
Ecole(s) doctorale(s) : École doctorale Sciences Chimiques Balard (Montpellier ; 2003-2014)
Partenaire(s) de recherche : Laboratoire : Institut Charles Gerhardt (Montpellier ; 2006-....)
Jury : Président / Présidente : Jean-Claude Tédenac
Examinateurs / Examinatrices : Didier Ravot, Jean-Claude Tédenac, Anne Dauscher, Alexandre Maître, Philippe Papet, Christelle Navone
Rapporteurs / Rapporteuses : Anne Dauscher, Alexandre Maître

Résumé

FR  |  
EN

L'alliage Si-Ge est utilisé depuis de nombreuses années dans les modules thermoélectriques dans les sondes spatiales de la NASA. Ils convertissent la chaleur résultant de la désintégration radioactive de matériaux riches en un ou plusieurs radio-isotopes en électricité. Cet alliage est performant à haute température (à partir de 700 °C), c'est pourquoi il trouve également un fort intérêt dans l'industrie automobile. De nombreuses recherches dans ce secteur s'orientent vers la thermoélectricité, notamment vers des modules fonctionnant à haute température pour permettre la réduction de consommation de carburant. La meilleure composition de l'alliage en thermoélectricité est Si0,8Ge0,2. Le facteur de mérite réduit (ZT) de ces matériaux est généralement proche de 0,75 et de 0,45 à 700 °C pour les types n et p respectivement. Le germanium étant très onéreux, la composition retenue dans cette étude est Si0,92Ge0,08. Pour améliorer les performances de la composition choisie et se rapprocher de celles de la meilleure composition, la voie retenue est l'incorporation de nanoinclusions à base de siliciures de molybdène dans le matériau, permettant la diminution de la conductivité thermique. L'alliage Si-Ge est synthétisé par mécanosynthèse, et densifié par SPS. Les dopants utilisés sont le phosphore et le bore pour les types n et p respectivement. Le taux de dopage optimal est de 0,7 %. Ainsi, les ZT obtenus à 700 °C sont égaux à 0,7 et 0,5 pour les types n et p respectivement. La nature des inclusions stables dans la matrice est déterminée par la méthode CalPhad qui permet l'obtention du diagramme ternaire Mo-Si-Ge. La phase MoSi2 apparait alors comme étant la seule phase stable dans la matrice Si0,92Ge0,08. La fraction volumique optimale de molybdène est de 1,3 % lorsque les matériaux sont densifiés à 1280 °C. Le ZT obtenu est supérieur à 1 à 700 °C pour le type n, et proche de 0,8 pour le type p. L'ajout de nanoinclusions a permis d'augmenter les performances de 43 % et de 60 % à 700 °C.