Coping with the computational and statistical bipolar nature of machine learning

par Pierre Machart

Thèse de doctorat en Informatique

Sous la direction de Liva Ralaivola et de Hervé Glotin.

Le président du jury était Rémi Gribonval.

Le jury était composé de Liva Ralaivola, Hervé Glotin, Rémi Gribonval, Stéphane Canu, Yves Grandvalet, Pierre Weiss, Sandrine Anthoine.

Les rapporteurs étaient Stéphane Canu, Yves Grandvalet.


  • Résumé

    L'Apprentissage Automatique tire ses racines d'un large champ disciplinaire qui inclut l'Intelligence Artificielle, la Reconnaissance de Formes, les Statistiques ou l'Optimisation. Dès les origines de l'Apprentissage, les questions computationelles et les propriétés en généralisation ont toutes deux été identifiées comme centrales pour la discipline. Tandis que les premières concernent les questions de calculabilité ou de complexité (sur un plan fondamental) ou d'efficacité computationelle (d'un point de vue plus pratique) des systèmes d'apprentissage, les secondes visent a comprendre et caractériser comment les solutions qu'elles fournissent vont se comporter sur de nouvelles données non encore vues. Ces dernières années, l'émergence de jeux de données à grande échelle en Apprentissage Automatique a profondément remanié les principes de la Théorie de l'Apprentissage. En prenant en compte de potentielles contraintes sur le temps d'entraînement, il faut faire face à un compromis plus complexe que ceux qui sont classiquement traités par les Statistiques. Une conséquence directe tient en ce que la mise en place d'algorithmes efficaces (autant en théorie qu'en pratique) capables de tourner sur des jeux de données a grande échelle doivent impérativement prendre en compte les aspects statistiques et computationels de l'Apprentissage de façon conjointe. Cette thèse a pour but de mettre à jour, analyser et exploiter certaines des connections qui existent naturellement entre les aspects statistiques et computationels de l'Apprentissage.


  • Résumé

    Machine Learning is known to have its roots in a broad spectrum of fields including Artificial Intelligence, Pattern Recognition, Statistics or Optimisation. From the earliest stages of Machine Learning, both computational issues and generalisation properties have been identified as central to the field. While the former address the question of computability, complexity (from a fundamental perspective) or computational efficiency (on a more practical standpoint) of learning systems, the latter aim at understanding and characterising how well the solutions they provide perform on new, unseen data. Those last years, the emergence of large-scale datasets in Machine Learning has been deeply reshaping the principles of Learning Theory. Taking into account possible constraints on the training time, one has to deal with more complex trade-offs than the ones classically addressed by Statistics. As a direct consequence, designing new efficient algorithms (both in theory and practice), able to handle large-scale datasets, imposes to jointly deal with the statistical and computational aspects of Learning. The present thesis aims at unravelling, analysing and exploiting some of the connections that naturally exist between the statistical and computational aspects of Learning. More precisely, in a first part, we extend the stability analysis, which relates some algorithmic properties to the generalisation abilities of learning algorithms, to a novel (and fine-grain) performance measure, namely the confusion matrix. In a second part, we present a novel approach to learn a kernel-based regression function, that serves the learning task at hand and exploits the structure of


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?