Thèse soutenue

Solution de filtrage reconfigurable en technologie CMOS 65nm pour les architectures d'émission numériques

FR  |  
EN
Auteur / Autrice : Fabien Robert
Direction : Martine Villegas
Type : Thèse de doctorat
Discipline(s) : Electronique, Optronique et Systèmes
Date : Soutenance le 05/12/2011
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-2015)
Partenaire(s) de recherche : Laboratoire : Laboratoire électronique, systèmes de communication et microsystèmes
Jury : Président / Présidente : Eric Kerherve
Examinateurs / Examinatrices : Martine Villegas, Antoine Diet, Dominique Morche, Philippe Cathelin, Geneviève Baudoin
Rapporteurs / Rapporteuses : Patrick Loumeau, Andreas Kaiser

Résumé

FR  |  
EN

Cette thèse porte sur les défis techniques et technologiques dans la conception des architectures mobiles d'émission « tout numérique » reconfigurables fonctionnant dans les bandes cellulaires pour les standards GSM, W-CDMA, HSUPA et LTE. Avec l'évolution constante des besoins en communication, les terminaux mobiles doivent être en mesure de couvrir différents standards à partir d'une même architecture, en fonction des bandes de fréquences libres, du débit et des contraintes spectrales. Dans un but de réduction des coûts, de consommation et d'une plus grande intégration, de nouvelles architectures dites multistandards se sont développées permettant à un seul émetteur d'adresser chaque standard au lieu de paralléliser plusieurs architectures radio chacune dédiée à un standard particulier. Depuis plusieurs années ont émergé des technologies nanométriques telles que le CMOS 90nm ou 65nm, ouvrant la voie à une plus grande numérisation des blocs fonctionnels des architectures jusqu'alors analogiques. Dans cette étude, nous identifions les évolutions possibles entre « monde analogique » et « monde numérique » permettant de déplacer la limite de la bande de base jusqu'à l'amplificateur de puissance. Plusieurs architectures ont été étudiées avec des degrés de numérisation progressifs jusqu'à atteindre l'architecture « tout numérique » englobant une partie de l'amplification de puissance. Un travail approfondi sur l'étude des différents standards cellulaires mené conjointement avec l'implémentation et la simulation de ces architectures, a permis d'identifier les différents verrous technologiques et fonctionnels dans le développement d'architectures « tout numérique ». Les contraintes de pollution spectrale des raies de sur-échantillonnage sont apparues comme dimensionnantes. Pour chaque bande de chaque standard, ces contraintes ont été évaluées, afin de définir une méthode d'optimisation des fréquences de sur-échantillonnage. Cependant un filtrage externe reste nécessaire. Une deuxième étape nous a amené à identifier et concevoir une technique de filtrage passe bande reconfigurable pour les bandes cellulaires de 1710 à 1980MHz avec au moins 60MHz de largeur de bande afin d'adresser le standard LTE, et 23dB d'atténuation à 390MHz du centre de la bande pour adresser le pire cas de filtrage (bandes 1, 3 et 10 en W-CDMA). Nous avons alors conçu et implémenté un filtre reconfigurable à inductances actives, afin de garantir reconfigurabilité et très faibles pertes d'insertion. Cette thèse a donc permis à partir d'une problématique actuelle et au travers d'une démarche d'identification des limites des architectures « tout numérique », de proposer un prototype de filtre adapté. Ce filtre a été conçu en CMOS 65nm, réalisé et mesuré, les performances sont conformes aux exigences requises