Thèse soutenue

Chaînes alternées dans les graphes arête-coloriés : k-linkage et arbres couvrants

FR  |  
EN
Auteur / Autrice : Gervais Mendy
Direction : Yannis ManoussakisDiaraf Seck
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 28/09/2011
Etablissement(s) : Paris 11 en cotutelle avec Université Cheikh Anta Diop (Dakar)
Ecole(s) doctorale(s) : Ecole doctorale Informatique de Paris-Sud
Partenaire(s) de recherche : Laboratoire : Laboratoire de recherche en informatique (Orsay, Essonne ; 1998-2020) - Laboratoire de Recherche en Informatique
Jury : Président / Présidente : Hao Li
Examinateurs / Examinatrices : Yannis Manoussakis, Diaraf Seck, Hao Li, Myriam Preissmann, Papa Amar Sissokho, Dominique Barth, Marina Groshaus
Rapporteurs / Rapporteuses : Myriam Preissmann, Papa Amar Sissokho

Résumé

FR  |  
EN

Un graphe arête-colorié Gc est un graphe dont les arêtes sont coloriées par un ensemble de couleurs données. Un sous-graphe de Gc est dit proprement colorié s'il ne contient pas d'arêtes adjacentes de même couleur. Un graphe ou multigraphe c-arête-colorié Gc, est dit k-lié (respectivement k-arête-lié) si et seulement si quelque soient 2k sommets distincts de V(Gc), notés, x1 y1 , x2 y2 , ..., xk yk , il existe k chaînes élémentaires sommet-disjointes (respectivement arête-disjointes) proprement arête-coloriées, reliant x1 à y1 , x2 à y2 , ... , xk à yk .Un arbre couvrant propre d'un graphe Gc est un sous-graphe de Gc qui est un arbre couvrant proprement colorié.Un arbre couvrant faiblement colorié est une arborescence telle qu'il existe une chaîne proprement coloriée entre la racine et chaque sommet du graphe.Dans la première partie de cette thèse, nous donnons des conditions suffisantes pour qu'un graphe arête-colorié soit k-lié. C'est un problème classique en théorie des graphes, avec des applications multiples. Ainsi, nous avons établi entre autres les résultats suivants.A) Tout multigraphe 2-arête-colorié d'ordre n ≥ 242k tel que dc(Gc) ≥ n/2+k –1, est k-lié. B) Tout multigraphe c-arête-colorié d'ordre n ≥ 2k et de taille m≥ cn(n–1)/2 – c(n–2k +1)+1 est k-lié.C) Tout multigraphe c-arête-colorié d'ordre n ≥ 2k tel que dc(x) ≥ n/2 pour tout sommet x, est k-arête-lié.D) Tout multigraphe 2-arête-colorié d'ordre n ≥ 2k ≥ 10 et de taille m ≥ n2 –5n + 11 tel que dc(x) ≥ 1 pour tout sommet x, est k-arête-lié.Dans la seconde partie de cette thèse, deux autres problèmes classiques en théorie des graphes sont traités dans la version arête-coloriée. Il s'agit des arbres couvrants et des chaînes hamiltoniennes. Nous donnons ci-dessous quelques résultats.E) Tout graphe simple c-arête-colorié k-connexe d'ordre n ≥ C²k+1 + k + 2 avec c ≥ C²n–k–1 + k +1, a un arbre couvrant propre.F) Tout graphe Gc connexe c-arête-colorié de degré rainbow rd(Gc)=k et d'ordre n ≥ C²k+1 + k + 2 avec c ≥ C²n–k–1 + k +1, possède un arbre couvrant propre.G) Tout graphe simple c-arête-colorié k-connexe d'ordre n ≥ ((k + j)2 + 3(k + j) – 2)/2 avec c ≥ ((n – k – j)(n – k – j – 1))/2 + 2 , où j(j –1)=k , possède un arbre couvrant faiblement colorié.H) Tout multigraphe Gc d'ordre n ≥ 14 et de taille m ≥ (n – 3)(n – 4) + 3n – 2 tel que rd(Gc) = 2, possède une chaîne hamiltonienne propre. I) Tout multigraphe c-arête-colorié d'ordre n ≠ 5, 7 et de taille m ≥ n2 – 3n + 4, possède une chaîne hamiltonienne propre.La plupart des résultats exposés, sont les meilleurs possibles relativement aux propriétés sur les conditions suffisantes.