Thèse soutenue

Identification et étude du rôle des protéines cibles du monoxyde d'azote (NO) dans les réponses de défense chez le tabac

FR  |  
EN
Auteur / Autrice : Jérémy Astier
Direction : David Wendehenne
Type : Thèse de doctorat
Discipline(s) : Sciences de la vie
Date : Soutenance le 30/05/2011
Etablissement(s) : Dijon
Ecole(s) doctorale(s) : École doctorale E2S Environnements, Santé, STIC (Dijon ; ....-2012)
Partenaire(s) de recherche : Laboratoire : Plante, Microbe, Environnement (Dijon)
Jury : Président / Présidente : Catherine Vergely
Examinateurs / Examinatrices : Christian Meyer
Rapporteurs / Rapporteuses : Renaud Brouquisse, Yves Marco

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les études entreprises depuis une douzaine d'années indiquent que le monoxyde d'azote (NO) est un médiateur physiologique impliqué dans de nombreux processus chez les plantes, incluant la germination, le développement des racines, la fermeture des stomates ou encore la réponse adaptative aux stress biotiques et abiotiques. Malgré cet important panel de fonctions, les mécanismes sous-jacents aux effets du NO ont été peu appréhendés et restent pour l'essentiel énigmatiques. Le travail présenté dans ce manuscrit s'inscrit dans cette problématique et a consisté en l’identification et la caractérisation de protéines cibles du NO chez le tabac dans le contexte de stress biotiques et abiotiques. Nous avons démontré que la cryptogéine, un éliciteur des réactions de défense, induit la S-nitrosylation rapide et transitoire de plusieurs protéines dans des suspensions cellulaires de tabac. Après purification, une douzaine de ces protéines ont été identifiées via une analyse par spectrométrie de masse. Celles-ci incluent notamment une protéine chaperonne de la famille des AAA-ATPase nommée CDC48 (Cell Division Cycle 48). Cette dernière a fait l'objet d'une étude structure/fonction approfondie afin d'appréhender l'impact de sa S-nitrosylation. Après avoir vérifié que la protéine recombinante était S-nitrosylable in vitro, nous avons démontré que ce processus n'affecte pas la structure secondaire de la protéine mais induit des modifications locales de sa structure tertiaire et une inhibition de son activité ATPasique. Le résidu cystéine 526, localisé dans le second domaine ATPasique de la protéine, a été identifié comme site probable de S-nitrosylation. Cette localisation stratégique pourrait expliquer l'effet inhibiteur du NO sur l'activité enzymatique de CDC48. La dernière partie de ce travail a été centrée sur l'analyse des mécanismes par lesquels le NO active la protéine kinase NtOSAK (Nicotiana tabacum stress activated protein kinase) chez le tabac. Nous avons démontré que NtOSAK forme un complexe constitutif avec la glycéraldéhyde 3 phosphate deshydrogénase (GAPDH). En réponse à un stress salin, le NO promeut l'activation de NtOSAK via la phosphorylation de deux résidus serine localisés dans la boucle d'activation de l'enzyme. De plus, il induit une S-nitrosylation rapide de la GAPDH, ce processus n'affectant pas la formation du complexe. Notre hypothèse est que ce complexe constituerait une plateforme de signalisation régulée par le NO et pouvant recruter les protéines cibles de NtOSAK lors de la réponse au stress salin.