Thèse soutenue

Voies de formation des crossovers méiotiques chez une espèce allopolyploïde, le colza (Brassica napus)

FR  |  
EN
Auteur / Autrice : Adrian Gonzalo
Direction : Eric Jenczewski
Type : Thèse de doctorat
Discipline(s) : Biologie
Date : Soutenance le 25/10/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences du végétal : du gène à l'écosystème (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Laboratoire : Institut Jean-Pierre Bourgin (Versailles ; 2010-....)
Jury : Président / Présidente : Jacqui Shykoff
Examinateurs / Examinatrices : Eric Jenczewski, Jacqui Shykoff, Graham Moore, Chris Franklin, Valérie Borde, Rod Snowdon
Rapporteurs / Rapporteuses : Graham Moore, Chris Franklin

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

La recombinaison méiotique est au cœur de l'hérédité Mendélienne, de l'évolution et de l'amélioration des plantes, car elle assure, grâce aux crossovers, une transmission fidèle des chromosomes et le brassage de l’information génétique au fil des générations. Deux voies de formation des crossovers coexistent chez les plantes. La voie principale (voie I) dépend de la protéine MSH4 (et de quelques autres). La voie secondaire ne produit que quelques crossovers (dits de voie II) au cours de la méiose d’une plante de type sauvage ; ils sont indépendants de MSH4 et leur nombre est limité par des protéines telles que FANCM. Si ces deux voies ont été bien décrites chez des espèces diploïdes, ce n’est pas le cas chez des plantes allopolyploïdes, pourtant très fréquentes parmi les plantes cultivées. Il s'agit là d'une lacune importante, car la présence de plusieurs jeux de chromosomes apparentés conduit à augmenter le nombre de partenaires susceptibles de former des crossovers et le nombre de copies de tous les gènes méiotiques, rendant la recombinaison méiotique plus complexe. Cette thèse vise à explorer l'interaction entre les voies de formation des crossovers et la polyploïdie en utilisant des mutants de colza (Brassica napus; AACC) et d’un de ces parents diploïdes (B. rapa; AA) pour deux gènes de la recombinaison méiotique.J'ai tout d'abord testé dans quelle mesure la formation de crossovers entre chromosomes homologues et entre homéologues (chromosomes A et C) est tributaire des voies I et II en évaluant l’effet d’une diminution du nombre de copies fonctionnelles de MSH4 sur le nombre de crossovers. J'ai montré que ce dernier n'est altéré que lorsque les deux copies MSH4 sont inactivées, toute autre combinaison de mutations conduisant au même nombre de crossovers inter-homologues que chez le sauvage. J'ai également montré que la proportion de crossovers de voie II chez des mutants msh4 de colza est bien supérieure à celles observées chez d’autres plantes mutantes pour msh4. Cette observation reste vraie chez des mutants msh4 de B. rapa, suggérant que la proportion accrue de crossovers de voie II n’est pas spécifique au colza, mais probablement une caractéristique des Brassicaceae. Chez des plantes allohaploïdes (AC) de colza, chez lesquelles les crossovers ne peuvent se former qu’entre homéologues, les copies MSH4 ne se compensent plus complétement ; le nombre de crossovers de voie I fluctue au contraire proportionnellement au dosage de MSH4, devenant presque nul lorsque toutes les copies sont inactivées. Mes résultats illustrent deux nouvelles propriétés spécifiques des crossovers entre homéologues: une plus grande sensibilité vis-à-vis du dosage MSH4 pour les crossovers de voie I et une plus faible efficacité des crossovers de voie II.Dans un second temps, j'ai caractérisé cytologiquement des mutants fancm de colza pour vérifier que l'augmentation des crossovers de voie II ne nuit pas à au bon déroulement de sa méiose. Cette question est restée en suspens, les mutants fancm de colza n’étant pas complètement nuls. Cet écueil m'a incité à développer une approche de TILLING par séquençage pour identifier de nouveaux mutants de recombinaison chez le colza. J'ai alors combiné les mutations fancm et msh4 chez B. rapa pour vérifier si les premières suffisent à corriger les défauts méiotiques induits par les secondes. J'ai montré que, conformément à ce qui avait été observé chez Arabidopsis thaliana, la mutation fancm augmente le nombre de crossovers à un point tel qu’elle restaure la formation de bivalents dans un mutant msh4. La fonction de FANCM est donc conservée chez B. rapa.Mes résultats ont fait progresser la compréhension des voies de formation des crossovers lors d’une méiose allopolyploïde. Ils indiquent que la transmission des chromosomes chez ces espèces implique principalement des crossovers de voie I, et qu’elle pourrait être assurée en limitant l’efficacité de cette voie (e.g. en diminuant le nombre de copies de gènes).