Thèse soutenue

Nouveaux systèmes d'imagerie médicale exploitant la diffraction X en dispersion d'énergie à l'aide de détecteurs spectrométriques CdZnTe

FR  |  
EN
Auteur / Autrice : Damien Barbes
Direction : Jean-Louis Hazemann
Type : Thèse de doctorat
Discipline(s) : Physique appliquée
Date : Soutenance le 04/10/2016
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale physique (Grenoble ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'électronique et de technologie de l'information (Grenoble ; 1967-....)
Jury : Président / Présidente : Jean-Louis Hodeau
Examinateurs / Examinatrices : Jean-François Adam, Philippe Duvauchelle
Rapporteurs / Rapporteuses : François Baudelet, Philippe Walter

Résumé

FR  |  
EN

Cette thèse étudie l’intérêt de la mesure de la diffusion cohérente de rayons X dans le cadre de l’imagerie du sein à des fins de diagnostic. Aujourd'hui, la plupart des systèmes d'imagerie médicale par rayons X exploitent le rayonnement transmis à travers les tissus. C’est le cas pour la mammographie, qui est la modalité d’imagerie du sein la plus courante. L'apparition récente de détecteurs résolus en énergie, à base de semi-conducteurs notamment, permet cependant d'envisager l'exploitation en milieu clinique d'un autre phénomène : le rayonnement diffusé cohérent. La mesure de spectres de diffusion peut apporter de nouvelles informations liées à la structure moléculaire des tissus examinés pour mieux les caractériser et ainsi améliorer le diagnostic final. Deux modalités sont envisagées : la détection in vivo de tumeurs du sein, à la suite d’une mammographie présentant un résultat suspect ou l'analyse de biopsie.Le système de mesure de diffusé développé lors de cette thèse exploite les détecteurs résolus en énergie de type CdZnTe, ces derniers présentant des caractéristiques (résolution en énergie, sensibilité, résolution spatiale, compacité) prometteuses pour une utilisation en condition clinique. Il se base par ailleurs sur la pixellisation du détecteur afin de proposer une modalité d’imagerie permettant de caractériser les matériaux ou tissus traversés dans une direction sans translation ni rotation.Cette thèse propose ainsi une étude complète de ce système, articulée autour de trois grandes parties : modélisation puis simulation du système de mesure, développement du traitement des données mesurées par le détecteur afin d’imager et caractériser l’échantillon analysé et enfin, dimensionnement d’un banc expérimental plus complexe intégrant un détecteur complet et un système de collimation multifente. Ces trois parties font par ailleurs l’objet de validations expérimentales associées.