Thèse soutenue

Développement de bolomètres luminescents et détecteurs de lumière pour la recherche de la double désintégration bêta sans émission de neutrinos

FR  |  
EN
Auteur / Autrice : Margherita Tenconi
Direction : Andrea Giuliani
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 28/09/2015
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Modélisation et Instrumentation en Physique, Energie, Géosciences et Environnement (Orsay, Essonne ; 2010-2015)
Partenaire(s) de recherche : Laboratoire : Centre de sciences nucléaires et de sciences de la matière (Orsay, Essonne ; 1998-2019)
Jury : Examinateurs / Examinatrices : Eduardo Garcìa Abancéns, Tommaso Tabarelli de Fatis, Pierre Désesquelles, Davide Franco, Xavier Sarazin
Rapporteurs / Rapporteuses : Eduardo Garcìa Abancéns, Tommaso Tabarelli de Fatis

Résumé

FR  |  
EN

L'étude de la double désintégration bêta sans neutrinos joue un rôle important dans plusieurs questions en physique des particules et cosmologie. Ce processus nucléaire hypothétique viole la conservation du nombre leptonique par deux unités et jusqu'à présent il est le seule moyen pratique pour dévoiler la nature du neutrino : sa détection implique forcement que neutrino et antineutrino sont la même particule. En outre, le taux de décroissance est sensible à la masse efficace de Majorana du neutrino, du coup à l'échelle absolue des valeurs propres de la masse et leur hiérarchie. La marque expérimentale de la DDB0ν est un pic monochromatique dans le spectre énergétique de la somme des deux électrons émis. Le but des expériences de prochaine génération est une sensibilité sur la masse efficace du neutrino de l'ordre de dizaines de meV, c'est-à-dire demi-vies de l'ordre de 10²⁷-10²⁸ années : en pratique, il s'agit de construire des sources de quelques centaines de kg d'isotope candidat, au moins, et les sonder par des détecteurs très efficients, tout en gardant le bruit de fond dans la région énergétique d'intérêt au niveau d'un coup/tonne/an. Les bolomètres luminescents sont une technique prometteuse vu leur excellentes résolutions énergétiques, haute efficacité de détection, ample choix pour les matériaux et extensibilité modulaire à grande échelle; de plus, grâce à la détection simultanée de chaleur et lumière produites par l'interaction des particules, il est possible de discriminer les contaminations α, dangereuse source de bruit aux énergies d'intérêt pour plusieurs noyaux candidats à la DDB0ν. Cette thèse a été effectuée dans le contexte de l'expérience LUMINEU : une expérience pilote qui a pour but la construction d'une expérience de prochaine génération basée sur les bolomètres scintillants en molybdate de zinc, pour l'étude de l'isotope candidat ¹⁰⁰Mo. En vue de la construction d'une expérience à grande échelle, il est nécessaire d'effectuer des caractérisations systématiques pour s'assurer des performances et de la reproductibilité des détecteurs et leurs composantes. La disponibilité d'installations expérimentales en surface, facilement accessibles, est souhaitable pour des tests routiniers : j'ai mené la plupart des expériences au CSNSM, où j'ai aussi travaillé à l'installation d'un nouvel cryostat à dilution basé sur la technologie du Pulse-Tube. Une partie de ma thèse a concerné l'étude de détecteurs bolométriques de lumière aux absorbeurs en germanium et thermomètres NTD (thermistors Neutron Transmutation Doped) : une structure standard pour LUMINEU a été établie et on a mesuré les performances des bolomètres telles que sensibilité, résolution énergétique, bruit de base et reproductibilité. Les résultats sont satisfaisants en vue d'un emploi dans une expérience avec bolomètres scintillants, bien que la configuration soit très sensible à la microphonie. En outre, j'ai testé avec succès des détecteurs bolométriques de lumière exploitants l'effet Neganov-Luke, qui augmente le rapport signal-bruit au niveau compatible avec la détection de la lumière Cherenkov pour la discrimination des événements. Une autre partie a vu la caractérisation des bolomètres scintillants en molybdate de zinc avec masse allant jusqu'à environ 300 g : couplés aux capteurs de lumière susmentionnés et lus par thermistors NTD, ils ont été refroidis en surface au CSNSM et en endroit souterrain à Modane, dans l'installation de l'expérience EDELWEISS pour la Matière Noire. Grâce à la détection simultanée de lumière et chaleur, les interactions des particules β/γ sont séparées des contaminations α. Les résultats démontrent que la caractérisation de bolomètres massifs, presque la taille cible des détecteurs finaux, est possible même en surface, en dépit du rayonnement cosmique. En outre, ces tests ont permis d'optimiser la compatibilité de l'installation de Modane avec les exigences des bolomètres scintillants pour la recherche de la DDB0ν.