Thèse soutenue

Prédiction des structures convectives terrestres

FR  |  
EN
Auteur / Autrice : Léa Bello
Direction : Nicolas Coltice
Type : Thèse de doctorat
Discipline(s) : Sciences de la Terre
Date : Soutenance le 16/01/2015
Etablissement(s) : Lyon, École normale supérieure
Ecole(s) doctorale(s) : École doctorale de Physique et Astrophysique de Lyon (1991-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de géologie de Lyon : Terre, planètes et environnement (Lyon ; 2011-....)
Jury : Président / Présidente : Yanick Ricard
Examinateurs / Examinatrices : Nicolas Coltice, Yanick Ricard, Luce Fleitout, Laurent Husson, Taras V. Gerya, Carolina Lithgow-Bertelloni
Rapporteurs / Rapporteuses : Luce Fleitout, Laurent Husson

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Depuis sa formation, la Terre subit un refroidissement lent. La chaleur provenant du noyau et de la désintégration des éléments radioactifs présents dans le manteau est évacuée vers la surface par convection. L’évolution des structures thermiques ainsi créées contrôle de nombreux phénomènes de surface tels que le mouvement des continents et le niveau marin. L’étude présentée ici s’attache à déterminer quelles structures convectives terrestres peuvent être reconstruites, sur quelle période de temps et avec quelle précision. La chaoticité de la convection implique que les incertitudes initialement présentes sur le champ de température croissent exponentiellement au cours du temps et peuvent créer des structures convectives artificielles dans les modèles. A l’aide de la méthode des expériences jumelles initialement développée par Lorenz [1965] en météorologie, le temps de Lyapunov et l’horizon de prédiction sont calculés pour la première fois en géodynamique mantellique. Différentes rhéologies sont étudiées. La valeur du temps de Lyapunov pour notre modèle le plus proche de la Terre suggère qu’une erreur de 5% sur les conditions initiales limite l’horizon de prédiction à 95 millions d’années. D’autre part, la qualité de la prédiction des structures thermiques dépend de notre capacité à décrire de façon réaliste les propriétés rhéologiques du manteau. L’utilisation d’une rhéologie pseudo-plastique dans les modélisations de convection en 3D sphérique, permet aujourd’hui de générer une tectonique de plaques compatible au premier ordre avec les caractéristiques cinématiques de la surface terrestre. Une stratégie cohérente de reconstruction peut alors être élaborée. L’état thermique actuel du manteau est reconstruit en imposant les vitesses de surface de ces 200 derniers millions d’années [Seton et al., 2012; Shephard et al., 2013] sur un modèle de convection généré par le code StagYY [Tackley, 2008]. La morphologie et la position des slabs reconstruits varient considérablement avec le contraste de viscosité et la pseudo-plasticité. L’erreur introduite par l’utilisation de rhéologies différentes lors des reconstructions est ainsi plus importante que les erreurs liées aux incertitudes sur les conditions initiales et les vitesses de surface. Ces résultats montrent l’importance du choix la rhéologie sur la qualité des prédictions réalisées. Ils mettent également en évidence rôle clé du contraste de viscosité et de la pseudo-plasticité pour reconstruire des slabs cohérents et des subductions plates, structures propres à la convection terrestre.