Thèse soutenue

Méthodes pour la vérification formelle de systèmes matériels et logiciels à architecture régulière

FR  |  
EN
Auteur / Autrice : Eric Gascard
Direction : Laurence Pierre
Type : Thèse de doctorat
Discipline(s) : Informatique et mathématiques
Date : Soutenance en 2002
Etablissement(s) : Aix-Marseille 1
Partenaire(s) de recherche : autre partenaire : Université de Provence. Section sciences

Résumé

FR

Le cadre de cette thèse est l'utilisation des méthodes formelles pour la spécification et la validation de systèmes matériels et logiciels. Nos travaux se sont concentrés sur la validation formelle de systèmes à architecture régulière et paramétrable, circuits combinatoires itératifs d'une part, et applications distribuées s'exécutant sur des réseaux d'interconnexion symétriques d'autre part. La première partie de cette thèse est consacrée à la vérification formelle automatique de circuits à structure répétitive régulière. Un modèle de fonctions récursives est utilisé, le processus de preuve mettant en jeu des techniques inductives permet un raisonnement générique sur la taille du circuit. Le résultat présenté ici est une heuristique de généralisation de théorèmes inductifs spécialisée pour les modèles fonctionnels considérés. Cette méthode permet de produire les théorèmes généralisés ainsi que certains lemmes intermédiaires et d'automatiser ainsi le processus de vérification. La seconde partie propose une méthode de modélisation et de validation de programmes distribués sur les réseaux d'interconnexion symétriques. Les preuves sont ici paramétrées sur l'ordre du réseau (nombre de processeurs). Le modèle formel choisi pour la représentation des réseaux dans l'environnement de démonstration automatique est basé sur le concept de graphe de Cayley. Notre méthode prend en compte les opérations de communications collectives (diffusion, distribution, réduction) utilisées par les applications distribuées. La modélisation et la méthode de preuve développées permettent entre autres de s'abstraire du problème des communications point à point, et de raisonner au niveau du processeur. De plus, elle permet d'obtenir automatiquement les invariants nécessaires au preuves.