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Résumé — Ce travail de thèse porte sur la vérification de modèles Simulink/Stateflow

par les méthodes formelles. L’objectif est de permettre la vérification des modèles Simulink par
rapport aux propriétés formelles qui représentent les exigences du système. Nous avons proposé
une traduction bidirectionnelle de Simulink/Stateflow vers Lustre, un langage synchrone
avec une sémantique formelle bien définie. Le principal résultat de ce travail de thèse est la boîte
à outils CoCoSim: un projet open source pour spécifier et vérifier les exigences définies par
l’utilisateur sur les modèles Simulink. La boîte à outils a été conçue pour faciliter les activités
de vérification et de validation (V&V) des modèles Simulink. De plus, la boîte à outils est
hautement automatisée et possède une architecture personnalisable et configurable qui permet
d’intégrer d’autres techniques pour augmenter l’évolutivité. La boîte à outils a également été
intégrée avec d’autres outils de vérification pour accroître son applicabilité.

Mots clés : Conception basée sur des modèles, Systèmes cyber-physiques, Vérification
logicielle, Méthodes formelles, Simulink, Stateflow, Lustre, Vérification et validation.

Abstract — This Ph.D. work is focused on the verification of Simulink/Stateflow models
by means of formal methods. The objective is to enable the verification of Simulink models with
respect to formal properties that represent system requirements. We proposed a bidirectional
translation from Simulink/Stateflow to Lustre, a synchronous language with well-defined
formal semantics. The primary outcome of this Ph.D. work is the CoCoSim toolbox: an open-
source framework for specifying and verifying user-defined requirements on Simulink models.
The toolbox has been designed to ease verification and validation (V&V) activities for Simulink

models. In addition, the toolbox is highly automated and has a customizable and configurable
architecture that allows other techniques to be integrated to increase scalability. The toolbox
has also been integrated with other verification tools to increase its applicability.

Keywords: Model-based design, Cyber-physical systems, Software verification, Formal
methods, Simulink, Stateflow, Lustre, Verification and validation.
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Résumé

Introduction

Ce travail de doctorat porte sur la vérification formelle des modèles Simulink, qui sont large-
ment utilisés dans la conception de systèmes critiques tels que les systèmes de contrôle de vol.
La vérification formelle est un processus qui consiste à prouver qu’un système répond à ses
exigences et spécifications en utilisant des méthodes mathématiques. La vérification formelle
des modèles Simulink est nécessaire car ces modèles peuvent être complexes et sujets à des
erreurs, et les conséquences de ces erreurs peuvent être graves dans les systèmes critiques pour
la sûreté.

Le principal résultat de ce travail est la toolbox CoCoSim, un framework open-source
pour spécifier et vérifier les exigences définies par l’utilisateur sur les modèles Simulink. La
toolbox CoCoSim est conçue pour faciliter les activités de vérification et de validation (V&V)
des modèles Simulink, notamment la validation de la compilation et la connexion d’outils
externes. Elle fournit une plateforme permettant aux utilisateurs de spécifier leurs exigences
dans un langage formel, puis de vérifier automatiquement ces exigences par rapport au modèle
Simulink.

La motivation de ce travail est de permettre l’application de prototypes de niveau recherche
à des modèles réels conçus par des ingénieurs de contrôle dans Simulink, comblant ainsi le fossé
entre la recherche universitaire et l’utilisation industrielle. CoCoSim assure la traduction d’un
large sous-ensemble de blocs discrets Simulink dans Lustre et fournit des moyens d’afficher
et de comprendre les résultats des analyses dans MATLAB Simulink. Nous avons appliqué
CoCoSim à de nombreuses études de cas de taille moyenne. Nous pensons qu’il est suffisamment
puissant pour de véritables modèles Simulink industriels. Cependant, nous souhaitons qu’il
s’agisse d’une boîte à outils à code source ouvert afin que la communauté puisse concevoir et
démontrer des analyses encore plus puissantes (extensibilité ou applicabilité). La motivation est
d’illustrer et de soutenir l’application pratique de méthodes formelles sur des modèles Simulink.

Le rapport commence par une discussion du contexte et des travaux connexes, notamment la
représentation formelle des modèles Simulink/Stateflow et la spécification formelle des pro-
priétés. Le chapitre 2 du rapport fournit une compilation bidirectionnelle de Simulink/Stateflow

vers Lustre, qui est un langage de flot de données synchrone ayant une base sémantique
formelle. Cette compilation est essentielle pour permettre à la toolbox CoCoSim de raison-
ner sur les modèles Simulink de manière formelle. Le chapitre 3 décrit en détail la toolbox
CoCoSim, notamment son architecture, ses caractéristiques et ses capacités. La toolbox com-
prend une variété de modules pour la compilation, la vérification et la validation, et elle prend
en charge plusieurs solveurs pour générer des conditions de vérification et des obligations de
preuve.

Enfin, le rapport se termine par quelques cas d’utilisation démontrant les capacités de Co-

CoSim. Ces cas d’utilisation illustrent comment la toolbox peut être utilisée pour spécifier et
vérifier une variété de propriétés sur les modèles Simulink, y compris les propriétés de sûreté, la
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correction fonctionnelle et les exigences de temps. Dans l’ensemble, le travail présenté dans cette
thèse de doctorat apporte une contribution importante au domaine de la vérification formelle
des modèles Simulink et fournit un outil précieux pour assurer la sûreté et la correction des
systèmes critiques.

Chapitre 1: Contexte et travaux connexes

Ce chapitre fournit une description de Simulink, Stateflow et Lustre. Il aborde ensuite les
travaux connexes concernant la sémantique formelle des modèles Simulink et Stateflow et
la spécification formelle des propriétés.

Simulink

Simulink [97], développé par MathWorks, est un langage de programmation graphique per-
mettant de modéliser des systèmes dynamiques, y compris des systèmes à temps discret, c’est-
à-dire des systèmes de flux de données synchrones. Simulink a gagné en popularité dans le
développement de systèmes embarqués critiques. Il prend en charge la conception et la simula-
tion de systèmes complexes avant de générer automatiquement un code C intégré. Un modèle
Simulink consiste en un ensemble de blocs reliés par des signaux qui peuvent être organisés
en modèles hiérarchiques. Par exemple, la figure 1 illustre un exemple de chronomètre qui
mesure le temps écoulé entre l’activation et la désactivation. Deux signaux externes contrôlent
le chronomètre : un signal de basculement pour activer le chronomètre appelé "toggle" et un
signal de réinitialisation pour remettre le compteur à zéro appelé "reset".

toggle running

is running

 ~= 0

if reset

0

 ~= 0

if running

1
2

reset

1

toggle

1

time

0 -> pre time

Figure 1: Exemple de chronomètre dans Simulink.

Simulink est largement utilisé pour concevoir et simuler des systèmes de contrôle, des
systèmes de communication, des algorithmes de traitement du signal et d’autres systèmes dy-
namiques. Il permet aux utilisateurs de créer des modèles à l’aide d’une interface glisser-déposer,
avec une bibliothèque de blocs prédéfinis pour la modélisation de composants courants tels que
les intégrateurs, les filtres et les boucles de rétroaction. Les utilisateurs peuvent également créer
leurs propres blocs personnalisés à l’aide du code MATLAB, ce qui permet une plus grande flex-
ibilité dans la modélisation de systèmes complexes.

2





critiques pour la sûreté, où la fiabilité et la correction du logiciel sont de la plus haute impor-
tance. Les sections 1.1.1 et 1.1.2 fournissent de plus amples informations sur Simulink et
Stateflow.

Lustre

Lustre [29] est un langage de programmation de flux de données synchrone utilisé pour la
conception de systèmes réactifs, y compris les systèmes en temps réel et les systèmes critiques
de sûreté. Il a été initialement développé par Paul Caspi et son équipe au laboratoire Verimag de
Grenoble, en France, dans les années 1980. Lustre se caractérise par sa sémantique d’exécution
synchrone, ce qui signifie que tous les composants du système sont mis à jour simultanément à
des points discrets dans le temps, par exemple des fronts montants d’un singal booleen jouant le
role d’horloge. Cela permet une analyse et une vérification formelles des programmes Lustre,
garantissant qu’ils respectent certaines propriétés de sûreté. Lustre a été utilisé dans de
nombreux domaines, notamment l’avionique, l’automobile et les systèmes de contrôle industriels.
Il a également influencé le développement d’autres langages de flot de données synchrones, tels
que Signal et Esterel. La section 1.1.3 fournit davantage d’informations sur Lustre.

1 node count (tick : bool) returns (time : int);

2 let

3 time = 0 -> pre time + 1;

4 tel

5
6 node stopwatch (tick, toggle, reset : bool) returns (time : int);

7 var running : bool clock;

8 let

9 running = ((false -> pre running) <> toggle) or reset;

10 time = merge running (true -> count(tick when running) every reset)

11 (false -> (0 -> pre time) when not running);

12 tel

Listing 1: L’exemple du chronomètre avec des horloges en Lustre

Notre boîte à outils CoCoSim utilise Lustre [29] comme langage intermédiaire, car sa
sémantique est bien définie et a été étudiée dans la recherche pendant de nombreuses années.
De plus, Lustre est bien adapté à la vérification formelle, et de nombreux vérificateurs de
modèles acceptant Lustre en entrée ont été développés en utilisant différentes techniques de
vérification telles que Kind2 [32], Zustre [52], et JKind [59].

Le sous-ensemble discret de Simulink a été traduit en divers langages d’entrée à des fins
de vérification de modèle, tels que NuSMV [102], Lustre [131] et les automates hybrides [123].
Tripakis et al. (2005) ont réalisé le premier travail de traduction de Simulink vers Lustre [131].
Nous partageons le même algorithme de génération récursive d’un nœud Lustre pour chaque
sous-système, mais nous différons dans la manière de traduire certains blocs et de gérer les
systèmes multipériodiques. Malheureusement, il est impossible de comparer l’outil car son
binaire n’est pas maintenu et ne supporte pas les nouvelles versions des modèles Simulink. Zhou
et Kumar (2012) ont proposé une approche récursive pour traduire une classe de diagrammes
Simulink en automates finis étendus aux entrées/sorties (I/O-EFA) [139], la représentation
formelle du modèle est aplatie et perd la hiérarchie et l’architecture du modèle Simulink.
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CoCoSim traduit le modèle Simulink de manière modulaire. Chaque sous-système Simulink

est traduit en un nœud Lustre. Cette modularité permet à l’outil d’effectuer la vérification par
composition, une technique qui nous aide à passer à l’échelle avec de grands modèles. Meenakshi
et al. (2006) [102] analysent la représentation textuelle du modèle et utilisent le langage d’entrée
NuSMV comme langage formel intermédiaire pour la vérification à l’aide d’un vérificateur de
modèle symbolique ; les types de données pris en charge par le langage sont limités aux booléens
et aux entiers bornés. La validation de la traduction de Simulink au langage d’entrée NuSMV
n’a pas été abordée.

Au fil des ans, plusieurs approches ont été proposées pour analyser les diagrammes de State-

flow. Ces approches manquent souvent d’une ou de plusieurs des caractéristiques souhaitées
suivantes : (i) une sémantique formelle convaincante ; (ii) une compilation fidèle qui préserve
la structure hiérarchique du modèle Stateflow et enfin, (iii) un moteur d’analyse entièrement
automatisé ; Notre travail vise à fournir un cadre pour répondre de manière adéquate à tous ces
points. Notre approche est basée sur une série d’articles de Hamon [78, 77, 79] fournissant une
sémantique opérationnelle et dénotationnelle pour Stateflow, et concevant des interprètes
pour Stateflow. Notre contribution est détaillée dans la section 2.3.

De plus, tous les travaux antérieurs sont soit propriétaires, soit non maintenus, ce qui pose
des problèmes d’adaptation aux nouvelles versions de Simulink. Nous avons relevé ces deux
défis en faisant de CoCoSim une architecture ouverte, de sorte que chacun puisse utiliser
notre outil, y contribuer ou le personnaliser. En outre, notre traducteur CoCoSim utilise
les API Simulink pour accéder et calculer toutes les informations de modèle nécessaires à la
traduction au lieu d’analyser le format textuel du modèle. Par conséquent, les nouvelles versions
de Simulink sont moins susceptibles d’avoir un impact négatif sur le traducteur. En outre, le
traducteur est modulaire et les nouveaux blocs Simulink peuvent être facilement pris en charge
et intégrés.

Un autre défi est le manque d’outils permettant la vérification automatique des propriétés
Simulink/Stateflow spécifiées en tant qu’observateurs synchrones. Les observateurs syn-
chrones sont un formalisme utilisé pour spécifier les propriétés temporelles des systèmes syn-
chrones, tels que les modèles Simulink et Stateflow. Ces propriétés sont typiquement ex-
primées dans une logique telle que la logique temporelle ou la logique temporelle linéaire et
peuvent être utilisées pour vérifier qu’un système répond à certaines exigences de sûreté et de
correction. Dans le cas des langages et modèles synchrones, de nombreux travaux [37, 92, 135]
préconisent l’utilisation d’exigences liées aux composants. Cependant, il est à noter que la déf-
inition de tels contrats ou leur raisonnement reste un défi. Les contrats formalisés peuvent être
utilisés pour de nombreuses applications : oracles de test, synthèse de test, synthèse réactive [84,
86], raisonnement compositionnel ou validation de contrats individuels. CoCoSpec [31, 33] est
un langage de spécification pour Lustre [73] et a été étendu aux modèles Simulink.

Cependant, l’absence d’outils permettant la vérification automatique des observateurs syn-
chrones dans les modèles Simulink et Stateflow rend difficile l’application de ces méthodes
formelles dans la pratique. Bien qu’il existe quelques outils pour vérifier les propriétés tem-
porelles dans les modèles Simulink et Stateflow, ces outils ne sont pas largement utilisés et
ne couvrent pas nécessairement toutes les caractéristiques des modèles.

En résumé, l’absence d’une base sémantique formelle et d’outils pour soutenir la vérification
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automatique des modèles Simulink et Stateflow rend difficile de garantir leur sûreté et leur
exactitude dans la pratique. Des recherches supplémentaires sont nécessaires pour développer
des méthodes et des outils formels largement adoptés et pouvant être utilisés efficacement pour
vérifier ces systèmes complexes.

Chapitre 2: Compilation bidirectionnelle des modèles Simulink/Stateflow
vers Lustre

Ce chapitre décrit une contribution importante au domaine de la vérification formelle des mod-
èles Simulink/Stateflow: une compilation bidirectionnelle entre Simulink et le langage
de programmation Lustre. Cette compilation permet la vérification formelle des modèles
Simulink/Stateflow, ce qui est crucial pour garantir la sûreté et la correction des systèmes
critiques.

La première partie du chapitre décrit la compilation sémantique des modèles Simulink vers
Lustre. Le programme Lustre résultant préserve le comportement fonctionnel du modèle
Simulink original, tout en fournissant une sémantique formelle qui permet de raisonner sur son
comportement. L’algorithme est expliqué dans la Section 2.2.1, et les blocs qui nécessitent plus
d’attention pour capturer correctement leur sémantique sont expliqués dans les Sections 2.2.4,
2.2.5, et 2.2.6. Dans le chapitre 3, nous présentons CoCoSim où cet algorithme est implémenté,
et où la sémantique de plus d’une centaine de blocs Simulink est définie comme des fonctions
MATLAB produisant du code Lustre.

La deuxième partie du chapitre présente la sémantique dénotationnelle des modèles State-

flow que nous avons publiée dans [17]. Nous proposons un processus de compilation utilisant
une sémantique dénotationnelle de type CPS (continuation-passing style). Notre technique de
compilation préserve le comportement structurel et modal du système. L’approche globale est
implémentée et intégrée dans notre toolbox open-source CoCoSim (voir chapitre 3). Nous
présentons également des évaluations expérimentales préliminaires dans le chapitre 3, illustrant
l’efficacité de notre approche dans la génération de code et la vérification de sûreté des modèles
Stateflow à l’échelle industrielle.

Enfin, le chapitre montre également comment recompiler le code Lustre en modèles Simulink.
Il s’agit d’une étape cruciale pour les applications pratiques de la vérification formelle, car elle
permet de réintégrer les résultats de l’analyse formelle dans le modèle Simulink. La compi-
lation de Lustre à Simulink implique la mise en correspondance de constructions Lustre

avec des blocs Simulink, puis la connexion de ces blocs pour créer un modèle Simulink qui
préserve le comportement du programme Lustre original. L’approche a été validée en dé-
montrant l’équivalence comportementale entre certains modèles compilés. Les applications sont
nombreuses, de la validation du framework à l’assistance à la spécification formelle ou à la
production de preuves exécutables en tant qu’observateurs synchrones. Il est maintenant inté-
gré dans la toolbox CoCoSim et est suffisamment mature pour être utilisé automatiquement
pour fournir un retour d’information au niveau du modèle. Les travaux futurs comprennent
l’extension du langage d’entrée pour permettre l’utilisation de fonctions définies en externe,
comme le code C, et la manipulation de types de données machine (par exemple, int8, uint8,
int16, uint16).
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Dans l’ensemble, la compilation bidirectionnelle entre Simulink/Stateflow et Lustre

fournit un outil important pour la vérification formelle des modèles Simulink, permettant
de vérifier les propriétés de sûreté et de correction des systèmes critiques. Le processus de
compilation consiste à convertir les modèles Simulink en un langage formel avec une sémantique
bien définie, puis à renvoyer les résultats au modèle Simulink d’origine, ce qui permet de mettre
en relation le monde de la vérification formelle et la conception de systèmes pratiques.

Chapitre 3: CoCoSim: Une boîte à outils pour faciliter les ac-
tivités de V&V

CoCoSim est une toolbox open-source qui fournit une base sémantique formelle pour un sous-
ensemble bien défini de blocs Simulink/Stateflow. Elle permet la vérification des modèles
Simulink/Stateflow à l’aide de méthodes formelles et la génération de code. CoCoSim est
structuré comme un compilateur qui itère sur les blocs Simulink en utilisant l’API MATLAB
et produit des nœuds Lustre équivalents. Les contrats, qui sont des observateurs synchrones
attachés aux sous-systèmes Simulink, peuvent être utilisés pour dénoter les éléments du contrat
tels que les hypothèses et les garanties.

Le framework CoCoSim est conçu pour prendre en charge l’analyse des systèmes Simulink

critiques en matière de sûreté. La validité des nœuds Lustre générés par CoCoSim peut être
vérifiée à l’aide d’un contrôle de modèle basé sur SMT. CoCoSim est un framework hautement
automatisé qui prend en charge différentes techniques de vérification et peut s’adapter à de
grands modèles. La chaîne d’outils a été utilisée pour vérifier les propriétés d’une série de mod-
èles, notamment un système de contrôle des micro-ondes, le système d’amarrage de la navette
spatiale et un système de pompe à perfusion analgésique contrôlée par le patient. La compi-
lation de Simulink à Lustre a été validée à l’aide de tests et de vérifications d’équivalence,
montrant que la compilation est saine.

Le framework est conçu pour fournir une intégration étroite et une boucle de rétroaction
entre les exigences de haut niveau et la vérification et la validation des modèles ou du code
par rapport à ces exigences. Il relie les exigences formelles aux modèles Simulink pour la
vérification, et les résultats de la vérification aux exigences.

CoCoSim fonctionne comme un compilateur, transformant les blocs Simulink en nœuds
Lustre. Il permet ensuite de compiler le modèle Lustre en code C ou de l’analyser à l’aide de
vérificateurs de modèles Lustre tels que Kind2 ou Zustre. CoCoSim assure la traçabilité entre
les vérificateurs de modèles et les modèles Simulink, permettant ainsi de fournir des informa-
tions aux modèles. Ce framework automatisé prend en charge la vérification et la génération de
code pour les modèles Simulink/Stateflow.

Moteur de prétraitement des blocs

Le moteur de prétraitement de CoCoSim simplifie les modèles Simulink en remplaçant certains
blocs prédéfinis par des blocs de base équivalents. Les bibliothèques de prétraitement, basées sur
des fonctions MATLAB, transforment le modèle en utilisant l’API Simulink. CoCoSim permet
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également de vérifier l’équivalence entre le modèle original et le modèle simplifié. L’objectif
principal de ce prétraitement est de réduire le nombre de blocs à traduire en Lustre en les
remplaçant par des blocs plus simples.

Une représentation interne des modèles Simulink

Après le prétraitement des blocs Simulink, nous générons une structure de données contenant
toutes les informations nécessaires sur le modèle, les blocs et les paramètres de configuration.
Cette représentation présente deux avantages. Premièrement, elle nous permet d’obtenir toutes
les informations sur le modèle en une seule fois en utilisant l’API Simulink, évitant ainsi
de parcourir le format textuel du modèle Simulink qui peut changer à chaque nouvelle ver-
sion. Deuxièmement, cette représentation peut être exportée au format JSON, ce qui facilite
l’intégration de compilateurs externes avec la boîte à outils.

Traduction sémantique des diagrammes Simulink/Stateflow

Les blocs Simulink pris en charge par CoCoSim incluent plus de 100 blocs couramment util-
isés, qui sont soit transformés en blocs plus simples, soit traduits directement en Lustre. Le
traducteur, développé en MATLAB avec un modèle de conception de visiteur, permet d’ajouter
facilement de nouvelles traductions ou de personnaliser les traductions existantes. En ce qui
concerne les blocs Stateflow, CoCoSim prend en charge les constructions les plus connues,
notamment les états exclusifs et parallèles, les actions d’état (entrée, pendant et sortie), ainsi
que les transitions avec différentes combinaisons d’événements, conditions et actions.

Backends de CoCoSim

Les analyses de CoCoSim sont effectuées sur le code Lustre généré et les résultats sont ren-
voyés à Simulink. Les outils connectés sont open source et disponibles gratuitement telles que
Kind2 [32], Zustre [52], et JKind [59].

Évaluation expérimentale de la correction de la traduction

Nous avons testé CoCoSim sur de nombreux modèles Simulink générés automatiquement.
Tous les composants de l’architecture de CoCoSim ont été testés individuellement, y compris
chaque bibliothèque de l’étape de prétraitement, qui a été validée à l’aide de Simulink Design
Verifier, comme expliqué dans la Section 3.2.1.

Pour valider notre traduction, nous avons généré automatiquement un ensemble de tests
de régression basés sur les blocs atomiques que nous prenons en charge. Nous avons inclus les
variations les plus courantes des paramètres de chaque bloc, y compris les types de données,
les dimensions des entrées et les blocs exécutés de manière conditionnelle. Au total, nous avons
créé environ 2000 tests comprenant en moyenne 16 variations par bloc.
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Chapitre 4: Cas d’utilisation

CoCoSim est une toolbox conçue pour faciliter la vérification des modèles Simulink/Stateflow,
qui sont couramment utilisés dans la conception de systèmes critiques pour la sûreté. La véri-
fication formelle de tels systèmes est une tâche complexe qui implique de multiples outils et
méthodes. Dans ce contexte, CoCoSim a été appliqué à deux cas d’utilisation pour démontrer
son applicabilité dans des scénarios du monde réel.

Le premier cas d’utilisation concerne les dix défis cyber-physiques de Lockheed Martin,
qui sont un ensemble de modèles Simulink industriels et d’exigences fonctionnelles en langage
naturel développées par des experts du domaine. CoCoSim a été utilisé conjointement avec
FRET (Formal Requirements Elicitation Tool) pour effectuer une analyse de bout en bout des
défis. Le processus a commencé par l’élicitation et la formalisation des exigences, suivies par
l’attachement des exigences aux modèles Simulink/Stateflow et leur compilation en Lustre

à l’aide de CoCoSim. Enfin, le modèle Lustre a été analysé et vérifié à l’aide de différentes
techniques de vérification. Ce cas d’utilisation a démontré l’efficacité de CoCoSim dans la
vérification de systèmes complexes et sa capacité à s’intégrer à d’autres outils.

Le deuxième cas d’utilisation concerne la vérification du système de navigation d’un rover.
Dans ce cas d’utilisation, différentes méthodes de vérification ont été intégrées, y compris
CoCoSim, FRET, AdvoCATE, et Event-B. Un Assurance case a été utilisé comme point
d’intégration pour maintenir des liens formels cohérents entre les processus de développement et
d’assurance. Ce cas d’utilisation a démontré les avantages de l’utilisation d’un Assurance case

pour intégrer différents outils de vérification et maintenir une traçabilité claire des résultats de
vérification.

Dans l’ensemble, ces cas d’utilisation démontrent l’efficacité de CoCoSim dans la véri-
fication de systèmes complexes et la capacité d’intégration avec d’autres outils et framework.
L’utilisation d’un Assurance case comme point d’intégration offre des avantages supplémentaires
en maintenant une traçabilité claire des résultats de la vérification.

Le cadre intégré FRET-CoCoSim

La Figure 3 présente le flux de notre cadre d’analyse. Voici les étapes clés :

Étape 0 : L’utilisateur rédige et affine les exigences dans fretish, en se basant sur les expli-
cations sémantiques et les capacités de simulation de FRET.

Étape 1 : Les exigences sont traduites en formules Pure Past-Time / Future-Time Metric
LTL (pmLTL / fmLTL).

Étape 2 : Les données du modèle en cours d’analyse sont utilisées pour établir une corre-
spondance entre les propositions des exigences et les signaux Simulink.

Étape 3 : Les formules pmLTL / fmLTL et la correspondance architecturale sont utilisées
pour générer des moniteurs CoCoSpec et des données de traçabilité.

Étape 4 : Les moniteurs CoCoSpec générés, les données de traçabilité et le modèle Simulink
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Figure 3: Cadre d’analyse des besoins.

sont importés dans CoCoSim [15]. CoCoSim génère des moniteurs Simulink et produit du
code Lustre pour le modèle complet (modèle initial plus moniteurs attachés).

Étape 5 : Le modèle cible est analysé à l’aide d’outils de vérification basés sur Simulink

(comme Simulink Design Verifier) et basés sur Lustre (comme Kind2 et Zustre).

Étape 6 : Les contre-exemples produits par l’analyse peuvent être retracés jusqu’à CoCoSim

ou FRET.

Analyse - Cas d’utilisation et exigences sélectionnés

Notre étude de cas implique les tâches suivantes : solliciter les exigences dans fretish, établir
la correspondance entre les variables fretish et les variables du modèle, effectuer une analyse,
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interpréter les contre-exemples au niveau des exigences et interpréter les exigences au niveau du
modèle. Trois chercheurs ont participé à l’étude : un ingénieur en contrôle en tant qu’expert du
domaine, un expert en exigences et un expert en vérification. Les tâches 1 et 2 ont été réalisées
en collaboration par les experts en exigences et en domaine. L’expert en vérification a effectué
les tâches 3 et 5, tandis que l’expert en exigences a réalisé la tâche 4.

Leçons apprises

Nous avons réussi à capturer 69 des 74 exigences LMCPS dans FRET. Cependant, certaines exi-
gences ont posé des problèmes, notamment celles contenant des conditions temporelles ou faisant
référence à des valeurs précédentes de variables. Nous avons contourné ces limitations en util-
isant des variables internes/auxiliaires, mais une solution directe dans fretish serait préférable.

Nous avons généré des spécifications et des données de traçabilité pour tous les défis LMCPS,
ce qui nous a permis de créer automatiquement des moniteurs pour les modèles Simulink. La
capacité d’interpréter et de tracer des contre-exemples aux niveaux du modèle et des exigences
s’est révélée très utile pour détecter les conflits et comprendre les problèmes. Le simulateur
FRET a également été précieux pour l’analyse des contre-exemples. Pour gérer la complexité,
nous avons effectué des analyses modulaires sur les exigences locales plutôt que globales. Notre
approche de mappage architectural nous a permis de déployer des spécifications CoCoSpec à
différents niveaux de comportement du modèle, ce qui s’est révélé essentiel pour les modèles
complexes.

Navigation du Rover

Dans Section 4.2, nous proposons une méthodologie détaillée pour l’étude de cas du Rover
d’Inspection, qui comprend une sélection spécifique d’outils. L’outil principal utilisé dans les
étapes conceptuelles, de conception et d’assurance au niveau du système est AdvoCATE. Les
outils FRET, CoCoSim et Event-B sont utilisés pour l’application des méthodes formelles.
Dans la phase d’analyse, nous effectuons une analyse compositionnelle au niveau du système en
utilisant CoCoSim et Kind2, ainsi qu’une vérification des composants par rapport au modèle
système avec les outils Event-B et Kind2.

Chapitre 5: Conclusion et perspectives

Cette thèse de doctorat a abordé la vérification formelle des modèles Simulink/Stateflow en
quatre chapitres.

Le premier chapitre donnait un aperçu général du problème et discutait des travaux connexes
dans le domaine de la vérification formelle des modèles Simulink/Stateflow. Dans le deux-
ième chapitre, nous avons proposé une approche de traduction des modèles Simulink/Stateflow

vers le langage formel Lustre. Nous avons également développé une compilation inverse des
modèles Lustre vers CoCoSim, permettant de valider l’outil CoCoSim et de relier les exi-
gences à l’analyse des modèles Simulink.
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La mise en œuvre de cette approche s’est concrétisée dans la boîte à outils CoCoSim

présentée dans le troisième chapitre. CoCoSim vise à faciliter les activités de vérification et de
validation des modèles Simulink. La boîte à outils est hautement automatisée et dispose d’une
architecture personnalisable et configurable pour intégrer d’autres techniques et améliorer la
scalabilité.

Le quatrième chapitre a illustré l’utilisation de CoCoSim à travers plusieurs études de cas
industriels et académiques, dont les défis CyberPhysical de Lockheed Martin et l’étude de cas du
rover de navigation. Les résultats montrent que CoCoSim peut vérifier efficacement les modèles
Simulink, notamment grâce à la vérification compositionnelle. Les méthodes formelles, telles
que la vérification de modèles, peuvent être limitées pour les modèles volumineux, non linéaires
et nécessitant des calculs numériques intensifs.

Plusieurs pistes de recherche future sont envisageables, notamment l’amélioration de la boîte
à outils pour prendre en charge davantage de fonctionnalités de Simulink/Stateflow, la
vérification des filtres numériques et des contrôleurs, l’intégration de la précision des nombres
flottants et la compilation précise des calculs numériques, ainsi que l’étude de l’utilisation de
CoCoSim dans des études de cas industriels plus poussés.
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Introduction

In the development cycle of critical systems, performing early verification and validation (V&V)
can help reduce the cost and time of detecting and fixing errors. Thus, performing V&V at the
design level helps eliminate potential problems before the software is fully implemented. Our
objective is to enable the verification of Simulink (a graphical dataflow modeling language
widely used in the design of flight control systems) models with respect to formal properties
that represent system requirements. The primary outcome of this Ph.D. work is the CoCoSim

toolbox: an open-source framework for specifying and verifying user-defined requirements on
Simulink models. The open architecture of the tool enables the integration of multiple analyses
(ours and promising ones of the research community, for instance) to truly enable the application
of formal verification methods on Simulink/Stateflow models.

Model Driven Development (MDD) is a widely used technique in developing Cyber-physical
systems, specifically for embedded systems. Using MDD techniques helps refine High-Level
Requirements down to the embedded code while having an executable model at different stages;
this enables applying the V&V technique in all development stages of the system. Moreover,
early error detection at the design level helps reduce the time and cost of fixing errors, which is
usually very high when left to the late stages of system development. Some of the programming
languages that support MDD are synchronous languages. This is because they aim to specify
the behavior of synchronous reactive systems. This model of computation describes programs
that intend to be run forever, repeating the exact computation regularly, at fixed time steps.

Among the varieties of synchronous languages, we focus mainly on two of them. First,
Simulink/Stateflow1 from MathWorks is a de facto standard in the industry; it is supported
by powerful MATLAB toolboxes, providing a large set of advanced mathematical functions. One
of the most vital points of Simulink is the capability of specifying both continuous and discrete
components in the same model. Eventually, continuous components will be discretized before
being executed on the final embedded platform, they are essential ingredients of the development
process of controllers. The Simulink framework also provides simulation engines enabling the
execution of model traces combining discrete components with continuous ones specified with
Ordinary Differential Equations (ODEs). In addition, the discrete subset of Simulink can
be used to automatically produce embedded code, thus accelerating code development while
minimizing the introduction of errors during the design.

The second industrial language is ANSYS SCADE2 and its associated academic companion
Lustre [29]. While SCADE resembles the discrete subset of Simulink with similar graphical
objects to describe model components, Lustre is a textual, yet equivalent, language.

Simulink and SCADE are used as MDD tools in developing critical systems in many safety-
critical areas, such as automotive and avionics industries, where errors are not allowed since they
can have catastrophic consequences. Simulink and SCADE offer code generation capabilities
and means to perform verification and validation (V&V). On the one hand, exhaustive testing
of such complex systems is never possible. On the other hand, formal verification techniques

1https://www.mathworks.com/products/simulink.html
2http://www.esterel-technologies.com/products/scade-suite/
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are complete (they perform exhaustive verification) as they show the correctness of a model for
all possible inputs. Therefore using formal verification techniques is highly desirable.

At a research level, the topics of certified compilation or formal verification of dataflow
languages are very active. Nevertheless, integrating academic research ideas into commercial
frameworks such as Simulink and SCADE is quite tricky. Therefore, it is more common to
develop methods and tools on well-defined and publicly available languages such as Lustre.

The motivation behind this work is to enable the application of research-level prototypes
to actual models designed by control engineers in Simulink, thus bridging the gap between
academic research and industrial use. CoCoSim addresses the translation of a large subset
of Simulink discrete blocks into Lustre and provides means to display and understand the
results of the analyses within MATLAB Simulink. We have applied CoCoSim to many case
studies of moderate sizes. We believe that it is powerful enough for genuine industrial Simulink

models. However, we want it to be an open-source toolbox so that the community can devise
and demonstrate even more powerful (in terms of scalability or applicability) analyses. The
motivation is to illustrate and support the practical application of formal methods on Simulink

models.

This Ph.D. work has resulted in the following publications:

Conference papers:

1. Hamza Bourbouh et al. “Automated analysis of Stateflow models”. In: LPAR-21. 21st

International Conference on Logic for Programming, Artificial Intelligence and Reasoning.
Ed. by Thomas Eiter and David Sands. Vol. 46. EPiC Series in Computing. EasyChair,
2017, pp. 144–161

2. Hamza Bourbouh et al. “CoCoSim, a code generation framework for control/command
applications: An overview of CoCoSim for multi-periodic discrete Simulink models”. In:
10th European Congress on Embedded Real Time Software and Systems (ERTS 2020).
2020

3. Hamza Bourbouh et al. “Integrating Formal Verification and Assurance: An Inspection
Rover Case Study”. In: NASA Formal Methods. Ed. by Aaron Dutle et al. Cham:
Springer International Publishing, 2021, pp. 53–71

4. Hamza Bourbouh, Guillaume Brat, and Pierre-Loïc Garoche. “CoCoSim: an automated
analysis framework for Simulink/Stateflow”. In: Model Based Space Systems and Software

Engineering-European Space Agency Workshop (MBSE 2020). 2020

5. Anastasia Mavridou et al. “Bridging the Gap Between Requirements and Simulink Model
Analysis”. In: Joint 26th International Conference on Requirements Engineering: Foun-

dation for Software Quality Workshops, Doctoral Symposium, Live Studies Track, and

Poster Track. Pise, Italy, Mar. 2020

6. A. Mavridou et al. “The Ten Lockheed Martin Cyber-Physical Challenges: Formalized,
Analyzed, and Explained”. In: International Requirements Engineering Conference (RE).
IEEE, 2020, pp. 300–310
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Journals:

7. Hamza Bourbouh et al. “From Lustre to Simulink: Reverse Compilation for Embedded
Systems Applications”. In: ACM Transactions on Cyber-Physical Systems 5.3 (2021),
pp. 1–20

Technical reports:

8. Hamza Bourbouh et al. Integration and Evaluation of the Advocate, FRET, CoCoSim,

and Event-B Tools on the Inspection Rover Case Study. Tech. rep. 2020

9. Anastasia Mavridou et al. Evaluation of the FRET and CoCoSim tools on the Ten Lock-

heed Martin Cyber-Physical Challenge Problems. Tech. rep. 84 pages. NASA, Aug. 2019

The report begins with a discussion of the context and related work, including formal rep-
resentation of Simulink/Stateflow models and formal specification of properties. A bidirec-
tional translation from Simulink/Stateflow is provided in Chapter 2. Chapter 3 describes the
CoCoSim toolbox, designed to ease verification and validation (V&V) activities for Simulink

models, including translation validation and connecting external tools. Finally, the report ends
with some use cases demonstrating the capabilities of CoCoSim.
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This chapter briefly introduces some concepts and definitions necessary to understand the
following chapters. In addition, some related works are cited here and in the following chapters.

1.1 Background

1.1.1 Simulink

Simulink [97], developed by MathWorks, is a graphical programming language for modeling
dynamical systems, including discrete-time ones, i.e., synchronous dataflow systems. Simulink

has gained popularity in critical embedded systems development. It supports the design and
simulation of complex systems before automatically generating embedded C code. A Simulink

model consists of a set of blocks connected by signals that can be organized as hierarchical
models. For example, Fig. 1.1 illustrates a stopwatch example that measures the time elapsed
between activation and deactivation. Two external signals control the stopwatch: a toggle

signal to toggle the activation of the stopwatch and a reset signal to reset the counter.

toggle running

is running

 ~= 0

if reset

0

 ~= 0

if running

1
2

reset

1

toggle

1

time

0 -> pre time

Figure 1.1: Stopwatch example in Simulink.

Simulink has a rich library of blocks and supports continuous and discrete solvers in its
simulation engine. Furthermore, blocks can run on different sample times (multi-periodic) or on
one global sample time (mono-periodic). On the other hand, Simulink lacks formally published
reference semantics for its block library, making formal analysis of such models difficult.

In a Simulink model, the user can use blocks, signals, and annotations. Each Simulink

block implements a given mathematical function or a stateful system specification and has a
specific number of inputs and outputs connected with other blocks using Simulink signals.
These blocks are either basic blocks from Simulink library (e.g., Sum, UnitDelay, Gain) or
a grouping of several blocks into a Subsystem block. Simulink diagrams are hierarchical and
graphically organized using subsystems. There are two types of subsystems; Virtual Subsystem

is flattened during the simulation and only used to organize the model at design time. Atomic

Subsystem is executed as an atomic unit in the final code.

A discrete Simulink model runs on a fixed time step defined with a period T and initial
offset T0. A Simulink model can be mono-periodic, where all blocks run with the same period,
or multi-periodic, where blocks can run on different periods. A block is executed, and its outputs
are updated only when certain execution conditions are satisfied. If these conditions are not
met, the block is not executed, and its output signals hold their values. Matlab/Simulink
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defines three types of execution conditions and blocks:

• Unconditional blocks or subsystems: The block is set with a sample time D = (TB,TB
0 )

with period TB and initial offset TB
0 and it is updated only at times kTB +TB

0 for k 2 N,
whereas it remains constant during the intervals [kTB + TB

0 , (k + 1)TB + TB
0 ).

• Conditionally executed subsystems: such as Enabled/Triggered Subsystems, are subsys-
tems that are conditionally executable when a certain guard condition over certain vari-
ables, called control inputs, holds. Furthermore, the data of the system-block may be
reset when the guard condition holds, Moreover, the outputs may be reset when the
guard condition is not valid anymore.

• Logically-executed subsystems: the Subsystem is executed one or more times at the cur-
rent time step when a signal from a control block enables it. Examples of logically-executed
subsystems are If Action Subsystem, Switch Case Action Subsystem, and For Each Sub-

system.

In the following, we rely on Zhou and Kumar [139] formal representation of Simulink dia-
grams and Simulink blocks. This formal representation is used later in Chapter 2 to provide a
formal translation from Simulink models to Lustre. Even though Zhou and Kumar’s repre-
sentation can represent both continuous-time and discrete-time blocks, we are only interested
in the latter.

1.1.1.1 Unconditional atomic blocks

Simulink provides a library of basic blocks that can be composed into more complex Simulink

diagrams. Such blocks are referred to as atomic-blocks.

Based on the formalization of Zhou and Kumar (2012) [139] an atomic-block can be defined
as follows:

Definition 1.1 An atomic Simulink block B can be represented as a tuple

(UB,YB,DB,DB
0 , {(G

B
i , f B

i , hB
i )}qB

i=1, (T
B,TB

0 )), where

• UB = UB
1 ⇥ . . .⇥ UB

mB is the set of typed inputs,

• YB = YB
1 ⇥ . . .⇥ YB

pB is the set of typed outputs,

• DB = DB
1 ⇥ . . .⇥DB

nB is the set of typed data,

• DB
0 ✓ DB is the set of initial data conditions,

• {(GB
i , f B

i , hB
i )}qB

i=1 is a set of triples, where

– GB
i ✓ DB ⇥ UB is a predicate representing an enabling guard, such that

_qB

i=1Gi = True.

– f B
i : DB ⇥ UB ! DB is a data-update function,

– hB
i : DB ⇥ UB ! YB is an output-assignment function.

• TB is the sample period, and TB
0 is an offset (it is assumed zero by default if

unspecified).
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The kth sampling time occurs at kTB + TB
0 . The value of the input signal at the

kth sampling time is denoted as u(k) = (u1(k), . . . , umB(k)) 2 UB, and similarly for

other signals. At the kth sampling time, if the data d(k) and the input u(k) are such

that GB
i (d(k), u(k)) holds, the next data, d(k + 1) = f B

i (d(k), u(k)), is computed,

and the output value is assigned to y(k) = hB
i (d(k), u(k)).

(Zhou and Kumar, 2012 [139]).

Let us illustrate Definition 1.1 by defining the atomic-blocks used in the stopwatch Simulink

model of figure 1.1.

Example 1.1

The stopwatch Simulink model defined in figure 1.1 uses several atomic-blocks, such as: Con-

stant, Inport, Outport, Sum, Switch, and Unit Delay.

We consider that all Simulink blocks of the stopwatch model run on the same sample time as

the model itself named (TStopwatch ,TStopwatch
0 ).

A Constant block with value v models the relation y(k) = v, where y is its output and k

represents the kth sampling time. Furthermore, it is a stateless block, so no data or data-update

functions exist. The Constant block can be represented as:

(�, y,�,�, {(�,�, y(k) = v)}, (TConstant ,TConstant
0 )),

where TConstant is the sample-period and TConstant
0 is an offset. In the case of a Constant block,

the sample time specifies the period between which the block output may change during simulation

(for example, due to tuning the Constant value parameter). In the case of formal verification, We

assume that the output of the block will never change (i.e., TConstant = infinity and TConstant
0 =

0).

Inport blocks link signals from outside a system into the system. It models the relationship

y(k) = u(k), where y is its output, u is its input provided outside the system, and k represents

the kth sampling time. Sample time (T Inport ,T Inport
0 ) can be used to specify the discrete interval

between sample time hits. In this example, we assume the externally linked signal will run on

the same sample time as the model. Therefore, the block can be represented as:

(u, y,�,�, {(�,�, y(k) = u(k))}, (TStopwatch ,TStopwatch
0 )),

Outport blocks link signals from a system to a destination outside the system. They can

connect signals flowing from a subsystem to other parts of the model. They can also supply

external outputs at the top level of a model hierarchy. It can be represented similarly to the

Inport block above:

(u, y,�,�, {(�,�, y(k) = u(k))}, (TStopwatch ,TStopwatch
0 )),

Where u is its input and y is its virtual output linked to the external system.

The Sum block performs addition or subtraction on its inputs. Depending on its configu-

ration, the block can add or subtract scalar, vector, or matrix inputs. It can also collapse the
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elements of a signal and perform a summation.

In this specific example of the stopwatch model, the Sum block accepts two scalar inputs u1 and

u2, and generates its output y where y(k) = u1(k) + u2(k) and k represents the kth sampling

time. Specifying sample time is not recommended for the Sum block because it causes sample

rate transition implicitly introduced by Simulink to change the block’s algorithm. This mixing

can often lead to ambiguity and confusion in Simulink models. The Sum block in the stopwatch

model can be represented as:

((u1, u2), y,�,�, {(�,�, y(k) = u1(k) + u2(k))},�),

The Unit Delay block delays its input by one step. It models the relations, d(k + 1) = u(k)

with d(0) = d0, and y(k) = d(k), where u is its input, d is its data, y is its output, d0 is the

initial data condition, and k represents the kth sampling time. Thus, the Unit Delay block can

be represented as:

(u, y, d, d0, {(�, d(k + 1) = u(k), y(k) = d(k))}, (TStopwatch ,TStopwatch
0 )),

The Switch block combines multiple signals into a single stream. It passes through the first

or third input signal based on the value of the second input. The Switch block does not have a

Sample time parameter.

The Switch block used in the stopwatch model can be represented as:

((u1, u2, u3), y,�,�, {(u2 == True,�, y(k) = u1(k)), (u2 == False,�, y(k) = u3(k))},�),

Zhou and Kumar (2012) introduced the following concepts for the computation of an atomic
block over sample times.

Definition 1.2 Given an atomic-block B and an input u 2 UB, we call the computa-

tion of the corresponding output y 2 YB a step of B over u. y is called the output

of a step of B over u. Given an input sequence {u(k)}K
k=0, a step-trajectory of

B over {u(k)}K
k=0 is a sequence of steps of B, where the kth step (0  k  K ) in the

sequence is over the input u(k). Letting y(k)(0  k  K ) denote the output of B

over u(k), {y(k)}K
k=0 is called the output of step-trajectory of B over {u(k)}K

k=0.

(Zhou and Kumar, 2012 [139]).

1.1.1.2 System-Blocks: Simulink Diagrams

A Simulink diagram, also known as a system-block, may be produced by recursively connecting
atomic-blocks and other simpler system-blocks. A block’s output can be linked to the input
of different blocks, including its own. Zhou and Kumar (2012) define such connection as the
following:

The connections over a set of system-blocks B can be represented using a relation
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C ✓ (B ⇥ N )2, where N denotes the set of port numbers. A connection c =

((B1, i), (B2, j)) 2 C connects the output port i of system-block B1 to an input port
j of system-block B2. The "C -connected B system" thus formed is denoted B/C .
Note a possible choice for connections is the "null-connection", and {B}/? = B.
(Zhou and Kumar, 2012 [139]).

An unconditional subsystem is a "C -connected B system", denoted B/C where B is a set of
system-blocks and C ✓ (B⇥N )2 is a set of interconnections. Grouping blocks into subsystems
help in the formation of a hierarchical block diagram, with a subsystem block on one layer and
the blocks that comprise the Subsystem on another.

Conditionally and logically executed subsystems are system-blocks that can be made
conditionally executable when a certain guard condition over certain variables, called control
inputs, holds. Furthermore, the data of the system-block may be reset when the Subsystem
is re-enabled, and the outputs may be reset when the guard condition is disabled. Zhou and
Kumar (2012) define such system-block as the following:

Definition 1.3 Given a system-block B, a conditioning over B is 5-tuple

✓ := (Uθ,Gθ, f θ, hθ, (T θ,T θ
0 )), where

• Uθ = Uθ
1⇥. . .⇥U

θ
mB is the set of conditioning-inputs (also called control-inputs),

• Gθ ✓ Uθ is a condition (predicate) over Uθ,

• f θ : DB ! DB is a data-resetting function.

• hθ : YB ! YB is an output-resetting function, and

• T θ is a sample period, T θ
0 is an offset.

When Gθ holds, B computes; otherwise, hθ assigns the output. Also, when Gθ be-

comes true, the first computation of B is preceded by a data update by f θ. The

"✓-conditioned B" system thus formed is denoted B + ✓. The conditioning can be

implemented by placing a system-block inside a certain Subsystem block (of Simulink

Library) which can be configured to specify the conditioning parameters. Note a pos-

sible choice for conditioning is “null-conditioning”, denoted ?:= (�,True, id, id,1),

in which case B +?= B. (Here, id denotes the identity function.)

(Zhou and Kumar, 2012 [139]).

Based on the previous definitions of atomic-blocks, "C -connected set of system-blocks B,"
and "✓-conditioned system-block B." Zhou and Kumar formally define the class of Simulink

diagrams (also referred to as system-blocks) as the following:

Definition 1.4 A class of Simulink diagrams (also called system-blocks) is recur-

sively defined as follows:

1. B is an atomic-block, then B is a system-block.

2. B is a set of system-blocks, C ✓ (B ⇥ N )2 is a set of interconnections, then

"C-connected B", denoted B/C, is a system-block.
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Example 1.2

Fig. 1.2 illustrates an example of a Simulink diagram B of a counter. The counter is defined

inside the Enabled Subsystem B2, the latter is controlled by Inport block B1. The B2 Subsystem

is executed only when the control input from B1 is positive. The counter is incremented by one

while B2 is enabled. The Unit Delay block B24 is the only stateful block inside B2. When B2

is disabled, the memories of the Unit Delay block B24 will be reset in the next activation since

the parameter "states when enabling" of B21 is set to "reset." Also, the Outport block B25 is

set to "reset" when disabled; therefore, the counter will be set to the initial output of B25 when

it is disabled, and it will reset its memories (i.e., Unit Delay memories) when restarted. The

Saturation block B3 limits the value of the counter to [0, 7]. The Enable Port block B21 is used

to configure the Enabled Subsystem B2 parameters such as "states when enabling" and "Sample

time". We assume all blocks are running with the same sample period T = 1. B conforms to

the Simulink diagram class stated in Definition 1.4: B = {B1,B2,B3,B4}/C1, where:

• C1 = ((B1, .), (B2, .)), ((B2, .), (B3, .)), ((B3, .), (B4, .)),

• B2 = ({B22,B23,B24,B25}/C2) + ✓, where

– C2 = ((B22, .), (B23, .)), ((B23, .), (B24, .)), ((B24, .), (B23, .)), ((B24, .), (B25, .)),

– ✓ = (Uθ, uθ(k) > 0, d(k) = d0, (y22(k), y23(k), y24(k), y25(k)) = (�,�,�, y250),�)

• B1,B22,B23,B24,B25,B3,B4 are atomic-blocks

1.1.2 Stateflow

The widespread deployment of cyber-physical systems in safety-critical scenarios like automo-
tive, avionics, and medical devices, has made formal and automated analysis of such systems
necessary. This is witnessed by the sheer number of comprehensive approaches proposed in
the verification community. Stateflow [96] is a widely used modeling framework for em-
bedded and cyber-physical systems where control software interacts with physical processes.
Specifically, Stateflow is a toolbox developed by MathWorks Inc. that extends Simulink

with an environment for modeling and simulating reactive systems. A Stateflow diagram
can be included in a Simulink model as one of the blocks interacting with other Simulink

components using input and output signals. Stateflow is a highly complex language with no
formal semantics provided as a reference by the tool provider. Its semantics is only described
through examples on the MathWorks website [96] without any formal definition. Hamon and
Rushby have provided operational and denotational semantics for Stateflow [77, 78, 79]. A
Stateflow diagram has a hierarchical structure, which can be either arranged in parallel in
which all states become active whenever the diagram is activated; or sequentially, in which
states are connected with transitions and only one of them can be active. We use a syntactic
representation of Stateflow models described by the grammar presented in Table 1.1.

P ::= (s, [src0, . . . , srcn ])

srci ::= s : sd | j : T

sd ::= ((ae, ad , ax),To,Ti ,C )

C ::= Or (T , [s0, . . . , sn ])

| And ([s0, . . . , sn ])

t ::= (e, c, (ac, at), d)

T ::= ? | t.T

d ::= p | j

p ::= ? | s.p

Syntax. A program (s, srci2[1...n]) is com-
posed of state definitions s : sd and junctions
j : T , with a main node s. A single state
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transitions using only junctions and starting with an inner transition. This model is interesting
since it relies on multiple constructs of Stateflow: inner and outer transitions, junctions and
hierarchical states.

Figure 1.4 describes the Stopwatch model (Fig. 1.3) using the syntax from Table 1.1. Tran-
sitions from a state s to another s0 are defined as outer To and inner transitions Ti of node
s, depending on the target node. The transitions associated with a node content of type Or

describe the initialization transitions when entering the node. Junctions enable the definition
of transitions combining multiple conditions. The semantics of transitions is far from trivial:
a transition path is evaluated one segment (atomic transition) after the other, performing side
effects on the state via condition actions ac on the go, while transition actions at are only
performed when all conditions over the path are satisfied, and the path reaches a state, not
a junction. If a given path is eventually fireable, the exit actions of the original node are
performed, then the transition actions, to conclude with entry actions of the target node.

1.1.3 Lustre

Lustre [29] is a synchronous language for modeling systems of synchronous reactive components.

A Lustre program L is a collection of nodes N0,N1, . . . ,Nm . The nodes satisfy the grammar
described in Figure 1.5 in which td denotes type constructors, including enumerated types, and
value v either constants of enumerated types C or primitive constants such as integers i or reals
r . Each node is declared by the grammar construct d of Figure 1.5 and is represented by the
following tuple:

Ni = (Ii ,Oi ,Li ,Eqsi)

Where Ii ,Oi , and Li are sets of typed input, output, and local variables. Eqsi represents the
set of stream definitions defined as:

Eqsi =
n
(vj

i )1jnbi
= expri

o
i2{0,...,|Eqsi |�1}

where nbi 2 N⇤ denotes the number of output variables defined by the expression expri , vj
i 2

Oi [ Li and expri is an expression where V ars(expri) ✓ Oi [ Ii [ Li . V ars(expri) is the set
of variables in expri ; and expressions expri are arbitrary Lustre expressions, as presented in
Figure 1.5 by constructor e, including node calls Nj(u1, . . . , un).

Lustre code consists of a set of nodes transforming streams of input values into streams of
output values. Lustre models are synchronous in the sense that the processing time of each
component is neglected, and communication is assumed to be instantaneous [11]. A notion
of symbolic “abstract” universal clock is used to model system progress. More materials on
Lustre semantics can be found in [24, 29, 74].

Let us illustrate Lustre syntax on a possible model for the stopwatch example. The code
is presented in Listing 1.1.

1 node count (tick : bool) returns (time : int);

2 let
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td ::= type enum ident = enum { C1, . . . ,Cn}
bt ::= real | bool | int | enum ident
d ::= node f (p) returns (p); vars p let D tel
p ::= x : bt; ...; x : bt
D ::= pat = e; D | pat = e;

pat ::= x | (pat, ..., pat)
e ::= v | x | (e, ..., e) | e ! e | op(e, ..., e) | pre e

| f (e, ..., e) | f (e, ..., e) every e
| e when C (x) | merge x (C ! e)...(C ! e)
| if e then e else e

v ::= C :: enum ident | i :: int | r :: real | true :: bool | false :: bool

Figure 1.5: A subset of Lustre syntax

3 time = 0 -> pre time + 1;

4 tel

5
6 node stopwatch (tick, toggle, reset : bool) returns (time : int);

7 var running : bool clock;

8 let

9 running = ((false -> pre running) <> toggle) or reset;

10 time = merge running (true -> count(tick when running) every reset)

11 (false -> (0 -> pre time) when not running);

12 tel

Listing 1.1: The stopwatch example with clocks

Lines 1 to 4 of Listing 1.1 define a count node returning an integer stream representing the
sequence of natural numbers. Primitive types like bool, int, or real are available. Note that,
in general, a node may declare several output streams.

Line 6 declares a node named stopwatch that takes three boolean streams as parameters,
namely tick, toggle and reset and declares a single integer stream as output, namely time.

In Lustre, a node is defined by a set of stream equations with possible local variables
denoting internal flows. Stream equations are defined between the let and tel keywords. For
instance, line 7 declares running as a local boolean flow.

When defining equations, regular arithmetic and comparison operators are lifted to streams
and are evaluated at each time step. For instance, line 9 of Listing 1.1 defines the stream
running as a disjunction of the reset input stream and the result of comparing two boolean
streams: false -> pre running, a Lustre expression, and toggle, one of the input streams
of the node. The temporal operator pre, for previous, enables a limited form of memory, allowing
to read the value of a stream at the previous instant. The arrow operator allows to build a
stream c -> e as the expression e while specifying the first value c. Therefore, the expression
false -> pre running denotes a boolean stream whose first value is false and whose next
values are the previous values of the running stream.

A node that relies on these constructs is considered as stateful; the values of the memo-
ries define its internal state. Without these temporal operators, nodes act as mathematical
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functions.

Another specific construct of Lustre is the definition of clocks and clocked expressions.
Clocks are defined as enumerated types, the simplest ones being boolean clocks. Expressions
can then be clocked for such clock values. For instance, let us consider the expression e when c

where c is a boolean clock, then the expression e when c is not defined when variable c is false.

Let us now explain the expressions in lines 10 and 11:

• count(tick when running) is a call to node count with argument tick clocked on the
clock running. Therefore, this expression has no value when running is false. Notice
that the tick parameter of the node count is unused in the definition: it is only used for
clocking.

• count(tick when running) every reset is the previous call to node count completed
with a reset expression every reset. This expression specifies that if boolean reset is
true, then the call to count reinitializes the node to its initial state, and therefore the
time stream to 0. The local stream running is true whenever reset is true, therefore the
node count is always executed when reset is true and the arrow operator will reset to
its initial value 0.

• (0 -> pre time) when not running is an integer stream. It starts with value 0 and
then uses the previous value of time. This expression is clocked on the negation of the
running clock. Notice that it is defined iff the previous expression is not defined.

• lines 10 and 11 define a merge expression. It is used to create a flow clocked on a particular
clock using expressions clocked on sub-clocks of this particular clock. Here, this means
that:

– time will be clocked on the base clock.

– when running is true, the expression count(tick when running) every reset is
used to define time. This expression must be clocked on running, which is trivially
the case here, but we may have used an external expression clocked on running for
instance.

– when running is false, the expression (0 -> pre time) when not running is used
to define time and is also trivially clocked on the negation of running.

Table 1.2 presents an example of an evaluation of several streams from the stopwatch node:
first running is false, then becomes true when the toggle is true and becomes false when
the toggle is true again (simulating the operator pressing the toggle button of the stopwatch).
The reset parameter is always considered false in this example.

Finally, expressions associated with each clock case have to be clocked appropriately and
the clocking phase of the compiler allows checking the consistency of clock definitions and uses,
as would do a typing compilation phase.

Nodes and calls form a hierarchy of nodes comparable to the notion of subsystems in
Simulink. Type and clock inferences guarantee at compile time that expressions and func-
tions call respect their type constraints and properly rely on previous values to build current
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1.2.1 Discrete-time Simulink Semantic

The discrete subset of Simulink has been translated to various input languages for model
checking purposes, such as NuSMV [102], Lustre [131], and hybrid automata [123]. Tripakis
et al. (2005) provided the first work on translating Simulink to Lustre [131]. We share the
same algorithm of recursively generating a Lustre node for each Subsystem, but we differ in
how we translate some blocks and handle multi-periodic systems. Unfortunately, comparing
the tool is impossible since its binary is not maintained and does not support newer versions
of Simulink models. Zhou and Kumar (2012) proposed a recursive approach for translating
a class of Simulink diagrams to input/output-extended finite automata (I/O-EFA) [139], the
formal representation of the model is flattened and loses the hierarchy and architecture of the
Simulink model. CoCoSim translates the Simulink model in a modular way. Each Simulink

Subsystem is translated into a Lustre node. This modularity allows the tool to perform
verification compositionally, a technique that helps us scale with large models. Meenakshi et
al. (2006) [102] parse the textual representation of the model and use NuSMV input language
as an intermediate formal language for verification using a symbolic model checker; the data
types supported by the language are limited to Booleans and bounded integers. Validation of
the translation from Simulink to NuSMV input language was not discussed.

Moreover, all of the previous works are either proprietary or not maintained, which causes
problems in adapting to new Simulink versions. We addressed those two challenges by making
CoCoSim an open architecture, so people can use, contribute to, or customize our tool. Fur-
thermore, our CoCoSim translator uses the Simulink APIs to access and compute all model
information needed for the translation instead of parsing the textual format of the model. There-
fore, new Simulink releases are less likely to impact the translator negatively. In addition, the
translator is modular, and new Simulink blocks can be easily supported and integrated.

1.2.2 Stateflow Semantic

Over the years, several approaches have been proposed to analyze Stateflow diagrams. Such
approaches often lack one or many of the following desired features: (i) convincing formal
semantics; (ii) a faithful compilation that preserves the hierarchical structure of the Stateflow

model and last but not least, (iii) fully automated analysis engine; Our work aims to provide
a framework for adequately addressing all those points. Our approach is based on a series of
papers by Hamon [78, 77, 79] providing operational and denotational semantics for Stateflow,
and designing interpreters for Stateflow. Our contribution is detailed in Section 2.3.

Despite its lack of formal semantics, Stateflow is widely used in the industry both for
modeling purposes and code generation [107]. It has been studied for formal modeling and
verification by numerous approaches, e.g., targeting automata [14, 91, 137], hybrid automata [7],
process calculi such as CPS [35, 140], transition systems [107], tabular expressions [125], or the
synchronous language Lustre [119]. As a general remark, each of these approaches restricts the
considered language, e.g., on events, inner transitions, or junctions, and synthesizes an encoding
in the target language, supported by verification tools or test case generation, independently of
the code generated from the same model.
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An approach related to ours is the work described by Scaife et al. (2004) in [119]. This
approach translates a Stateflow model into Lustre dataflow language [29]. Since Lustre-
like languages such as Scade [129] are used in the industry to generate embedded code, the
approach is compatible with compilation and verification. The approach is, however, very
limited concerning the full Stateflow semantics. A tool, sf2lus, is provided and performs
the translation for the considered subset. This approach differs from ours in several ways: (i)
Our translation keeps state machines’ structure and, by consequence, makes it easy to read
and trace state information; (ii) sf2lus mishandles events at the same time, which makes the
behavior unsound wrt Stateflow events semantics. Events occur (and wake the chart) in
an ascending order based on their port numbers once at a time. Such a chart can then be
executed multiple times in the same time step; (iii) sf2lus does not support newer versions of
Stateflow; and last (iv) our tool is developed in Matlab and is directly integrated into the
Simulink/Stateflow environment, which allows, among other features, the use of the Matlab
simulation tool to investigate failed properties further.

Another line of related works is developed in a series of papers by Hamon [77, 78] on which
we based our work. In these papers, formal semantics for Stateflow is provided, either in
operational or denotational flavors. Whalen (2010) [136] starts from Hamon’s denotational
semantics to define a structural operational semantics for three Statecharts languages, includ-
ing Stateflow, but does not provide a compilation schema or analysis techniques. Tiwari
(2002) [130] uses a translation of a fragment of Stateflow models to pushdown systems to
generate and check invariants. To the best of our knowledge, until now, these are the only
formal reference semantics available for Stateflow.

Last, Simulink Design Verifier (SLDV) is a toolbox provided by Mathworks to perform an
automated formal analysis of Simulink/Stateflow models. However, SLDV is a commercially
distributed tool; therefore, details on implementation and functionality are unavailable to the
public.

1.3 Formal specification of properties

Programming languages could be fitted with specification languages, e.g., ACSL [10] for C or
SPARK [3] for ADA. In the case of synchronous languages and models, multiple works [37, 92,
135] advocate for the use of component-attached requirements. However, notice that the actual
definition of such contracts or their reasoning is still challenging. Formalized contracts can be
used for many applications: test oracles, test synthesis, reactive synthesis [84, 86], compositional
reasoning, or validation of individual contracts. CoCoSpec [31, 33] is a specification language
for Lustre [73] and has been extended to Simulink models.

In [81], “An Axiomatic Basis for Computer Programming”, Hoare defines deductive rea-
soning to validate code-level annotations. This paper introduces the concept of Hoare triple
{Pre}code{Post} as a way to express the semantics of a piece of code by specifying the post-
conditions (Post) that are guaranteed after the execution of the code, assuming that a set of
preconditions (Pre) was satisfied. Hoare supports a vision in which this axiomatic semantics
is used as the “ultimately definitive specification of the meaning of the language [. . . ], leaving
certain aspects undefined. [...] Axioms enable the language designer to express its general
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intentions simply and directly, without the mass of detail usually accompanying algorithmic
descriptions.” When this pair (Pre,Post) is associated with a function, it can be interpreted
as a function contract. In more general use of formal specification, the local reasoning about
the function makes the assumption Pre, but the precondition has to be guaranteed when this
function is called. Otherwise, the function is not fully specified, and its behavior is not defined.

This idea has been extended naturally to synchronous dataflow languages with the concept of
synchronous observer [75, 134, 117]. A synchronous observer encodes a predicate corresponding
to the postcondition of the Hoare triple. However, since the semantics are not expressed over
values but streams, the principle of the Hoare triple has to be lifted to sequences of values.

{Pre(state, inputs)}node(in, out){Post(state, state0, in, out)}

means

⇤

✓V H(Pre(state, input))

node(state, state0, in, out)
) Post(state, state0, in, out)

◆
.

with H(p) , { p has held since beginning }. The operator H can be defined in Lustre with
the node Sofar:

node Sofar (in: bool) returns (out: bool);

let

out = in -> pre out and in;

tel

Such a synchronous contract is active when, at a given time step, all the inputs and internal
states, up to now, have satisfied the precondition. Moreover, it is valid if then the postcondition
always applies.

In Lustre, recent works [30] proposed a dedicated language to annotate Lustre model with
a rich specification. Figure 1.7 gives an example. The node ml represents the mode logic of an
aircraft controller, deciding whether the autopilot is active or not. Its specification is described
in a contract. This contract can bind new variables but, more importantly, can specify the
precondition altitude >= 0.0 for that contract. Two main postconditions are expressed as
well as four different modes. Each of these modes is guarded by some conditions in the require

expressions, while a conditional postcondition ensure is specified. Last, in the actual Lustre

node, the contract is declared.

In other words, the synchronous observer acts as a description of axiomatic semantics for a
synchronous model. The observer is defined in the same language as the model and corresponds
to a set of boolean streams. If the property is valid, the output flow encoding the property
should remain true during the program’s execution.

For instance, a synchronous observer on the stopwatch example (Sec. 1.1.3) would be the
assertion that the stream time always has a non-negative value. Listing 1.2 illustrates a simple
CoCoSpec contract using the stopwatch node introduced earlier and specifying that the stream
time always has a non-negative value given the assumption that toggle and reset cannot be
pressed at the same time.
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contract ml ( altRequest, fpaRequest, deactivate : bool ; altitude, targetAlt : real )

returns ( altEngaged, fpaEngaged : bool ) ;

let

var altRequested = switch(altRequest, deactivate) ;

var fpaRequested = switch(fpaRequest, deactivate) ;

var smallGap = abs(altitude - targetAlt) < 200.0 ;

assume altitude >= 0.0 ;

guarantee targetAlt >= 0.0 ;

guarantee not altEngaged or not fpaEngaged ;

mode guide210Alt ( require smallGap ; require altRequested; ensure altEngaged ; ) ;

mode guide210FPA ( require smallGap ; require fpaRequested ;

require not altRequested; ensure fpaEngaged; ) ;

mode guide180 ( require not smallGap ; require fpaRequested; ensure fpaEngaged; ) ;

mode guide170 ( require not smallGap ; require altRequested ;

require not fpaRequested; ensure altEngaged ; ) ;

tel

node ml ( altRequest, fpaRequest, deactivate : bool ; altitude, targetAlt : real )

returns ( altEngaged, fpaEngaged : bool );

(*@contract import

mlSpec ( altRequest, fpaRequest, deactivate : bool ; altitude, targetAlt : real )

returns ( altEngaged, fpaEngaged : bool ); *)

let ... tel

Figure 1.7: Listing of CoCoSpec contracts at Lustre level using modes.

1 contract stopwatchSpec (toggle, reset : bool) returns (time : int);

2 let

3 -- we can assume that the two buttons are never pressed together

4 assume not (toggle and reset);

5 -- the elapsed time is always non-negative

6 guarantee time >= 0;

7 tel

Listing 1.2: The stopwatch CoCoSpec contract example

1.4 Conclusion

This chapter started with a background on Simulink, Stateflow, and Lustre, and then it
discussed the context and related works concerning formal semantics of Simulink and State-

flow models and the formal specification of properties. It can be concluded that due to the
lack of a formal semantic foundation, it is challenging to verify Simulink and Stateflow

models automatically. While there have been efforts to develop formal semantics for Simulink

and Stateflow, these semantics do not cover all the features of the models and can be chal-
lenging to use. Furthermore, there is also a lack of tools to support the automatic verification
of Simulink/Stateflow properties specified as synchronous observers.
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This chapter presents our contribution to providing a bidirectional translation between
Simulink and the Lustre programming language. We first describe the semantics translation
of Simulink models to Lustre. We then describe our denotational semantics for Stateflow.
Finally, we also show how to compile Lustre code back to Simulink models.

The work on denotational semantics for Stateflow (Section 2.3) has been published in
[17]. In addition, the work on reverse compilation of Lustre to Simulink (Section 2.4) has
been published in [19].

2.1 Introduction

Let us first outline the specificities of synchronous languages and draw some parallels between
constructs.

Synchronous languages aim at specifying the behavior of synchronous reactive systems.
This computation model describes programs intended to be run forever, repeating the exact
computation regularly, at fixed time steps. Usually, the time step length is not an element of
the program itself but more like a meta-information required for further developments such as
scheduling multiple processes. Synchronous models assume that the processing time of functions
is immediate and communication is instantaneous [12]. These strong hypotheses allow us to
separate the concerns: on the one hand, a functional description of the computation – the
model –, and, on the other hand, physical constraints: the evaluation of the function body has
to meet the deadlines. For example, if the program is expected to be executed 100 times a
second, i.e., at 100Hz, then the evaluation of the function should be performed in less than 10
ms. This constraint is the subject of dedicated analyses such as the computation of worst-case
execution time or the calculation of bounds over network delays. It can also impact hardware
development, providing requirements in terms of computational power. That said, the model
can focus on functional behavior and the computation performed at each time step, regardless
of these time step lengths.

This work aims to facilitate knowledge transfer between designers using different modeling
languages. For example, a designer familiar with Simulink can use our translation to gen-
erate Lustre code from a Simulink model. This code can then be verified using existing
verification tools. Conversely, a designer familiar with Lustre can use our translation to gen-
erate a Simulink model from Lustre code. This model can then be simulated using existing
simulation tools, such as Simulink, or be integrated within a large Simulink model.

2.2 Semantic translation of Simulink to Lustre

Simulink and Lustre are both synchronous data flow languages and share many similarities.
For instance, Simulink Subsystems and Lustre nodes are transforming streams of input values
into streams of output values. In Lustre, a node is defined by a set of stream equations with
possible local variables denoting internal flows. This is equivalent to a Simulink Subsystem with
a set of blocks connected to each other, each block output represents an internal flow that can
be consumed by other blocks’ inputs. The Simulink block algorithm is mapped to a Lustre
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Algorithm 1 Simulink to Lustre algorithm

1: procedure SLX2Lus(B) . produce Lustre code of system-block B
2: let B = {B1, . . . ,Bn}/C

3: let UB =
Q

@((.,.),(B,i)))2C UB
i

4: let YB =
Q

B2B YB

5: L  [] . initialize set of Lustre nodes
6: IN  mapSLX2LUSVars(UB) . Create Lustre node Inputs
7: ON  mapSLX2LUSVars(YB) . Create Lustre node outputs
8: LN  [] . Initialize Lustre node variables list
9: EqsN  [] . Initialize Lustre node stream definitions list

10: for each Bi in {B1, . . . ,Bn} do . Go over blocks of current Subsystem B
11: expri , vi  getBlockEquation(Bi) . get block equations
12: EqsN .add(expri) . add block equations to the node body
13: LN .add(vi) . add local variables to the variables list
14: if IsSubsystem(Bi) then
15: Li  SLX2Lus(Bi) . call SLX2Lus recursively on Bi

16: L.add(Li) . add generated nodes to the current list of nodes
17: end if
18: if IsCondExecSubsystem(Bi) then . if Bi is conditionally executed Subsystem
19: Ni  getNodeWrapper(Bi) . Add the wrapper node that control the execution
20: . of the Subsystem Bi .
21: L.add(Ni) . add wrapper node to the current list of nodes
22: end if
23: end for
24: N  (IN ,ON ,LN ,EqsN ) . create the Lustre node corresponding to system-block B
25: L.add(N ) . add node to the list of nodes
26: return L . Lustre program L
27: end procedure
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2.2.2 Mapping Simulink data types to Lustre data types

In Algorithm 1, procedure mapSLX2LUSVars maps Simulinks signals to Lustre variables.
Each Simulink signal is defined by a base type and a dimension. The supported Simulink

data types are double, single, machine integers (e.g., int8, uint8 ), boolean, enumeration, and
Simulink Bus.
Lustre data types are real for rational numbers, int for Integers, bool for booleans, and enum

for enumerations.
Procedure mapSLX2LUSVars maps double and single to real, Boolean to bool, machine integers
to int, enumeration to Lustre enum, and the Simulink Bus is inlined into its base types.

A set of Lustre libraries (int_to_int8, int_to_uint8, ...) are defined to add constraints
on Lustre Integers.

Simulink provides good support for multidimensional array operations, whereas Lustre

syntax used by CoCoSim backends (e.g., Kind2, LustreC) has a more limited support. In
particular, partial assignment of an array and other operations such as concatenation, reshaping,
and permutation. For this reason, we decided to inline all multidimensional arrays column-wise
following MATLAB convention. For instance, a Simulink signal of type double and dimension
[2, 3] will be mapped to 6 Lustre variables of type real.

2.2.3 Defining the Lustre equations of a block

In Algorithm 1, procedure getBlockEquation defines the Lustre equation that expresses the
execution of a given Simulink block. Since Lustre and Simulink are both data flow syn-
chronous languages, the mapping between the Simulink block execution and its Lustre code
is straightforward. For example, in Section 1.1.1.1, an atomic Simulink block B can be repre-
sented as a tuple:

(UB,YB,DB,DB
0 , {(G

B
i , f B

i , hB
i )}qB

i=1, (T
B,TB

0 ))

The kth sampling time occurs at kTB +TB
0 . The value of the input signal at the kth sampling

time is denoted as u(k) = (u1(k), . . . , umB(k)) 2 UB, and similarly for other signals. At the
kth sampling time, if the data d(k) and the input u(k) are such that GB

i (d(k), u(k)) holds,
the next data, d(k + 1) = f B

i (d(k), u(k)), is computed, and the output value is assigned to
y(k) = hB

i (d(k), u(k)).

Let us simplify this representation with a single data-update function and a single output-
assignment function as follows:

d(k + 1) = FB(d(k), u(k)) =

8
><
>:

f B
1 (d(k), u(k)) GB

1 (d(k), u(k))

...

f B
qB(d(k), u(k)) GB

qB(d(k), u(k))
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y(k) = H B(d(k), u(k)) =

8
><
>:

hB
1 (d(k), u(k)) GB

1 (d(k), u(k))

...

hB
qB(d(k), u(k)) GB

qB(d(k), u(k))

Therefore, the semantics of an atomic block B of how the states are updated and outputs
are assigned by:

JBK : N⇥DB ⇥ UB ! DB ⇥ YB

(k, d(k), u(k)) 7! (d(k + 1), y(k)) = (FB(d(k), u(k)),H B(d(k), u(k)))

For such a block, the algorithm generates two Lustre equations, one that updates the block
outputs and the second one updating the subsequent block data. Both equations are defined
based on the block semantic. The algorithm starts by mapping block B inputs, outputs, and data
to their equivalent Lustre variables. Let vd , vu and vy be the mapped Lustre variables of data
(d(k +1)), inputs (u(k)) and outputs (y(k)) of the block, respectively, using mapSLX2LUSVars

procedure. Any occurrence of u(k), y(k) and d(k + 1) is mapped to the current value of
Lustre streams vu , vy and vd respectively. The value of d(k) is the previous computed data
and is mapped to d0 ! pre(vd) in Lustre where d(0) is the initial data condition defined in
the block parameters and d0 is its mapped Lustre value.

For instance, if FB and H B are defined as follows:

d(k + 1) = FB(d(k), u(k)) = ↵1 ⇤ d(k) + �1 ⇤ u(k)

y(k) = H B(d(k), u(k)) = ↵2 ⇤ d(k) + �2 ⇤ u(k)

Where d(0) is the initial data provided by the user. The previous Simulink equations will then
be mapped to :

vd = FL(d0 ! pre(vd), vu) = ↵1 ⇤ (d0 ! pre(vd)) + �1 ⇤ vu

vy = H L(d0 ! pre(vd), vu) = ↵2 ⇤ (d0 ! pre(vd)) + �2 ⇤ vu .

Example 2.1

Let us provide Lustre equivalents of Simulink blocks in the stopwatch example in Fig. 1.1.

The Unit Delay block used in Fig. 1.1 named "0!pre time" delays its input by one step. Its

data-update function and output-assignment function can be defined by:

JUnitDelayK : N⇥DUnitDelay ⇥ UUnitDelay ! DUnitDelay ⇥ YUnitDelay

(k, d(k), u(k)) 7! (d(k + 1), y(k)) = (u(k), d(k))

Where d(0) = d0 is the initial data condition. In other words, the current data is assigned

to the current output, whereas the current input is assigned to the data of the next step.

Let pre_time_data, pre_time_input and pre_time_output be the mapped Lustre vari-

ables of data, inputs and outputs of the block respectively using mapSLX2LUSVars procedure.
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d0 is the initial data condition. A direct translation of the Unit Delay block will produce the

following Lustre code:

pre_time_data = pre_time_input;

pre_time_output = d0 -> pre(pre_time_data);

We could then merge these two equations in a single Lustre equation by substituting

pre_time_data by its definition, and we end up with the following equation:

pre_time_output = d0 -> pre(pre_time_input);

Which corresponds to a Unit Delay over data flow pre_time_input with initial value d0.

For a Simulink Constant block with a value 0, we do not need to provide its data or data-

updating function since it is a stateless block:

JConstant0K : N⇥ UConstant0 ! YConstant0

(k, u(k)) 7! (y(k) = 0)

The Lustre equivalent equation would be:

constant0_output = 0;

The Switch block used in the stopwatch model is represented as:

JSwitchK : N⇥ USwitch ! YSwitch

(k, (u1(k), u2(k), u3(k))) 7!

 
y(k) =

⇢
u1(k) when u2(k) = True

u3(k) Otherwise

!

The Lustre equivalent equation would be:

switch_output = if (switch_input2 = true) then switch_input1 else switch_input3;

The Sum block is represented as:

JSumK : N⇥ USum ! YSum

(k, (u1(k), u2(k))) 7! (y(k) = u1(k) + u2(k))

The Lustre equivalent equation would be:

sum_output = sum_input1 + sum_input2;

For Subsystems calls, the Lustre equation is a simple call to the Lustre node defining

that Subsystem.

The Lustre equation for the "is running" Simulink subsystem execution would be:

is_running_output = is_running(is_running_input);

Where is_running is the Lustre node defining the Simulink subsystem "is running".
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The Algorithm 1 applied on the Simulink model of stopwatch of Fig. 1.1 would produce the

following Lustre code:

node stopwatch(toggle: bool; reset: bool) returns (time: int)

var

constant0 : int;

constant1: int;

sum_output: int;

is_running_output: bool;

if_running_output: int;

if_reset_output: int;

pre_time: int;

let

constant0 = 0;

constant1 = 1;

sum_output = 1 + pre_time;

is_running_output = is_running(toggle);

if_running_output = if is_running_output then sum_output else pre_time;

if_reset = if reset then constant0 else if_running_output;

pre_time = 0 -> pre time;

time = if_reset;

tel

The above Lustre generation is similar to Tripakis et al. (2005) work [131]. We share the
same algorithm of recursively generating a Lustre node for each Subsystem, but we differ in
how we translate conditionally executed subsystem and handle multi-periodic systems. In the
following Sections, we go into more detail about how we handle particular Simulink blocks and
multi-periodic systems.

2.2.4 Handling Conditionally Executed Subsystem

Conditionally executed Subsystem, such as enabled/triggered subsystems, are a type of subsys-
tems that are conditionally executable when a specific guard condition over certain variables,
called control inputs, holds. Furthermore, the data inside the system-block may be reset when
the guard condition holds, while the outputs may be reset when the guard condition is violated.

We differentiate between different types of Conditionally Executed Subsystem: Enabled

Subsystem, Triggered Subsystem, and Enabled and Triggered Subsystem. Given a system-block
B, a conditioning over B is 5-tuple ✓ := (Uθ,Gθ, f θ, hθ, (T θ,T θ

0 )) as defined in Definition 1.3.
In the following, we give the semantics for each type:

Enabled Subsystem: Subsystem whose execution is enabled by external input. B is executed
when Gθ(uθ(k)) = any(uθ(k) > 0.0) holds. The control signal can be either a scalar or a vector.
If a scalar value is greater than zero, the Subsystem executes. Likewise, if any one of the vector
element values is greater than zero, the Subsystem executes. Further, when a Subsystem block
is disabled, block states for the blocks within the Subsystem can be held or reset:
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• held: Hold block states at their previous values.

f θ : dB(k + 1) = dB(k)

• reset: Reset block states to their initial conditions (zero if not defined).

f θ : dB(k + 1) = dB(0)

Each Outport O in block B has its own settings when the Subsystem is disabled. The

parameter "Output when disabled" of each Outport can be set to "reset" or "held" in case of a
reset, an initial output is required:

• held: Output is held when the Subsystem is disabled.

hθ : yO(k) = yO(k � 1)

• reset: Output is reset to the value given by the Initial output when the Subsystem is
disabled.

hθ : yO(k) = yO(0)

Triggered Subsystem: Subsystem whose execution is triggered by external input. B is
executed the same way described above in the Enabled Subsystem case, and the only difference
is the definition of the guard Gθ that depends on the user setting. There are three commonly
used settings of how the control signal triggers execution:

• rising: Trigger the execution of the Subsystem when the control signal rises from a
negative or zero value to a positive value.

Gθ
rising(u

θ(k)) = (uθ(k � 1)  0) and (uθ(k) > 0)

• falling: Trigger the execution of the Subsystem when the control signal falls from a
positive or zero value to a negative value.

Gθ
falling(u

θ(k)) = (uθ(k � 1) � 0) and (uθ(k) < 0)

• either: Trigger the execution of the Subsystem with either a rising or falling control
signal.

Gθ
either(u

θ(k)) = Gθ
falling(u

θ(k)) or Gθ
rising(u

θ(k))

For first execution (k = 0), Gθ(u(k)) holds.

Enabled and Triggered Subsystem: A Subsystem that contains both an Enable port block
and a Trigger port block. When a trigger signal rises or falls through zero, the enable input port
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is checked to evaluate the enable control signal. If its value is greater than zero, the subsystem
is executed. When both inputs are vectors, the subsystem executes if at least one element of
each vector is nonzero.

Conditionally Executed Subsystem translation

We give the translation method of the Enabled Subsystem, the other types follow the same ap-
proach. Given a conditionally executed Subsystem B + ✓ with a conditioning ✓ := (Uθ,Gθ, f θ, hθ,�).

The following Lustre node is wrapping the execution of Subsystem B generated by getN-

odeWrapper from Algorithm 1:

node B_wrapper(u, u_theta: real)

returns(y:real);

let

--Compute previous outputs at every step

pre_y = 0.0 ! pre y;

automaton enabled_subsystem

state Active:

unless (not Gθ
L(u theta)) resume Inactive

let

y = B(u);

tel

state Inactive:

(* The choice of restart or resume is based on if B is configured to "reset" or "held" its

memories when it is disabled.*)

unless (Gθ
L(u theta)) restart/resume Active

let

-- hθ
L returns the initial condition ("reset") or the previous value of y ("held").

y = hθ
L(pre y);

tel

tel

Where u is the input, y is the output, and u theta is the "enable control signal".

hθ
L returns for each block output its initial condition when "output when disabled" is set to

"reset" or the previous value of the output when "output when disabled" is set to "held."

Gθ
L is the guard that control the execution of the block B, in the case of Enabled Subsystem

Gθ
L(u theta) = (u theta > 0.0).

The wrapper node computes the previous outputs at each step. Then it defines an automaton
with two states. The initial state is called Active, where B is executed, and the Inactive state,
where B is disabled. When in the Inactive state, the outputs hold their memories or reset to their
initial condition based on their setting "output when disabled" value. Once the automaton is in
the Active state and the control guard Gθ

L(u theta) does not hold, the automaton switches to the
Inactive state and execute hθ

L. The automaton switches from Inactive to Active when the control
guard Gθ

L(u theta) holds. Prior to executing B, f θL is executed by resuming the execution of state
Active (resume Active), which means holding the previous memories, otherwise, restarting the
state execution (restart Active) which reset all memories inside the state Active including
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the call to B.

Limitation of this translation: The Lustre automaton captures the semantics of Enabled
Subsystem concisely: the Subsystem is enabled (state Active) or disabled (state Inactive). When
restarting the execution of B, we reset the memories (using the restart keyword) or held them
(resume keyword). In Lustre, the modularity is respected; when resetting memories, all nodes
called are reset, as also the nested nodes. Therefore, if B calls another node N with memories,
N will be reset too. In Simulink, for nested subsystems whose Enable blocks have different
parameter settings, the settings for the child subsystem override the settings inherited from the
parent subsystem. Therefore, our translation does not support nested conditionally executed
subsystem with different settings; only the same settings are allowed. A solution to this issue
could be to extend all nodes’ inputs with a reset input that resets memories individually.

2.2.5 Handling Resettable Subsystem

A resettable Subsystem is a Subsystem whose block states are reset with an external trigger. A
resettable subsystem executes at every step but conditionally resets the states of blocks within
it when a trigger event occurs at the reset port.

Lustre supports resetting the internal state of a node to its initial state by using the
construct every. Writing:

y = B(u) every c;

Makes a call to node B with argument u, and every time the Boolean stream c is true, the
internal state of the node is reset to its initial value. Condition c is a guard over the reset
signal.

Similar to the limitation over conditionally executed subsystem, nested subsystems’ settings
override the settings inherited from the parent subsystem. Resetting memories for individual
subsystems could be a solution but breaks the modularity of the translation. We detect such
cases and report them back to the user as unsupported.

2.2.6 Handling multi-periodic systems

Our approach to dealing with multi-periodic systems is highlighted in Fig. 2.3.

First, we need to define the semantics of multi-periodic systems in Simulink and connect
it to the one of synchronous programs. In synchronous languages, execution time is neglected
while each computation is performed repetitively, e.g., every ts seconds. In Simulink, most
discrete subsets of blocks are fitted with synchronous semantics, but the case of multi-periodic
systems is more complex and requires an analysis of the internal semantics.

Once the semantics has been defined, the second contribution is the extension of the above
Lustre generation to encode the multi-periodic communication with classical Lustre over-
and sub-sample operators (left-hand side of Fig. 2.3). This amounts to expressing the whole
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Figure 2.3: Code generation of multi-periodic systems in Simulink

system on a base clock. This Lustre model is then used to perform formal analysis using SMT-
based model-checking. While required to analyze the entire system properly, this encoding is
not efficient for execution.

Once the verification is valid, the last step is efficient code generation (right-hand side of
Fig. 2.3). Each synchronous component is translated as a Lustre model, which will even-
tually be compiled into C code, while aggregating nodes, mixing different clocks, or execution
rates are expressed as Prelude programs. Prelude [105] is a synchronous language that has
been defined to program multi-periodic applications. From a Prelude program, the compiler
generates a set of classical real-time tasks, and many predictable implementations have been
proposed for multi- and many-core architectures [109].

Both Simulink and Lustre allow the definition of data flows that run on a different clock.
An atomic block B with a sample time (TB,TB

0 ) with period TB and initial phase TB
0 is

updated only at times k ⇤TB +TB
0 for k 2 N, whereas, it remains constant during the intervals

[k ⇤ TB + TB
0 , (k + 1) ⇤ TB + TB

0 ) for Simulink and undefined for Lustre.

To characterize (TB,TB
0 ) for a system-block B := B/C , we can express periods and offsets

without loss of generality as rational numbers p/q 2 Q where p ^ q = 1. Let us consider n

blocks Bi , each associated to the period and offset Ti ,T0i 2 Q. Let Tn
i ,T

d
i ,T

n
0i
,Td

0i
2 N be

such that Ti = Tn
i /Td

i and T0i = Tn
0i
/Td

0i
. We have two cases:

• If all offsets are equal (i.e., T0i = T0j ). In this case, TB
0 = T0i , and TB = Tn/Td where

Td = lcm
�
{Td

i }i

�
and Tn = gcd

�
{Ti ⇥ Td}i

�
.

• Otherwise, TB
0 = 0, and TB = Tn/Td where

Td = lcm
�
{Td

i ,T
d
0i
}i

�
and Tn = gcd

�
{Ti ⇥ Td ,Tn

0i
⇥ Td}i

�
.

Let us remark that since Td is defined as the least common multiplier of all denominators of
periods and offsets, the terms in the gcd expression of Tn are all integers.

Example 2.2

Figure 2.4 is a simple example of Simulink diagram B running on different sample times D1 =

(1s, 0s) and D2 = (2s, 0s). The Inport In1 is running on D1. The Sum block adds two signals
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and limit the reasoning about clocks to these data transfer blocks.

The Rate Transition block (RTB) has two block parameters that control its execution:
Ensure data integrity and Ensure deterministic data transfer. When the first parameter
is checked, it ensures data integrity when the block transfers data. A data integrity problem
exists when the input to a block changes during the execution of that block. For instance, a
faster block supplies the input to a slower block. In a protected data transfer, the output of the
faster block is held until the slower block finishes executing. The second parameter enforces a
deterministic data transfer where the data transfer timing is entirely predictable, as determined
by the sample rates of the blocks. The timing of a non-deterministic data transfer depends on
the availability of data, the sample rates of the blocks, and the time at which the receiving
block begins to execute relative to the driving block.

We only allow rate transition blocks that ensure data integrity and determinism. With this
restriction, there exist two main types of data transfer:

• ZOH: the Zero-Order-Hold is a deterministic RTB that implements direct communications
from fast to slow blocks at harmonic periods. 9n 2 N, T in = Tout/n and T in

0 = Tout
0 = 0.

• 1/Z : Acts as a unit delay that implements delayed deterministic communications from
slow to fast block at harmonic periods. 9n 2 N, T in = Tout ⇤ n and T in

0 = Tout
0 = 0.

Translation in Lustre The first Simulink multi-periodic translation technique [131] pro-
duces a pure Lustre specification. The first step translates the sample time in Lustre as the
sub-sampled clock of the common base clock. The idea is to compute the common base clock
as explained above and express each couple (period, offset) relatively to it. For the example in
Fig. 2.5b, one solution to encode D1 and D2 could be:

D1 = true;

D2 = true -> not pre(D2);

D1 was equal to the common base clock, whereas D2 was twice as slow. So then, alternating
true and false in flow D2 will lead to true every two times. However, using pre will become
unpractical when the clocks become complex. Instead, we use some counters and have a similar
approach as the one in Prelude.

D1 = make_clock(1,0);

D2 = make_clock(2,0);

Here make_clock is a Lustre node that generates a Boolean clock that is true at the logical
instants k ⇤ period + offset with k 2 N and false otherwise.

node make_clock(period, offset : int)

returns(clk : bool)

var count: int;

let

count = ((period - offset) -> (pre(count) + 1)) mod period;

clk = (count = 0);

tel
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The second step combines different sample times. The idea is to bring back a flow on the
common base clock by holding its values when the input clock is undefined and then sub-
sampling it again with the output clock. Let us detail the translation for the two rate transition
blocks, ZOH and 1/z, supported by our translation. Let (inTs, inTsOffset) (resp. (outTs,
outTsOffset)) be the sample time of the RTB input port called RTB U (resp. output port
called RTB Y) relative to the common base clock. We thus have:

C_in = make_clock(inTs, inTsOffset);

C_out = make_clock(outTs, outTsOffset);

From Fast to slow: outTs > inTs, ZOH block The communication is direct, and the
output port RTB Y takes the value of the input port RTB U on its sample time:

RTB_tmp =

merge C_in

(true ! RTB_U)

(false ! (dft -> pre RTB_tmp) when not C_in);

RTB_Y = RTB_tmp when C_out;

From slow to fast: outTs < inTs, 1/z block The block behaves as a Unit Delay. We first
compute the previous value of the input signal, then compute the values in the base clock by
keeping the last values when it is undefined and finally sample the signal to the output clock.

RTB_tmp =

merge C_in

(true ! (dft -> pre RTB_U))

(false ! (dft -> pre RTB_tmp) when not C_in);

RTB_Y = RTB_tmp when C_out;

Example 2.3

The example of Fig. 2.5b is translated as follows:

In1_on_cc = merge D1 (true ! In1) (false ! (0.0 -> pre In1_on_cc) when not D1);

RateTransition = In1_on_cc when D2;

Sum = RateTransition + UnitDelay;

UnitDelay = 0.0 -> pre Sum;

Out1 = UnitDelay;

Example 2.4

Let us consider Fig. 2.6 to illustrate the translation of a few examples of Rate Transition (RTB)

block (ZOH and 1/z).

In Table. 2.1, we give a few different settings of RTB block and their translation in Lustre

and Prelude. We set the Counter Subsystem with a Simulink clock of (2s, 0s); that is, the

counter is incremented by one every 2 seconds. The common base clock is (1s, 0s).

Translation in Prelude Prelude [105] is a synchronous language that has been defined
to program multi-periodic applications. The language considers imported nodes that can be
programmed in C or Lustre. An example is given below where a node Sum has two inputs,
one output, and a worst-case execution time (WCET) of one logical time.
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2.3 Denotational semantics of Stateflow

Stateflow is a widely used modeling framework for embedded and cyber-physical systems
where control software interacts with physical processes. In this Section, we present denotational
semantics for Stateflow models we published in [17]. We propose a compilation process
using continuation-passing style (CPS) denotational semantics. Our compilation technique
preserves the structural and modal behavior of the system. The overall approach is implemented
and integrated into our open source toolbox CoCoSim (See Chapter 3). We also present
preliminary experimental evaluations in Chapter 3, illustrating our approach’s effectiveness in
code generation and safety verification of industrial scale Stateflow models.

A CPS semantics for Stateflow. The starting point of our approach is the expression
of the denotational semantics of Stateflow [77] as a pure continuation-passing style (CPS)
denotational semantics. CPS was proposed in the 70s by Plotkins [108] for �-calculus call-by-
value semantics and later developed for efficient compilation means, for example, in the long
line of Danvy’s works, e.g., [90] and Appel’s book [8]. As recalled by Danvy, CPS terms can
be expressed yet enjoy several valuable properties, e.g., “offering a good format for compilation
and optimization”. The following equations define Plotkin’s call-by-value CPS rules:

JxK  =  x

J� x.eK  =  (� x · � k · JeK k)

Je0e1K  = Je0K (� v0.Je1K (� v1 · v0 v1 ))

The key idea is to associate to each function an additional argument, the explicit contin-
uation  : t ! t. This continuation is an endomorphic map over t values on which control
is explicitly modeled: function calls, intermediate values, evaluation order, etc. In compila-
tion, CPS �-reduction amounts to characterize a global continuation, which, when evaluated,
produces the generated code.

Our work makes the following contributions:

• We adapted Hamon’s denotational semantics [77] to pure CPS semantics, solving some of
its flaws (see §2.3.2).

• We instantiated such CPS semantics for different uses, such as a model interpreter and
a code generator for Stateflow models. Such a framework has several advantages,
including a formal semantics of Stateflow that preserves the hierarchical structure of
the model.

• We implemented the general CPS semantics and the proposed instantiations in OCaml:
an interpreter and a code generator both for imperative code and Lustre automaton.

• The Lustre automaton code generator from Stateflow has been implemented and
integrated into CoCoSim [15] – an automated analysis framework for Simulink models.
CoCoSim, among other features, provides an intuitive user interface that facilitates the
modeling of safety properties, code generation, verification, and graphical debugging of
failed properties.
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• We used CoCoSim fitted with this new capability to address Stateflow model compi-

lation and verification on a set of industrial scale benchmarks and have experimentally

evaluated our approach using two evaluation scales: (i) does the tool generate faithful

code (wrt. the intended Stateflow semantics)? Moreover, (ii) is the tool able to verify

safety properties efficiently? In Section 3.3.1 we provide evidence that answers positively

both questions.

2.3.1 CPS Denotational Semantics for Stateflow

Motivating Continuation-passing style. The denotational semantics presented in [77] re-

lies on continuations to model the actions of path computation. Indeed, actions associated

with an atomic transition (a segment) are performed immediately for condition actions and

eventually for transition actions. Success and fail continuations allow capturing this complex

behavior in functions, representing side effects as denotations. However, values manipulated

by this denotational semantics were explicitly first order and represented by environments ⇢ of

type Env: ⇢ ::= {x0 : v0, . . . , xn : vn , s0 : b0, . . . , sk : bk}. These environments represented both

the values of variables xi and the active status of states si .

The encoding of [77] could be significantly improved by rearranging arguments to push

environments in the rightmost position and defining a pure continuation-passing style (CPS)

denotational semantics and point-free wrt environments. Indeed, in some situations, the author

would drop continuations and evaluate explicit intermediate environments.

The following definitions characterize our CPS denotational semantics for Stateflow, fol-

lowing precisely the semantics of [77] while solving its flaws. The semantics is a higher order

and environments are never made explicit: the evaluation of a model component acts as a

transformer.

Conditions. Transitions in Stateflow are computed based on the current environment and

an active event, evaluating conditions. Without loss of generality, we assume that the event

is part of the environment and is not made explicit in the rules. An active event e could be

checked as a regular condition using the predicate event(e). We recall that the environment

contains both variables mapped to values and the active status of Stateflow states. To clarify

the expression, we made explicit the check whether a state characterized by p is active using

the predicate active(p).

Actions. The critical ingredient of transition computation in Stateflow is the sequence of

actions applied to the current environment, updating values of variables and changing active

and inactive states. Actions act as transformers and are the values manipulated by our CPS

denotational semantics. We denote by Den this transformer type.

Basic action constructors are left free here but typically express some imperative assign-

ment of an expression to an environment variable. In addition, we introduce the actions

open p and close p which switches the Boolean status of state p to true or false respec-

tively. To generalize the approach, we express disjunctions as actions using the constructor
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Ite(condition,Den,Den).

A primitive action (assignment or open/close action) semantics, i.e., its interpretation as a
transformer, is defined using the function AJ·K : action ! Den. (Actions) transformers can be
combined using the operator�: Den ! Den ! Den, which is associative: a1 � a2 � a3 means
that action a1 is performed before action a2 followed by a3. Last, the default action, identity,
is denoted Id.

Denotational semantics as a functions map. Semantics functions are associated with
state names and a global continuation environment ✓ of type KEnv is defined as follows:

✓ ::= { p0 : (SJp0 : sd0K
e
m ✓,SJp0 : sd0K

d ✓,SJp0 : sd0K
x
m ✓)

. . .
pn : (SJpn : sdnKe ✓,SJpn : sdnKd ✓,SJpn : sdnKx ✓)
j0 : T JT0K✓, . . . , jk : T JTkK✓}

Functions SJp0 : sd0K
e
m , SJp0 : sd0K

d and SJp0 : sd0K
x
m denote, respectively, the semantics

of a state when entering it, executing it, or exiting it. Note that entry and exit actions are
parametrized by a mode m 2 Mode = L | S . This mode, either loose (L) or strict (S), captures
the difference between inner and outer transitions for entry and exit actions. Junctions are
associated with the transition list semantics function T . The ✓ map captures the semantics of all
components of the Stateflow model and is typically provided as an argument of denotations.

Transitions semantics. Stateflow semantics is rather complex. A Stateflow transition
amounts to evaluate a sequence of atomic transitions. Depending on some dynamic conditions,
each atomic transition may be eventually fired or not. In all cases, it will impact the environment
through side effects (condition actions). We introduce three continuations: success of type
k+ ::= Den modeling a fired transition, a fail continuations of type k� ::= Den modeling an
unfired one and a third case failglob of type k� capturing complex executions in which a series
of junctions ends in a terminal junction. In case of a transition leading to another state, some
entry or exit actions may be performed1. They are captured by the wrapper continuation of
type w ::= p ! Den ! Den.

The evaluation of a destination path DJ.K, which is a state amounts to apply the wrapper
on the success continuation. Otherwise, when the destination is a junction, the transition list
semantics is evaluated with the same continuations.

DJpK (θ : KEnv) (wrap : w) (success : k+) (fail failglob : k�) : Den = wrap p success

DJjK θ wrap success fail failglob = θ
j(j)wrap success fail failglob

Atomic transition semantics ⌧J.K introduces an Ite action: in case of an unfeasible condition,
the (regular) fail continuation is used, otherwise, a new success continuation is built, evaluating
the transition actions of the atomic transition. The action associated to the then-branch com-
bines the condition actions followed by the new destination evaluation and relies on the newly
defined success continuation.

1Note that those actions are not performed for a transition ending in a terminal junction.
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τJ(et , c, (ac, at), d)K (θ : KEnv) (wrapper : w) (success : k+) (fail failglob : k�) : Den =
Ite(event(et) ^ c,

(let success0 = success � (AJatK) in

(AJacK) � (DJdK θ wrapper success0 fail failglob)),
fail)

Evaluation of a list of transitions T J.K performs a left-to-right traversal of the list: the
unfeasibility of the head transition leads to the evaluation of the next, involving the definition
of fail continuations. As a special case, when provided with an empty list of transitions, it
always evaluates to the global fail continuation.

T J?K (θ : KEnv) (wrapper : w) (success : k+) (fail failglob : k�) : Den = failglob

T Jt.TK θ wrapper success fail failglob =

let fail 0 = T JTK θ wrapper success fail failglob in

τJtK θ wrapper success fail0 failglob

State semantics. State semantics involves the opening and closing actions of states. We
introduce wrapper functions dedicated to inner and outer transitions and entering states.

Wrapper considers a source and destination paths, ps and pd , and identifies the common
prefix p of both paths. Depending on the context (inner or outer transition), it will compose,
in order, the exit actions of remaining ps, the transition actions continuation, and the entering
actions of the remaining pd . Outer transitions involve loose state semantics, while inner tran-
sitions involve strict ones. A specific wrapper open pathv is introduced to enter substates of a
path.

open_pathv (θ : KEnv) (p : Path) (ps : Path) (pd : Path) : w =
if hd(ps) = hd(pd) ^ hd(ps) 6= ? then

open_pathv
θ p.hd(ps)tl(ps)tl(pd)

else match v with

o -> λ den.θx
L(p.hd(ps)) � den � θ

e
L(p.hd(pd))tl(pd)

i -> λ den.θx
S (p.hd(ps)) � den � θ

e
S(p.hd(pd))tl(pd)

e -> λ den.den � θ
e
L(p.hd(pd))tl(pd)

This definition assumes that hd and tl functions, returning the head and tail of a list, are
extended to handle empty lists, i.e., hd? = ? and tl? = ?.

We now define the core semantics functions of states, SJ·K
{e,d,x}
m . Note that the mode

parameter m is provided as an index. Entering or exiting a path executes the entry and exit
actions of all states in the path, respectively. Depending on the outer or inner status of a
transition, the entry or exit actions of the root node shall or shall not be evaluated. The
following definitions capture Stateflow semantics, handling specificities such as transitions
from a node to a child or parent.

SJp : ((ae, ad , ax),T0,Ti ,C )Ke
S (θ : KEnv) (? : Path) : Den = (CJCKe p θ)

SJp : ((ae, ad , ax),T0,Ti ,C )Ke
S θ s.pd = (θe

L(p.s) pd)
SJp : ((ae, ad , ax),T0,Ti ,C )Kx

S (θ : KEnv) : Den = (CJCKx p θ)

SJp : ((ae, ad , ax),T0,Ti ,C )Ke
L θ? = (AJaeK θ) � (AJopen pK) � (CJCKe p θ)

SJp : ((ae, ad , ax),T0,Ti ,C )Ke
L θ s.pd = (AJaeK θ) � (AJopen pK) � (θe

L(p.s) pd)
SJp : ((ae, ad , ax),T0,Ti ,C )Kx

L θ = (CJCKx p θ) � (AJaxK θ) � (AJclose pK)

The definition for during actions is the following. First outer transitions are evaluated. If
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none succeeds, the during action of the node is computed. Then, inner transitions apply. If no
transition can be fired at all, the components of the node are computed.

SJp : ((ae, ad , ax),To,Ti ,C )Kd (θ : KEnv) : Den =

let wrapperi =open_pathi ? p in

let wrappero =open_patho ? p in

let failo =

let faili = CJCKd p θ in

(AJadK θ) � (T JTiK θ wrapperi Id faili faili) in

T JToK θ wrappero Id failo failo

Component semantics definitions follow. Entry transitions associated with an Or node
initiate the component and shall not fail (the ? value is unreachable). Execution or exiting of
an Or component applies to the active element. Parallel states rely on fold right to ensure
proper function compositions.

CJOr(T ,?)Ke p θ = Id

CJOr(?, [s0])K
e p θ =open_pathe p ? s0 Id

CJOr(T ,S)Ke p θ = T JTK θ (open_pathe ? p) Id ??

CJOr(T ,?)Kd p θ = Id

CJOr(T , x.S)Kd p θ = Ite(active(p.x), θd(p.x), CJOr(T ,S)Kd p θ)
CJOr(T ,?)Kx p θ = Id

CJOr(T , x.S)Kx p θ = Ite(active(p.x), θx
L(p.x), CJOr(T ,S)Kx p θ)

CJAnd(S)Ke p θ = fold_right (λ x.λ res.θe
L(p.x)? � res)S Id

CJAnd(S)Kd p θ = fold_right (λ x.λ res.θd(p.x) � res)S Id

CJAnd(S)Kx p θ = fold_right (λ x.λ res.θx
L(p.x) � res)S Id

Program semantics. The evaluation of the main program produces a transformer:

PJ(s,SrcsK : Den = Ite(active(s), θd(s), θe
L(s)?)

Where ✓ is built using Srcs and the initial environment assumes all states are inactive, including
the main one, s.

2.3.2 Comparison with Hamon’s denotational semantics

The previous definitions are directly extracted from [77] but were modified to solve minor
soundness flaws and to be compatible with the pure CPS semantics we designed. Without de-
veloping much about the soundness flaws2, let us highlight the main differences in the semantics
definitions:

• we adapted the rule to match our understanding of nontrivial Stateflow constructs, as
exhibited by the current Stateflow simulation engine. For example, sequences of actions
performed when leaving a state and entering another one follow a specific order: [77] the
use of success and fail continuations were improperly combined. Our encoding introduced
a new argument wrapper used in D, ⌧ and T . Open and close actions bind dedicated
wrappers that reorder actions. Our version follows current Stateflow behavior.

2In fairness to this work, it is somehow tricky to figure out what the undocumented semantics of Stateflow

circa 2005 may look like and to what extent it was well specified. Notice also that [136] corrects some flaws in
Hamon’s denotational semantics.
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AJopen pK(⇢) = ⇢ [p 7! true]
AJclose pK(⇢) = ⇢ [p 7! false]
AJv = exprK(⇢) = ⇢ [v 7! JexprKρ]

Ite(cond,T ,E)(⇢) = if JcondKρ thenT (⇢)
elseE(⇢)

(D1 � D2)(⇢) = D2 �D1(⇢)
Id(⇢) = ⇢

? = assert false

(a) Interpreter

AJopen pK = p = true

AJclose pK = p = false

AJv = exprK = v = expr
Ite(cond,T ,E) = if cond thenT

elseE
(D1 � D2) = D1 ; D2

Id = nop

? = assert false

(b) Code Generator
Figure 2.8: Instantiations

• regarding CPS, as explained at the beginning of the Section, the ⇢ argument is abstracted
away and gives rise to point-free semantics. Moreover, as found in Hamon’s work, every
dynamic access to the environment is removed. For instance, dynamic if-then-else state-
ments are lifted to a dedicated constructor to postpone their execution; similarly, action
evaluation is constantly introduced within computed continuations and never evaluated
directly (see, e.g., ⌧J·K and SJ·Kd). This brings far more flexibility in the purpose and de-
sign of semantics functions and allows, for instance, to define interpreters, code generators,
and source-to-source transformations.

2.3.3 Modular code generation for Stateflow

The formal semantics presented in the previous Section can be instantiated with appropriate
definitions for the primitive elements of the denotational semantics: AJ·K, Ite(·, ·, ·), �, ? and
Id.

We present here different settings for the instantiation either as an interpreter or as a
code generator. Section 2.3.4 will address our main goal: generate Lustre automata from
Stateflow model while preserving the hierarchical structure model.

Interpreter instantiation

The denotational semantics of [77] can be obtained where transformers modify environments:
Den = Env ! Env. Figure 2.8a details the associated definitions. An environment ⇢ defines
a map from variables to values, including the active status of states. ⇢[v ! c] represents the
substitution of a variable v to value c in environment ⇢. We assume that JexprKρ represents the
evaluation of expression expr in ⇢, with a Boolean interpretation when evaluating a condition ex-
pression. The bottom construct throws an exception but should not happen for well constructed
models. We recall that events are part of the environment and are accessible through predicate
active(e) using in conditional expressions. Such an instantiation provides a simulator for the
model: when provided with an initial environment, it computes the successor environment.
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Code generator instantiation

One can also synthesize imperative code by synthesizing an abstract syntax tree while evaluating
transformers. Den denotes here an abstract syntax tree (AST):

Den ::= Den; Den

| if cond thenDen elseDen

| v = expr | nop | assert false.

Figure 2.8b provides such simple instantiation. Applying the code generator on the Stopwatch
example from Fig. 1.3 generates a relatively large program: about 800 LOC, for an overall
number of 220 actions and 135 conditions, nested up to depth 13.

Preserving hierarchical structure

Stateflow semantics is global since the environment is shared among all states. However,
the transitions are attached locally to states. We can preserve this hierarchical structure by
associating a procedure to each state execution denotation: each call to the denotation ✓e(p),
✓d(p) or ✓x(p) could be respectively substituted by a call to a procedure thetae p, thetad p

or thetax p instead of executing SJp : sdKe,d,x ✓. This is possible since all arguments of these
semantics functions are static (paths, modes, etc.).

For a program (s, srcs), the total code generation is then performed state by state, generating
procedures thetad p for each state p declared in program sources srcs. The main procedure is
the one associated with state s. For the Stopwatch example in Fig. 1.3, it generates 7 procedures,
for an overall number of about 270 LOC, 100 actions, and 55 conditions, nested up to depth 7.
We have implemented an interpreter and a code generator instantiation of the CPS denotational
semantics in OCaml. The code can be found in [41].

In our approach, modularity is itself modular as we can choose either to turn every se-
mantics function into a procedure or on the contrary to inline its results. In this respect,
turning junction-related semantics function ✓j(j), which amounts to computing T Jj : TK ✓ into
a procedure helps in factorizing out common prefixes of transition sequences, provided one can
defunctionalize [45] its arguments wrapper , success, and fail, expressed as first-order values.

For Stateflow models with complex transition sequences between junctions, this would
greatly help factorize common junctions occurring in many paths, avoiding combinatorial blow-
ups. However, this is left for future work.

2.3.4 Stateflow models as Lustre automata

This Section describes the compilation of Stateflow models into Lustre automata. Au-
tomata are supported since Lustre V6 [40, 39]. The overall behavior of an automaton is
pictured in Fig. 2.9. An automaton consists of states, each with its own set of equations and
possibly local variables. At each instant, two pairs of variables are computed: a putative state in

and an actual state state act and also, for both states, two booleans restart in and restart act,
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AJopen pK in out := gout = ein[in p 7! true]

AJclose pK in out := gout = ein[in p 7! false]

AJv = exprK in out = gout = ein[in v 7! JexprKin]

AJcall pK in out := gout = thetad p( ein)
(L1 � L2) in out := (L1 in nameuid) ;

(L2 nameuid out)

Id in out := gout = ein
? in out := assert false

node thetad p ( ein :gTin) returns (gout : gTout)

let (SdJpK in out); tel

Ite(cond,T ,E) in out :=
automatonnameuid

state Cond :
unless J¬condKin restartNotCond
let (T in out); tel
state NotCond :
unless JcondKin restartCond
let (E in out); tel

Figure 2.10: Lustre instantiation

automaton with more states to simplify the presentation.

2.4 Compilation of Lustre code to Simulink models

Few works address the automatic synthesis of MATLAB Simulink annotations from lower-
level models or code. In this Section, we present a compilation process from Lustre models
to genuine MATLAB Simulink, without the need to rely on external C functions or MATLAB
functions. This translation is based on the modular compilation of Lustre to imperative code
and preserves the hierarchy of the input Lustre model within the generated Simulink one. We
implemented the approach and used it to validate a compilation tool-chain, mapping Simulink

to Lustre and then C, thanks to equivalence testing and checking. This backward-compilation
from Lustre to Simulink also provides the ability to produce automatically Simulink com-
ponents modeling specification, proof arguments, or test cases coverage criteria.

Let us focus on safety-critical controller software and systems. In most cases, such sys-
tems are designed and implemented as the composition of several reactive components, each
performing a specific and relatively simple function. In the aerospace domain, the certification
regulation DO178C [1] specifies the different steps of software development and emphasizes the
need to specify requirements and verify the validity of intermediate models or code with respect
to their requirements. Therefore, the first question that naturally arises is the following: in
a Model-Based System Engineering (MBSE) context, how can system designers specify these
requirements and verify the validity of their models?

In addition to models, a contract-based design is a leading methodology for developing
component-based software. In this paradigm, each component is associated with a contract
specifying its input-output behavior in terms of guarantees provided by the component when
its environment satisfies certain given assumptions. These assume/guarantee pairs can thus be
used to specify requirements at the component level. While Hoare first proposed this approach
to specify axiomatic semantics of imperative programs [81], it has been later lifted to reactive
systems through the notion of synchronous observers [31, 52, 75, 76, 117]. When contracts
are specified formally for individual components, they can facilitate several development activ-

60



En: A En
Ex: A Ex
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En: B En
Ex: B Ex

B

E[C]{Ac}/At

automaton ab

state CENTER_POINT:

unless id=1 and E and C restart A_EXIT_B_ENTRY;

unless id=1 restart A_IDL;

unless id=2 restart B_IDL;

let

outputs = old_outputs;

tel

state A_IDL:

let

outputs = A_during_action(old_outputs, inputs);

tel

until true restart CENTER_POINT;

state A_EXIT_B_ENTRY:

let

-- execute the actions: condition action,

-- A exit action, transition action, B entry action

tel

until true restart CENTER_POINT;

state B_IDL:

let

outputs = B_during_action(old_outputs, inputs);

tel

until true restart CENTER_POINT;

Figure 2.11: A simple Stateflow transition encoding.

ities, such as compositional reasoning during static analysis, step-wise refinement, systematic
component reuse, and component-level and integration-level test case generation.

At the model level, writing requirements with synchronous observers can usually be per-
formed in the same language as the model, easing its deployment and the adoption of the
approach by engineers. In addition, these requirements may be verified on the model by sim-
ulation or other techniques, such as model-checking. Notice that contracts or synchronous
observers attached to model components can also be used to specify additional knowledge, such
as invariants computed by a first analysis.

For instance, approaches such as FRET [69] or ArgoSim Stimulus3 ease the formalization of
requirements but can hardly be directly linked to Simulink models to provide genuine Simulink

components representing the specification. On the other hand, the FRET tool can generate
these requirements in the CoCoSpec specification language [31], an extension of the Lustre

language to support assume-guarantees contracts. Formal analysis of Simulink models is also

3www.argosim.com
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addressed by providing a formal semantic of the model, allowing either executable embedded
code or a model for analysis by formal tools. In Section. 2.2.1, we provided a way to translate
Simulink models into an equivalent Lustre model for which contracts are expressed using the
CoCoSpec specification language and verified using model-checking techniques with tools such
as Kind2 [83, 31].

While translating Simulink models into formal languages such as Lustre allows us to
formally analyze such models, bringing back analysis artifacts generated from Lustre in the
Simulink model was not done before our work. It needs a translation of Lustre code to
Simulink. These artifacts can include invariants generated from SMT solvers that can be
used to infer contracts for sub-components, Lustre annotations such as test-case coverage
conditions, and auto-generated CoCoSpec contracts from formalized requirements using FRET,
for instance. Connecting Lustre artifacts back to the Simulink model make it simpler for
engineers using Simulink to adopt the use of formal tools, and no knowledge of formal languages
such as Lustre is required. The compilation of Lustre nodes into Simulink subsystems is
performed in two steps:

• The first step is to produce a simplified version of the input Lustre model, preserving the
hierarchical structure of nodes. This is done using a dedicated backend we implemented
in LustreC [52], an open-source Lustre compiler.

• The second step is to submit the previously produced description to a dedicated backend
of CoCoSim that creates Simulink objects of the associated hierarchy of components
and connects the corresponding ports in the Simulink model.

Translating Lustre to Simulink, is more challenging when dealing with a complex Lustre

abstract syntax tree and requires a simplified version of Lustre equations. For instance, while
a basic expression pre e could be associated with unit delay, its presence as an argument in
a complex expression or a node call is more difficult to tackle. Our idea is to use a Lustre

compiler to simplify expressions and produce appropriate constructs. We use LustreC, a Lustre

compiler implementing the synchronous dataflow languages hierarchical compilation scheme [13,
24]. The LustreC compiler is implemented as a sequence of transformations and could eventually
produce an imperative version of the Lustre input model.

2.4.1 From Lustre to normalized Lustre

LustreC compilation is essentially structured in three main phases. LustreC takes as input Lus-

tre models composed of “classic” dataflow nodes, mixed with hierarchical state machines [17,
40, 62]. Therefore, the first phase of the compiler amounts to producing pure dataflow Lustre

by introducing new variables for each automaton to represent its states and encoding tran-
sitions in automata as clocked expressions and merges of them. The second phase performs
normalization, an updated version that will be detailed in the following. The main idea of this
normalization phase in LustreC is to introduce new Lustre variables to encode intermediate
values as in classic three-address code. Finally, the last phase translates each normalized node
into imperative machine code.
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td ::= type enum ident = enum { C1, . . . ,Cn}
bt ::= real | bool | int | enum ident
d ::= node f (p) returns (p); vars p let D tel
p ::= x : bt; ...; x : bt

D̃ ::= pat = ẽ; D | pat = ẽ;
pat ::= x | (pat, ..., pat)

l ::= v | x
ẽ ::= l

| true ! false
| op(l, ..., l) | pre l
| f (l, ..., l) | f (l, ..., l) every l
| f (l when C (x), ..., l when C (x)) | f (l when C (x), ..., l when C (x)) every l
| if l then l else l
| merge x (C ! l)...(C ! l)
| l when C (x)

v ::= C :: enum ident | i :: int | r :: real | true :: bool | false :: bool

Figure 2.12: The normalized Lustre syntax

Since the previously presented compilation scheme used by the compiler LustreC is reliable
and used to produce trustable C code [13, 65], we adapted it to perform our required sim-
plifications on the Lustre code by modifying the existing normalization stage to produce for
each Lustre node a normalized node that can be easily compiled into a Simulink construct,
preserving the hierarchy of the initial Lustre nodes. While the original normalization of the
LustreC tool was the direct implementation of [13], the updated normalization introduces ex-
tra variables and associated definitions for all operators or function calls, including primitive
operators such as arithmetic or logical operators.

The normalization process transforms a Lustre model defined into the grammar of Fig-
ure 1.5 into one of Figure 2.12. It introduces an additional grammar element l denoting a leaf
value, i.e., a variable or a constant. Normalization of an expression returns a fresh typed and
clocked variable along with a set of newly bound stateful normalized equations and associated
new variables. Except for node calls, these normalized equations do not involve nested con-
structs and correspond to three-address codes for binary operators. The arguments of node
calls are constants or variables, except for a particular case where they are all sampled on the
same clock optimized in Simulink block generation, as explained in the following section.

Let us illustrate the normalization of the stopwatch example presented in Listing 1.1 page
26. After normalization, the Lustre code presented in Listing 2.1 is generated. The original
Lustre expressions are given in the comments.

Listing 2.1 follows the grammar described in Figure 2.12. The nodes count and stopwatch

are normalized in a classic three-address code so each complex expression is decomposed into
simple expressions involving new fresh variables or constants. Each stateful node has a boolean
variable is_init denoting its first time step defined by true -> false. The arrow expression
l1!l2 is replaced by a conditional statement if is_init then l1 else l2, see variable time

in node count and streams __stopwatch_7 and __stopwatch_2 in node stopwatch. Node
stopwatch contains clocked expressions using when and merge operators, their semantics is
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1 node count (tick: bool) returns (time: int)

2 var is_init: bool; __count_2, __count_3: int;

3 let

4 -- Norm. of: time = 0 -> pre time + 1;

5 is_init = true -> false;

6 __count_2 = pre time;

7 __count_3 = __count_2 + 1;

8 time = if is_init then 0 else __count_3;

9 tel

10
11 node stopwatch (tick: bool; toggle: bool; reset: bool) returns (time: int)

12 var running: bool clock; is_init, __stopwatch_5, __stopwatch_6, __stopwatch_7: bool;

13 __stopwatch_1, __stopwatch_2 : int;

14 __stopwatch_3: int when not running;

15 __stopwatch_4: int when running;

16 let

17 is_init = true -> false;

18 -- Normalization of: running = ((false -> pre running) <> toggle) or reset;

19 __stopwatch_6 = pre running;

20 __stopwatch_7 = if is_init then false else __stopwatch_6;

21 __stopwatch_5 = __stopwatch_7 <> toggle

22 running = __stopwatch_5 or reset;

23 -- Norm. of: (0 -> pre time) when not running

24 __stopwatch_1 = pre time;

25 __stopwatch_2 = if is_init then 0 else __stopwatch_1;

26 __stopwatch_3 = __stopwatch_2 when not running;

27 -- Norm. of: count(tick when running) every reset

28 __stopwatch_4 = count(tick when running) every reset;

29 -- Norm. of: time = merge running (true -> count(tick when running) every reset) (false

-> (0 -> pre time) when not running);

30 time = merge running

31 (true -> __stopwatch_4) (false -> __stopwatch_3);

32 tel

Listing 2.1: Normalized Lustre code of the stopwatch example

explained in section 1.1.3. Stream __stopwatch_4 (respectively, __stopwatch_3) is clocked
on running (respectively not running). The expression (count(tick when running)every

reset) is not further normalized since it respects the grammar rule
f (l when C (x), ..., l when C (x)) every l

described in Figure 2.12. The advantage of keeping it unnormalized is explained in the next
section.

2.4.2 From normalized Lustre to Simulink

A normalized node is translated to a Simulink Subsystem. We first start translating leaf nodes,
then finish with the top nodes. All nodes are translated as Subsystems and used as a library of
nodes. If a node g calls a node f then the Subsystem that corresponds to node f is instantiated
and used inside the Subsystem corresponding to node g.
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time step. The If Action Subsystem should be reset when it was re-activated at the fourth
step, and the "to be reset" signal is going to be negative at the fifth step since the reset

input was not triggered. Thanks to our extensive validation, we are confident that this encoding
faithfully addresses this specific case. The validation process is detailed in Section 3.3.2.

isActive false false false true true
reset false true false false false

to be reset false true true true false

Table 2.2: A simulation of the "should be reset" Subsystem of Fig 2.23.

The presented approach enables the translation of Lustre nodes to Simulink subsystems.
The proposed algorithm can produce regular subsystems or support the definition of contracts
at Simulink level, using boolean flows.

The added value of our approach to alternative approaches such as [92] is the production
of basic Simulink subsystems relying only on primitive blocks such as unit delays, merge, and
relational and arithmetic operators. It can also address the complete input language of the
compiler we used, including clocks and hierarchical definition through multiple Lustre nodes
and Lustre automata. The implementation is, however, limited since it does not yet handle
machine-level types nor external C functions, while this could technically be implemented since
Simulink supports both constructs.

The approach has been validated in large use cases, demonstrating the behavioral equivalence
between some compiled models.

The applications are numerous, from validating the framework to supporting formal spec-
ification or producing runnable proof evidence as synchronous observers. It is now integrated
into the CoCoSim toolbox and is mature enough to be used automatically to provide feedback
at the model level.

Future work includes the extension of the input language to enable the use of externally
defined functions, such as C code, and the handling of machine data types (e.g., int8, uint8,
int16, uint16).

2.5 Conclusion

This chapter describes our contribution to providing a bidirectional translation between Simulink

and the Lustre models. We first characterized the semantics translation of Simulink models
to Lustre. We then described our denotational semantics for Stateflow. Finally, we also
showed how to compile Lustre code to Simulink models. In the next chapter, we will present
CoCoSim, a toolbox that uses these translations to ease the V&V activities of Simulink

models.
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Chapter 3

CoCoSim: A toolbox to ease V&V
activities
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It is well-known that the requirements gathering and the validation and verification (V&V)
activities are crucial for the success of any software development project. In the context of
Simulink models, these activities are even more critical, as the models can be very complex
and involve many different stakeholders. In this chapter, we present CoCoSim, a toolbox we
developed that aims to ease the requirements gathering and the V&V activities for Simulink

models. We also introduce FRET, an open-source tool developed at NASA Ames for writing,
understanding, formalizing, and analyzing requirements. Note that FRET is not a contribution
of this work, but we collaborated closely with the FRET team to successfully integrate both tools
CoCoSim and FRET. The results of this collaboration has been presented in [20, 22, 100, 99,
98]. The main contribution of this chapter is twofold. First, we show how CoCoSim can be used
with FRET to formalize requirements as Simulink components, and we describe the benefits of
this approach. Second, we present the results of our preliminary evaluation of CoCoSim, which
shows that it can correctly translate Simulink models into Lustre synchronous language.

Sections 3.1.2 and 3.1.3 are extracted from [99]. The work about translation validation in
Section 3.3.2 is published in [19].

3.1 The need to formalize requirements as Simulink compo-
nents

Formal verification and simulation are powerful tools to validate requirements against complex
systems. However, requirements are developed in the early stages of the software lifecycle and
are typically written in ambiguous natural language. There is a gap between such requirements
and formal notations that can be used by verification tools and a lack of support for correctly as-
sociating requirements with software artifacts for verification. We propose to write requirements
in an intuitive, structured natural language with formal semantics and to support formaliza-
tion and model/code verification as a smooth, well-integrated process. In a research project,
inside NASA Ames formal methods team, we have developed an end-to-end, open-source re-
quirements analysis framework that checks Simulink models against requirements written in
structured natural language. The framework was built in the Formal Requirements Elicita-
tion Tool (FRET); we use FRET’s requirements language named fretish and formalization
of fretish requirements in temporal logic. Our proposed framework contributes the following
features: 1) automatic extraction of Simulink model information and association of fretish

requirements with target model signals and components; 2) translation of temporal logic for-
mulas into synchronous dataflow CoCoSpec specifications as well as Simulink monitors, to
be used by verification tools; the correctness of the translation is established through extensive
automated testing; 3) interpretation of counterexamples produced by verification tools back at
the requirements level. These features support a tight integration and feedback loop between
high-level requirements and their analysis. We demonstrate our approach in two case studies
in Chapter 4.

The safety-critical industry imposes a strict development process according to which re-
quirements are written in the early phases of the software lifecycle and are refined into models
and/or code while keeping track of traceability information. Verification and validation (V&V)
activities must ensure that the development process properly preserves these requirements (for
example, see [115] and its formal method supplement [116]).
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Requirements are typically written in natural language, which is well-known to be ambiguous
and not amenable to formal analysis. On the other hand, formal mathematical notations can
be used by analysis tools but are unintuitive for developers. Frameworks like Stimulus [82] or
FRET (Formal Requirements Elicitation Tool) [70] address this problem by enabling the capture
of requirements in restricted natural languages with formal semantics. FRET additionally
supports the automated formalization of requirements in temporal logic.

Associating high-level requirements with software artifacts in terms of architectural infor-
mation, such as components and signals, is necessary to support V&V activities. This is also
the case when requirements are formal; for example, the atomic propositions that make up a
formula must be connected to variable values or method executions in the target code.

In our work, we presented an end-to-end open-source requirements analysis framework that
supports a tight integration and feedback loop between high-level requirements and the V&V
of models or code against these requirements. Our framework is built on top of the open-source
tool FRET.1 It connects fretish requirements, explained in Section 3.1.2, to Simulink models
for verification, and verification results back to requirements.

Our framework can be connected to any Simulink/Lustre V&V tools, although it currently
uses our toolbox CoCoSim [15], and the Simulink Design Verifier (SLDV). We have applied
our framework to a major case study: the Lockheed Martin Cyber-Physical Systems (LMCPS)
challenge [53] (see Sec. 4.1), a set of aerospace-inspired examples provided as text documents
specifying the requirements along with associated Simulink models. Examples range from basic
integrators to complex autopilots. We report on our experience using FRET, CoCoSim, and
their interconnection to capture and analyze LMCPS requirements.

3.1.1 Synchronous observers to support V&V activities.

In Section 1.3, we defined a synchronous observer as a description of axiomatic semantics for
a synchronous model. The observer can be defined in the same language as the model and
corresponds to a set of boolean streams. If the property is valid, the output flow encoding the
property should remain true during the program’s execution.

Graphically speaking, a synchronous observer is a subsystem that accesses some internal
flows and computes a boolean output. For example, Figure 3.1 performs such computation and
verifies that a specific relationship between its two inputs is always valid.

In control theory, we speak about an open-loop property: the property can be expressed over
the controller inputs, outputs, or memories without knowledge of the plant semantics. Figure 3.2
presents the association of such a synchronous observer, an open-loop property, attached to a
component element.

The content of the observer itself is left free and could be as complex as required, depending
on the complexity of the requirement it models. While this notion is expressive enough and is
capable of capturing all kinds of requirements, it is sometimes more convenient to refine the
specification by expressing hypotheses, i.e., the precondition of the Hoare triples, or modes,

1https://github.com/NASA-SW-VnV/fret
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Figure 3.1: A synchronous observer as Simulink subsystem.

Figure 3.2: Open-loop properties in a synchronous observer

conditional behavior depending on some conditions.

At Simulink level dedicated constructs, such as shown in Fig. 3.3, ease the definition of
such model-based contracts.

The synchronous observer node’s complexity can contain any legal Simulink or Scade/Lustre

content. For example, Figure. 3.4 presents a template to support the expression of closed-loop
properties. This observer contains both the plant model and a set of closed and open-loop
properties. Within that specification subsystem, observers can access any flows, including the
plant’ flows.

However, the insertion of the closed-loop specification node within a model is not as conve-
nient as it is for an open-loop property. The open one could be defined only with probes, while
the closed one needs, maybe artificially, to reconstruct a feedback loop. This is presented in
Figure. 3.5. Note the occurrence of a specification-based unit delay to prevent the creation of a
spurious algebraic loop.

Once the specification is formalized, as regular Simulink components, one can rely on
them to support numerous verification and validation activities. Let us look at the example in
Figure 3.6 to illustrate these various uses.

This observer only focuses on a very local property: depending on some conditions, the
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Figure 3.3: Modes as Simulink contracts

Figure 3.4: Encoding closed-loop properties in an observer

Figure 3.5: Injecting closed-loop observers as model annotations
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Figure 3.6: Example of a specification

Figure 3.7: Controller simulation.

controller switches between different control laws. This property ensures that the switch is
continuous. However, simulations performed on the whole controller leave no opportunity to
evaluate the validity of this specific property. Figure 3.7 provides one such run. While one can
consider that global behavior is acceptable, it is essential to provide solid arguments for each
requirement.

Synthesis of test oracles

Each formalized requirement acts as a test oracle. For example, the synchronous observer
defines a predicate. Therefore its boolean output corresponds to the validity of the expressed
requirement.

This block is runnable and can be used at various levels. As visible in Figure 3.6 additional
elements could be added to the model to visualize the status of the property. In this specific
simulation run, the positive value of the output shows that the property was valid during the
execution of that single test.
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In addition, since our CoCoSim framework can produce C code for Simulink models, the
observer itself can be compiled to produce code. This opens the opportunity to produce C code
or binaries implementing test oracles.

Computation of metrics regarding test suites

When considering an extensive test suite, it is essential to evaluate the validity of each require-
ment for each test case but also to measure the coverage of the specification. This is because it
can happen, for example, that a test case does not activate a specification. The notion of modes
in CoCoSpec is appropriate: one needs to provide figures regarding the evaluation of each mode
by a test suite.

Figure 3.6 also provides these elements as internal flows. Each simulation will produce some
numerical values denoting the activation of the property or some meaningful values. In this
specific case, we compute the number of mode switches, which was 34 in that run, and the
maximal value of the discontinuity, which was 5 · 10�5.

Metrics and coverage of requirements can then be automatized, either at the model level,
or at the code level.

Supporting the generation of test cases

Since the property is expressed in the same language as the model, it can be easily expressed
in the intermediate language and, eventually, in C. For a particular class of specifications, e.g.,
blocks limited to boolean and linear integer flows, satisfiability model checkers can search for a
sequence of inputs activating a given mode or satisfying a given condition. On the other hand,
synthesizing traces containing real/floats values is much more challenging and requires different
techniques.

Consistency of specification

Among the possibilities, let us also mention the evaluation or verification of the consistency of
the specification. For example, at the contract level, one can ensure that mode constraints are
disjunctive or that the mode partitioning is complete, i.e., that their disjunction is always valid.

One can also check the validity of assumes, requires, ensures statements or evaluate whether
the expressed predicates are compatible with predicates expressed over sub-components.

We use the CoCoSpec language, presented in Section 1.3, to generate monitors. Co-

CoSpec [31] is an extension of the synchronous dataflow language Lustre [74]. We recall
that CoCoSpec extends Lustre with constructs for the specification of assume-guarantee
contracts. Each contract is linked to a node and has access only to that node’s input/output
streams. The body of a contract contains assume (A) and guarantee (G) statements as well as
mode and internal variable declarations. Modes consist of require (R) and ensure (E) state-
ments. A mode is active at time t, if

V
R = true at t. Assumptions and requires are expressions
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over input streams, while guarantees and ensures are expressions over input/output streams. A
node satisfies a contract C = (A,G 0) if it satisfies H A) G 0, where G 0 = G [ {Ri ) Ei}.

The main goal of the open-source CoCoSim framework [15] is to support the analysis of
safety-critical Simulink systems. Discrete systems developed in Simulink can be faithfully
translated into Lustre [131], the intermediate language of CoCoSim. CoCoSim iterates over
Simulink blocks using the Simulink API and produces equivalent Lustre nodes as explained
in Section 2.2.1. Different Lustre-based tools can check the validity of the generated Lustre

nodes by using SMT-based model checking.

3.1.2 FRET: Formal specification of properties

A fretish requirement contains up to six fields: scope, condition, component*, shall*, timing,
and response*, where an asterisk indicates mandatory fields. ‘component’ specifies the compo-
nent that the requirement refers to. ‘shall’ is used to express that the component’s behavior
must conform to the requirement. ‘response’ is a Boolean condition that the component’s be-
havior must satisfy. ‘scope’ specifies intervals where the requirement is enforced. For instance,
‘scope’ can specify system behavior before a mode occurs, after a mode ends, or when the sys-
tem is in a mode. The optional ‘condition’ field is a Boolean expression that triggers the need
for a ‘response’ within the scope. When triggered, the response must occur as specified by field
timing, e.g., immediately, always, after/for/within N time units.

Each template is designated by a template key with values for fields [scope, condition, timing].
For example, [in, null, always] identifies requirements of the form In M mode, the software shall

always satisfy R. Condition null (as opposed to regular) means that the response is triggered
at the beginning of each scope interval. The most common key is [null, null, always], i.e., The

software shall always satisfy R. Scope null indicates global scope, meaning the requirement is
enforced on the entire execution interval. At the time of this writing, fretish supported eight
values for field mode, two values for field condition, and seven values for field timing, for a total
of 8⇥ 2⇥ 7 = 112 semantic templates. More details on fretish and its semantics are available
in [70].

We briefly review the main pmLTL operators (Y, O, H, S, SI), which stand for Yesterday,
Once, Historically, Since, and Since Inclusive, respectively. Y refers to the previous time step,
i.e., at any non-initial time, Y� is true iff � holds at the previous time step. O refers to at least
one past time step, i.e., O� is true iff � is true at some past time step, including the present
time. H� is true iff � is always true in the past. �S is true iff  holds somewhere at step t in
the past and for all steps t 0 (such that t 0 > t) � is true. Finally, � SI ⌘ � S ( &�). Timed
modifiers constrain an operator’s scope to specific intervals: Op [l, r ] �, where Op 2 {O, H,

S, SI} and l, r 2 N+. For instance, O [l, r ] � is true at time t iff � was true in at least one of
the previous time steps t 0 such that t � r  t 0  t � l. So O[0, 3] restricts the scope of O to the
interval, including the step where the interval is interpreted and the previous three time steps.

Requirements Language and Temporal Logics. fretish is based on restricted natural-
language grammar and allows users to express requirements conveniently. Here is an example
requirement in fretish:
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names are used both in the requirements and
in the model, cocogen automatically con-
structs the desired mapping. From our expe-
rience, however, this is usually not the case.
Different engineers work on requirements and
models, and these two parts are hardly ever
aligned. For this reason, we provide an easy-
to-use user interface in cocogen, through which the user can pick the path of the correspond-
ing model component or port from a drop-down menu (see Figure 3.9) and map it with a
requirement’s component or proposition. Then cocogen can automatically identify all the
other required information (port types, data types, dimensions, etc.) to generate correct-by-
construction monitors and corresponding traceability information. Alternatively, a user may
provide the required information manually.

Library of pmLTL Operators in Lustre cocogen receives as input a pmLTL formula,
which it translates into CoCoSpec code. To facilitate this translation, we have created a
library of pmLTL operators in Lustre.

We now present the pmLTL operators O, H, S, SI.

--Once --Historically

node O(X:bool) returns (Y:bool); node H(X:bool) returns (Y:bool);

let let

Y = X or (false -> pre Y); Y = X -> (X and (pre Y));

tel tel

--Y since X --Y since inclusive X

node S(X,Y: bool) returns (Z:bool); node SI(X,Y: bool) returns (Z:bool);

let let

Z = X or (Y and (false -> pre Z)); Z = Y and (X or (false -> pre Z));

tel tel

To support timed modifiers that constrain an operator’s scope to a specific interval [l, r ], we
defined additional Lustre nodes. For instance, for the timed version of O, we added the following
nodes to the library:

--Timed Once: general case

node OT(const L: int; const R: int; X: bool;) returns (Y: bool);

var D:bool;

let

D = delay(X,R);

Y = OTlore(L-R,D);

tel

--Timed Once: less than or equal to N

node OTlore(const N: int; X: bool; ) returns (Y: bool);

var C:int;

let

C = if X then 0

else (-1 -> pre C + (if pre C <0 then 0 else 1));

Y = 0 <= C and C <= N;
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tel

The delay function delays input X by R time units to define the right bound of the interval
in which the valuation of X must be checked. Once the input X has been delayed by R time
steps, we can treat the R bound as zero and use the OTlore (Once Timed less than or equal to)
node to check the valuation of X in the interval defined by the 0 (current) time step and the
left bound L-R. OTlore is implemented using an integer counter C , which counts the number
of time steps that occurred since the last occurrence of property X . If the event has never
occurred, the counter keeps its initial value of �1. Below we can see a simple example with
N = 2 for time steps t=[0..7]:

X F F F T F F F F . . .

C �1 �1 �1 0 1 2 3 4 . . .

Y F F F T T T F F . . .

t 0 1 2 3 4 5 6 7 . . .

Other time-constrained operators are defined through OT using the usual temporal logic
equivalences.

-- Timed Historically: general case

node HT(const L: int; const R: int; X: bool;) returns (Y: bool);

let

Y = not OT(L,R,not X);

tel

-- Timed Since: general case

node ST(const L: int; const R: int; X: bool; Y: bool;) returns (Z: bool);

let

Z = S(X, Y) and OT(L,R,X);

tel

COCOSPEC Code Generation From the fretish version of [FSM-001] (Section 3.1.3),
fret generates the following pmLTL formula: H f, where f is a placeholder for (limits &

autopilot) ) pullup. The generated CoCoSpec code uses the data types of the input and
output variables provided through the architectural mapping to generate the contract signature.

contract FSMSpec(apfail:bool; limits:bool; standby:bool; supported:bool; ) returns (pullup:

bool; );

let

var autopilot:bool=supported and not apfail and not standby;

guarantee "FSM001" (limits and autopilot) => (pullup);

tel

Below we can see part of the generated code for roll hold mode from requirement [AP-004b].
For the complete code, cocogen aggregates all requirements that refer to the same mode to
generate all ensure and guarantee statements.

var overshoot : real = (roll - step)/step;

mode roll_hold_mode (

ensure "AP-004b" overshoot <= 0.1;

);
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Verifying COCOSPEC Formalizations We assure that the CoCoSpec code generated by
our approach captures the intended semantics. We extend the verification framework provided
by fret to check whether the CoCoSpec code of a requirement conforms to the intended fret

semantics. The fret semantics [70] is compositionally defined based on different valuations
of the fretish fields scope, condition, and timing. We call template key a combination of
values of these fields, e.g., [in, null, after ] identifies requirements of the following form: in

mode m, the software shall, after 2 seconds, satisfy P. Our framework uses the following fret

components [70]:

• Trace Generator uses two approaches to produce traces, i.e., example executions. The
first approach uses boundary value analysis and equivalence class to define concrete traces
that capture interesting relations of template keys. The second approach is based on
random trace generation and produces 60000 different random traces in the range [0..12].

• Oracle takes a trace and a verification pair ht,�i, where t is a template key and � is its
corresponding CoCoSpec formalization and computes the truth value of t on the trace,
based on the fret semantics of t.

For cocogen, we have additionally developed the following components:

• CoCoSpec Retriever produces the set of all possible verification pairs ht,�i, that must
be checked.

• CoCoSpec Evaluator receives a trace, a verification pair ht,�i, and an expected value
e from the Oracle and checks whether � evaluates to e on the trace. Essentially, it
checks whether the generated CoCoSpec code conforms to the template key semantics
for a particular execution trace. For conformance checking, CoCoSpec Evaluator uses
the Kind2 model checker.

Trace Generator outputs a trace e. Both � and e are then fed to the Kind2 model checker. We
use the interpreter Kind2 mode to check conformity, in which Kind2 uses the input valuations
from the trace file to evaluate the CoCoSpec formalization at each time step. Since Lustre

formalizations are based on past-time formulas, those are evaluated at the end of the trace.

Our verification framework helped us detect discrepancies between the CoCoSpec gener-
ated formulas and the intended fret template key semantics. Despite our deep knowledge of
temporal logic operators and their semantics, we detected a problem regarding our definition
of the timed once operator in CoCoSpec. Let us consider the generated formalization � that
corresponds to the [null,null,within] template key (no scope, no condition, within timing).

node test164_3_null_null_within_CoCoSpec (RES: bool) returns (PROP: bool);

var FTP: bool = true -> false;

let

PROP = H((H(not RES)) => OT(1,0,FTP));

tel

In particular, this means that if RES has not occurred yet, we are either within 1 step from
FTP (First Time Point of the trace) or the property is violated. The following discrepancy was
reported by our framework over a trace interval [0..12]:
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Mode: {[8..11]}; Duration: 2; Response: {[2..4][7..10]}
Discrepancy null,null,within: expected: true; Kind2: false.

Since the scope is null, � is evaluated throughout the entire trace. Additionally, no condition
means that RES must occur at time steps 0, 1, or 2. Our initial definition of the (OT) operator was
non-inclusive of the right bound interval, i.e., [l, r) instead of [l, r ], which would omit evaluating
� at time step 2.

CoCoSpec contracts to Simulink

An essential step in supporting the formalization of requirements is the capability to add the
specification to a model. Most of the tools handling formalized requirements use some formal
annotation and formal languages to express these requirements. For instance, the AGREE
framework [92] and FRET [69] formalization tool use Lustre and CoCoSpec, respectively, to
express requirements. We integrated our work in CoCoSim and connected it with FRET out-
put, automatically translating CoCoSpec contracts generated by FRET to contracts expressed
in Simulink and supported by CoCoSim. This work was applied to publicly available industry-
provided examples 3 from Lockheed Martin Cyber-Physical Systems (LMCPS) challenges [54,
53] which is a set of aerospace-inspired examples provided as text documents specifying the
requirements along with associated Simulink models. Examples range from a basic integrator
to complex autopilots. The complete case study and formalized requirements are presented in
a detailed technical report [100].

Checking requirements against the Simulink model

CoCoSim attaches CoCoSpec contracts to Simulink subsystems. This process relies heavily
on CoCoSim’s Lustre-to-Simulink compiler explained in Section 2.4. The first compilation
step is performed by LustreC [63], an open-source Lustre compiler, produces information nec-
essary to extract the model structure. The second step transforms the produced structure into
Simulink blocks, relying on the Simulink API. Each Lustre node is defined as a Simulink

subsystem; hence each node call is transformed into an instance of that subsystem in Simulink.
Mathematical operators are translated into equivalent Simulink blocks. The pre operator is
implemented as a Simulink Unit delay block. CoCoSpec constructs (i.e., assume, guarantee,
require and ensure) are also compiled and translated: their equivalent Simulink blocks are
provided by a dedicated CoCoSim library [15]. Figure 3.10 illustrates the generated Simulink

observer for requirement [FSM-001].

After importing CoCoSpec contracts as Simulink observers, the user may rely on Co-

CoSim backends to evaluate these contracts; CoCoSim acts as a verification hub, providing
easy access to existing solvers. In addition, CoCoSim supports checking the validity of require-
ments against the Simulink model: transforming the model to an equivalent Lustre model
with contracts. Kind2 or Zustre model checkers were then used to check the validity of the
properties. In the case of a counterexample, CoCoSim creates a harness model for the user to
simulate the trace of the counterexample and, thus, support model or specification debugging.

3https://github.com/hbourbouh/lm challenges
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3.2.2 An internal representation of Simulink models

The next step after pre-processing Simulink blocks is the generation of a data structure con-
taining all needed information about the model, its blocks, and configuration parameters. The
generation of this representation has two advantages. (1) We use Simulink API to get all
model information at once (to avoid simulating the model many times), therefore is no need to
parse the textual format of Simulink model that changes with every new Simulink release.
(2) The representation can be exported as a JSON file, and external compilers can be integrated
with the toolbox based on this representation. For instance, a JAVA compiler was developed
by IOWA university based on the exact representation, and it is integrated with CoCoSim as
an alternative to our compiler.

3.2.3 Semantic translation of Simulink/Stateflow Diagrams

The main algorithm of our translator is explained in Algorithm 1 in Section 2.2.1.

Supported Simulink blocks CoCoSim supports most frequently used Simulink blocks
libraries (more than 100 blocks) either by transforming them to simpler blocks (see Sec.3.2.1)
or by direct translation to Lustre. The translator is developed in MATLAB with a visitor
design pattern. New Simulink blocks translation can be easily added, and existing Simulink

blocks translation can be customized or easily modified.

Supported Stateflow blocks Our implementation in CoCoSim supports the most known
Stateflow constructs such as states (Exclusive (OR) and Parallel (AND) states), most used
state actions (entry, during, and exit actions), transitions with the following transition labels:
event only, event and condition, condition only, action only, or event and condition and action
combined. In addition to these constructs, CoCoSim supports default transitions, inner and
outer transitions, self-loop transitions, inter-level transitions, connective junctions, and history
junctions. CoCoSim also supports basic data types (int, real, and booleans) and also arrays
with static indexes (e.g., [2]). More specific charts 4 are supported such as: flow charts, State-

flow functions (graph functions), Hierarchical states, enter, exit, send and after operators.

The current version of CoCoSim does not support events emission in actions (state action
or transition actions); it supports instead the send operator that can replace events emission.
We also assume the model does not have an unbound behavior (such as loops in junctions). In
addition, transitions with more than one event are not yet supported.

Stateflow Datatypes Our work provides global semantics to Stateflow, which we believe
is hard enough. We do not address specific details such as how to represent Simulink datatypes
in the target language Lustre. Several simple solutions nevertheless come to mind. One could
provide each of these types as an external Lustre library, hiding their implementations at the
cost of making explicit all the implicit coercion in the Simulink semantics. Another solution

4https://github.com/coco-team/regression-test
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would be, for instance, to map every specifically-sized integer type to the unspecified Lustre

integer type (that is what we currently do) and then annotate the Lustre program to take
care of sizes when generating C code or Horn clauses.

3.2.4 CoCoSim Backends

All CoCoSim analyses are performed on the generated Lustre code, and the results are ex-
pressed back at Simulink level. We sketch here the features of the connected tools. At the
current moment, all tools are open-source and freely available.

3.2.4.1 Formal Verification: SMT-based model-checking.

The model-checking formal method is a process of checking whether a given system satisfies a
desired property. In software verification, a system is typically a program or a piece of software,
and the desired property is a condition the program should satisfy.

To check whether a program satisfies a given property, the model checker first builds a model
of the program. The model is a simplified program representation that captures its essential
behavior. The model checker then checks whether the property holds in the model. If the
property does not hold in the model, then the program does not satisfy the property.

Once requirements have been expressed as CoCoSpec [30] by using CoCoSim libraries
attached to the Simulink model, different tools can perform SMT-based model-checking and
check their validity. If the property supplied is falsified, CoCoSim provides a means to simulate
the counterexample trace in the Simulink environment.

• Kind2 [32] is a powerful tool that implements multiple algorithms, including k-induction [122]
IC3 (Incremental Construction of Inductive Clauses for Indubitable Correctness)/PDR
(Property Directed Reachability) [26, 25] as well as on-the-fly invariant generation. These
can be performed with various SMT solvers: CVC4, Z3, and Yices.

• Zustre relies on the LustreC modular compiler. The input Lustre model is compiled in
a Horn encoding [61, 62] describing the transition relation.

This transition system, along with a similar expression of its requirements, is analyzed
with Spacer [88, 87], a PDR algorithm integrated into Z3.

• JKind [59] is a similar model-checker developed at Rockwell Collins.

3.2.4.2 Code generation.

While code generation is not the principal goal of CoCoSim, some of its backend tools provide
such a feature. E.g., LustreC [63] is an implementation of the modular compilation scheme [13]
used in SCADE. It preserves the hierarchy of the initial model, easing the checking of traceability
between Lustre and generated C code.
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Kind2 [32] is, first of all, a model-checker, but it can also produce Rust code from the
provided models.

3.2.4.3 Test cases generation.

LustreT is based on some compilation stages of LustreC [63]. It provides two different methods
to perform test generation [64]:

• coverage criteria based reachability using bounded-model checking (BMC).

• generation of mutants and synthesis of discriminating test cases.

In the first case, coverage criteria such as MC/DC is expressed as a reachability problem.
For example, an atom of a boolean predicate has to be true at some point. Then we check
the validity of the negation of that property. Model-checker such as Kind2 or Zustre will
then perform BMC or, possibly, exhibit a counterexample, a test case activating that specific
criterion. An MC/DC criterion will then be mapped to a large set of predicates. The test
generation process will populate a set of test cases activating each of these conditions.

The second approach relies on the notion of mutants. Usually, mutants are used to evaluate
the quality of a test suite. I.e., generate a set of mutant programs and apply different test suites;
a good test suite distinguishes valid programs from mutants. Here the approach is different.
After generating mutants, we use the same BMC tools to build a test case that will distinguish
them. This does not always succeed since some mutations may be invisible or in dead code.
But considering the large set of mutants, this approach is efficient at building test cases.

Listing 3.1 provides an example of generated local MC-DC coverage conditions. In addition,
all MC-DC coverage conditions can be added to a subsystem as a synchronous observer (cf.
Fig 3.15a). We use it to calculate the coverage of a given test suite by simulation. For example,
Fig 3.15 illustrates all 10 MC-DC conditions of the expression out in Listing 3.1.

1 node top (x, y, z1, z2: int) returns (out: bool)

2 var __cov_1: bool;

3 let

4 out = ((((z2 >= x) or (z2 >= y)) and (z1 >= x)) and (z1 < y));

5 --The following is a special annotation:

6 (*! /coverage/mcdc/: __cov_1; *)

7 __cov_1 = ((z2 >= y) and (((z2 >= x) or (z2 >= y)) != ((z2 >= x) or (not ((z2 >= y))))));

8 tel

Listing 3.1: Example of a Lustre annotation.
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(a) (b) (c)

Figure 3.16: Runtime and validation experiments of CoCoSim.

The following details how we tested our Simulink and Stateflow to Lustre compilers.

3.3.1 Stateflow experimental evaluation

We have performed experimental evaluations to demonstrate the effectiveness of Stateflow

translation to Lustre. Our experiments are carried out in a machine with the following spec-
ifications: Intel Core i5, 8Go RAM, 750Go HD, with Ubuntu 16.04. We used CoCoSim v0.1,
which runs on Matlab 2014b and up. However, in this experiment, we used Matlab 2016a with
Stateflow version 8.7.

The first experiment was performed to illustrate the soundness of our compilation scheme.
In particular, we would like to answer the question “how faithful is the code generated via

CoCoSim?”. To answer this question, we have compared the C code generated via CoCoSim

with the one generated by Mathworks’ Simulink ® CoderTM [95]. The latter is a popular
product routinely used in different industrial applications for code generation. Specifically, we
have used a set of randomly generated test vectors with 100 iterations to validate the code
generated by CoCoSim against the one generated by Simulink ® CoderTM . Such validation
process is given as an option in CoCoSim. This allows a user to validate that the compiled
code via CoCoSim conforms at least with the code generated by Simulink CoderTM . It also
allowed us to demonstrate that other translation tools, such as sf2lus [119], do not respect the
full Stateflow semantic compared to ours.

In our experiments, we have used a set of 77 Stateflow models 5 to evaluate the soundness
and runtime of the compilation. Fig. 3.16a shows the size of the different models: the number of
actions is the sum of all state actions (entry, exit, and during actions), condition, and transition
actions in the model. Fig. 3.16b illustrates the amount of time the compiler took to generate first
Lustre code and then Horn clauses (used for verification). The models are given in decreasing
number of actions. We can easily observe that generation time increases with the number of
actions of the models. On average, CoCoSim takes about 1.85s to generate Lustre code.
Fig. 3.16c shows the times for the validation script. On average, the validation process takes
about 3.35s.

5https://github.com/coco-team/regression-test
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models # props # safe #
unsafe

#
timeout

safe
(time)

unsafe
(time)

Microwave 15 15 0 0 65.51 0
NasaDockingApproach 4 3 0 1 360 0
GPCA System Monitor 1 1 0 0 0.64 0
GPCA Logging 1 1 0 0 4.88 0
GPCA Top Level Mode 3 3 0 0 36 0
GPCA CONFIG 1 0 1 0 0 19.34
GPCA INFUSION MGR 7 5 0 2 596.51 0
GPCA Alarm 8 0 6 2 0 281.12

Figure 3.17: Experimental results of safety verification on a set of use cases.

Safety verification

The second experiment was performed to illustrate our approach’s effectiveness in verifying
safety properties. We have used three sets of use cases. The first one is a Stateflow model
of a microwave that captures the modal behavior of a typical microwave control software 6.
CoCoSim verified 15 properties of this model using the backend solver Zustre [61] as the
backend solving engine. The second use case is a Stateflow model that captures the complex
behavior of the Space Shuttle when docking with the International Space Station (ISS) [118].
As the shuttle approaches the ISS, it goes through several operational modes related to how the
shuttle is to orient itself for capture, docks with the ISS, and captures the ISS docking latch,
among several other operating modes. The model describing this behavior is quite intricate and
consists of hierarchical and parallel state machines with three levels of hierarchy and multiple
parallel state machines, including a total of 64 states. Using CoCoSim, we verified 2 out of 4
safety properties.

The third use case is the Generic Patient Controlled Analgesic infusion pump system. It
consists of four main components: Alarm, Infusion, Mode and Logging. A more detailed de-
scription of the model can be found in [71]. Figure 3.17 summarizes the safety verification
experimental evaluation results using CoCoSim.

3.3.2 Simulink translation correctness evaluation

To validate our translation, we first automatically generated a set of regression tests based on
the set of atomic blocks we support. Then, we generate the most common variations of the
block parameters for each atomic block. The variations include the datatypes and dimensions
of the inports, the block parameters, and the block inside a conditionally executed subsystem.
We generated around 2000 tests for an average of 16 variations per block.

Since Simulink is not formally defined, we cannot prove the translation is sound. So instead,
we used two techniques, equivalence testing and equivalence checking, explained below.

6Rockwell Collins developed this model
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Simulink Lustre Model-Checking
#loc #nodes #vars Design Verifier Monolithic Compositional

89 benchmarks [L] 289181 160 43001 87 S + 2 U 87 S + 2 U 152 S + 8U
TCM [S] 2040 91 1239 U U 79 S + 12 U

ROSACE [S] 926 94 520 U U 87 S + 7 U
FADEC [S] 68 1 46 U S S

AOCS [S] 3649 93 3390 U S 79 S + 14 U
S: Safe (proven valid), U: Unknown, i.e., unable to conclude with model checkers; to be

evaluated through tests. [L] use cases were initially defined in Lustre, [S] in Simulink. Note
the larger set of cases in the last column since it considers all subnodes as intermediate

challenges.

Table 3.1: Experiments on Simulink/Lustre Equivalence checking.

Equivalence testing

Since the Lustre model can be compiled to C (and then executed as a binary) and Simulink

model can be simulated, we can perform equivalence testing; for generated random inputs,
we compare Simulink simulation outputs against Lustre outputs. Moreover, the translation
from Simulink to Lustre preserves the hierarchy, thus enabling the evaluation of possible
discrepancies in the outputs individually at the node/subsystem level. When the main model is
invalid, testing the sub-components helps track which subsystem or node is the leading cause of
the error. Because of the difference in the precision of floating point values between Simulink

and C code generated from Lustre, signals are compared with respect to a small threshold
(by default 10�15). We automated this validation, which runs daily on the generated regression
tests.

Equivalence checking

In this technique, we are using our compiler from Lustre to Simulink that shares no code nor
algorithm with our translation Lustre to Simulink.

Our approach was evaluated on a set of case studies, from small benchmarks taken from our
regression test suite to industrial ones, using equivalence checking, which will be defined in the
following.

Let us denote by L and S the sets of Lustre and Simulink models. Model semantics is
denoted by J·KL for L 2 L and J·KS for S 2 S. Each function is a (possibly stateful) map from
a set of n typed input flows to m typed output flows, e.g., JLKL : T n ! T m .

The equivalence checking aims to verify that two models in the same language are equivalent.
For Lustre models L1,L2 2 L, we say that L1 is equivalent to L2, denoted by L1 ⌘L L2 iff for
any input flow i 2 T n , JL1KL(i) = JL2KL(i). The property ⌘S is defined similarly on Simulink

models. Behavioral equivalence can be evaluated either at the Simulink level with Simulink

Design Verifier or at the Lustre level with the Kind2 model checker [31, 83]. It can also be
assessed through tests when formal tools cannot conclude.

One can consider the compilation process of the CoCoSim toolbox from Simulink to Lus-
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tre as a map S2L : S ! L. Similarly, the algorithm proposed in Section 2.4 characterizes a
map L2S : L ! S. We assume that S2L is sound, and we specifically target the validation of
L2S . Therefore, we consider the following verification challenges:

for all model S 2 S, S ⌘S L2S � S2L(S) (3.1)

for all model L 2 L, L ⌘L S2L � L2S(L) (3.2)

In both cases, there is a single call to L2S , and the function S2L, implemented in the
CoCoSim toolbox, shares no code or algorithm with the LustreC tool that is used to implement
the function L2S .

The results are presented in table 3.1. The first three columns give metrics about the size
of the models. Simulink Design Verifier was applied to the top level of the system. Lustre

equivalence checking, cf. eq. (3.2), using Kind2, has been used both on the main node and
modularly, considering each sub-node as a verification target.

Concerning the 89 Lustre benchmarks from our regression suite (see the first line of ta-
ble 3.1), 85 benchmarks contain only one large top node with 1600 code lines and 465 variables
on average. Since there is a single top node in these benchmarks, applying compositional ver-
ification does not improve the results. Table 3.1 shows that model-checking using a global
(top-level) encoding both in Simulink Design Verifier and Lustre was able to prove 87 bench-
marks but unable to prove the validity of two remaining benchmarks.

We applied compositional verification on the two remaining benchmarks that were hard to
prove due to their complexity. For the first benchmark, 9 out of 16 nodes were proved safe, and
one node was confirmed safe by k-induction[122, 83]. Similar results were obtained on the second
benchmark. Again, nodes that were hard to validate were hierarchical state machines expressed
in Lustre. Lustre automata are compiled into pure dataflow equations, encoding transitions
as clocked expressions, which explains that the final Lustre code is more complicated than the
original model. All unproven nodes were validated by equivalence testing.

The approach was also applied to 4 industrial Simulink benchmarks: the NASA Transport
Class Model (TCM) [27], the ROSACE use case [106], a Full Authority Digital Engine Control
(FADEC), and a CNES Attitude and Orbital Control System (AOCS). All these benchmarks
were analyzed using Eq. (3.1).

Table 3.1 shows the effectiveness of compositional verification compared to monolithic verifi-
cation. Simulink Design Verifier was unable to prove any model globally. This can be explained
by using nonlinear arithmetic operators, which solvers hardly analyze, and the model’s size. We
could prove two of the four models using model-checking on the Lustre global encoding. Com-
positional verification in Lustre shows better performance: more than 85% of nodes are proven
safe. Equivalence testing was applied to the unproven nodes. For the AOCS case study, the
fact that we were able to prove the system with Lustre globally but unable to verify all the
corresponding nodes can be explained by eliminating some behaviors challenging to prove for
particular nodes when considering the global system.
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3.4 Conclusion

In this chapter, we have presented CoCoSim, a toolbox that aims to ease the requirements
gathering and the V&V activities for Simulink models. We have shown how CoCoSim can be
used with FRET to formalize requirements as Simulink components, and we have described the
benefits of this approach. We have also presented the results of our preliminary evaluation of
CoCoSim, which shows that it can correctly translate Simulink models to Lustre synchronous
language.
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This chapter presents a case study on applying CoCoSim with different formal verification
frameworks on two use cases: the ten Lockheed Martin Cyber-Physical challenges and a navi-
gation rover. In the first use case, we report on our experience using fret and CoCoSim to
perform an end-to-end analysis of the challenges, from requirements elicitation and formaliza-
tion to model analysis and verification. We categorize recurring patterns in the formalization
of the requirements and discuss the strengths and weaknesses of our verification approach. In
the second use case, we demonstrate the integration of different verification frameworks for
the verification of the navigation system of a rover. We demonstrate that using an assurance
case as the point of integration provides benefits in maintaining coherent formal links across
development and assurance processes for many systems. Our work on both use cases has been
published in several papers and technical reports [22, 100, 20, 99, 98].

4.1 The ten Lockheed Martin Cyber-Physical challenges

Capturing and analyzing Cyber-Physical Systems (CPS) requirements can be challenging since
CPS models typically involve time-varying and real-valued variables, physical system dynamics,
or even adaptive behavior. MATLAB®/Simulink ® [124] is a widely-used framework in the
industry; in particular, more than 60% of engineers use Simulink for the development and
simulation of CPS [138, 104]. In this use case, we report on the application of NASA Ames tools
to perform an end-to-end analysis of the ten Lockheed Martin Challenge Problems (LMCPS).
LMCPS is a set of industrial Simulink model benchmarks and natural language functional
requirements developed by domain experts [54, 53]. End-to-end analysis means we start with
requirements elicitation, formalization, and analysis and proceed with model analysis against
formalized requirements. Such analyses may result in updates of requirements and/or models.
Our framework, which integrates the tools fret and CoCoSim, as explained in Section 3.1.3, is
used to 1) elicit, explain, and formalize the semantics of the given natural language requirements;
2) generate verification code and monitors that can be automatically attached to the Simulink

models; 3) perform verification by using SMT-based model checkers. fret and CoCoSim are
open source and can be used by other researchers and practitioners to replicate our case study.
We provide a categorization of recurring patterns in the formalization of the requirements and
discuss the strengths and weaknesses of our automated verification approach.

End-to-end analysis of CPS models is challenging. Requirements are typically written in
natural language, ambiguous, and not readily amenable to formal analysis. Moreover, CPS
models typically involve time-varying and real-valued variables, physical system dynamics, or
even adaptive behavior. Formal languages supported by analysis tools may not be expressive
enough to capture requirements for such systems. Finally, analysis tools may not be able to
handle the complexity and scale of CPS models.

We were able to capture and analyze the majority of the LMCPS requirements with our
framework. Our main findings can be summarized as follows:

Language and Logics. CPS requirements involve timing, so it is crucial to handle this
aspect in requirements elicitation tools. The explanations produced by fret were instrumental
in ensuring that the fretish requirements captured our intended semantics. Even though
fretish is aimed at being intuitive, it was not always straightforward to turn natural language
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LMCPS requirements into fretish. However, most LMCPS requirements fall within a small
number of patterns, an issue we have observed in other studies within our organization. As
a result, our logic could not capture some aspects of the system, particularly those related to
delay blocks, which are heavily used in the models. We were able to shortcut this problem by
exposing internal model variables at the requirements level, but a fretish-level solution would
be desirable.

Formalization and verification Code. fret formalizations are compact for most of
the requirements of the LMCPS challenge because they are optimized for many of the recurrent
patterns. The automated production of verification code was a very smooth process. Automat-
ing the process of generating verification code from requirements has been extremely valuable
since it reduces the sources of discrepancy and errors in the various artifacts.

Connecting Requirements to Models for Analysis. Requirements capture should
not depend on the existence of a model. Different members of our team worked on require-
ments capture and Simulink model analysis. We, therefore, found the capability of importing
Simulink models in fret a great help during the step of connecting requirements with their
targeted models. The most important feature of our integrated framework has been the capa-
bility to preserve the component structure of the LMCPS systems and use it to perform analysis
in a modular fashion. It has been instrumental in achieving scalability. Our analysis exposed
issues including requirement ambiguities, undefined parts in the models, and minor bugs in the
checkers invoked by CoCoSim.

All details of our case study are available at [100], and our tools can be obtained, open
source, at https://github.com/NASA-SW-VnV/.

4.1.1 Lockheed martin cyber-physical systems (LMCPS) challenge problems

The 10 Cyber-Physical V&V Challenges [53] were created by Lockheed Martin Aeronautics to
evaluate and improve the state-of-the-art in formal method toolsets. Each challenge problem
includes: 1) documentation that contains a high-level description and a set of requirements
written in plain English; 2) a Simulink model; 3) a set of parameters (in .mat format) for
simulating the model.

The challenges were first presented in the 2016 Safe and Secure Systems and Software Sym-
posium (S5) [53]. They consist of a set of problems inspired by flight control and vehicle manage-
ment systems, which are representative of flight-critical systems. They are publicly available1

and as such, they provide an excellent basis for discussion and comparison of approaches across
the research community.

Challenge Description NoB Block Types Template Keys

Triplex
Signal
Monitor
(TSM)

A redundancy management sys-
tem that prevents errors from
propagating past the input of an
airborne application.

479 Non-linear (Switch),
Vectors and Matrices

[null, null, always]

1https://github.com/hbourbouh/lm_challenges
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Finite
State
Machine
(FSM)

An abstraction of an advanced au-
topilot system interacting with an
independent sensor platform to en-
sure a safe automatic operation in
the vicinity of hazardous obstacles.

279 Non-linear (Switch) [null, null, always]
[null, regular, im-

mediately]

Tustin
Integrator
(TUI)

A flight software utility for com-
puting the integration of a signal.

45 Non-linear (Switch,
Saturation), Vectors
and Matrices

[null, null, always]

Control
Loop Reg-
ulators
(REG)

A regulators inner loop architec-
ture that is commonly used in
many feedback control applica-
tions.

271 Non-linear (Switch,
Saturation), Vec-
tors and Matrices,
Continuous-time

[null, null, always]

Nonlinear
Guidance
Algorithm
(NLG)

A nonlinear guidance algorithm
that generates commands in order
to guide an Unmanned Aerial Ve-
hicle (UAV) to follow a moving tar-
get respecting a specific safety dis-
tance.

355 Non-linear (Sqrt,
Switch),
Vectors and Matrices

[null, null, always]
[null, regular, al-

ways]

Feedforward
Cascade
Connectiv-
ity Neural
Network
(NN)

A two-input single-output predic-
tor neural network with two hid-
den layers arranged in a feedfor-
ward architecture.

699 Non-linear (Satura-

tion),
Vectors and Matrices

[null, null, always]
[null, regular, for ]

Abstraction
of a Con-
trol Al-
locator -
Effector
Blender
(EB)

A control allocation method,
which enables the calculation
of the optimal effector (surface)
configuration for a vehicle, given
a control minimization effort
problem.

75 Non-linear (Switch),
Vectors and Matrices

[null, null, always]

6DoF
with De-
Havilland
Beaver
Autopilot
(AP)

A full, realistic full six-degree-of-
freedom simulation of the DeHav-
illand Beaver airplane with autopi-
lot.

1357 Non-linear (Switch,
Sqrt, Abs, MinMax,
Saturation), Non-alge-
braic (Trigonometric),
Vectors and Matrices,
Continuous-time

[null, null, always]
[in, null, always]
[in, null, immedi-

ately]
[in, regular, al-

ways]
[null, regular, im-

mediately]
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System-
Wide
Integrity
Monitor
(SWIM)

A safety algorithm for monitor-
ing airspeed in the SWIM (System
Wide Integrity Monitor) suite in
order to provide a warning to an
operator when the vehicle speed is
approaching a boundary where an
evasive fly-up maneuver cannot be
achieved.

141 Non-linear (Switch,
Sqrt),
Vectors and Matrices

[null, null, always]

Euler
Transfor-
mation
(EUL)

A component that creates a Rota-
tion Matrix describing a rotation
about the z-axis, y-axis, and finally
x-axis of an Inertial frame in Eu-
clidean space.

97 Non-linear (Switch),
Non-algebraic
(Trigonometric),
Vectors and Matrices

[null, null, always]

Table 4.1: Summary of LMCPS Challenges (NoB stands for Number of Blocks)

Although in most cases the specified requirements look relatively straightforward, a closer
study revealed many questions regarding their precise meaning. Additionally, even though the
Simulink models of the challenges were built with commonly used blocks, their analysis has
proven to be challenging. Table 4.1 summarizes the ten LMCPS challenges. For each challenge,
it includes a brief description, the number of Simulink blocks in the models, the types of
blocks that challenged our analysis, and the 7 fret template keys that we used to formalize
the requirements of each challenge.

The LMCPS requirements and models were developed to represent challenges that are typical
of CPS systems. The inputs and outputs of CPS systems are modeled through signals, which
are functions over time. Most of the LMCPS models are highly numeric and often exhibit non-
linear behavior. Next, we present elements of LMCPS that proved challenging for the analysis
of the requirements. Section 4.1.3 discusses how we handled these challenges.

Vectors and Matrices. LMCPS challenges manipulate signals with multiple dimensions.
The use of multi-dimensional signals and matrices is common in CPS Simulink models since
control systems are often defined as the composition of linear systems.

Non-Linear and Non-Algebraic Blocks. Trigonometric functions, exponential func-
tions, and the logarithm are typically not supported by SMT solvers. Two of the LMCPS
challenges, i.e., AP and EUL, use the Trigonometric Function Simulink block to perform com-
mon trigonometric functions. The square root, i.e., sqrt Simulink block, used in the NLG, AP,
and SWIM challenges is usually not well-handled by SMT solvers. Other non-linear Simulink

blocks causing discontinuity that are challenging for analysis are Abs, MinMax, Switch, and
Saturation.

Continuous time blocks. Such blocks can be almost arbitrarily mixed with sampled
blocks in Simulink. Thus another challenge comes from the fact that CPS models often contain
mixes of continuous and discrete parts.

Complex requirement formalizations. As shown in Table 4.1, we used 7 distinct se-
mantic template keys to express the LMCPS requirements. The formalization that corresponds
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Table 4.2: Semantic Template Formalizations. FTP (First Time Point) stands for ¬Y TRUE

Template Key Past-time Temporal Logic

[null, null, always] H 

[null, regular, immediately] H (� ^ ((Y¬�) _ FTP)))  )

[null, regular, always] H (H (¬�) _ ( S( ^ (� ^ ((Y¬�) _ FTP)))))
[null, null, for ] H ((O[ duration]FTP))  

[in, null, always] H (mode)  )

[in, null, immediately] H ((mode ^ (FTP _ (Y (¬mode)))))  )
[in, regular, always] ((H ((((¬mode) ^ (Ymode)) ^ (Y TRUE)))

(Y ((((¬�)S((¬�) ^ (mode ^ (FTP _ (Y (¬mode)))))) _ ( S
( ^ (� ^ ((Y (¬�)) _ (mode ^ (FTP _ (Y (¬mode)))))))))S

((((¬�)S((¬�) ^ (mode ^ (FTP _ (Y (¬mode))))))_
( S( ^ (� ^ ((Y (¬�)) _ (mode ^ (FTP _ (Y (¬mode)))))))))^

(mode ^ (FTP _ (Y (¬mode)))))))))^
(((¬((¬mode) ^ (Ymode)))S

((¬((¬mode) ^ (Ymode))) ^ (mode ^ (FTP _ (Y (¬mode)))))))
((((¬�)S((¬�) ^ (mode ^ (FTP _ (Y (¬mode))))))_

( S( ^ (� ^ ((Y (¬�)) _ (mode ^ (FTP _ (Y (¬mode)))))))))S
((((¬�)S((¬�) ^ (mode ^ (FTP _ (Y (¬mode))))))_

( S( ^ (� ^ ((Y (¬�)) _ (mode ^ (FTP _ (Y (¬mode)))))))))^
(mode ^ (FTP _ (Y (¬mode))))))))

to each template key is shown in Table 4.2. For certain template keys, e.g., [in, regular, always]
the formalization is complex and potentially challenging for analysis tools.

4.1.2 The FRET-CoCoSim integrated framework

Figure 4.1 illustrates the flow of our framework. In the elicitation loop – Step 0 – the user
writes and refines requirements in fretish based on the semantic explanations and simulation
capabilities supported by fret. Once the user is satisfied with the requirement semantics, the
fretish requirements are translated in Step 1 into pure Past-Time / Future-Time Metric LTL
(pmLTL/fmLTL) formulas. In Step 2, data from the model under analysis is used to produce
an architectural mapping between requirement propositions and Simulink signals. In Step 3,
the pmLTL formulas and the architectural mapping are used to generate CoCoSpec monitors
and traceability data. In Step 4, CoCoSim [15] imports the generated CoCoSpec monitors
and traceability data, along with the Simulink model. CoCoSim then produces Simulink

monitors, attaches them to the model, and produces Lustre code for the complete model
(initial model plus attached monitors). CoCoSim can thus drive both Simulink-based (e.g.,
Simulink Design Verifier (SLDV)) and Lustre-based (e.g., Kind2 [32], Zustre) verification
tools to analyze the target model in Step 5. Counterexamples produced by the analysis can
be traced back to CoCoSim or fret (Step 6).

We illustrate the entire process through the following requirement from the 6 Degree Of
Freedom Dehavilland Beaver Autopilot (AP) LMCPS challenge.

[AP-003c] Natural Language: The roll hold reference shall be set to 30 degrees in the
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Table 4.3: FRET to Model Variables mapping for Autopilot (abbr.
ap 12BAdapted/GlobalScope by global)

FRET name Model path

roll angle global/Autopilot/Roll Autopilot/Phi
roll hold reference global/Autopilot/Roll Autopilot/PhiRef cmd
roll hold global/Autopilot/Roll Autopilot/RollHold

mentioned in fretish. Additionally, we need information about the signals of the component,
e.g., name, type (e.g., input, output), datatype (e.g., boolean, double, bus) that corre-
spond to the variables mentioned in [AP-003c-v3]. Our framework provides a mechanism to
automatically extract the required data from a Simulink model. The mapping of the variables
used in [AP-003c-v3] is shown in Table 4.3.

Steps 3 & 4: Generation of analysis code and Simulink monitors. To translate [AP-

003c-v3] into Lustre code, the pmLTL formula generated by fret gets translated into the
following CoCoSpec code, used by CoCoSim for analysis:

-- AP-003c-v3 requirement in CoCoSpec

guarantee H((roll_hold and (FTP or (pre (not roll_hold))))

=> abs(roll_angle) > 30 =>

roll_hold_reference = 30 * sign(roll_angle))

The CoCoSpec code then gets compiled into a Simulink monitor block, which is attached
to the original model.

Steps 5 & 6: Analysis and counterexample generation. Requirement [AP-003c-v3]

was shown to be invalid by the Kind2 model checker. Kind2 returned the counterexample
shown in Table 4.4, which shows that at the time of roll hold mode engagement, (when T
= 0.025, roll hold becomes true and the absolute value of roll angle is greater than 30),
roll hold reference is not set to 30 degrees in the same direction as the roll angle, i.e.,
roll hold reference is not equal to -30. Instead we noticed that at the time of roll hold
engagement, roll hold reference is equal to 0.0, which is the value of roll angle at the
previous step. Based on this counterexample we modified the requirement as follows:

[AP-003c-v4]: when in roll hold mode Autopilot shall immediately satisfy (abs(roll angle)
> 30) ) roll hold reference = previous(roll angle), where previous is a function that returns
the value of roll angle at the previous time step. Requirement [AP-003c-v4] was proven valid.

To understand why the output is based on the previous value of roll angle, we looked
at the Simulink model. Figure 4.6 shows the Simulink model responsible for returning the
roll angle, where u is the roll angle and E is the condition ‘not engaged in roll hold mode’.
If E is true, output y is equal to the previous value of roll angle. Once the roll hold mode
becomes active (E is false), the value of output y is equal to pre y; y holds this value while
roll hold mode is active. Thus, the component holds the value of the roll angle just before
the activation of roll hold mode and not "at the time of activation". Thus, we believe that
[AP-003c-v3] is not satisfied due to an incomplete/erroneous model.

Note that we could not express the temporal sub-property previous roll angle of [AP-
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var C:int;

let

C = if X then 0

else (-1 -> pre C + (if pre C <0 then 0 else 1));

Y = 0 <= C and C <= N;

tel

The delay function delays input X by R time units to define the right bound of the interval
in which the valuation of X must be checked. Once the input X has been delayed by R time
steps, we can treat the R bound as zero and use the OTlore (Once Timed less than or equal to)
node to check the valuation of X in the interval defined by the 0 (current) time step and the
left bound L-R. OTlore is implemented using an integer counter C , which counts the number
of time steps that occurred since the last occurrence of property X . If the event has never
occurred, the counter keeps its initial value of -1. Other time-constrained operators are defined
through OT using the usual temporal logic equivalences.

To provide assurance that the CoCoSpec code generated is correct, we extend fret’s
formula verification framework to also handle CoCoSpec code. The framework presented in
[70] automatically generates test cases each consisting of an execution trace t, a template key k,
and an expected truth value e, reflecting the semantics of k applied to t. Formulas corresponding
to k are then evaluated on t using a model checker, to ensure that the result agrees with e. In our
extension for CoCoSpec, this step uses the Kind2 model checker. Our verification framework
helped us detect and correct discrepancies between the CoCoSpec generated formulas and the
intended fret template key semantics.

4.1.3 Analysis - Selected use cases and requirements

Our case study encompasses the following tasks: 1) eliciting requirements in fretish; 2) making
the mapping between fretish variables and model variables; 3) performing analysis; 4) inter-
preting counterexamples at the requirements level; 5) interpreting requirements at the model
level. Three researchers were involved: 1) a control engineer considered the domain expert, 2)
a requirements expert, and 3) a verification expert. Tasks 1 and 2 were performed together by
the requirements and domain experts. The verification expert performed tasks 3 and 5. Finally,
task 4 was performed by the requirements expert.

The verification results are summarized in Table 4.7. The analysis was carried out on a
MacBook Pro with 3.1 GHz Intel Core i7 and 16 GB Memory, an R2019b MATLAB/Simulink,
and a v1.1.0 Kind2. Kind2 was configured to time out after 2 hours. This Section highlights
the analysis results of a subset of the LMCPS challenges and discusses how we approached the
challenging elements presented in Section 4.1.1.

4.1.3.1 Requirements and Verification

We focus on the following LMCPS components: FSM, TUI, NN, and AP. We include the FSM
and TUI challenges because they exhibit cases of unrealizable requirements and a requirement
that we could not express directly in fretish. The NN challenge describes a machine learning
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Table 4.5: Counterexample of requirement [FSM-003]

Inputs T = 0

standby true
supported true
good true
state ap transition state
Outputs

STATE ap standby state

model. Verification of models that are inferred by machine learning techniques is currently
considered an open area for research. Finally, AP is the most complex of the LMCPS challenges
in terms of the number and types of blocks used, and its fretish requirements involve a variety
of template keys.

FSM represents an abstraction of an advanced autopilot system interacting with an indepen-
dent sensor platform to ensure a safe automatic operation in the vicinity of hazardous obstacles.
The autopilot system, tightly integrated with the vehicle flight control computer, is responsible
for commanding a safety maneuver in the event of a hazard. The sensor is the reporting Agent
to the autopilot with observability of imminent danger.

All FSM requirement examples were written in fretish using the [null, null, always] se-
mantic key pattern. Let us look into the following FSM requirements:
[FSM-002] Natural Language: The au-

topilot shall change states from TRANSITION

to STANDBY when the pilot is in control

(standby).

[FSM-002] fretish: FSM shall always satisfy
(standby & state = ap transition state) =>

STATE = ap standby state.

[FSM-003] Natural Language: The au-

topilot shall change states from TRANSITION

to NOMINAL when the system is supported,

and sensor data is good.

[FSM-003] fretish: FSM shall always satisfy
(state = ap transition state & good & sup-
ported) => STATE = ap nominal state.

The valuations ap transition state, ap standby state, ap nominal state of the state and
STATE variables represent the TRANSITION, STANDBY, and NOMINAL states of the au-
topilot. Requirement [FSM-002] was shown to be valid. However, when checking requirement
[FSM-003], analysis returned the counterexample shown in Table 4.5. It is interesting to note
that the valuation of the input variables of the counterexample satisfies the preconditions of
both [FSM-002] and [FSM-003]. While these requirements are not mutually exclusive, their
expected responses are conflicting, which makes them unrealizable [60]. If we form a weaker
property, i.e., strengthen the precondition as follows (state = ap transition state & good &
supported & !standby) (notice the addition of !standby), then [FSM-002] and [FSM-003]

become mutually exclusive and requirement [FSM-003] is proven valid.

Note that non-mutually-exclusive requirements are not necessarily problematic since require-
ments are often complementing each other to make up a system’s specification. For example, we
found several pairs of requirements that were not mutually exclusive in the LMCPS challenge.
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TUI represents a flight software utility for computing the integration of a signal. The algo-
rithm executed by the utility bounds the allowable integration range with a position limiter.
The integrator is in normal operation when it is not in reset mode, and the output is within
the specified limits.

[TUI-004] Natural Language: After 10 seconds of computation at an execution frequency

of 10 Hz, the output should equal 10 within a +/-0.1 tolerance for a constant input (xin = 1.0),

and the sample delta time T = 0.1 seconds when in the normal mode of operation.

This requirement could not be expressed directly in fretish. The “After 10 seconds of

computation at an execution frequency of 10 Hz” part of the requirement constitutes a condition
that must persist for a time duration (10 seconds). Such conditions are not yet supported in
fretish.

NN is a two-input, single-output, two-hidden-layer feed-forward nonlinear neural network.
Neural networks of this form are common utilities in modeling and simulation for capturing
complex numerical dependencies. In this challenge, a single variable, z, is computed based on
two independent parameters, x and y. This challenge comes with a truth table in the form of
a Matlab matrix file with reference values xt, yt, and zt. The NN specification file consisted of
four requirements. We show below the fretish version of requirement [NN-004], for which we
used the for 200 sec metric timing, which resulted in CoCoSpec code that uses the once timed

(OT) metric LTL operator.

[NN-004]: NN shall for 200 sec satisfy ( x = xt & y = yt => AbsoluteErrorZtMinusZ 
0.01).

Below is the generated CoCoSpec code for [NN-004]:

var AbsoluteErrorZtMinusZ: real = if (zt-z) > 0.0 then zt - z else z - zt;

guarantee "NN004" OT(200,0,FTP) => ( x = xt and y = yt => AbsoluteErrorZtMinusZ <= 0.01 );

Kind2 and SLDV did not return an answer for any of the four NN requirements.

AP AP represents a complete system, and, as shown in Table 4.1, it contains Simulink

blocks that involve non-linearities, non-algebraic math, and manipulation of matrices. AP is
a full six-degree-of-freedom simulation of a single-engined high-wing propeller-driven airplane
with autopilot. A six-degree-of-freedom simulation enables movement and rotation in three-
dimensional space. The AP model and requirements also capture the plant mode of the airplane,
i.e., the physical model and environmental aspects such as wind that influence the airplane’s
motion. AP requirements define the required behavior of the model in terms of changes in
the three perpendicular position axes (forward/backward, left/right, up/down) combined with
changes through rotation (yaw, pitch, and roll).

In the AP and FSM challenges, we performed modular analysis. The specification genera-
tion mechanism of fret provides specifications at any desired level and complete traceability
information regarding where the corresponding monitor should be deployed in the model. Ad-
ditionally, the CoCoSim compiler preserves the model’s hierarchy, allowing analysis at different
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Table 4.6: AP Analysis Results with Kind2

Reqs Scope Kind2 Result Kind2 Time

[AP-000] Global Unsupported
[AP-001] Roll AP Valid < 1 sec
[AP-002] Roll AP Valid < 1 sec
[AP-
003a]

Roll AP Invalid < 1 sec

[AP-
003b]

Roll AP Invalid < 1 sec

[AP-003c] Roll AP Invalid < 1 sec
[AP-
003d]

Roll AP Valid < 1 sec

[AP-004] Global Unsupported
[AP-005] Global Unsupported
[AP-006] Global Unsupported
[AP-007] Roll AP Valid < 1 sec
[AP-008] Roll AP Valid < 1 sec
[AP-010] Global Unsupported
Total running time CoCoSim: 40.589s

levels.

The AP model is a closed-loop system that contains an algebraic loop involving all top-level
components. An algebraic loop occurs when there is a circular dependency of signals/ variables
(block outputs and inputs) in the same time step. Lustre forbids such constructs; no circular
dependencies are allowed. Strangely though, Kind2 was not able to detect the algebraic loop.
We contacted a Kind2 developer and confirmed that there is a bug in the algebraic loop detection
algorithm. Once the bug was fixed, top-level analysis was not possible with Kind2. Simulink,
on the other hand, treats algebraic loops as algebraic constraints, which it solves numerically
using the ODE (Ordinary Differential Equation) solver. However, this is not considered a good
programming practice since the simulator engine defines the behavior.

As shown in Table 4.62, we were able to get results only for the requirements that were
analyzed against a sub-component (local scope, e.g., Roll AP). Requirements that were analyzed
against the top AP component (global scope), e.g., [AP-000], were either unsupported or
undecided. In particular, analysis with Kind2 was not supported due to the algebraic loop,
while analysis with SLDV was undecided.

4.1.3.2 Challenges

Vectors and Matrices SMT solvers do not typically support multi-dimensional signals as
native objects. Signals and matrices need to be split into individual scalar variables making
analysis harder depending on the operations that need to be performed. For instance, the EB

2We also used SLDV but the MathWorks license prevents publication of empirical results compared with
SLDV, so we omit the SLDV results from Table 4.6.
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and AP challenges use blocks that compute the inverse of matrices. At the same time, AP also
manipulates quaternions with some advanced quaternion operations (e.g., Quaternion Modulus,
Quaternion Norm and Quaternion Normalize).

We experienced the same problem at the level of requirements. To generate specifications
that can be used for analysis by SMT solvers, we had to encode and expand matrix oper-
ations as non-matrix formulas. For instance, requirement [EUL-001] describes the compu-
tation of the DCM321 matrix as the product of the 3x3 Euler Roll Rotation and the 3x3
Euler Pitch Rotation matrices. To perform analysis on this requirement, we specified it in
fretish by first decomposing it into nine sub-requirements, i.e., one for each element of the
DCM321 matrix. Such decomposition naturally produces a more extensive specification than
the original natural language requirement.

Non-Linear and Non-Algebraic Blocks Trigonometric functions, exponential functions,
and the logarithm are typically not supported by SMT solvers. To perform meaningful anal-
ysis on LMCPS models containing trigonometric and square root blocks, we abstracted their
behavior by providing a surrogate version, which is a sound abstraction. For instance, instead
of block sqrt, which defines the signal x = sqrt(y), we encoded properties x ⇤ x = y ^ x � 0.
Similarly, we provided bounds for the values depending on the input range for trigonometric
functions.

Continuous time blocks Our analyses are based on the synchronous dataflow model and
can only address discrete-time components. Thanks to the modular feature of our analyses,
requirements associated with discrete-time components can be adequately addressed. However,
in the case of continuous-time components (defined using continuous blocks such as Integrators,
Transfer functions, or State space blocks), we first replace them with their discrete counterparts
using Simulink discretization functions.

Complex requirement formalizations As shown in Table 4.1, some template keys like
[in, regular, always] correspond to really complex formulas. This template key was used for
the specification of requirements [AP-004a] and [AP-010a] of the AP challenge. These re-
quirements were defined on the top-level component of the model, and thus, they could not be
analyzed by Kind2 (due to the algebraic loop) nor by SLDV, which returned undecided. Note
that, however, even simpler formalizations, such as the ones that correspond to the [null, null,
always] key template, could not be analyzed globally. We also tried to verify specifications that
correspond to [in, regular, always] at a local level, and interestingly, we were able to analyze
them, which shows that modular verification can be effective even for complex specifications.

4.1.4 Lessons Learned

The application of our framework to an externally-provided and challenging system has been
very informative. We summarize our experience and lessons learned below.

a) Can LMCPS requirements be captured in fret? We captured 69 out of 74 LMCPS

114



Table 4.7: LMCPS verification results. NR: #requirements, NF : #formalized requirements, NA:
#requirements analyzed by Kind2. Analysis results categorized by Valid/INvalid/UNdecided.
Timeout (TO) was set to 2 hours.

Name N R N F N A Kind2 V/IN/UN Kind2 t(s)

TSM 6 6 6 5/1/0 37.7
FSM 13 13 13 7/6/0 141.1
TUI 4 3 3 2/1/0 19.2
REG 10 10 10 1/5/4 TO
NLG 7 7 7 0/0/7 TO
NN 4 4 4 0/0/4 TO
EB 5 3 3 0/0/3 TO
AP 14 13 8 5/3/0 40.6
SWIM 3 3 3 2/1/0 25
EUL 8 7 7 1/6/0 43

Total 74 69 64 23/23/18

requirements in fret. As mentioned, we could not formalize requirement [TUI-004] that
contains a temporal condition. Additionally, several requirements refer to the previous value of
a variable (e.g., see [AP-003c-v4]), defined in pmLTL with the Y operator, in Lustre with
the pre operator, and in Simulink as a delay block. Currently, fretish cannot express the
"previous value of a variable." To shortcut this limitation, we used internal/auxiliary variables
defined at the CoCoSpec level, but a fretish solution would be desirable. Additionally, we did
not capture the following requirements: 1) [AP-009] since it was out of scope of the Simulink

model; 2) [EB-003] since it is trivial; 3) [EUL-005] and [EB-005] were unclear: we were not
able to interpret their meaning even with the help of the domain expert.

b) Is fretish intuitive? fret provides 112 semantic template keys, of which we used
only 7. Among these template keys, the [null, null, always] key was used the most (75% of the
formalizations). We have had a similar experience with a NASA mission that we collaborate
with: their requirements fall into recurring patterns. We are currently extending fret with the
capability to define typical requirement patterns within a domain or project and allow users
to import and customize patterns within the editor. This extension will make requirements
capture a more natural and intuitive process.

c) Are FRET explanations useful? We extensively relied on the semantic descriptions
and diagrammatic representations, as well as the fret simulation capabilities, to understand the
meaning of requirements throughout the LMCPS study. It helped us identify and understand
several semantic nuances of the fretish fields. Using modes and condition fields as first-level
constructs of the fretish language was particularly useful. As shown in the elicitation phase of
[AP-003c], unfolding the roll hold engagement sub-property through the fretish mode field
allowed us to elicit the full meaning of the requirement (see [AP-003c-v2] and [AP-003c-v3]

requirements in Section 4.1.2).

d) How effective is the FRET-CoCoSim integration? We could generate specifica-
tions and traceability data for all LMCPS challenges. They were used to automatically generate
and attach monitors on the Simulink models (through CoCoSim). We found the ability to
interpret and trace counterexamples at the model and requirement levels, particularly useful.
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Counterexamples sometimes uncovered conflicting requirements, and we did not need the model
to understand the problem (see Section 4.1.3). The fret simulator was particularly useful in
understanding these counterexamples. In other cases, counterexamples needed to be interpreted
at the model level since they exposed behaviors in the model that violated the requirements.

e) How did we deal with model and specification complexity? To deal with com-
plexity, we performed modular analysis whenever possible, i.e., for non-system requirements
(requirements that could be applied locally). Our architectural mapping approach allows us
to deploy CoCoSpec specifications at different levels of the model behavior. This mapping is
essential for complex models where verification does not scale for global scopes. We applied
modular verification to 20 out of the 69 requirements. For instance, in the FSM challenge prob-
lem, we generated three contracts deployed at three different hierarchical levels of the model.
Similarly, in the AP challenge, we generated two separate contracts; one that we deployed at
the top level component of the model and one that we deployed at a sub-component level.
As a result, we were able to analyze all properties that were specified locally but none of the
properties that were specified globally.

f) Which types of property reasoning/checking did we find helpful? Having a tight
integration between requirement and verification activities allows us to use different approaches
to interpret violated properties. In particular, we found the combination of reasoning at the level
of requirements and counterexample simulation at the model level beneficial. When a property
was invalid, we tried to understand the reason; i.e., is it because of a faulty requirement or
a faulty model? Since in most cases, our formalized requirements were invariants of the form
H (A ) B), we used two approaches: 1) check a weaker property, e.g., by strengthening the
preconditions, i.e., A0 ⇢ A and check whether the invariant H (A0 ) B) is satisfied, and 2)
check feasibility of B with bounded model checking, i.e., H (¬B), In this case, the model checker
returns counterexamples that could help construct stronger preconditions for B to be satisfied.
Our case study showed that using these approaches was helpful for reasoning about violated
properties. Furthermore, the simulation of counterexamples helped identify weaker properties
and produce meaningful reasoning scenarios.

Additionally, we used CoCoSpec modes to perform vacuity checking [89]. A CoCoSpec

mode has preconditions that describe the activation of the mode (Requires) and actual conditions
to be checked (Ensures) of the form H (R ) E). Our case study showed that it is interesting to
check whether the activation of a mode R is reachable. If not, the property is trivially true.
So, in terms of analysis, showing that R is reachable allows us to understand better whether
the property is meaningful for the current model. For instance, we discovered that one of the
modes was never reachable in the AP challenge.

g) Were the abstraction techniques useful? We used abstractions of non-linear func-
tions, e.g., trigonometric functions and the sqrt function, to perform analysis with the Kind2
model checker. This abstraction proved helpful for three challenges: REG, SWIM, and EUL.
For instance, we proved two more requirements in the SWIM case study using a square root
abstraction. In other cases, for instance, the abstractions would generate nonsensical counterex-
amples in the EUL challenge. For example, when we abstracted the cosine function with the
interval [-1,1], we got the following nonsensical counterexample: cos(0) = 0.
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4.1.5 Related Work

Section 3.1.2 and our published paper [99] describes the technical parts of the fret-CoCoSim

integration: 1) the fret interface through which the architectural mapping can be performed,
2) the library of (non-metric) pmLTL operators that we defined, 3) the generation of Simulink

monitors through CoCoSim.

The components of the LMCPS challenge have also been analyzed in [104]. However, that
work focused on comparing the efficacy of verification tools for model testing versus model
checking (the latter using QVtest from QRA Corp). There appear to be several differences in our
formalization of requirements versus [104]. For example, in their companion material (reference
2 of [104]), they formalize [AP-003c], which they call R1.3, as the invariant G{0,T}(Phi >
30) PhiRef = 30). We believe this misrepresents the part of the natural-language requirement
that mentions that the roll angle Phi should be considered at the time of roll-hold engagement, as
in our [AP-003c v3]. The capability to explore the exact meaning of the requirements written
in fretish through provided explanations gives us confidence in our requirements capture.
Moreover, our framework formalizes requirements automatically, sparing users the error-prone
effort of producing complex formulas for elaborate template keys.

Like FRET, the SpeAR [56], ASSERT™ [42], STIMULUS [82], RERD [127], and EARS-
CTRL [93] tools provide natural language like formal languages to express requirements and
properties. The ARSENAL tool [67] attempts to formalize general natural language require-
ments, as opposed to FRET and the others mentioned where a constrained natural language like
formal language is used to express requirements. Except for STIMULUS, they do not appear to
handle metric time, so they would not be able to express some of the neural network properties.
EARS-CTRL aims to synthesize controllers, whereas formalizations in this case study are used
with CoCoSim to verify the Simulink models against requirements. SpeAR and ASSERT
can perform semantics checks on requirements, such as consistency and entailment, producing
counterexamples when such checks are violated. Checking for requirements realizability is in
our plans. ASSERT generates test cases, and STIMULUS simulates sets of requirements. How-
ever, none of the tools automatically synthesize monitors so that models can be model-checked
against requirements.

The LMCPS benchmark provides a valuable case study to evaluate requirements elicita-
tion and analysis tools. We found that using an end-to-end automatic framework significantly
simplifies requirements elicitation and model analysis. Requirements formalization can quickly
become complex, and writing complex formulas by hand or translating them into other logic
can be challenging and error-prone. Eliciting requirements with unambiguous and as-intended
semantics is not an easy task. Explanations and interactive exploration of written requirements
are great tools for facilitating this task.

The ultimate purpose of formal requirements is to enable analysis. Requirements of CPSs
can be complex to analyze, so it is vital to provide modular analysis techniques to achieve
scalability. Space projects at NASA Ames are currently starting to use our framework, and we
have already received valuable feedback. For example, desired are customizable requirement
patterns and the ability to express that a condition persists until some event. The advantage
of a close collaboration with mission scientists during the requirements development will allow
us to evaluate further and improve the usability of our framework.
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4.2 Navigation Rover

The complexity and flexibility of autonomous robotic systems necessitate various verification
tools, which presents new challenges for design verification and assurance approaches. Combin-
ing the different formal verification tools while maintaining sufficient formal coherence to provide
compelling assurance evidence is complex and often abandoned for less formal approaches. This
case study demonstrates how various formal techniques can be combined to develop a justifi-
able assurance case. We use the AdvoCATE assurance case tool to guide our analyses and
integrate the artifacts from different sources: fret, CoCoSim, and Event-B. While we present
our methodology as applied to a specific Inspection Rover case study, we believe this combina-
tion benefits in maintaining coherent formal links across development and assurance processes
for a wide range of autonomous robotic systems.

The adoption of formal methods in the industry has been slower than their development and
adoption in research. One of the main pitfalls is the difficulty in integrating the results from
formal methods with non-formal parts of the system development process. A central stumbling
block is the formalization of the (informal) natural language descriptions needed to perform the
formal analysis and the analysis and interpretation of the formal verification results.

The integrated formal methods approach relies on various tools cooperating to ease the
burden of formal methods at various phases of system development. It often involves facilitating
the use of one tool/formalism from within another (e.g., Event-BkCSP [120]), the development
of tool/formalism that incorporates multiple others (e.g. Why3 [57]), or the construction of
systematic translations between tools/formalizms (e.g. EventB2JML [111]). Recent work argues
that, for autonomous robotic systems, the use of multiple formal and non-formal verification
techniques is both beneficial and necessary to ensure that such systems behave correctly [55,
94]. Notably, the usually modular nature of robotic systems makes them more amenable to
an integrated verification approach than monolithic systems [28]. The inherent modularity in
robotic systems usually stems from using node-based middleware such as the Robot Operating
System (ROS) [110]. However, other middlewares, such as NASA’s core Flight System (cFS)
[101], also support the development of similarly complex, modular systems.

In this use case, we study the support for integrating formal verification results at both
system- and component-level in the design, implementation, and assurance of a critical sys-
tem, namely, an autonomous rover undertaking an inspection mission. In contrast to usual
approaches to integrating formal methods, such as those described above, we use an assurance
case as the point of integration rather than building bespoke tools or defining mathematical
translations between specific formal methods. This way, we harness the benefits of an integrated
approach to verification without the usual overheads. Specifically, we use AdvoCATE [49] to
perform safety engineering and assurance, fret [68] to elicit and formalize requirements, and
CoCoSim [15] with Kind2 to perform compositional verification of the system-level require-
ments. Further, we use Event-B [2] and Kind2 for the component-level formal verification.
AdvoCATE facilitates the integration of the artifacts/evidence produced from these tools.

In summary, we contribute an inspection rover case study that demonstrates:

• how these tools can be linked via an argument in an assurance case.
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• the benefit of using distinct tools due to their limitations (e.g., Kind2 would time out on

specific properties verified in Event-B).

• how developing with formal methods in mind from the outset can influence the system’s

design, making it more amenable to formal verification.

Assurance Case Automation Toolset (AdvoCATE) [49] supports the development and

management of assurance cases, composed of all of the assurance artifacts created during system

development. AdvoCATE is built with a formal basis to enable automation where all assurance

artifacts can be defined and formally related. Some artifacts can be created directly in Advo-

CATE (e.g., hazard log, bow tie diagrams), while others, such as formal verification results,

can be imported. AdvoCATE uses the Goal Structuring Notation (GSN) [72] to document

assurance cases as arguments.

4.2.1 Assurance-based Formal Methods Integration

The objective of this work is to study the integration of formal verification results via the devel-

opment of an assurance case, as applied to a robotic system, using a tool palette that includes the

three NASA Ames tools fret, CoCoSim, and AdvoCATE, as well as Event-B. To this end, we

provide a step-by-step methodology that builds on existing NASA guidelines [51, 85] that can

be used to design and develop mission-critical systems. In particular, existing guidelines [85]

suggest the following phases: 1) characterization; 2) modeling; 3) specification; 4) analysis;

and 5) documentation. Each phase consists of constituent processes, and the overall process is

iterative rather than sequential.

Our methodology focuses on applying formal methods and connects them to parts of a

greater system safety assurance methodology [48] needed to perform and assure the application

of formal methods. Our methodology is guided by the need to devise a detailed assurance

case that integrates verification results from several tools. The steps that we followed are the

following:

Step 0: Characterize the initial system.

Step 1: Create an initial system model.

Step 2: Perform preliminary hazard analysis.

Step 3: Define mitigations and safety requirements.

Step 4: Refine system model according to mitigations.

Step 5: Formalize requirements and create formal specification(s).

Step 6: Perform verification and simulation at the system- and component levels.

Step 7: Document verification results and build safety case.

Fig. 4.7 presents a detailed view of our methodology instantiated with the selected tools for the

Inspection Rover case study. The upper part of Fig. 4.7 shows the system-level concept, design,

and assurance steps mainly performed by the AdvoCATE tool. In contrast, the lower part

shows the formal methods application steps performed by the fret, CoCoSim, and Event-B

tools. In the analysis phase (step 6), we perform two types of analysis. First, we use CoCoSim

to perform compositional system-level analysis with Kind2. We also perform verification at

the component level against the system model using the Atelier-B and Kind-2 tools. Atelier-B
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Figure 4.7: Our methodology for integrating verification results via an assurance case instanti-
ated with the selected tools for the Inspection Rover case study. The incoming arrows without
a source represent all relevant artifacts from previous phases. For system-level analysis, these
comprise the Lustre requirements and the Simulink system model, while for component-level
analysis, these comprise the Lustre and Event-B system models and requirements. In the
documentation phase, we input all artifacts.

is supported by Rodin platform for verifying Event-B models. Finally, in the documentation
phase, we use AdvoCATE to integrate the evidence produced by the tools within the assurance
case.

Over the years, we have worked with various formal approaches to the assurance of safety-
critical systems. This study explores how such approaches can work together and be integrated
within the development process of an autonomous system. With this aim, we developed a case
study of a rover system. Our case study is not extracted from an actual mission. Instead, it
is developed by iteratively using our expertise in various assurance approaches. The resulting
Inspection Rover case study has a reasonable complexity and demonstrates a variety of generic
challenges in formal methods techniques and their integration. Most importantly, we make the
details of our case study publicly available [21] since we believe it can serve as a good basis for
discussing and comparing approaches and tools across the research community.

Four formal methods experts were involved: 1) a safety expert; 2) a requirements expert; 3)
a Simulink and Lustre verification expert; and 4) a verification expert of robotic systems that
also served as the domain expert. Step 0 was performed by the domain expert, and step 1 was
performed together by the Simulink and domain experts. The safety expert performed steps 2
and 3. Steps 4 and 6 were performed by the safety, domain, and Simulink experts. Step 5 was
performed by the requirements and domain experts, and finally, step 7 was performed mainly
by the safety expert with contributions from all other experts.
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Figure 4.9: Bow Tie Diagram presenting the running out of battery hazard (orange circle), its
causes (blue rectangles to the left), and consequence (red rectangle to the right).

Step 2: Perform Preliminary Hazard Analysis

To perform the preliminary hazard analysis in AdvoCATE as part of the safety assurance
methodology [48], we first defined a functional decomposition of the Inspection Rover based on
Fig. 4.8. Then, we performed the traditional hazard analysis (FMEA [128]) in the AdvoCATE
hazard log. We identified two top-level hazards: 1) loss of rover, and 2) inspection finished

before visiting all of the heatpoints. In total, we identified 25 hazards, including these two. E.g.,
we identified the running out of battery and collision with an obstacle hazard as causes of loss

of rover. AdvoCATE uses the information from the hazard log to automatically create a safety
architecture documented via interconnected Bow Tie Diagrams (BTD) for each hazard [47]. A
single BTD shown in Fig. 4.9 details the causes and consequences of the running out of battery

hazard.

Step 3: Define Mitigations and Safety Requirements

After preliminary hazard analysis, we conducted a risk analysis that qualitatively analyzed the
severity and likelihood of the identified hazards to estimate the risk level. From this, we defined
mitigations to minimize the risk of those hazards and their consequences. E.g., the loss of rover

hazard is characterized by catastrophic severity, but its likelihood is calculated based on the
events causing it. The combination of the two defines the risk associated with the hazard.

Next, we performed mitigation planning using BTDs. For example, to minimize the risk of
running out of battery shown in Fig. 4.9: (1) we formally analyzed the navigation system and
battery controller, (2) we ensured that the charging station position is predefined so that we can
estimate at every point whether we have enough battery to go to recharge, and (3) if the basic
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assumptions about battery consumption are violated, then we abort and return to the charging
station. Furthermore, besides mitigating the causes to prevent the hazard, we add the recovery
barrier between the hazard and the consequence to reduce the severity of the consequence in
case the hazard still occurs.

For each of the two top-level hazards, loss of rover and inspection finished before visiting all

of the heatpoints, we define system-level requirements:

[R1:] The rover shall not run out of battery.
[R2:] The rover shall not collide with an obstacle.
[R3:] The rover shall visit all reachable heat points.

The requirements [R1] and [R2] correspond to the causes of loss of rover, while [R3] relates
to the inspection finished before visiting all of the heatpoints hazard. We have decomposed
these system-level requirements further into child (component-level) requirements detailing the
specific mitigation mechanisms captured in the BTDs. For example, the mitigations from
Fig. 4.9 are related to the child requirements of [R1], while [R3] scopes which heat points
should be visited are those that are reachable and have not been visited before. The full list of
child requirements for these system-level requirements is presented in [21].

Step 4: Refine System Model According to Mitigations

Some identified mitigations required design modifications resulting in a refined system archi-
tecture (Fig. 4.10), reassessed in terms of hazards and mitigations. We present this as a single
step for brevity, but there are iterations between these steps in practice. We consider the initial
rover position and the charging position as user input. Note that the charging station position
is static, and the rover always starts its missions from a predefined initial position.

We modified the original architecture by adding MapValidator to check that the initial
position, charging position, obstacles, and heat points are mutually exclusive. Furthermore,
MapValidator checks that the initial position, as recognized by Vision, is equal to the pre-
defined initialPosition.

Next, we defined the NavigationSystem which contains the ReasoningAgent and the Bat-

tery Interface components. We emphasize these two components as we focus on formally veri-
fying them. We further decompose these components.

The ReasoningAgent takes as input the identified and validated obstacle locations, current
rover position, heat points, and charger position. It outputs: (1) a plan from the current position
to the goal (plan2D), (2) a plan from the goal to the charger location (plan2C ), and (3) the list
of visited locations. Within the ReasoningAgent, the goal reasoning agent (GRA) chooses the
next goal as either the hottest heat point not yet visited or as the charger if the recharge flag is
set to true by Battery Interface. The GRA updates the visited locations.

The ReasoningAgent contains ComputePlan2Charging and ComputePlan2Destination which
both have a Planner and plan reasoning agent (PRA). These return the shortest plan from the
goal to the charger (ComputePlan2Charging) and the shortest plan from the current position
to the goal (ComputePlan2Destination).
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Lustre level. For instance, the natural language requirement [R3.3] is “The hottest heat point

that was not visited before shall be the current goal when recharge flag is false” and was written
in fretish as follows:

[R3.3]: GRA shall always satisfy if ! recharge then (if forAll i & i inGrid then (if ! visited[i]
then heatpoints[goal] >= heatpoints[i]))

where forAll i represents the universal quantification over heat points. Our case study con-
tains 28 requirements, 7 of these required first-order formulae. We were able to write all 28
requirements in fretish and formalize them.

FRETISH to verification Code: fret automatically formalizes requirements in pure future-
time (fmLTL) and pure past-time (pmLTL) Linear Temporal Logic. pmLTL formulae ex-
clusively use past-time temporal operators, i.e., Y, O, H, S, (Yesterday, Once, Historically,
Since, respectively). We used the pmLTL variant since Lustre-based analysis tools only ac-
cept pmLTL specifications. The automatically generated pmLTL formulae for [R1] and [R1.2]

are:
[R1]: H(battery>0);
[R1.2]: H((recharge & (Y(!recharge) | FTP)))(goal=chargePosition));
where FTP means First Time Point of execution (equivalent to ¬ Y TRUE). From the pmLTL
formulae, we automatically generated Lustre-based assume-guarantee contracts that can be
directly fed into CoCoSim for verification (the full process is described in Section 3.1.3). For
example, below is the generated Lustre code for [R1]:

guarantee "R1" (battery > 0);

If requirements were based only on model inputs, e.g., [R1.2], then CoCoGen generates as-
sumptions (instead of guarantees):

assume "R1.2" ((recharge and ((pre (not recharge)) or FTP)) => (goal = chargePosition));

where FTP = true ! false. As mentioned earlier, some requirements used first-order logic
quantification, such as [R3.3] which was generated as follows:

guarantee "R3.3" not recharge => (forall (i:int) (0 <= i and i < width) => (not visited[i] =>

heatpoints[goal] >= heatpoints[i] )));

Notice that the forAll i placeholder was replaced by forall (i:int), and i inGrid was
replaced by (0 <= i and i < width) during generation.

We also specified the requirements in Event-B. Since Event-B does not support temporal
logic, we used the fretish requirements to guide our modeling. fretish was simple enough
and more useful as a starting point for formalization than the natural language requirements.
E.g., the natural language requirement [R3.4] is “The shortest path to the current goal shall

be selected”. The fretish version is: Planner shall always satisfy if (planningCompleted &
returnPlan) then (if (forAll x & x inPlanSet) then (card(chosenPlan) <= card(x))), where the
card() function computes the length of a path. The corresponding Event-B invariant was based
on the fretish version:
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(planningCompleted = TRUE) ^ (returnplan = TRUE))

(8 x · x 2 PlanSet ) card(chosenplan)  card(x))

Similarly, [R2.5:] The calculated path to destination shall not include a location with an

obstacle was defined in Event-B as follows:

8 p, x · p 2 PlanSet ^ x 2 p ) x /2 Obs, where every PlanSet element is a set of grid
locations.

Step 6: Perform verification and Simulation at System- and Component-Levels

Compositional verification in CoCoSim: Our objective was to attach the component-level
child requirements to the relevant component(s) and then, using CoCoSim, compositionally
verify the system-level parent requirements. We were unable to model/verify all requirements,
e.g., The current position as recognized by the rover is its current physical position should be
physically tested.

Compositional verification in CoCoSim involves defining a top system node with the as-
sociated system-level contract. During verification, the model checker attempts to show that
these system-level properties can be successfully derived from the component-level contracts.
Using compositional reasoning in CoCoSim, we were able to verify system-level requirements
[R1] and [R3], defined in step 3 above. However, we could not verify [R2], which involves
the Vision and the Planner components, because there is no CoCoSim model for the Vision

component.

Compositional verification of [R1] was achieved relatively quickly (< 20 secs), as the model
checker only had to analyze two components: the Interface and BatteryMonitor to verify [R1].
[R3] was more complex since it involved a loop between the Interface and ReasoningAgent.
Kind2 had to carry out a lot of unrolling to adequately assess this property and deal with more
complex contracts, including quantifiers and arrays. Thus, we were only able to prove [R3] for
specific grid widths (minutes for 3⇥ 3, hours for 4⇥ 4, and larger grids timed out).

Component-Level verification Using Kind2 and Event-B: Previously, we used com-
positional verification to verify that the system-level parent requirements hold based on the
component-level requirements. Here, our objective was to verify that the more detailed specifi-
cation/implementation of individual components obeys the associated component-level require-
ments. Recognizing that, for autonomous robotic systems, it is often necessary to use a range
of verification techniques for individual components, we used two distinct formal methods here
[55, 94]. Specifically, we used Kind2 to verify a simple implementation of the GRA and, Event-B
to model and verify the ComputePlan component.

Specification and verification of the GRA: We constructed a simple Lustre implementation of
the GRA that we verified using Kind2. Full details can be found in [21]. The GRA computes
the start, goal and the visited cells. The start is initialized as the currentPosition, if
the goal was reached during the last execution (atGoal is true) then the start is the previous
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goal (pre_goal), if the recharge flag is true then the start is the previous start position since
the rover did not move. The goal is set to chargingPosition if the recharge flag is active.
Otherwise, we choose the hottest heat point, computed using the hottestPoint local array
that keeps track of the hottest heat point.

Kind2 verified all the properties specified in the specification. Most of the properties were
verified in less than 1 second. Due to state space explosion, some properties, e.g., requirement
[R3.3], were only provable for specific grid sizes. E.g., we verified [R3.3] for a grid size up to
4x4.

Specification and verification of ComputePlan using Event-B: Our Event-B model contains three
contexts (modeling static aspects) and two machines (modeling dynamic aspects). Event-B
supports formal refinement, so our contexts extend one another and our machines indicate
refinement steps. Our most primitive context, ctx0, specifies basic details such as the size of
the grid, valid grid locations, obstacles, and heat points. We do not explicitly list the elements
of these sets since this specification is for a generic planner. This is extended via ctx1, which
specifies functions that capture the behavior of the planning component.

The abstract machine, mac0, models a simple search-based planning algorithm that produces
a set of plans containing the start and goal. Event-B uses Sets as primitive, so we ensure that
these plans, encoded as Sets, can be linearized using the adjacent function specified in ctx1.
The refinement, mac1, incorporates a plan reasoning agent and chooses the shortest plan from
PlanSet. Another context, ctx2, defines a constant to limit the number of generated plans.

We encoded [R2.1], [R2.4.1], [R2.4.3], [R2.4.4], [R2.5] and [R3.4] in our Event-B model.
We could not verify [R2] compositionally but its child requirements feature in our Event-B
model (e.g. [R2.5]). This ensures that the planning components do not accidentally cause the
rover to collide with an obstacle. Most of the Event-B proof obligations were proven automati-
cally by Atelier-B in Rodin. Those requiring interactive proof were relatively straightforward.

Event-B was not limited by the state space explosion that caused Kind2 to time out. Instead,
we specified more complex component-level properties that would have been difficult to verify
for a model-checker. The Event-B model can be found in [21].

Step 7: Document verification Results and Build Safety Case

All of the verification results produced by the tools are part of the safety case constructed in
AdvoCATE. Some artifacts were imported automatically into AdvoCATE, while others were
added manually. Since this case study did not include a complete system implementation, the
safety case we report here is an interim version and contains the current safety assurance status.

The skeleton of the overall argument is generated automatically from the information defined
and imported into AdvoCATE, such as hazards, mitigation requirements, formalized require-
ments, and evidence artifacts. We have extended the skeleton argument based on our specific
application and tools. For example, Fig. 4.11 presents an argument fragment about mitigating
the running out of battery hazard that causes loss of rover. Similar arguments exist for other
causes of loss of rover and the other hazards. For brevity, Fig. 4.11 only contains a fragment of
the existing argument. For example, this argument focuses on two aspects: the requirements di-
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rectly related to this hazard (right branch) and the causes that lead to the hazard (left branch).
Full details can be found in [21].

The goal G14 focuses on [R1] that was verified using CoCoSim. We built a similar argu-
ment for each system-level requirement previously verified compositionally with CoCoSim. For
each argument, we extended the automatically generated part with a combination of existing
argumentation patterns [50, 126] to support application-specific goals (base of Fig. 4.11):

1. the formalization of the natural language requirement is correct (G3-A1);

2. the results from CoCoSim are trustworthy (G4-A1);

3. the different design representations are consistent (G5-A1);

4. the CoCoSim verification result for [R1] is valid (G6-A1).

To ensure that the different design representations were consistent across the tools, we
performed manual reviews where automated consistency validation was unavailable. E.g., we
used manual reviews to verify that the design as specified in AdvoCATE was consistent with
the Simulink, Kind2, and Event-B models.

The goal G3-A1 focuses on the correct specification of [R1] in fretish and the correct
functioning of fret. While we have to verify through a manual review that the natural language
requirement is correctly represented in fretish, the correct fret functioning and generation of
the corresponding CoCoSim contracts are supported by the automated verification framework
of fret.

The goal G6-A1 focuses on the validity of [R1] through analysis with the CoCoSim tool.
This part of the argument points out the dependencies to the properties of the other components
and implicit assumptions on which these results rely. Finally, to have confidence in the results
from CoCoSim, we argued the trustworthiness of CoCoSim with the goal G4-A1. Since
CoCoSim relies on model transformations and external tools for verification, this correctness
must be established. For example, we argued about the correctness of the translation from
Simulink to Lustre code that Kind2 uses.

4.2.3 Discussion

Using the given formal verification tools, we verified that the Navigation System would not cause
the rover to run out of battery. Due to the specification complexity, we could not verify that a
collision will never occur at the system level with CoCoSim. However, we verified with Event-B
that the Navigation System would not generate plans that contain obstacles at the component
level. Finally, we verified that the rover would visit all the heat points with CoCoSim, but
only for a small grid size of 4x4. Verifying the property for more significant grid sizes did not
terminate, even after several days of analysis.

This case study showed us that by following our methodology, we could leverage multiple
formal tools and use them complementary. In this way, we applied formal methods to small,
manageable chunks of the system to ease the verification burden and avoid becoming trapped
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Figure 4.11: The argument-fragment for the running out of battery hazard (rectangles represent
goals, parallelograms represent strategies, ovals with a ‘J’ represent justifications, rounded rect-
angles represent context statements, green rectangles indicate arguments continue elsewhere,
green diamonds represent currently undeveloped elements).

129



by the limitations of any single tool. Using fret to bridge the gap between the informal and
formal steps by formalizing our requirements was particularly useful because it helped us clarify
any details implicit in the natural language requirements.

Although the initial natural language requirements looked relatively straightforward in most
cases, a closer study revealed many questions regarding their precise meaning. Translating the
natural language requirements into fretish was not always straightforward. To this end,
the semantic explanations and simulation capabilities offered by fret were instrumental in
ensuring that the fretish requirements captured our intended semantics. Notice that we could
not directly encode first-order logic requirements in fretish. We tackled this problem using
auxiliary variables as placeholders for the quantifiers at the requirement level, but a fretish-
level solution is desirable. Finally, we noticed that most of the Inspection Rover requirements
follow a small number of patterns, a characteristic that we have observed in other studies within
our organization.

The choice of CoCoSim and Kind2 greatly influenced our design decisions. For example,
our original design represented cells in the grid as (x, y)-coordinates. However, we subsequently
simplified this by using indices to make them easier to represent and reason about in formal
tools. Our choice of a compositional verification approach caused us to output specific variables
such as the remaining battery power to verify [R1] compositionally. Furthermore, we had to
adapt the hierarchical structure of the system to accommodate compositional verification. If
the choice of formal verification tools is made early in the system development process, the
system’s design can be more suitable for formal verification using the chosen method(s).

Not all of the formalized requirements were formally verifiable; some described hardware
constraints and/or required physical testing. The latter supports the claim that the robotics
domain requires formal and informal verification processes [55]. E.g., everything depends on the
accuracy of the rover’s current position - a property that we could not formally verify in this
case. However, we can potentially incorporate run-time analysis by formalizing the requirements
to be verified via testing. Specifically, the formalized properties can be used to generate formal
run-time monitors to help with fault management during operation. These might help to create
recovery barriers in the bow-tie diagrams. In this way, we could include the development of
fault management at design time.

Integrating the verification results from the different formal methods in an assurance case
required intensive cooperation between the assurance and formal methods experts. The effort
required identifying dependencies between different tools, understanding the techniques and
the tool implementations, and implicit assumptions on which analyses were run and results
interpreted. The activity was exceptionally performed ad hoc. A more systematic approach to
gathering assurance information from formal methods applications would be beneficial.

Integrating formal methods often rely on bespoke translations between languages/tools.
However, these translations can be difficult and sometimes impossible to formalize/implement
correctly. Further, if used in an assurance case, the translations themselves must be assured,
as for our translation from fret to CoCoSim [21]. Although the use of tightly integrated
formal methods is desirable, our approach, using an assurance case as the point of integration,
incorporates tools for which such systematic translations do not exist by providing arguments
demonstrating how to link models in distinct formalisms.
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The case study helped us to identify limitations in the tools used (AdvoCATE, fret, Co-

CoSim, and Event-B) for robotics applications. It prompted an update to CoCoSim to in-
corporate unimplemented abstract components. Specifically, CoCoSim now generates Lustre

code for these components using the imported keyword when no implementation is available.
Other limitations include the lack of fret support for abstract data types, which caused us to
edit the fret-generated CoCoSim contracts manually. There were some difficulties when at-
tempting to automatically import verification artifacts directly from the tools into AdvoCATE,
which caused us to insert some details manually.

Our methodology follows the development phases of existing development guidelines [85,
48] and builds on top of them through a set of steps (§4.2.1), which are guided by the need to
devise an assurance case that integrates artifacts from different tools. Although in the presented
work, we used specific tools, we believe that our methodology can be followed irrespective of
the choice of tools.

4.3 Conclusion

In this chapter, we demonstrated that it is possible to perform an end-to-end analysis of CPS
models using different frameworks, including ours, CoCoSim. We could automatically generate
verification codes, monitors, and traces from requirements. We could also automatically connect
requirements to Simulink models and verify the models against the requirements. We have
identified some areas for improvement in the used frameworks, mainly related to capturing
temporal requirements in fret and analyzing non-linear functions in CoCoSim.

Additionally, we demonstrated that using different formal verification frameworks in an
integrated approach is possible by using an assurance case as a point of integration. This
approach allowed us to overcome the limitations of any single tool and take advantage of their
complementary features. Overall, we believe that this is a promising approach for designing
and verifying critical systems.
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Chapter 5

Conclusion & Perspectives

In this Ph.D. thesis, we addressed the problem of formal verification of Simulink/Stateflow

models. This work was organized into four chapters.

• The first Chapter provided a general overview of the problem and discussed related work
in the context of Simulink/Stateflow formal verification.

• In the second Chapter, we proposed an approach for translating Simulink/Stateflow

models to formal languages, specifically to the Lustre synchronous language. We also
developed a reverse compilation of Lustre models to CoCoSim. The latter has many
applications, from the CoCoSim tool validation, as discussed in Chapter 3, to bridging
the gap between requirements and Simulink model analysis.

• The proposed approach is implemented in the CoCoSim toolbox presented in the third
Chapter. CoCoSim aims to ease verification and validation activities for Simulink mod-
els. The toolbox is highly automated and has customizable and configurable architecture
allowing other techniques to be integrated to increase scalability.

• The fourth Chapter demonstrated the use of CoCoSim in some case studies. We have
applied CoCoSim to several industrial and academic case studies, including the ten Lock-
heed Martin CyberPhysical challenges and the navigation rover case study. The results
show that CoCoSim can effectively verify Simulink models, especially when using com-
positional verification. Formal methods, such as model checking, can be limited when
dealing with large numerically intensive and non-linear models, hence the need to integrate
various verification techniques, as demonstrated in the Rover case study in Section 4.2.

There are many possible directions for future work. One possible direction is to improve the
toolbox to support more features of Simulink/Stateflow. For instance, mixing continuous-
time discrete-time systems. While Lustre forbids us to express these systems, CoCoSim is
generic enough to be able to process these blocks once a suitable formal intermediate language
is available. Zelus [23] is a hybrid extension of Lustre, fitted with a code generator providing
faithful simulation means. This hybrid model could also be used to validate properties using
hybrid model checking [9] and combining guaranteed integration with SMT solvers. Another
related approach would be the expression of a Simulink model as a hybrid automaton [103],
enabling the use of tools such as SpaceEx [58] or Flow* [36].

The second direction is to address the verification of digital filters and numerical controllers.
While current tools could analyze them, they usually perform poorly. Future work targets
the integration of (non-linear) invariant generation [4, 5, 112, 113, 114, 121, 132] and their
re-validation at the code level [46, 80, 133].
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Another direction is to integrate floating point imprecision computation [6, 66] and the
accurate compilation of numerical computation [43, 44]. Additionally, it would be interesting
to investigate the use of CoCoSim in more industrial case studies.
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