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Xiong Zhang  

Catalyseurs Fe-N-C pour la réaction électrocatalytique de réduction 

de l'oxygène 

Résumé 

L'électrocatalyseur Fe-N-C est en train de devenir un sujet de recherche stimulant avec de grands espoirs pour les 

dispositifs énergétiques de la prochaine génération en raison de sa haute activité intrinsèque ORR comparable à celle 

de l'électrocatalyseur des métaux du groupe du platine (PGM). Cependant, une stratégie de préparation très efficace 

avec une performance catalytique améliorée et une grande robustesse, employant des composants non critiques, est 

d'une grande importance pour le développement de l'électrocatalyseur Fe-N-C. L'identification de la nature du site actif 

pour le matériau Fe-N-C pyrolytique est toujours un sujet de débat animé en raison de la présence potentielle de sites 

actifs multiples. 

Dans ce travail, nous avons développé des catalyseurs avec des atomes uniques de Fe décorés de N dans du carbone 

poreux par pyrolyse à haute température en utilisant des composants bruts rentables et non toxiques. La variation 

systématique de la composition des précurseurs N, et C et de divers agents structurants, ainsi que les conditions des 

différentes étapes nous ont permis de déterminer les paramètres optimaux pour une synthèse en plusieurs étapes. 

Diverses technologies caractéristiques, notamment TGA/TPD-MS, Raman, BET, XRD, XPS, HAADF-STEM et XAS 

ont été appliquées pour étudier la composition et la structure des catalyseurs Fe-N-C synthétisés. Les performances 

électrocatalytiques des catalyseurs ont été étudiées par des mesures de (R)RDE et des tests de durabilité accélérés. 

Cette étude nous a permis de démontrer que les électrocatalyseurs Fe-N-C avec une structure et une composition 

optimisées offrent des performances stables d'électroréduction de l'oxygène 4e- dans un électrolyte KOH 0.1 M avec 

une activité supérieure à celle des catalyseurs de référence 20% Pt/C. Plus important encore, la nature des sites actifs 

et la corrélation structure-performance des électrocatalyseurs tels qu'ils sont obtenus sont systématiquement étudiées. 

Ce travail vise à fournir une compréhension fondamentale du catalyseur Fe-N-C, à la fois du point de vue de la 

conception du matériau et de la nature des sites actifs, ce qui devrait favoriser le développement de la prochaine 

génération d'électrocatalyseurs pour la technologie des piles à combustible. 

Abstract 

Fe-N-C electrocatalyst is becoming a challenging research topic with great expectations for the next-generation energy 

devices due to its high intrinsic ORR activity comparable to platinum group metals (PGM) electrocatalyst. However, a 

high effective preparation strategy with improved catalytic performance and high robustness, employing noncritical 

components is of great importance for the development of Fe-N-C electrocatalyst, and the identification nature of active 

site for pyrolytic Fe-N-C material is still a topic of heated debate due to potential presence of multiple active sites. 

In this work we developed catalysts with N-decorated single atom Fe catalysts in porous carbon by high temperature 

pyrolysis using cost-effective, non-toxic raw components. Systematic variation of composition of N, and C precursors 
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and various structuring agents, as well as conditions of different steps allowed us to determine the optimal parameters 

for a multi-step synthesis. Various characteristic technologies, including TGA/TPD-MS, Raman, BET, XRD, XPS, 

HAADF-STEM and XAS have been applied to study the composition and structure of synthesized Fe-N-C catalysts. 

The electrocatalytic performance of the catalysts were studied by (R)RDE measurements and accelerated durability 

tests. This study allowed us to demonstrate that Fe-N-C electrocatalysts with optimized structure and composition 

provide stable 4e- oxygen electroreduction performance in 0.1 M KOH electrolyte with activity outperforming benchmark 

20% Pt/C catalysts. Most importantly, the nature of active sites and structure-performance correlation of as-obtained 

electrocatalysts are systematically investigated. The work aims to provide fundamental understanding of Fe-N-C 

catalyst from both material design and natura of active sites which is believed to favor the development of next 

generation electrocatalyst for fuel cell technology. 
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Résumé 

 

1. Introduction  

La réduction de l'utilisation des combustibles fossiles et l'amélioration du rendement de 

conversion des sources d'énergie propres et renouvelables deviennent une priorité urgente de la 

chimie et du génie chimique modernes. Aborder ces objectifs sont des questions cruciales, non 

seulement liées à l'épuisement constant des combustibles fossiles, mais aussi pour faire face à 

toutes les principales préoccupations environnementales et climatiques causées par leur utilisation 

massive. La technologie basée sur l’utilisation des piles à combustible suscite un grand intérêt dans 

l'exploration de systèmes énergétiques durables, car elle permet de combiner des émissions zéro 

carbone avec une efficacité de conversion énergétique élevée pour le même dispositif [1]. Malgré 

cela, l'exploitation des dispositifs de piles à combustible est limitée par le coût élevé de ses 

composants, en particulier des matériaux servant d'électrodes qui sont à base de métaux nobles, 

chers et peu abondants. Une concentration de l’ordre de 0,4 mg cm-2 de platine est généralement 

nécessaire à la cathode de la pile à combustible pour réaliser la réaction de réduction de l'oxygène 

en raison d’une cinétique très lente de cette réaction [2]. Par conséquent, la synthèse de matériaux 

servant de base aux électrodes, à faible coût avec des performances catalytiques améliorées et 

d’une grande robustesse, utilisant des composants non critiques, devient un sujet de recherche 

stimulant avec de grandes attentes pour les dispositifs énergétiques de prochaines générations. 
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La recherche de systèmes électrocatalytiques plus robustes a été fortement active pendant les 

dernières décennies. Les premiers travaux se sont principalement concentrés sur l'étude des 

catalyseurs moléculaires, plus précisément des complexes macrocycliques Fe-N4 [3-5], tandis 

qu'une activité et une stabilité plus élevées peuvent être obtenues par une approche de pyrolyse à 

haute température (appelée catalyseur Fe-NC) [6, 7]. La nature du site actif du matériau 

pyrolytique Fe-NC fait toujours l'objet d'un débat dans le domaine en raison de la présence 

potentielle de plusieurs sites actifs tels que des sites dopés N sans métal, des nanoparticules à base 

de Fe et des fragments FeNxCy[8]. Dans le même temps, l'identification des sites actifs est d'une 

grande importance dans la conception rationnelle des catalyseurs d’électrocatalyse présentant de 

meilleures performances et stabilité. Malgré la pluralité des sites actifs existant dans le catalyseur 

Fe-NC, le site actif le plus probable proposé dans la littérature est largement revendiqué comme 

étant des analogues structuraux du centre Fe-N4. La plupart des travaux se sont concentrés sur 

l'amélioration des performances des catalyseurs dans les processus électrocatalytiques clés [9-11]. 

Il est communément admis que le contrôle des caractéristiques structurelles électroniques et 

géométriques des sites métalliques actifs est l'outil clé pour obtenir des catalyseurs présentant des 

performances uniques et améliorées dans ce domaine de recherche très concurrentiel [12, 13]. 

Certains d'entre nous ont récemment proposé une technologie synthétique écologique (verte) 

et polyvalente pour la préparation de matériaux à base de carbone mésoporeux enrichis en azote à 

partir de matériaux de base non toxiques, issus des produits de l’alimentaire, et bon marché [14, 

15]. Une telle approche a été utilisée avec succès pour obtenir des poudres aux structures de 

mousse 3D hiérarchiquement organisées et aux composites organiques-inorganiques [16-18], qui 

seront ensuite utilisés en tant que systèmes sans métal efficaces et stables pour catalyser un nombre 

relativement important de procédés chimiques industriels. Les sources de carbone et azote utilisées 
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pour la synthèse de ces nouveaux matériaux ont été sélectionnées parmi des matières premières 

solides couramment disponibles où l’eau est utilisée comme solvant dans la plupart des cas. Le D-

glucose (C6H12O6) a été sélectionné comme source de carbone, un agent levant (c'est-à-dire 

carbonate d'ammonium (NH4)2CO3) comme source d'azote et de l'acide citrique (C6H8O7) comme 

support sacrificiel, pour la fixation de l’ammoniac libéré lors de la décomposition du carbonate 

sous forme de citrate d'ammonium (HO-C3H4(COO)3Hx(NH4)3-x) avec x = 0-3). Des traitements 

thermiques successifs et contrôlés des matériaux ont conduit par la suite à des réseaux carbonés 

mésoporeux présentant des surfaces spécifiques relativement élevées (de l’ordre de 150 m2g-1) et 

des teneurs en azote allant jusqu'à 5 % en poids.  Dans cette thèse, le D-glucose de qualité 

alimentaire et/ou l'acide citrique comme précurseur de carbone, les sels d'ammoniac inorganiques 

ou l'urée comme source d'azote, sont utilisés comme squelette principal pour la préparation du 

catalyseur Fe-NC. Les propriétés physico-chimiques et les performances électrocatalytiques pour 

la réaction ORR ainsi que la relation structure-performance des électrocatalyseurs obtenus sont 

systématiquement étudiées. En particulier, l'effet de l'ajout de médiateur structurel (KSCN, SiO2 

et noir de carbone) sur la nature des sites actifs et sur l'activité des produits finaux a également été 

examiné. Le présent travail vise à fournir une compréhension fondamentale du catalyseur Fe-NC 

à partir de la conception des matériaux et de la nature des sites actifs, ce qui favoriserait le 

développement d'électrocatalyseurs de prochaine génération pour la technologie des piles à 

combustible. 

  

2. Résultats et discussions 

2.1 Catalyseur Fe-NC inséré dans le réseau de carbone dopé avec de l’azote pour la réaction 

de réduction de l'oxygène. 
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Dans ce travail, un protocole original a été développé pour la synthèse de catalyseurs 

contenant des atomes de fer isolés stabilisés par des atomes de carbone et d’azote, Fe-NC, à haute 

densité. Le catalyseur est préparé à partir de matériaux de base bon marché et de qualité alimentaire: 

le D-glucose sert comme principal précurseur de carbone, le (NH4)2CO3 comme source d'azote et 

l’acide citrique comme composant sacrificiel pour stabiliser les ions Fe3+ et NH4
+. La combinaison 

d'ions citrate chélatants avec le ligand auxiliaire monodentéSCN- s'est établie comme une “porte 

ouverte” pour accueillir les ions fer solubles dans l'eau sous la forme de fragments Fe-NC dans les 

réseaux CN (phase pré-catalyseur, Fe/NSMC-W). Le pré-catalyseur ainsi synthétisé est alors traité 

thermiquement en présence de NH3 (dopage thermochimique) pour obtenir le catalyseur final 

(Fe/NSMC-SHT). Les rôles spécifiques de l'effet du traitement KSCN et NH3 ont été étudiés. 

 

Figure 1. (A) Courbes de polarisation ORR, (B) Potentiel d'apparition, potentiel demi-onde (E1/2) 

et densité de courant cinétique (Jk) pour différents catalyseurs, (C) Courbes de Tafel pour les 

catalyseurs préparés, (D) Test de durabilité accéléré (ADT) pour Fe/NSMC-SHT, (E) Réponse CA 

pour Fe/NSMC-SHT, (F) Test de tolérance au méthanol pour Fe/NSMC-SHT. 
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Le résultat montre que le KSCN sert de médiateur de surface permettant d’empêcher la 

génération de nanoparticules à base de Fe, maximisant ainsi la présence de sites actifs de Fe sous 

forme d’atomes isolés. Le post-traitement avec NH3 introduit en outre les groupements 

fonctionnels contenant des terminaisons N hautement basiques, et une meilleure exposition des 

sites actifs de Fe atomique, produisant ainsi une porosité plus abondante et une accessibilité des 

réactifs plus aisée. L'existence de sites Fe sous forme d’atomes isolés et la nature des sites actifs 

sur le catalyseur modèle (Fe/NSMC-SHT) sont extensivement caractérisées par la microscopie 

électronique à transmission en champ sombre annulaire à angle élevé (HAADF-STEM), et par la 

spectroscopie d'adsorption aux rayons X (XAS). Les résultats révèlent que le catalyseur 

Fe/NSMC-SHT présente une morphologie inattendue avec une phase mixte contenant des atomes 

de Fe isolés et des petites particules de Fe. Les analyses détaillées par l'ajustement d'une structure 

fine d'adsorption de rayons X étendue (EXAFS) ont indiqué que le mélange contenant des sites de 

fer N-coordonnés (Fe-NC) sous forme d'atomes uniques et des nanoparticules sont des espèces 

polyatomiques à l’interface entre l'oxyhydroxyde de fer et une matrice à base de carbone dopé à 

l'azote tel qu'identifié. Le catalyseur Fe/NSMC-SHT ainsi préparé présente des activités en 

électrocatalyse, pour la réaction de réduction d’oxygène réalisée en milieu alcalin, qui se rangent 

parmi les meilleures reportées à l’heure actuelle pour les catalyseurs à base de fer sous forme 

d’atomes isolés (Figure. 1). En conclusion de cette étude nous avons réussi à préparer des 

catalyseurs à base de fer, une partie sous forme d’atomes isolés et une autre sous forme de 

nanoparticules, par une méthode de synthèse simple, faisant appel à des matières premières à base 

alimentaire, et qui présente des performances en électrocatalyse parmi les meilleures pour cette 

catégorie d’électrocatalyseurs. 
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2.2 Catalyseur à base d’atomes isolés FeN4-Cl dispersés dans un réseau mésoporeux de 

carbone dopé à l’azote utilisant la silice comme porogène. 

Dans les travaux précédents, nous avons reporté une nouvelle voie de synthèse des catalyseurs 

à base d’atomes isolés de fer, stabilisés par des liaisons N et C, avec l'aide de ligand auxiliaire 

thiocyanate monodentate et un traitement thermochimique avec de NH3. Dans ce présent chapitre, 

une nouvelle stratégie est rapportée, et permet d'éviter le traitement thermochimique sous NH3 en 

utilisant uniquement un sel inorganique (NH4)2CO3 et l'acide citrique comme précurseur d'azote 

et de carbone respectivement. L’adjonction d’un porogène à base de silice permet l’obtention d’un 

catalyseur avec une structure poreuse et hiérarchisée, contenant des micropores interconnectés, 

des mésopores bimodaux et des macropores avec une distribution de pores ajustable. 

L’interconnectivité entre les différents réseaux poreux permet d’augmenter l’accessibilité des sites 

actifs aux réactifs et d’améliorer les performances en électrocatalyse. Il est important de noter que 

la concentration des atomes d’azote peut être finement ajustée en utilisant des sources séparées 

pour le carbone et l'azote, ce qui permet une meilleure optimisation des performances 

électrochimiques du catalyseur. Le mécanisme de formation respectif du carbone poreux 

hiérarchique décoré avec des atomes isolés de fer est proposé sur la Figure 2.  



7 

 

 

Figure 2. Schéma du mécanisme proposé pour la formation de carbone poreux hiérarchique dopé 

N décoré de Fe atomique. 

 

Les analyses HAADF-STEM et XAS montrent que le catalyseur modèle contient des sites de 

fer atomiquement dispersés, principalement sous la forme de noyaux Cl-FeN4 avec l'ion métallique 

logé dans une sphère de coordination pyramidale. D'autre part, l'influence de la teneur en N dans 

le mélange de précurseurs et les concentrations en Fe dans les catalyseurs sur l'activité ORR ont 

été systématiquement étudiées, afin de déterminer la relation entre les performances 

électrochimiques et les caractéristiques du catalyseur. Les résultats démontrent que le catalyseur 

2Fe/NHPC5AC présente des performances électrochimiques en ORR optimales (Figure 3). Il 

semblerait que l’utilisation simultanée du ZnCl2 et de SiO2 joue un rôle crucial dans la production 

de sites uniques Cl-FeN4 avec une densité de sites plus élevée, garantissant une activité 

électrochimique la plus élevée en ORR. Les résultats des caractérisations ont permis d’identifier 

la nature des sites actifs comme étant la fraction Cl-FeN4 combinée avec des sites N pyridiniques. 
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Il est à noter également que les fragments Cl-FeN4 sont aussi considérés comme les sites les plus 

actifs pour la réaction ORR, tandis que les nanoparticules à base de Fe ne montrent aucune activité 

dans des conditions réactionnelles en milieu alcalin. 

 

Figure 3. Courbes LSV (A) des catalyseurs de contrôle, (B) les catalyseurs produits par différentes 

additions de (NH4)2CO3, et (C) les catalyseurs obtenus par diverses charges de Fe. Toutes les 

données sont enregistrées sous O2 saturée en solution KOH à 0.1 M pour des vitesses de balayage 

de 10 mV s-1 et de rotation de 1600 tours par minute. 

 

2.3 Mise en œuvre d’une procédure de fabrication des électrocatalyseurs à base de Fe-NC 

pour la réaction d’ORR. 

Dans le précédent travail, nous avons proposé une nouvelle voie de synthèse de carbone 

poreux hiérarchisé décoré avec des atomes uniques de fer en utilisant du (NH4)2CO3 et de l'acide 

citrique comme sources d’azote et de carbone respectivement pour être utilisé comme 

électrocatalyseur pour la réaction d’ORR. Dans ce présent chapitre, le D-glucose est utilisé comme 

seule source de carbone. Le glucose est également connu comme excellent agent chélatant pour 

l'ancrage du cation métallique (ici les ions Fe3+) dans la solution de précurseur [19, 20]. Plus 

important encore, le rendement de carbonisation du glucose, qui est plus élevé que celui de l'acide 

citrique, permet de produire des catalyseurs à plus grande échelle en vue des transferts 

technologiques futurs. 
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Figure 4. (A) Corrélation entre la composition en azote et l'activité ORR; (B) corrélation entre la 

composition en oxygène et l'activité ORR. 

 

La synthèse consiste aussi à utiliser du chlorure d’ammonium (NH4Cl) comme source d’azote 

tout au long du procédé de préparation, ainsi que la silice comme agent de porogène pour la 

fabrication des structures hôtes à base de carbone poreux hiérarchisé qui sera décoré par la suite 

avec des atomes isolés de Fe dispersés de manière homogène sur la surface de l’électrocatalyseur. 

On constate également que la température de pyrolyse a une influence significative sur l'activité 

ORR du catalyseur final. En établissant une relation structure-performance, l'activité ORR semble 

être fortement dépendante de la température de pyrolyse, et l’activité en ORR est influencée par la 

densité des sites actifs ainsi que la conductivité électronique (Figure 4). Le catalyseur optimal, 

obtenu à une température de pyrolyse de 900 oC, présente une excellente activité ORR (E1/2 = 0,86 

V), une excellente durabilité ainsi qu'une résistance à la désactivation en présence du méthanol qui 

surpassent celles obtenues sur le catalyseur Pt/C commercial en milieu alcalin. En milieu acide, le 

Fe/NMC-900 présente également une activité ORR relativement intéressante, avec E1/2 de 0,63 V 

et une bonne stabilité. Les résultats obtenus confirment l’importance de la température de pyrolyse 

sur les propriétés géométriques et électroniques du catalyseur, qui à leur tour, influencent 

fortement l’activité en ORR. 
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2.4 Effet coopératif entre les atomes uniques de Fe et des nanoparticules Fe3O4/Fe3C 

supportés sur une structure hôte hybride de nanofeuillets de graphène/noir de carbone pour 

la réaction d’ORR. 

 

Figure 5. Schéma de la procédure de fabrication de l’électrocatalyseur hybride 4.5Fe@NGC/CB. 

 

Dans le précédent travail, nous avons utilisé deux étapes thermochimiques à haute 

température en utilisant le SiO2 comme porogène pour la préparation d'électrocatalyseurs à sites 

uniques en Fe hautement actifs pour la réaction d'ORR. Dans le présent travail, nous investiguons 

l’influence de l’utilisation des nanoparticules de noir de carbone à la place des nanoparticules de 

SiO2 qui nécessitent un post-traitement fastidieux pour l’obtention de la porosité finale. En effet, 

contrairement aux nanoparticules de SiO2, celles de noir de carbone permettent une amélioration 

en rendement du matériau final, mais elles participent également dans la génération de 

l'hétérostructure souhaitée sans avoir besoin d’avoir recours au post-traitement pour enlever les 

nanoparticules de SiO2 comme précédemment. Plus précisément, nous développons dans ce 

chapitre une stratégie facile et évolutive pour améliorer la préparation des catalyseurs hybrides 
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enrichis avec d'abondantes fractions FeNx en interaction avec une couche de carbone hautement 

graphitique encapsulant des nanoparticules Fe3C/Fe3O4. La synthèse est réalisée en utilisant une 

imprégnation d'humidité naissante d'une solution aqueuse de Fe directement sur un mélange 

contenant glucose, urée et noir de carbone, traitée ensuite directement par l’unique étape de 

pyrolyse (Figure 5). L'électrocatalyseur, tel que préparé, présente une hétérostructure composée 

de noir de carbone dopé avec des atomes d’azote, jouant le rôle d’échafaudage de carbone primaire, 

et de graphène dopé N entrelacé comme phase de carbone secondaire, présentant une structure 

poreuse hiérarchique avec un mélange de différents types de pores, e.g. micro-, méso- et 

macropores. également produits en utilisant différentes quantités de précurseur de Fe. Le 

catalyseur optimal avec une quantité appropriée d'ajout de Fe (4.5Fe@NGC/CB) affiche une 

performance ORR supérieure (Figure 6A). Une série d'expériences de contrôle telles que la 

lixiviation acide de 4.5Fe@NGC/CB et le test d'empoisonnement KSCN ont révélé sans ambiguïté 

que les fractions FeNx sont de véritables sites actifs (Figure 6B et Figure 6D) vers l'ORR et les 

nanoparticules de Fe3O4 ne montrent aucune activité mais exerce un effet de promotion positif sur 

l'activité des sites FeNx via une interaction électronique (Figure 6C). 



12 

 

 

Figure 6. (A) Les courbes de polarisation en régime permanent des échantillons produits par 

l'utilisation de différents précurseurs de Fe à des vitesses de balayage de 10 mVs-1 et de rotation 

de 1600 tr/min en milieu réactionnel constitué par de l’O2 - électrolyte KOH à 0,1 M saturé; (B) 

La corrélation entre la quantité de fractions FeNx et l'activité ORR pour les échantillons avec des 

charges de Fe variables; (C) Courbes d'ajustement linéaire des courants capacitifs par rapport aux 

taux de balayage, en mVs-1, pour les échantillons avec des charges de Fe variables ainsi que 

l'échantillon 4.5Fe@NGC/CB-AL après une lixiviation à l'acide; (D) Courbes LSV de l'échantillon 

4.5Fe@NGC/CB, avant et après l'ajout de 10 mM de KSCN, dans une solution saturée en O2 de 

H2SO4 à 0,5 M pour des vitesses de balayage de 10 mV s-1 et de rotation de 1600 tr/min. 

 

3. Conclusions et perspectives 

En conclusion, nous avons pu développer des nouvelles méthodes de synthèse des catalyseurs 

électrochimiques à base de Fe dispersé atomiquement dans une matrice carbonée, dopée avec des 
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atomes d’azote, en utilisant des matières premières à base de produits alimentaires non toxiques. 

La synthèse met également en œuvre des composés chimiques simples tels que KSCN, SiO2, ZnCl2, 

qui jouent le rôle de stabilisateurs pour la formation de sites Fe atomiquement dispersés dans 

l’ensemble du catalyseur. Nous avons pu mettre en évidence les bénéfices en utilisant une étape 

de post-traitement sous ammoniac en vue d’améliorer par l’intermédiaire des groupements 

fonctionnels riches en azote l’exposition et la stabilisation des sites actifs à base de fer pour la 

réaction d’ORR. Les études d’optimisation ont permis d’ajuster la composition chimique des 

différents composites, à savoir la concentration en fer et en azote pour la stabilisation des sites 

actifs, la température de pyrolyse pour l’obtention des catalyseurs finaux, et d’obtenir des activités 

en ORR améliorées. Les résultats obtenus sur différents matériaux synthétisés dans cette étude ont 

permis de montrer que la phase active est constituée par le fragment FeNx, les nanoparticules à 

base de Fe3O4 ne jouant pas de rôle actif mais participant probablement dans l’amélioration des 

interactions électroniques avec les sites actifs. Néanmoins, il est à préciser que l’effet synergique 

varie en fonction des systèmes. Il convient de noter que notre approche synthétique dans cette 

étude représente également une stratégie universelle pour la synthèse d'autres catalyseurs à atome 

de métal unique (Co-N-C, Mn-N-C, etc.), associés à des nanoparticules métalliques ou oxydes, 

pour diverses applications telles que la réduction électrochimique du CO2 en gaz de synthèse. 
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1. Introduction 

The developments of green and sustainable energy conversion and storage systems go 

alongside with the development of renewable energy (RE) to reduce the problem of climate change 

[21, 22]. Fuel cells are proven to be clean electrochemical energy-converting device with high 

efficiency and zero emissions which have attracted great research interest to meet improving 

energy requirements in the future [23, 24]. The working mechanism for typical proton exchange 

membrane fuel cells (PEMFCs) mainly involves in two half-cell reactions, namely anodic 

oxidation reaction of H2 fuels, and cathodic oxygen reduction reaction (ORR), with electric energy 

output and only pure water as by-product. The ORR process is the main limitation to the fuel cells 

efficiency due to the high overpotential and sluggish kinetic at cathode [25]. Nowadays, Platinum-

based catalysts are generally regarded as the state-of-art electrocatalysts for ORR. However, the 

high cost and scarcity of Pt significantly impede the development of PEMFCs [26, 27]. To address 

this issue, several strategies have been put forward to decrease Pt loading so as to reduce overall 

cost of cathode: (1) downsize Pt nanostructure to improve atom utilization efficiency; (2) alloying 

with non-precious metal to decrease amount of Pt usage. Nowadays, considerable advances have 

been achieved by alloying strategy which not only reduces cost but also enhances ORR 

performance over pure Pt-based catalyst due to the alteration of intrinsic electronic structure of Pt 

metal and optimal oxygen absorption [28-30]; (3) Structural optimization such as shape-controlled, 

with aim to expose preferential facets of Pt for maximizing catalytic activity [31-33]. Despite 

tremendous efforts in Pt-based catalyst achieved, the synthetic procedure is often tedious and the 

optimized Pt-based catalyst is prone to agglomerate or deactivated during electrochemical process, 

leading to poor long-term durability operation. Most importantly, the limited Pt reserves in the 

long-term makes Pt-based catalyst large-scale application less promising for future deployment. 
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Earth-abundant non-precious metal catalysts with much lower cost compared to Pt-based 

compounds have received an ever growing interest for both environmental and economically point 

of view [34]. Recently, the strong driving force for commercialization of low-costs fuel cells has 

stimulated a great deal of research interests in exploration of non-precious metal catalysts. Among 

a variety of them, transition metal and nitrogen co-doped carbon materials, denoted as M-N-C (M 

= Fe, Co, Cu, Mn) with high intrinsic activity toward ORR are become promising potential 

candidates for the replacement of Pt catalysts [35-37]. 

For the first time, cobalt phthalocyanine has been proposed in 1964 by Jasinski as an active 

catalyst for ORR process which opened an avenue for exploring non-precious metal ORR catalysts 

[38]. Following this pioneering work, electrocatalysts prepared by high temperature pyrolysis of 

metal-macrocycle complex adsorbed on carbon substrate, contributed to a significant enhancement 

of ORR activity [5, 39, 40]. In 1989, the breakthrough progress was reported by Yeager et al. that 

the M-N-C could be acquired through pyrolysis of separated metal precursor, carbon and nitrogen 

source which enabled better flexibility and control of the electrocatalysts preparation [41]. 

Immediately, extensive efforts have been devoted to the development of such catalysts [42-44]. 

Among these emerging M-N-C catalysts, Fe-N-C, which can be regarded as one of the most 

promising replacements for precious Pt catalyst, has been intensively investigated over the past 

decades. The large interest on such catalyst is not only due to its environment-friendliness and cost 

effectiveness as well as comparable or superior activity toward ORR but also due to its intrinsic 

methanol/CO poisoning-tolerance. The latter is severe problem for Pt-based catalyst, and even 

trance amount of CO (as low as 10 ppm) will result in dramatical degradation of catalytic activity 

[45-47]. To date, tremendous advancements have been obtained regarding the preparation of Fe-

N-C and its application in fuel cell as well. Despite recent progress, the groundbreaking progress 
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in both activity and stability is not reported yet. In view of complicated coordination environment 

especially for those fabricated via high temperature pyrolysis, development and optimization of 

Fe-N-C are hindered by lack of understanding of the reaction mechanism and identification of 

precise nature of the active site. Thereby, there is still room for the improvement of performance 

on Fe-N-C by rational modulation of active sites and structure engineering for the sake of effective 

electrocatalyst design for ORR.  

 

2. The mechanism and electrochemical evaluation of ORR 

2.1 The mechanism of ORR 

Table 1. Overall reaction equations of ORR in acidic and alkaline solution. 

Electrolyte Reactions 

Acidic solution 4 e- reaction: O2 + 4 H+ + 4 e-  → H2O 

  2 e- reaction: O2 + 2 H+ + 2 e-  → H2O2 

 Serial reaction: O2 + 2 H+ + 2 e-  → H2O2  

           H2O2 + 2 H+ + 2 e- → 2 H2O 

        

Alkaline solution 4 e- reaction: O2 + H2O + 4 e-  → 4 OH- 

      2 e- reaction: O2 + H2O + 2 e-  → OOH- + OH- 

    Serial reaction: O2 + H2O + 2 e-  → OOH- + OH- 

              OOH- + H2O + 2 e-  → 3 OH- 

 

The ORR process primary depends on the physicochemical surface properties of 

electrocatalysts. The overall reaction equations can be depicted in Table 1, where ORR proceeds 

by either four-electron (4 e-) pathway with H2O (acidic media) and OH- (alkaline media) as 

reduction products or two-electron (2 e-) pathway with H2O2 (in acid) and HO2
- (in alkaline) as 

products. Obviously, direct four-electron pathway is more preferred due to higher efficiency of 

energy utilization while the H2O2 product from two-electron pathway is highly desired for the 
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replacement of industrial energy-intensive anthraquinone-based method [48]. 

The detailed microscopic mechanism of ORR process can be classified into three pathways 

as summarized in Figure 1. Typically, the oxygen molecule is first adsorbed and activated on the 

surface of catalyst to form O2*, herein the * is denoted as active site of catalyst, followed by O-O 

bond cleavage in three different manners: 

(1) Dissociation pathway: The O-O bond in O2* is cleaved directly into two O* intermediates

(reaction II), which then are successively reduced to OH* and H2O* (IV) and eventually end

up with desorption of H2O* (V) along with the active site released again.

(2) Association pathway: the OOH* are first generated from O2* (VI), then O-O bond in OOH* is

cleaved into O* and OH* (VII), followed by the successive reduction to form H2O.

(3) The second association pathway: the O2* is sequentially reduced to OOH* and HOOH* (VIII),

then 2 OH* (IX) can be generated and finally reduced to H2O

Figure 1. The microscopic reaction pathway toward ORR. 

The ORR reaction pathway mainly depends on the initial dissociating energy barrier of 

absorbed O2 molecule on the surface of active site. The O2 dissociating energy barrier on carbon 

materials surface is relatively high, as reported by some DFT studies [49], thus not favorable for 

four-electron transfer pathway. As a result, the experimental measured electron transfer numbers 

for most carbon materials reported to date are much less than 4. On the contrary, the dissociating 
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energy barrier on metal surface is much lower than that occurred on carbon materials especially 

for noble metal Pt. For example, the O2 dissociating energy barrier on the surface of Pt (111) is 

calculated to be less than 0.3 eV (or ca. 29 kJ/mol), consequently taking four-electron transfer 

pathway [50]. The theoretical computation result is also consistent with experimental finding that 

Pt-based catalysts and other transition metal always present perfect four-electron selectivity. In 

addition, some studies also reported that the O2 degree of coverage on the surface of catalyst plays 

a crucial role for O-O bond cleavage [51], the O-O bond is prone to cleave with the lowest 

dissociating energy barrier at low oxygen coverage before OH* formation (dissociation 

mechanism), whereas a high oxygen coverage induces O-O bond cleavage with a higher energy 

barrier thus favoring the formation of OOH* intermediate (association pathway). 

Damjanovic et al. [52] proposed a model which is mostly used for evaluation of ORR rate 

constant and identification of reactive intermediates by means of rotating ring-disk electrode 

voltammograms (Figure 2(a)). However, the actual reaction process might be even more 

complicated due to the disproportionation reaction of intermediate H2O2 (reaction XI in the Figure 

1) and equilibrium between adsorbed and dissolved H2O2 on the surface of electrode. It is taken 

into account in more general reaction kinetic model proposed by Wroblowa et al. [53], as shown 

in Figure 2(b). Ohsaka et al. [54] applied these two type of models to evaluate O2 reduction process, 

they found that the Fe in Fe-N-C catalyst plays a crucial role for four-electron process, whereas in 

the case of N-C catalyst , two-electron pathway dominate (k1 < k2). Besides, it is also believed that 

the reaction pathway is closely linked with the loading density of catalyst, where high loading 

density contributes to four-electron pathway (k1 >> k2) whilst the two-electron reduction of O2 

becomes more pronounced at low loading density [55-57]. 
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Figure 2. (a) Damjanovic and (b) Wroblowa model for ORR process. Reproduced from Ref. [54] 

 

Owing to the simultaneous presence of multiple active sites with totally different structural 

features and kinetic parameter, the ORR pathway on different active sites can be described as 

shown in Figure 3:  

(a) dual sites 2 × 2 e- model where O2 is reduced to H2O2 and H2O successively on two different 

active sites. 

(b) the single site 2 + 2 e- with reduction of O2 into H2O on the same active site. 

(c) the direct 4 e- mechanism on the single active site.  

The detailed reaction mechanism is specifically dependent on the electrode materials and pH 

used during ORR. Some researchers believed that ORR preferred to proceed through the 2 e- 

reduction pathway on metal-free carbon-based catalysts with H2O2 as production [58-61]. Jaouen 

and Dodelet revealed a direct 4e- mechanism on Fe-N-C as they observed that the H2O2 yield is 

nearly independent of the loading density and rotation speeds. The electroreduction of H2O2 shows 

a negligible contribution to the overall reaction kinetic [62]. Tylus et al [63] proposed indirect four-

electron process with different reduction pathways depended on pH of electrolyte. ORR catalyzed 

by Fe2+-N4 center proceeded through single site 2 + 2 e- mechanism without any desorption of 
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reactive intermediates in alkaline electrolyte while dual-site 2  2 e- mechanism is governed in 

acid media with concomitant Fe/FexOy nanoparticles as secondary active site for reduction of 

desorbed H2O2.  

 

Figure 3. Possible reaction pathways and active sites of performing the ORR process. (a) dual site 

2 × 2 e-, (b) single site 2 + 2 e-, and (c) single site direct 4 e- mechanism. Reproduced from Ref. 

[64]  

 

On the other hand, researchers focused on determining the rate determining step (RDS) which 

is of importance to understand the sequence of electron and proton transfer. In most cases, the 

overall ORR process rate is determined by one of the following three steps. (1) the first electron 

transfer process, (2) hydration of absorbed oxygen, and (3) the desorption of intermediates 

production. 
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A large number of theoretical simulations have mentioned that the first reduction step of 

adsorbed molecular oxygen is RDS of ORR [65-68]. For instance, Anderson’s group found that 

the first electron transfer step had the highest reaction barrier, and proton transfer was involved in 

the RDS in acid medium where the peroxyl radical, OOH(ads) was the first reduction intermediate. 

In the basic mechanism, the superoxide, O2
-(ads) is thought to be the first reduction intermediate 

without proton transfer [69, 70]. Janik and Taylor et al. suggested that electron transfer precedes 

the protonation of the adsorbed O2 molecule [71]. Differently, Goddard reported the reaction 

pathway and barriers for the oxygen reduction reaction (ORR) on platinum, and they claimed that 

OH* could be formed with aid of O* hydration and this process possessed highest barrier energy. 

It suggested that decreasing the barrier for O* hydration while providing hydrophobic condition 

for the OH and H2O formation steps is a highly efficiency strategy to improve ORR performance 

[72].  

Recently, it has also been widely approved that the absorption energy of oxygenated species 

such as O* and OH* plays a pivotal role for ORR on the surface of metal catalyst, but they are 

turned out to be difficult for experimental identification [73, 74]. The extraordinary efforts carried 

out by density functional theory (DFT) for surface process have significantly promoted the 

development of electrocatalysts field. Norskov et al. [75] introduced a detailed procedure for 

calculating free energy of intermediates as function of applied electrode potential using DFT 

calculation in the process of electrochemical reaction. They found that the adsorbed oxygen and 

hydroxyl intermediates tended to be stable at potential close to equilibrium, while the electron and 

proton transfer are not taking place. The adsorption energy of these intermediates gradually 

decreased as the increasing of potential subsequently reaction may proceed, which clarified the 

origin of the overpotential for electrochemical process. According to Sabatier principle, high 
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performance electrocatalysts for ORR should possess moderate binding energy with oxygenated 

species. If the adsorption on the electrode surface is too weak, the ORR process will be limited by 

the transformation of proton-electron transfer into adsorbed O2 or restrained by O-O bond cleavage. 

On the other hand, too strong binding force will lead to difficulties in the desorption step of OH- 

and H2O from the surface of the catalyst. The variation of absorption energy is dependent of the 

electronic structure of the electrode surface, which can be described by the coupling between the 

adsorbate valence states and the metal d-states for the transition metals [76-78]. The higher the 

energy of the d-states is, the stronger the interaction with adsorbate states is. In view of the fact 

described above, Norskov established the correlation between metal-O bond interaction and the 

position of metal d states relative to Fermi energy level [79, 80]. As a result, the regulation of 

electronic structure of electrocatalyst is believed to be a feasible way to optimize the adsorption of 

intermediates accordingly the enhancement of activity. 

 

2.2 Electrochemical evaluation of ORR 

For hydrogen-fed fuel cell, the overall chemical reaction equation can be described as follow:  

H2 + 1/2 O2 = H2O (l) 

Under standard conditions (298 K and 1 atm), the thermal energy (ΔH) for this reaction is 285.8 

kJ mol-1, and the free energy for useful work (ΔG) is 237.1 kJ mol-1. The thermal efficiency for 

ideal fuel cell can be determined to be: 

ideal = ΔG / ΔH =237.1 kJ mol-1/285.8 kJ mol-1 = 0.83 

Under actual condition, the cell thermal efficiency: A = Euseful / ΔH = 0.83 * Euseful / ΔG = 0.83 

Eactual*I / Eideal*I = 0.83 Eactual / Eideal, wherein Eideal = 1.23 V, thus A = 0.675 Eactual = 0.675 (Ecathode-

Eanode), generally, O2 can be reduced into H2O on the side of cathode with certain overpotential 
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(Eop). The equation can ultimately be converted to A = 0.67 [(Ecathode-Eop)-Eanode] with taking the 

Eop into consideration. Accordingly, the higher thermal efficiency which corresponds to maximum 

energy utilization efficiency featured by higher EORR would be achieved with lowest overpotential. 

As the Eop is closely associated with cathode electrode materials, the rational design of 

electrocatalyst with optimized overpotential is highly desired.  

 

Figure 4. Schematic diagram of typical rotating-disk electrode (RDE) testing setup in three-

electrode configuration. Reproduced from Ref. [81] 

 

In a model three-electrode cells only O2 dissolved in electrolyte reaching the electrode surface 

are participating in reduction of O2, and solubility of O2 in aqueous electrolytes is low (1.26*10-1
 

mol/L at 25 oC in 0.1M KOH). In order to control and force the mass transport of O2 in solution, 

rotating disk electrode (RDE) measurement with three electrode system is developed for the 

evaluation of electrochemical performance, as depicted in Figure 4.  

Figure 5 displays the typical ORR polarization curve for model catalyst with three-electrode 

system. The curve can be divided into three parts. In the region of kinetic control, the rate of 
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reaction is the slowest and it will gradually increase as the overpotential increases. A dramatic 

increase of current density with overpotential results in depletion of near-electrode area of O2 and 

mixed kinetic-diffusion control of the reaction at higher overpotentials. As the overpotential 

increases further, the near-electrode layer is getting completely depleted of O2, and the reaction 

rate is determined exclusively by the rate of mass transport of O2 toward electrode surface, which 

does not depend on electrode potential.  

 

Figure 5. Typical ORR polarization curve. Reproduced from Ref. [82] 

 

Hence, a well-defined current density plateau occurs in so-called diffusion-controlled zone. 

The limiting current density JL of the plateau is closely related to diffusion rate of reactant and 

electrode rotation rate. It is well known that the limiting current density increases as the rotation 

rate increases due to the enhanced mass transport of reactant by forced convection. When porous 

electrodes are used, the abundant porosity of electrode particularly for hierarchical porous 

configuration with high reactant accessibility to exposed active site is highly anticipated for 

achievement of high diffusion current density as well as ultimate availability of higher energy 

efficiency [83].  

The phenomenon is in accordance with the result that ORR tends to proceed via more efficient 
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four-electron pathway with higher catalyst loading as aforementioned [57]. Two important 

parameters, half-wave potential (E1/2) which can be read in the area of mixed kinetic-diffusion 

control and onset potential which usually is calculated by threshold current density of 0.1 mA / 

cm2 [84], can be used as indicators for evaluation of electrochemical activity. The more positive 

these values are, the more active are the catalysts. The kinetic current density (jk) is another vital 

criterion for evaluation of electrocatalyst, which can be obtained by polarization curves with mass-

transport correction through Levich-Koutechky (K-L) equation as follow: 

 

1

j
=  

1

jL
+ 

1

jK
=  

1

0.62nFC0(D0)2/3 v−1/6w1/2 +  
1

nFkC0
        (1) 

 

Where j is measured current density and jL refers to diffusion limited current density. It is noting 

that the measured current density should be corrected by elimination of background contribution 

to exclude interference of capacitive current density especially for porous carbon materials with 

high specific surface area; ω represents the angular velocity, n is the number of transfer electron, 

C0 is oxygen bulk concentration, D0 is diffusion coefficient of O2 in electrolyte, υ is the kinematic 

viscosity of the electrolyte, and k signifies the electron-transfer rate constant. The jK value is 

usually compared at a the same relatively high applied potential (i.e. 0.9 V vs. RHE for Pt -based 

catalyst) depending on different electrode materials due to the smaller inaccuracy of mass-transport 

[85]. Besides, the electron transfer number n for ORR process can also be calculated directly from 

K-L equation. At a certain overpotential  = E - Eeq, the overall current density for a certain reaction 

step can be expressed as follows [21]: 

 

j =  jf + jb =  j0[CO/CO
∗ exp(−αf) − CR/CR

∗ exp((1 − α)f)     (2) 

 

Where jf is forward current density for a certain chemical reaction, jb is backward current density, 
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j0 is exchange current density derived from equilibrium potential, f is defined as F/RT, α is the 

transfer coefficient, Co* and CR* are bulk oxygen concentration for oxidized and reduced species 

respectively, Co and CR are the counterparts for surface oxygen concentration. In kinetic controlled 

region, the O2 concentration differences from bulk and surface of solution are negligible (Co* = 

Co, CR* = CR). Thus, the equation can be simplified as well-known Butler-Volmer equation:  

 

j =  j0[exp(−αf) − exp((1 − α)f)]    (3) 

 

The equation implies that the higher the exchange current density (j0), the more accelerated 

reaction kinetic. Furthermore, the above equation can be converted into two parts due to the 

irreversibility of ORR at higher overpotential ( > 50 mA) under the operation condition: 

 

ja =  j0exp (
αanFa

RT
)          (4) 

 

jc = − j0exp (−
αcnFc

RT
)       (5) 

 

Where ja and jc signify current density of anode and cathode respectively, and correspond 

semilogarithmic forms: 

 


a

=  
RT

nFαa
ln j −  

RT

nFαa
ln j0 = b ln j − a     (6) 

 


c

=  
RT

nFαc
ln j0 −  

RT

nFαa
ln j = a − bln j      (7) 

 

b refers to Tafel slope, one of the most important reaction mechanism descriptors. Tafel slopes are 

typically found at 60 mV dec-1 or 120 mV dec-1 in acidic media, while 40 mV dec-1 and 120 mV 

dec-1 is reported in basic media.  

The change of Tafel slopes is thought to be potential-dependent. The different Tafel slope in 
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high potential (40 vs. 60 mV dec-1) for distinct electrolyte is associated to different elementary 

reaction step which depends on applied potential. The same Tafel slope in low potential (120 mV 

dec-1) which is independent on pH suggests that first-electron reduction of oxygen is rate 

determining step which means the subsequent O-O bond breaking and reduction become facile 

[86-89].  

To obtain the deeper understanding of kinetic mechanism, rotating ring-disk electrode (RRDE) 

system is established as depicted in Figure 6. In this configuration, O2 reduction reaction proceeds 

on the disk electrode and its intermediate products (H2O2 or HO2
-) are oxidized on ring electrode. 

The transportation efficiency of intermediate products from disk to ring electrode can be 

quantitatively described by collection efficiency N, which is the ratio of an amount of an 

intermediate detected on ring electrode to the amount formed on disk electrode. Generally, N is 

determined in a control experiment with standard reversible redox couple, for example [Fe(CN)6
3-

/Fe(CN)6
4-] solution. The potential window for ring electrode can be set between diffusion-limiting 

value for the oxidation of intermediates and onset potential for oxidization of H2O or OH- to O2. 

Therefore, the yield of intermediate products and electron transfer number during ORR are 

calculated by recording ring and disk current density according to followed equations [90, 91] 

 

XHO2
− =  

2 jR/ N

jD+ jR/N
     (8) 

 

ne− =  
4 jD

jD+ jR/N
      (9) 

 

Where jR is ring electrode current density, jD is disk electrode current density, and N is collection 

efficiency.  
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Figure 6. Schematic diagram of rotating ring-disk electrode system. Reproduced from Ref. [81] 

 

The pH-dependence of ORR activity is also elucidated taking precious metal Pt as the 

reference system. More insight regarding pH-dependence behaviors for Fe-N-C can also be 

derived on the basis of Pt metal which will be stated in detail after. The ORR process is complicated 

not only because of multiple electron and proton transport steps and its competitive reaction 

involving in two-electron and four-electron pathway, but also due to its different reaction 

mechanism under various pH conditions [92]. The fundamental understanding of ORR 

performance gap between acid and alkaline media is of paramount importance for design of high 

performance electrocatalysts.  

Mukerjee et al. [93] found that higher intermediate product yield is obtained at 0.1 M NaOH 

than that at 0.1 M HClO4 solution and the byproduct continues to increase as the improved 

concentration of NaOH electrolyte (Figure 7b and c), The consistence between Pt-OH formation 
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arising from specifically absorbed hydroxide anion as seen from CV curves (Figure 7a) and the 

sharp increase in ring current (i.e. yield of an intermediate of ORR) in alkaline media demonstrated 

the interaction between O2 molecule and hydroxyl species on the electrode surface. Subsequently, 

the mechanistic origin for the so-called kinetic facility of ORR in alkaline media for Pt 

electrocatalysts are investigated from the perspectives of the changes in the double-layer structure 

and the reaction mechanisms [94, 95]. As shown in Figure 7d, in acidic media, the chemisorbed 

O2 molecules (with either nondissociatively or dissociatively absorbed), solvent water dipoles and 

specifically adsorbed hydroxyl species constitute Inner-Helmholtz Plane (IHP), while the H3O
+ 

ion and solvated O2 populate Outer-Helmholtz Plane (OHP). The direct or series 4e- reaction 

predominantly proceeds by reduction of adsorbed O2 at IHP by a proton transfer from OHP to IHP, 

so-called inner sphere electron transfer (ISET), resulting in water as dominating products without 

desorption of intermediates. In the case of alkaline media, water molecules play double role of 

solvent and source of proton required for ORR. The constituents in IHP differ appreciably from 

those in acid media, where the specifically adsorbed hydroxyl species (mainly stem from 

adsorption of OH- anion), solvent water dipoles and adsorbed O2 serve as IHP while solvated O2 

molecule, alkali metal ion populate OHP. The ORR takes place via both ISET and outer-sphere 

electron transfer (OSET) with water as proton source instead of H3O
+. For OSET mechanism, 

solvated molecular O2 weakly interacts with adsorbed hydroxyl species to promote a 2 e- reaction 

pathway to HO2
- anion as a reaction product which desorbs from the surface of catalyst. Therefore, 

the slower kinetic and higher H2O2 yield are ascribed to the contribution of OSET. 
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Figure 7. Comparison of electrochemical characteristics of BASF-ETEK 30% Pt/C in 0.1 M 

HClO4, 0.1 M NaOH, and 1.0 M NaOH electrolytes. (a) CV in argon-saturated electrolytes, (b, c) 

Ring currents measured during ORR study at 900 rpm in O2-saturated electrolytes. Insets in (b, c) 

show the corresponding ORR polarization curves at 900 rpm. Scan rate: 20 mV/s. ERing = 1.1 V 

versus RHE in 0.1 M NaOH and 1.3 V versus RHE in 0.1 M HClO4. Catalyst loading: 15 μg Pt/cm2 

on 5.61mm Glassy Carbon disk electrode. Adapted from Ref. [93], (d) Schematic illustration of 

the double-layer structure during ORR in acidic (left) and alkaline (right) conditions. Reproduced 

from Ref. [94] 

 

3. Outline of Fe-N-C  

It is generally believed that FeNx sites are active for four-electron ORR process [96]. For 

instance, Ohsaka et al. [97] reported the introduction of Fe led to a larger increase in the rate 

constant of four-electron reduction than that of two-electron process. Furthermore, they estimated 

the rate constant k1, k2, k3 of ORR corresponding to the four-electron direct reduction of O2 to H2O, 

the two-electron reduction of O2 to H2O2 and two-electron reduction of H2O2 to H2O respectively 

(see Figure 2). They claimed that only two-electron active site existed in the case of N-C while the 

FeNx played a crucial role in making the four-electron active site (k1 >> k2) as well as it may 

catalyze the H2O2 reduction to H2O, resulting in the enhanced ORR performance [54]. 

Artyushkova et al. [64] analyzed more than 45 Fe-N-C electrocatalysts and proposed that pyrrolic 

nitrogen acted as a site for partial O2 reduction to H2O2 and pyridinic nitrogen displayed catalytic 

activity in reducing H2O2 to H2O, whereas Fe coordinated to N (FeNx) serves as an active site for 

four-electron direct reduction of O2 to H2O. The indispensable role of efficient four-electron 

transfer process for FeNx was confirmed by Gewirth et al. [98] who demonstrated that in the 

absence of Fe the carbon and nitrogen site in the catalyst exhibited a larger overpotential and lower 

selectivity for the four-electron reduction of oxygen in both acidic and alkaline conditions.  
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Choi et al. [99] elucidated the reaction mechanism of Fe-N-C with several underlying active 

sites in acid media as depicted in Figure 8 and demonstrated that FeNxCy moieties and Fe@N-C 

(Fe nanoparticles encapsulated into carbon layer) species were moderately active toward reduction 

of H2O2, proving their possible roles in both direct (major path) and indirect four-electron ORR 

pathways. In the latter, the released H2O2 was further reduced in another site (FeNxNy and Fe@N-

C), while electrolyte-exposed Fe nanoparticles and N-doped carbon are inactive toward peroxides 

reduction reaction (PRR). 

 

 
 

Figure 8. ORR mechanisms on Fe-N-C catalyst in acid medium. The site S1 is FeNxCy moieties 

or Fe@N-C. FeNxCy mostly catalyzes direct 4 e- ORR, along with a minor fraction of H2O2. 

Fe@N-C produces higher fraction of H2O2 in comparison to FeNxCy. The released H2O2 is then 

reduced to H2O on site S2, either FeNxCy or Fe@N-C. Surface-exposed Fe particles and N groups 

without subsurface Fe are PRR inactive. Reproduced from Ref. [99] 
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Similar to Pt/C catalyst, the Fe-N-C also presents distinct pH-dependence. However, 

contrary to the behavior of Pt/C, the apparent ORR activity of Fe-N-C is much higher with lower 

H2O2 yield in alkaline media than those in acidic condition [93, 100, 101]. The improved 

performance in basic media can be rationalized by variation of adsorption strength of reactant 

and intermediate. For Pt/C catalyst in alkaline media, the specifically adsorbed OH- on the IHP 

act as a bridge for OSET as well as site blockage for ISET which leads to slower reaction kinetic 

and larger yield of 2 e- products. On the contrary, the adsorbed OH- on the IHP of Fe-N-C is not 

stable and easily replaced by molecular O2. As such OSET is inhibited on the Fe-N-C, ensuring 

predominant 4 e- reduction of O2 in the alkaline medium [102]. Meanwhile, hydrogen peroxide 

intermediates HO2
-, which is a Lewis basic, can be stably adsorbed and immediately reduced to 

the 4 e- product on Fe2+ active site (Lewis acid sites) via the formation of stabilized acid–base 

adducts. On the other hand, the neutral intermediate H2O2 negates its Lewis basic property and 

undermines its stabilization on Fe2+, ultimately facilitating the 2 e- process and enhanced H2O2 

yield [95, 103]. There is another hypothesis that the protonation of doped nitrogen atom in Fe-N-

C hinders the charge delocalization and thus degrades its electrocatalytic activity in acid media 

[104]. Rauf et al. [105] proposed that the protonation of pyridinic N would greatly decrease the 

charge density (Lewis basicity) of adjacent carbon atoms thus reducing the affinity to O2 and 

ORR activity in acidic media. If FeNx active sites were concerned, the electron density of Fe-

center also would be reduced significantly due to the low basicity of adjacent carbon, which result 

in negative shift of Fe2+/Fe3+ redox potential and decreased ORR activity.  

Herranz et al. [106] demonstrated that protonation of basic N-group and subsequent anion 

binding resulted in a decreased turnover frequency of FeN4 sites for the ORR as shown in Figure 

9a. Pyridinic nitrogen is possible candidate for basic-N group since pyridine has a low of pKa of 
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5.2. However, the FeN4 site was assumed to possess higher turnover frequency for the ORR as 

long as nearby basic N-groups were protonated but not anion bound. The result was verified that 

the ORR activity could be restored through heat treatment or acid washing of protonated catalyst 

with removal of bound anion (Figure 9b). Generally, the FeNxCy structure, Fe/FeCx@N-C, and 

N-doped carbon are all relatively active in alkaline media [107, 108]. But in acid electrolyte, the 

N-doped carbon free of Fe-based particles shows negligible activity with considerable H2O2 yield 

[99]. By introducing inorganic Fe-based compounds encased by carbon overlayer, the ORR 

activity increases sharply. These Fe-based nanoparticles play a crucial role in the electrocatalysis 

by imparting a synergistic effect on the N-doped carbon that allows stabilization of the peroxide 

intermediate and enable the full 4 e- reduction of oxygen to water [109].  

 

Figure 9. Change of the chemical state of protonable N-groups and simultaneous change of the 

turnover frequency (TOF) for the ORR of FeN4 catalytic sites when the Fe/N/C catalyst is 

shrouded by proton-conducting ionomer (a) or directly in contact with an aqueous acidic solution 

(b). In case (b), the acid-washed catalyst can be reactivated either thermally or chemically. 

Reproduced from Ref. [106] 
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4. Nature of active site for Fe-N-C 

As alternative electrode materials for Pt/C, one particular family for non-precious metal 

catalyst (NPMC) is MN4 type complex which has been extensively explored. The metal atom M 

acts as central of molecular moiety coordinated by four pyrrolic nitrogen atoms constituting 

square-planar configuration. The most studied macrocycle complexes have focused on transition-

metal phthalocyanines (M-Pcs) and metal porphyrins (M-Ps) as well as their analogues, with 

supported or without supported by various carbon substrates [110]. Although the activity has been 

significantly improved by recent studies, the lack of long-term stability required for continuous 

operation in a fuel cell still remains enormous challenge. To overcome this key issue, the catalysts 

pyrolyzed at high temperature containing these metal-macrocycle complexes or mixture of 

individual Fe inorganic precursor and N/C-containing organic molecules have been well developed 

and demonstrated enhanced durability toward fuel cell application. It appears that FeN4 or FeNx 

centers can be well preserved and act as potential active sites which are responsible for high 

activity of ORR after pyrolysis. Nevertheless, in most cases particularly for Fe-N-C catalysts 

synthesized by pyrolysis of iron precursor, N-containing precursor and C resources, the resulting 

materials typically present highly heterogeneous structure with multiple active components. To 

date, three type of active sites are proposed to exhibit considerable catalytic activity toward ORR, 

namely, N-doped carbon moiety (denoted as N-C), iron-based species encased in N-doped carbon 

(denoted as Fe@N-C), and atomically dispersed iron embedded in carbon matrix (denoted as Fe-

N-C).  

At present, it is widely believed that Fe atom acts as adsorption/desorption site of reactant O2 

or oxygenated intermediate. Thus high turnover frequency (TOF) can be obtained by adjusting the 

Fe-O binding energy [111, 112]. For instance, Kramm et al. [113] presented a simple and feasible 
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way to reduce the contribution of inorganic metal species even down to zero. Such catalyst 

revealed the desired homogeneous composition of FeN4 site in the carbon matrix accompanied by 

a significant enhancement in ORR activity, the desired FeN4 catalysts displayed onset potential of 

0.88 V and kinetic current density of 3.15 A g-1 at applied potential of 0.8 V. Zhang et al. [114] 

achieved complete atomic dispersion of FeN4 sites based on Mössbauer spectroscopy date by 

regulation of doped Fe content in the zeolitic imidazolate framework (ZIF)-8 precursor and the 

optimal Fe-N-C catalyst with highest FeN4 active sites presented exceptional activity with onset 

potential as high as 0.88 V in H2SO4 solution. Choi et al. [99] proposed that Fe-N-C moieties were 

more selective than Fe particles encapsulated in N-doped carbon toward 4 e- ORR process, and N-

doped carbon free of Fe-based specie exposed to electrolyte was inactive toward reduction of H2O2 

thus 2 e- process dominated. On the contrary, other group reported that the role played by transition 

metal Fe in the catalyst precursor was only to catalyze the formation of active site for oxygen 

reduction reaction, and itself was not the component of active site and the ORR activity is 

exclusively attributed to N-C sites [115-117]. However, a real sense of “metal-free” N-doped 

carbon derived from metal-assisted high temperature synthesis remains debated because even trace 

amount of Fe can intensely boost the ORR activity [118, 119]. A large number of works have been 

implemented and respectable ORR activity have been achieved for N-doped carbon especially in 

alkaline media [120]. In addition to aid in the formation of Fe-N-C catalytic centers [121, 122], N 

atom can also be in-situ incorporated into carbon lattice during pyrolysis in several well-known 

form, such as graphite N, pyridinic N (hexagonal ring at the edge), and pyrrolic N (five-membered 

ring at edge) with sp2 hybridized and quaternary-oxidized N. Results of DFT calculations indicate 

that the intrinsic catalytic activity and the ORR reaction mechanism depend on the triple effect: 

the charge, the spin density and the coordinate state (ligand effect) of the carbon sites [123-126].  
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Figure 10. Schematic pathway for oxygen reduction reaction on nitrogen-doped carbon materials. 

Reproduced from Ref. [127] 

 

The identification of active sites for N-C catalyst mainly focus on the type of N-containing 

functionalities. The suggested that underlying active sites for ORR are pyridinic N and graphitic 

N [116, 128-135]. Guo et al. [127] proposed reaction mechanism in the acid media on the basis of 

N-doped carbon as depicted in Figure 10. The active sites were created by pyridinic N and the 

adsorption site for O2 was the carbon atom adjacent to the pyridinic N. The subsequent ORR could 

occur through the direct 4 e- process or indirect 4 e- process. The proposal was evidenced by Xing 

et al. [136] that oxygen reduction intermediate OH (ads) remained on the carbon atoms 

neighboring pyridinic nitrogen after ORR using Synchrotron-based X-ray photoelectron 

spectroscopy analyses. Although N-doped carbon materials have been proposed as effective 

electrocatalysts for ORR in acid media with either 2 + 2 e- process or direct 4 e- pathway [127], 

still they displays moderate catalytic activity as well as high H2O2 yield up to 30 % [129, 137]. To 

address this issue, metallic Fe or FeCx species wrapped by graphitic carbon or N-doped carbon 

overlayer are proposed, which result in dramatically increase in activity, four-electron selectivity 

as well as durability in both acidic and basic electrolyte [138-141]. For example, Wen et al. [142] 
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reported nitrogen-enriched core-shell structured catalyst with iron-based composite (Fe/Fe3C) 

nanorod as the core and graphite carbon as the shell (N-Fe/Fe3C@C).  Such catalyst exhibited a 

kinetic current density of 26.89 mA cm-2 at 0 V which is almost twice higher than that of the Pt/C 

catalysts (14.20 mA cm-2) in neutral phosphate buffer solution. Strickland et al. [109] prepared 

Fe@N-C catalyst devoid of any direct metal-nitrogen coordination with Fe/FexC surrounded by 

graphitic layers as shown in Figure 11. The resulting FePhen@MOF-ArNH3 provided 40 mV and 

90 mV improvements in terms of onset potential and half wave potentials respectively as well as 

one order of magnitude lower H2O2 yield compared to pristine Basolite-ArNH3 without metal 

loading in acid media. They claimed that the presence of the subsurface Fe/FexC was able to 

stabilize the peroxide intermediate on the active site thus promoted the selectivity toward the 4 e- 

ORR pathway. Meanwhile, the reaction occurred primarily on the carbon-nitrogen structure in the 

outer skin of the nitrided carbon fibres and Fe/FexC itself is not directly involved in the oxygen 

reduction pathway. Similar conclusion has also been proposed by Mukerjee’s group [111]. Due to 

specific core-shell configuration, almost no significant performance loss was observed after 10000 

potential cycles which might potential cycles which might be attribute to potential elimination of 

any Fenton-type process involving exposed iron ions culminating in peroxide initiated free-radical 

formation.  
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Figure 11. (a) X-ray diffraction pattern of FePhen@MOF-ArNH3 and Basolite-ArNH3. (b) 

Diffraction patterns of iron, iron carbide and iron nitrides. (c) SEM image of Basolite-ArNH3. 

Scale bar, 2 μm. Inset TEM image of amorphous carbon. Scale bar, 100 nm. (d) SEM image of 

FePhen@MOF-ArNH3. Scale bar, 2 μm. Inset TEM image of bamboo-jointed CNT. Scale bar, 

100 nm. (e) HR-TEM image of iron encapsulated in bamboo joints of CNT in FePhen@MOF-

ArNH3. Scale bar, 10 nm. (f) HR-TEM image of Fe/FexC nanoparticle surrounded by graphite 

layers. Scale bar, 5 nm. (g) 57 Fe Mössbauer spectrum of FePhen@MOF-ArNH3 measured at room 

temperature. Reproduced from Ref. [109] 

 

Apart from the pivotal role of coated iron-based species on N-doped carbon toward 

enhancement of ORR activity, it is also widely reported that these inorganic iron-based species 

sharply increase the ORR activity of Fe-N-C active sites [107, 143-146]. For example, Jiang et al. 

[147] developed a highly active Fe‐N‐C ORR catalyst containing FeNx coordination sites and 
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Fe/Fe3C nanocrystals (Fe@C‐FeNC) and revealed that the interaction between metallic iron and 

Fe‐N4 coordination structure favored the adsorption of oxygen molecule thus the superior catalytic 

activity of Fe@C‐FeNC could be attributed to the Fe‐Nx sites promoted by neighboring Fe/Fe3C 

nanoparticles. Nevertheless, Kramm et al. [148] argued that an excessive iron-carbide formation 

led to disintegration of FeN4-centers, hence limiting the number of ORR active sites on the final 

catalyst which in turn decreased the ORR activity. Similar results were also reported by other 

research groups suggesting that FeNxCy active sites possessed more superior catalytic activity and 

durability toward ORR than Fe@N-C sites in completely identical synthetic condition or the same 

system [114]. Specifically, Song et al. [112] revealed that activity order of different active sites of 

Fe-N-C in both acid and basic media combined with experimental and theoretical calcination 

follows: Fe-N4/2-C > Fe4-N-C > N-C >> Fe4-C > C.  

Kumar et al. [149] made a comparison on activity after 1000 startup/shutdown cycles in fuel 

cell test between FeNxCy and Fe@N-C, and they found most of the metal-NC catalysts initially 

comprising MNxCy sites showed measurable ORR activity at 0.8 V, while those initially 

comprising M@N-C particles did not. The distinct  contribution of activity for iron-based particles 

could be explained since the reactivity of M@N-C species varied with the thickness of the N-

doped carbon shells surrounding the metal core, and this thickness may depend on different 

preparation routes and/or using different precursors [150, 151].  

Although extensive efforts have pointed out the indispensable role of FeNxCy site toward 

ORR process [152], the exact structure of FeNxCy moiety required for high catalytic activity of 

ORR has been debated. Meanwhile, the underlying reaction mechanism of FeNxCy catalyst toward 

ORR also remains elusive. For most pyrolyzed catalysts derived from macrocycle phthalocyanine 

(FePc) or Fe porphyrin analogs, the coordination structure has been confirmed to be Fe-N4 with 
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pyrrolic-N atom surrounded, which typically inherit their parent macrocycle features. The ligands 

centered on Fe are partially destructed and only part of these Fe-N4 sites could be responsible for 

the ORR activity [153]. On the other hand, the synthesized catalysts by high temperature pyrolysis 

for individual Fe precursor, nitrogen and/or carbon organic molecules exhibit highly diverse 

coordination configuration with possible one- to six-coordinated nitrogen as well as variety of N-

doped (pyridinic N and pyrrolic N) on the basis of experimental or theoretical findings [154-161]. 

Li et al. [162] prepared a series of Fe-N-C catalysts with controllable FeNx (x = 1,3,5) active sites 

by tuning pyrolysis temperature and revealed that the ORR activity and PEMFC performance 

follow the order FeN4 > FeN3 > FeN1. Combined with theoretic calculations, they found that the 

FeN4 is proved to have lowest formation energy among the types of FeNx (x = 1-5). Lefevre and 

Dodelet [163, 164] reported simultaneous presence of FeN2 and FeN4 sites in Fe-based catalysts 

prepared from two iron precursors (Fe acetate or Fe porphyrin) adsorbed on a synthetic carbon. 

The synthesis consists of the pyrolysis of perylene tetracarboxylic dianhydride (PTCDA) in a 

reduction atmosphere, and the relative abundance of FeN2 sites is dependent of used Fe precursor 

and pyrolysis temperature, the obtained FeN2/C is more electrocatalytically active than FeN4/C.  

To date, the atomically dispersed Fe center surrounded by four nitrogen atoms have been 

unambiguous identified using advanced spectrum technology such as Mossbauer spectroscopy, X-

ray absorption spectroscopy (XAS) and high-resolution aberration correction electron microscope 

to achieve image with atom size below 0.1 nm [111, 153, 165]. Duang’ group [166] reported the 

direct visualization of NiN4, FeN4, CoN4 coordination moieties as depicted in Figure 12 (a-e), 

Deng et al. [167] revealed atomic structure of FeN4 center in graphene by combining high-angle 

annular dark-field scanning transmission electron microscopy (HAADF-STEM) coupled with 

electron energy loss (EEL) spectra around with Fe atom and low temperature scanning tunneling 
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microscopy (Figure 12 (f-h)).  

 

Figure 12. (a-e) Atomic structure characterizations of M-NHGFs by annular dark-field STEM. (f) 

High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image. 

(g) the electron energy loss spectroscopy (EELS) atomic spectra of elemental Fe and N from the 

bright dots. (h) Low temperature scanning tunneling microscopy (LS-STM) image of FeN4/GN. 

Reproduced from Ref. [166, 167] 

 

These advanced characteristic techniques especially for recently emerging in-situ X-ray 

absorption and Mossbauer spectroscopy under reaction condition provide a powerful support for 

deeper insights on electronic and geometry of FeN4 moiety and evolution of active sites at applied 

potential toward ORR which facilitate the understanding of activity origin on Fe-N-C catalyst. 

[168, 169]. These results, combined with DFT calculation, allow to suggest two commonly 
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accepted structures of active FeNxCy moieties: a metal ion coordinated by four pyridinic N, either 

occupying two-carbon-atom in-plane defect (MN4C10) [166, 170-172] or localized at armchair 

edges bridging two graphene sheets [MN2+2C4+4] [173, 174] as shown in Figure 13 (a-b).  For 

example, Liu et al. [175] employed the first-principle density functional theory calculations to 

predict activation energy for O-O bond breaking and free-energy evolution as a function of 

electrode potential of ORR on three FeN4-type active sites with different local carbon structures. 

It is found that the FeN4 site surrounded by eight carbon atoms (FeN2+2C8) at the edge of 

micropores has the lowest activation energy for O-O bond breaking for promoting a direct four-

electron ORR. Another MNxCy moiety typically is embedded in amorphous carbon with large 

number of five-membered carbon rings where M center is coordinated with pyrrolic N (Figure 13 

(c-d)) [36, 176, 177], which could often be achieved by ZIF-based materials or as a derivation of 

FePc and Fe-porphyrins. It appears to be reasonable that porphyrin-type Fe moiety presents higher 

ORR activity with respect to pyridinic-typed Fe moiety due to the positive correlation between 

disorder of the carbon matrix and ORR reactivity.  

Very recently, Zhang et al. [178] reported that the high-purity pyrrole-type FeN4 catalyst 

exhibited more superior ORR activity with an ultrahigh active area current density of 6.89 mA m-

2 in acid medium than that of pyridine-type FeN4 site. By removing additional carbon atoms by 

ammonia treatment, pyrrole-type FeN4 sites could be successfully achieved via chemical 

configuration transformation from pyridine nitrogen to pyrrole nitrogen as schematic illustrated in 

Figure 13e.  
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Figure 13. Proposed active site structures for Fe-centered moieties. (a) Pyridinic in-plane FeN4C10 

moiety, (b) pyridinic armchair edge FeN2+2C4+4 moiety, (c) porphyrinic in-plane FeN4C12 moiety, 

(d) porphyrin zig-zag edge FeN2+2C12 moiety, (e) schematic illustration of preparation of high-

purity pyrrolic-type FeN4 site. Reproduced from Ref. [178, 179] 

 

On the basis of Mössbauer spectrum results, some researchers propose there are typically 

three types of FeN4 active sites coexisting in the Fe-N-C which may be responsible for high 

intrinsic ORR activity. They can be assigned to D1 (ferrous low-spin Fe2+-N4), D2 (ferrous 

intermediate spin Fe2+-N4 like FePc) and D3 (high spin Fe2+N2+2/C featuring a composite structure 

with a protonated basic nitrogen) respectively [168, 180]. It is widely accepted that D1 is 

predominant active site for high catalytic activity [167-169]. However, the exact FeN4 structure 

has been debated due to the limitation of Mossbauer spectroscopy. For example, similar Mossbauer 
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parameter for the D1 doublet could be observed for iron oxide nanoparticle or high-spin Ox-Fe3+-

N4 site in room-temperature (RT) [119, 181, 182]. Zitol et al. [183] proposed two porphyrin-type 

architectures of FeN4C12 moieties with two different O2 adsorption configurations (the Fe atom is 

hexa- or penta-coordinated with 5th and/or 6th axial oxygen ligand), on the basis of ex situ X-ray 

absorption spectroscopy (XAS) analysis and DFT calculation, the obtained structure would 

preferentially generate via bridging two graphene sheets with zigzag edges. This viewpoint is 

further verified by other researchers [184], who suggested that doublet D1 could be assigned to 

Fe(III)N4C12 moieties in high-spin state and the doublet D2 is attributed to Fe(II)N4C10 moieties 

in low and medium spin. Recently, it has been reported that nature of D1 active site with high spin 

Ox-Fe3+N4 feature is severely altered by the variation of applied potential or during durability 

measurement [171]. Xiao et al. [185] claimed that high spin Fe3+-N4 configuration would convert 

to Fe2+-N4 at low potential, and the in-situ reduced Fe2+-N4 moiety can be responsible for high 

activity due to its high TOF value of ca.1.71 e s-1 site-1. Li et al. [186] revealed that both sites 

initially contributed to the ORR activity but only D2 (Fe(II)N4C10) significantly contributes 

activity after 50 h of operation in fuel cell. The transformation of D1 (Fe(III)N4C12) into iron oxides 

ultimately results in loss of activity . Mukerjee’s group has made great efforts on the switching 

behavior of nature of active sites in Fe-N-C electrocatalysts under reaction condition by using 

advanced in-situ techniques [111, 119, 187]. Three important conclusions can be elucidated from 

their findings:  

(1) the Fe2+-sites are poisoned by the *OH from water activation above the redox potential as 

following equation: Fe2+-N4 + H2O ↔ OHads-Fe3+-N4 + H+ + e-. 

(2) at Fe3+/Fe2+ redox transition potential, Fe3+-N4 can be reduced through redox mechanism 

described by Beck and Zagal [89, 188]: Fe3+-OHads + H+ + e- ↔ Fe2+ + H2O (1); Fe2+ + O2 + H+ + 
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e- → Fe3+-OOHads. 

(3) D1 active site (high spin Fe3+-N4) at low potential (below Fe2+/3+ redox potential) is composed 

of a distorted Fe2+-N4 moiety embedded in amorphous carbon matrix characterized with out-of-

plane Fe displacement. The central Fe ion moves back toward the plane upon the adsorption of 

oxygen specie in the axial position at high potential, the switching behavior is opposite as those in 

D2 active site (typical catalyst with FePc-like square order structure).  

The easier escape of absorbed OH species on in-plane distorted Fe3+-N4 site induced by 

reduction at low potential, longer Fe-N distance as well as enriched charge of Fe center on out-

plane Fe2+-N4 site results in higher Fe2+/Fe3+ redox potential, stronger O2 absorption and adjusted 

oxygenated intermediate binding energy. This factor leads to higher ORR activity of D1 active site 

than that of D2 site, which is also well explained that the carbonization is critical for Fe-based 

catalysts compared to that of original Fe-N4 macrocycle [189]. On the basis of these findings, site-

blocking effect resulted from water activation is proposed as crucial consideration of apparent 

activity, and intrinsic activity could be significantly improved by increasing the Fe3+/Fe2+ redox 

transition potential [190, 191].  

As previously mentioned, catalytic kinetic occurring on a wide range of electrode materials 

is governed by d-electron density of Fe center because the alteration of d-electron density greatly 

affects the -type bonding between Fe center and molecular O2 orbital or oxygenated intermediate. 

The onset potential is accordance with Fe3+/Fe2+ redox transition mechanism aforementioned [192-

194]. In the early study, the ORR activity is considered to be positively correlated to electron 

density of Fe center. For instance, Kramm et al. [195] suggested a relationship between the electron 

density of the FeN4 center and the catalytic activity. They found that electron transfer occurred 

from coordinated N atom to Fe metal in the FeN4 site induced by the pyrolysis of the FeTMPPCl 
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under higher temperatures, while an increase in electron density of the iron center enables an 

improvement in the turnover frequency during ORR. Likewise, Rauf et al. [105] proposed the 

protonation of pyridinic N in acidic media decreased the electron density of Fe center, which result 

in loss of ORR activity due to the weak affinity of O2 toward Fe center of lower charge density. 

Nevertheless, there are growing consensus that the lower charge density of Fe center is crucial for 

the achievement of high ORR catalytic activity [196]. It is well known that the d-electron density 

of Fe center can be readily regulated by the surrounding π-conjugated ligand with various 

donating- or withdrawing-electron properties. For example, Seo et al. [197] reported FePc 

modified with electron donating diphenylphenthioether substituent presented lower catalytic 

activity than pristine FePc. Lower activity was attributed to stronger bonding of oxygen 

intermediate due to the enhance d-electron density imparted by enriched electron 

diphenylphenthioether ligand. Ramaswamy et al. [95] relocated the Fe-N4 active site from a π-

electron rich macrocyclic ligand environment to a relatively π-electron deficient graphitic carbon 

environment by pyrolysis of iron(III) meso-tetraphenylporphine chloride (FeTPPCl). The electron-

withdrawing character of electron deficient graphitic carbon resulted in decreased electron density 

at the Fe center and downshift of the eg-orbital away from Fermi-level, thus optimizing the 

adsorption strength of ORR intermediate and leading to higher turnover number. To further verify 

this proposal, they took advantage of stronger electron-withdrawing character of highly disordered 

graphitic carbon (ketjen EC600JD) acting as support. As expected, the TOF of as-prepared catalyst 

was significantly enhanced from ∼10 s−1 site−1 to ∼30 s−1 site−1 in alkaline media as a consequence 

of lower electron density of Fe center. On the other hand, the decreased charge density of Fe center 

positively shifts Fe3+/Fe2+ redox transition potential, which finally lead to higher onset potential. 

Overall, these experimental and theoretical findings demonstrate that ORR catalytic activity of Fe-
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N-C catalyst can be well modulated by changing the d-electron density of Fe center in the FeN4 

coordination configuration.  

The preferential location of FeNxCy active site would explicitly offer useful guidance for 

rational design of ORR catalysts with more exposed active sites. It has been recognized that the 

enhanced microporosity could extremely facilitate improvement of ORR activity due to the larger 

number of accessible active sites exposed in open electrochemical system [7, 198]. Actually, the 

location of single atom Fe active sites strongly depends on the nature of FeNxCy. Mineva et al. 

[199] proposed that D1 site (porphyrin-type O-Fe3+-N4C12) corresponds to surface-exposed sites 

while D2 (pyridinic type Fe2+-N4C10) is bulk site that is inaccessible to O2. This result suggests D1 

site is probably located in micropore while D2 site is specifically located in in-plane of graphitic 

carbon. Similar conclusion is also made by Primbs et al. [200] that high spin Fe sites D1 are present 

in micropore and medium spin D2 are preferentially in mesopores. Concomitantly, there will be 

extra issue that the enriched defect Fe-N-C site is located at in-plane with divacancy substitution 

[166, 172] or on the edge of micropore/graphene sheet as well as slit between two graphene sheets 

[183, 201, 202] as depicted in Figure 14(a-b).  
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Figure 14. (a) Schematic representation of the transition metal-containing nitrogen defects in 

graphene sheet (Fe-Nx) and other possible defects that may have catalytic activity in ORR and its 

component reactions. (b) Illustration of potential active species and how position within the 

graphitic structure affects reactant access. Active species on the edges of graphitic planes are 

accessible without respect to the number of graphitic layers. Active species within the graphitic 

plane are accessible only on exterior planes. (c) The schematic illustration and transmission 

electron microscopy of (TEM) images of morphological evolution for Fe-N4-Cx samples when 

varying the amount of reactant FeCl3. Reproduced from Ref. [203-205]. 

 

It is clear that the electrochemical accessible active site number of FeN4 moiety will 

significantly increase with the decrease of average graphene sheet numbers if majority of FeN4 

moiety are located at in-plane of graphene sheet. Workman et al. [204] found that sample with 
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fewer graphitic layers exhibited increased kinetic performance in fuel cell test and this trend was 

consistent with the dominant active specie residing within the graphitic plane. For those FeN4 

moieties preferentially located at edge of micropore or graphene sheet, it is not closely linked with 

number of vertically stacked graphene sheets. On the contrary, increasing the edge site of graphene 

sheet or porosity with abundant edge in the lateral of graphene will play crucial role in the 

enhancement of catalytic activity. For instance, Jiang et al. [206] constructed hierarchical porous 

carbon structure by porosity engineering which transform local coordination of pyridinic-N like 

into edge -hosted Fe-N4 moieties by selective C-N bond cleavage nearby Fe center. These sites 

demonstrated higher activity and long-term durability arising from the lower overall ORR barrier 

compared to intact atomic configuration. Likewise, Wang et al. [205] fabricated structurally 

controllable Fe-N4-C with adjustable quantity of hole equipped with different extent of edge site 

by simply varying the initial dosage of FeCl3 precursor through two-step pyrolysis process 

followed by an acid leaching with in situ pore formed (Figure 14c). As a result, the ORR 

performance strongly depends on the concentration of edge site Fe-N4-C moiety and the higher 

amount of edge sites at a proper range is revealed to be more conducive of improvement of ORR 

catalytic activity. It is in accordance with density functional theory calculations that local 

electronic redistribution and bandgap shrinkage for edge-rich N-modified Fe endow it with a lower 

free-energy barrier toward direct four-electron ORR. 

 

5. Material design on Fe-N-C 

5.1 The formation mechanism of Fe-N-C 

Generally, there are two requirements needed for improvement of Fe-N-C electrocatalyst 

performance: (1) the high density of active sites; (2) high intrinsic activity (or high TOF) of single 
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active site [207]. Currently most of developed synthesis strategies primarily rely on trial and error 

approach to screen desired N, C and metal precursor or optimal pyrolysis temperature for 

maximization of catalytic activity [208]. Hence, the most institutive manner for achieving high 

activity catalyst is to increase the metal loading, while it is challenging to achieve high metal 

loading catalysts via traditional high temperature pyrolysis method due to unavoidable aggregation 

of ion species. The underlying mechanism for competitive formation of atomically FeNx site and 

bulk Fe-based species is required to be unraveled prior to rational design of electrocatalyst.  

Li et al. [209] studied that chemical transformation state from Fe precursor to exclusively 

ORR-active Fe-N4 site by the use of in-situ X-ray absorption spectroscopy as schematically 

illustrated in Figure 15. The iron precursor is firstly transformed into Fe oxide below 300 oC, then 

to tetrahedral Fe(II)-O4 between 300 oC and 600 oC by means of crystal-like melt transformation, 

finally Fe atom released by tetrahedral Fe(II)-O4 above 600 oC was trapped into N-modified carbon 

defect in the “non-contact pyrolysis” manner, leading to the formation of Fe-N4 sites by gas phase 

diffusion. The formation mechanism was further verified by the use of Fe precursor with no 

physical contact with N and C resources during pyrolysis and as expected, Fe-N4 site was 

successfully achieved. Moreover, the proposed “non-contact pyrolysis” mechanism has recently 

been extended to other preparation strategy induced by chemical vapour deposition method [210]. 

It appears that there are some similarities of these fabrication strategies with bulk metal emitting 

and trapping of atoms during high temperature pyrolysis developed by Li and Wu’s research 

groups [211-215], albeit there are no report yet on the direct synthesis of FeN4 site from bulk Fe-

based specie. Overall, the synthesis methodology described above can be unified as “Top-down 

synthesis” which offers a deeper-level understanding for formation mechanism of atomically 

dispersed Fe site under high temperature pyrolysis and serves as guidance for preparation of 
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effective ORR catalysts. 

 

Figure 15. FT-EXAFS spectra of FeCl2·4H2O mixed with SiO2 collected with (A) temperature 

increasing from room temperature to 1000 ℃ together with and (B) cooling down to room 

temperature. (C) Schematic illustration of the common pathway up to 600 °C of the thermal 

evolution of iron compounds during pyrolysis, and then diverging pathways at T ≥ 600°C 

depending on the absence or presence of N-C defects. Note the FeN4 configuration in the edge of 

two carbon planes displayed is only a representative case for illustration, without excluding other 

possible structures. Reproduced from Ref. [209] 

 

Recently, considerable efforts have been devoted to development of Fe-N-C catalyst without 

agglomeration of Fe atoms during pyrolysis. Preliminary studies mainly pay attention to ball 

milling approach to disperse the iron atoms in carbon precursors [167, 216, 217]. On the basis of 

various design principles, wherein the synthetic protocols can be typically classified into protective 
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atmosphere synthesis, sacrificial template method, coordination design method, confinement 

effect and the non-pyrolyzed method. 

5.2 Protective atmosphere synthesis 

The protective atmosphere assisted synthesis has emerged as an effective protocol for 

preparation of Fe-N-C, aside from the most commonly used Ar/N2. A variety of protective gases 

have been employed including O2 (air) [218], CO2 [219, 220], NH3 [221, 222], H2/N2 [113], 

H2/NH3/Ar [163] etc. NH3 has been most extensively studied as a protective gas involving the 

material preparation by high temperature pyrolysis, ascribing to its underlying triple roles: (1) 

afford partial N resources based on second NH3 treatment of as-formed catalyst [223] [6, 224] or 

only N resource throughout pyrolysis procedure required to form FeNx site by coordinating with 

Fe atom [225, 226]; (2) enlarge specific surface area by creating more micropores resulted from 

NH3 etching effect. It is believed that the micropores improve ORR catalytic activity because the 

micropores can host most of active FeNx sites [227, 228]; (3) introduce more N-bearing 

functionalities which have been revealed to be active for ORR especially in alkaline media.  

5.3 Sacrificial template method 

The sacrificial template method has recently been enormously applied for synthesis of high 

active atomic level Fe site. Generally, there are dual functions being responsible for formation of 

atomically dispersed Fe site with high performance:  

(1) The pore-forming agent, it is well-known that hierarchical porous structure of carbon 

support will significantly facilitate the mass transport of reactants or electrolyte ions, thus 

improving the ORR activity. The implications of micropores have been well unveiled as a host of 

FeNx active site aforementioned. In addition to that, the mesopores or macropores can serve as 

diffusion channel between active sites and the bulk solution, thus shorten the diffusion pathway 
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and accelerate the reaction. Due to importance of pore structure, the sacrificial template method 

offers a great potential for fabrication of Fe-N-C catalysts with hierarchical pore structure by 

elimination of template in post-treatment such as acid or basic solution leaching after pyrolysis. 

 (2) Interfacial constraint effect, the hard template can typically be employed as a “rigid” 

interface where immigrate and aggregate of iron atom in high pyrolysis temperature.is restricted. 

The interface thermal stress induced by high temperature would stabilize Fe atom and eventually 

preferentially generate atomically dispersed FeNx catalytic sites incorporated in the carbon matrix. 

In traditional catalysis, such approach is usually used to prevent sintering of catalytic particles 

under high reaction temperature or harsh reaction condition [229, 230].  

5.4 Coordination design method 

Coordination site is of great importance for synthesis of Fe-N-C catalyst, which can serve as 

“paws” to absorb Fe atom or precursor preventing agglomeration during pyrolysis. Rational design 

of coordination site with N-containing function group as anchoring site to stabilize the Fe atom is 

expected to be an effective strategy for synthesis of Fe-N-C catalyst [13]. A large number of works 

have been reported based on coordination design strategy and all these as-prepared electrocatalysts 

show typically atomically dispersed FeNx site without appreciable Fe agglomeration [231, 232]. 

Metal-organic hybrid frameworks assembled from metal ions and N-containing organic complexes 

have recently emerged as most common class of precursors for synthesis of Fe-N-C catalysts. 

There are mainly following several advantages for formation of atomically dispersed Fe:  

(1) Organic linkers enriched heteroatom N bridges and isolates Fe ion in the form of complex-

metal node, ensuring atomic-level dispersion of Fe during the pyrolysis process. Besides this, 

it also can be in-situ converted into N-doped carbon framework induced by heat treatment, 

offering strong anchoring site to bind isolated Fe atom. 
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(2) The metal-organic hybrid frameworks usually have abundant micropores volume with high 

specific surface area and tunable pore size distribution, which is highly conducive of 

accommodating more isolated Fe atoms and contributing to better electrocatalytic performance. 

(3) The diversity and flexibility of organic linkers endow resulting Fe-N-C with different 

physicochemical properties after pyrolysis, thus enabling the maximum of catalytic activity. 

5.5 Spatial Confinement method  

Spatially confining single Fe atom into molecular-scale cage to prevent migration and 

agglomeration during pyrolysis has been developed as an effective strategy to prepare Fe-N-C 

catalyst. This spatial confinement method typically includes following two steps:  

(1) The guest Fe precursors in the form of either inorganic Fe salts or Fe macrocycles are 

absorbed and confined into the pore cavities of host materials with high spatial distribution and 

mononuclear dispersion, these host materials are typically porous support materials with size-

defined cavities such as MOF [233], ZIF [6, 234, 235] or porous N-doped carbon materials [236]; 

(2) Precursor ligands are removed and atomically dispersed Fe atoms are formed and 

stabilized by N atoms presented in carbon skeletons or derived from carbonization of organic 

scaffold induced by high temperature pyrolysis.  

5.6 Pyrolysis-free method 

High temperature pyrolysis involves tedious carbonization process and unpredictable Fe atom 

agglomeration. Thus, pyrolysis-free synthetic strategy is highly desirable in terms of its 

controllable coordination environment and cost-effective but challenging due to the intrinsic poor 

electrical conductivity. Directly grafting or incorporating Fe macrocycle complexes into 

conductive carbon matrix via π-π interaction and covalent functionalization are believed to be an 

effective approach to prepare atomically dispersed Fe catalyst [237-242]. In principle, this class of 
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catalyst is inspired by enzymatic process and extensively studied in the preliminary stage [243].  

 

6. Scope and outline of this thesis 

In summary, extensive efforts have been devoted to the development of highly efficient Fe-

N-C material towards ORR on both sides of mechanism and materials design. Although 

considerable progresses have been made in these fields, there are still some scientific and 

technological challenges remaining to be solved for the practical commercial application. The first 

issue is the identification of active site which is the fundamental prerequisites for the rational 

guidance in the synthesis of high active Fe-N-C. In fact, the knowledge of precise active site is 

still lacking especially for the multiple active sites existed in the Fe-N-C usually in the high Fe 

loading. The second point is the use of raw components. To date, almost all works take advantage 

of organic complex or polymer for the preparation of Fe-N-C catalyst. The exploitation of cost 

effective, non-toxic, earth-abundance feedstock with simple molecular structure is thought to be 

of great crucial for the consideration of practical application. 

In this work, small molecular carbon and nitrogen precursor (particularly inorganic ammonia 

carbonate) are applied for the preparation of Fe-N-C catalysts. The explicit and well-defined 

molecular structure of precursors afford more rational understanding of the origin of final 

product’s chemical-physical property. Electrocatalytic oxygen reduction reaction (ORR) is 

selected as target reaction and electrochemical activity and stability of as-prepared catalysts are 

evaluated by R(R)DE measurements. The roles of chemical composition at starting mixture and 

preparation conditions on nature of active site and ORR activity are systematically investigated. A 

comprehensive understanding of the structure-activity relationship on as-prepared catalyst will be 

given for the identification of ORR active sites.  
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Firstly, as described in the chapter 3, the two thermo-chemical steps in inert (Ar) and reactive 

(NH3) atmosphere are employed for the preparation of high active atomically dispersed Fe catalyst, 

using glucose as main carbon source, citric acid as chelating reagent for hosting metal ions, 

ammonia carbonate as partial nitrogen source. Potassium thiocyanate (KSCN) is additionally 

introduced to tune chemical composition of final product. It is suggested that KSCN serves as a 

structural mediator for the preferentially generation of atomically dispersed Fe sites. Post NH3 

thermo-chemical treatment for as-prepared pre-catalyst phase, plays an important role for the 

enhanced ORR activity, the enhanced electrochemical activity is associated with change of surface 

properties.  

Secondly, the chapter 4 presents the modified strategy, which is applied for the preparation 

of atomically dispersed Cl-FeN4 sites where citric acid is used as only carbon source, ammonia 

carbonate as only nitrogen source. The simultaneously entering of SiO2 and ZnCl2 is critical for 

the generation of higher density single Cl-FeN4 sites and is found to be indispensable for high 

ORR activity. On the other hand, the systematic variables such as different amount of ammonia 

carbonate and various amount of Fe loadings are also studied. As a result, the formation 

mechanism of Fe-N-C single atom catalyst based on gas-solid interface reaction is proposed and 

the real active sites are identified.  

Thirdly, in the chapter 5, an active and durable single atom Fe catalyst toward ORR over both 

alkaline and acid media is developed based on pyrolysis approach with glucose as carbon source, 

NH4Cl as nitrogen source, and FeCl3 as metal precursor. It is found that pyrolysis temperature has 

a significant influence on ORR activity, and optimal pyrolysis temperature is 900 oC. By 

establishing structure-performance relationship, the pyrolysis temperature dependent ORR activity 
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is well clarified in terms of geometric and electronic properties, which is a result of trend-off 

between site density and intrinsic activity as well as electron conductivity.  

Furthermore, the chapter 6 describes a facile and scalable one-step pyrolysis strategy, which 

is developed for the preparation of hybrid catalyst enriched abundant FeNx moieties coupling with 

highly graphitic carbon layer encapsulated Fe3C/Fe3O4 nanoparticles, where carbon black is used 

as support backbone and glucose as secondary carbon precursor, urea serves as nitrogen source. 

The obtained catalyst shows a hierarchical structure consisting of carbon black as primary carbon 

phase and graphene-like carbon sheet as secondary carbon phase. The influence of Fe loading on 

ORR activity is investigated and the optimal Fe loading is found to be 4.5 wt. %. A series of control 

experiments reveal that FeNx moieties are real active sites toward ORR and Fe3O4 nanoparticle 

itself shows no activity but endows positive promotion effect on activity of FeNx sites via 

electronic interaction. 

The last chapter 7 will be devoted to the general conclusion, the further work and perspective 

are also discussed especially for the extended research in the other field with as-existed Fe-N-C 

system.  
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Chapter 2 

 Materials preparation, characterization 

and catalytic application 
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1. Catalyst preparation 

1.1 Materials and catalysts (Chapter 3- the synthesis of Fe/NSMC-SHT and control samples) 

1.1.1 Materials  

D-glucose [C6H12O6, 100 %, MW: 180.16 g mol-1], citric acid [C6H8O7 anhydrous, > 99.5 %, 

MW: 192.12 g mol-1] and ammonium carbonate [(NH4)2CO3, MW: 96.09 g mol-1], were provided 

by ACROS OrganicTM, MYPROTEINTM and VWR Chemicals, respectively. Potassium 

thiocyanate (KSCN > 97 %; MW: 97.18 g mol-1), Iron (III) chloride hexahydrate (FeCl3·6H2O > 

98%, MW: 270.30 g mol-1) and Nafion® (5 wt. % in isopropanol and water) were obtained from 

Merck and Fluka. Unless otherwise stated, all reagents and solvents were used as provided by 

commercial suppliers without any further purification/treatment. 

1.1.2 Catalyst preparation 

In a typical procedure, 1 g of D-glucose, 1.5 g of citric acid, 1.5 g of (NH4)2CO3, and 0.1566 

g of KSCN are dissolved into 25 mL of ultrapure water (Veolia Ultra Analytique, 18.2 Mohm.cm, 

TOC < 2 ppb) at room temperature. Afterwards, 0.1452 g of FeCl3·6H2O is dissolved into another 

3 mL of water, followed by adding dropwise into above clear solution under stirring condition. 

The obtained yellow solution is stirred for 30 min and then transferred into oven at 110 oC 

overnight. Then, the resulting gel mixture (denoted as Fe/NSMC-P) is subjected to first pyrolysis 

in Ar at 900 oC for 1 h with a ramp of 5 oC/min (denoted as Fe/NSMC). Next leaching in 0.5 M 

H2SO4 at 80 oC is performed for 8 h. The leached sample is washed until neutral with water and 

ethanol for several times and dried at 75 oC overnight (denoted as Fe/NSMC-W). Finally, the as-

obtained sample undergoes the second NH3 treatment at 900 oC for 10 min, as denoted Fe/NSMC-

SHT. For the sake of comparison, different control samples are also prepared under almost 

identical condition except without addition of Fe precursor (NSMC-SHT), without addition of 
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KSCN (before the first Ar thermal treatment: Fe/NMC-P, after the first Ar thermal treatment but 

without acid leaching: Fe/NMC, after acid leaching: Fe/NMC-W, after the second NH3 treatment: 

Fe/NMC-SHT), without addition of Fe precursor and KSCN (corresponding to NMC-P, NMC, 

NMC-W, NMC-SHT). 

1.2 Materials and catalysts (Chapter 4- the synthesis of 2Fe/NHPC5AC and control samples) 

1.2.1 Materials   

Citric acid [C6H8O7 anhydrous, > 99.5 %, MW: 192.12 g mol-1] and ammonium carbonate 

[(NH4)2CO3, MW: 96.09 g mol-1], are provided by Fisher Chemicals and ACROS Organics, 

respectively. Zinc chloride (ZnCl2, anhydrous, > 98 %; MW: 136.286 g mol-1) and silica (SiO2, 

fumed, 7 nm, MW: 60 g mol-1) are obtained by Sigma-Aldrich. Iron (III) chloride hexahydrate 

(FeCl36H2O; > 98 %, MW: 270.296 g mol-1) and Nafion® (5 wt. % in isopropanol and water) are 

obtained from Alfa Aesar and Fluka, respectively. Unless otherwise stated, all reagents and 

solvents are used as provided by commercial suppliers without any further purification/treatment. 

1.2.2 Catalyst preparation 

For a typical procedure, 2 g of citric acid (10.41 mmol), 5 g of (NH4)2CO3 (52 mmol), 1.2 g 

of silica (20 mmol) are first dissolved in 25 mL ultrapure water (Veolia Ultra Analytique, 18.2 

Mohm.cm, TOC < 2 ppb) under stirring until uniform liquid sol is obtained. Then, 0.024 g 

FeCl36H2O (0.087 mmol), 0.2435 g ZnCl2 (1.75 mmol) are dissolved into another 3 mL distilled 

water, followed by adding dropwise into above sol. After continuous stirring for 30 minutes, the 

mixture solution is transferred to oven for drying at 110 oC overnight. The dried solid is well 

crushed into fine powder and calcinated at 900 oC for 2 h under Ar atmosphere. Next, the as-

obtained products are immersed into 120 mL of 2 M NaOH with stirring overnight at 80 oC to 

remove the silica template. After water and ethanol washing and drying, the sample is finally 
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obtained by the second calcination at 900 oC for 2 h under Ar atmosphere, which is denoted as 

2Fe/NHPC5AC (thereafter superscripts “2” and “5AC” referred to as usage of Fe precursor and 

(NH4)2CO3, respectively)  

For the sake of comparison, a series of control samples are also prepared with identical 

synthetic route except for various usage of (NH4)2CO3 (0 g, 0.5 g, 8 g) which are denoted as 

2Fe/HPC0AC, 2Fe/NHPC0.5AC, 2Fe/NHPC8AC, respectively. Besides, control samples with addition 

of 0 g, 0.006 g, 0.1 g FeCl3·6H2O are also prepared with the same condition based on optimized 

addition amount of 5 g (NH4)2CO3 which are denoted as NHPC5AC, 1Fe/NHPC5AC, 3Fe/NHPC5AC, 

respectively. To investigate the effect ZnCl2 and SiO2 addition on catalytic performance. The 

2Fe/NHPC5AC-w/o ZnCl2, and 2Fe/NC5AC-w/o SiO2 are also obtained without addition of ZnCl2, 

without addition of SiO2, respectively. 

1.3 Materials and catalysts (Chapter 5- the synthesis of Fe/NMC-900 and control samples) 

1.3.1 Materials  

D-glucose [C6H12O6, 100 %, MW: 180.16 g mol-1] are provided by ACROS OrganicTM. Silica 

(SiO2, fumed, 7 nm, MW: 60 g mol-1) and ammonium chloride [NH4Cl, MW: 53.5 g mol-1] are 

obtained by Sigma-Aldrich. Iron (III) chloride hexahydrate (FeCl36H2O; > 98 %, MW: 270.296 

g mol-1) and Nafion® (5 wt. % in isopropanol and water) are obtained from Alfa Aesar and Fluka, 

respectively. Unless otherwise stated, all reagents and solvents are used as provided by commercial 

suppliers without any further purification/treatment. 

1.3.2 Preparation of catalyst 

For a typical procedure, 2 g of Glucose (11.1 mmol), 5 g of NH4Cl (93.5 mmol), 1.2 g of silica 

(20 mmol) are first dissolved in 25 mL ultrapure water (Veolia Ultra Analytique, 18.2 Mohm.cm, 
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TOC < 2 ppb) under stirring until uniform liquid sol is obtained. Then, 0.05 g FeCl36H2O (0.185 

mmol) are dissolved into another 3 mL distilled water, followed by adding dropwise into above 

sol. After continuous stirring for 30 minutes, the mixture solution is transferred to oven for drying 

at 110 oC overnight. The dried solid is well crushed into fine powder and calcinated at different 

temperature (800, 900, 1000 oC, respectively) for 2 h under Ar atmosphere. Next, the as-obtained 

products are immersed into 120 mL of 2 M NaOH with stirring overnight at 80 oC to remove the 

silica template. After water and ethanol washing and drying, the samples are finally obtained by 

the second calcination at same temperature as the first thermal pyrolysis for another 1 h under Ar 

atmosphere, which are denoted as Fe/NMC-X (where “X” = 800, 900, 1000 oC, referred to 

pyrolysis temperature). The control sample NMC is also prepared under the identical condition at 

comparison without Fe precursor addition. 

1.4 Materials and catalysts (Chapter 6 - the synthesis of 4.5Fe@NGC/CB and control sampels) 

1.4.1 Materials  

D-glucose [C6H12O6, 100 %, MW: 180.16 g mol-1], Urea [CH4N2O, high purity, MW: 60.06 

g mol-1], Carbon black (Vulcan XC-72) are provided by ACROS OrganicTM, VWR International, 

and Cabot corporation, respectively. Iron (III) chloride hexahydrate (FeCl3·6H2O > 98%, MW: 

270.30 g mol-1) and Nafion® (5 wt. % in isopropanol and water) are obtained from Merck and 

Fluka, respectively. Unless otherwise stated, all reagents and solvents are provided by commercial 

suppliers without any further purification/treatment.  

1.4.2 Preparation of catalysts 

In a typical procedure, 0.2 g of carbon black, 0.2 g of glucose, 4 g of urea are well mixed 

together by grinding to obtain a uniform solid mixture. Afterwards, an incipient-wetness 

impregnation of iron chloride aqueous (0.05 g of FeCl3H2O is dissolved into 2.3 mL ultrapure 

mailto:4.5Fe@NGLC/CB
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water, Veolia Ultra Analytique, 18.2 Mohm.cm, TOC < 2 ppb) is employed on the mixture to form 

a black slurry followed by drying overnight at 80 oC. The obtained mixture is ground into powder, 

followed by annealing at 900 oC for 2 h under argon atmosphere. Eventually, the 4.5Fe@NGC/CB 

hybrid is directly collected without any other post-treatment, where superscript is denoted as mass 

loading of Fe determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). 

For the sake of comparison, the variable amounts of Fe precursor (0 g, 0.01 g and 0.25 g FeCl3H2O) 

are also used for the fabrication of NGC/CB, 1.15Fe@NGC/CB, 16.2Fe@NGC/CB, respectively, 

with identical synthetic route as described above. Fe@NCB and Fe@C/CB are prepared without 

addition of glucose and urea at comparison to gain insight into the role played by secondary 

graphene-like carbon phase and N-doped effect, respectively.   

2. Catalysts characterization 

Scanning Electron Microscopy (SEM) analyses are carried out on a Zeiss 2600F with a resolution 

of 5 nm. Samples are deposited onto a double face graphite tape in order to avoid charging effects 

during the measurements. 

The loading amount of Fe of as-prepared catalyst is determined by inductively coupled plasma-

atomic emission spectroscopy (ICP-AES, Plasma-Spec-II spectrometer). 

The Raman spectra is recorded using a LabRAM ARAMIS Horiba Raman spectrometer equipped 

with a Peltier cooled CCD detector. A laser line (532 nm/100 mW (YAG) with Laser Quantum 

MPC600 PSU) is used to excite sample. 

The temperature-programmed desorption-mass spectra (TPD-MS) is conducted on a 

Micromeritics ASAP-2100 setup equipped with a multichannel mass spectrometer: In a typical 

procedure, 50 mg of the samples is loaded in the reactor and then flushed with He (50 mL min-1) 

mailto:4.5Fe@NGLC/CB
mailto:Fe@NGLC/CB
mailto:4.5Fe@NG/CB
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at 50 °C for 1 h. Afterward, the temperature is raised from 50 to 1000 °C at a heating rate of 5 °C 

min-1. The evolved species are monitored with intensities of m/e. 

Thermogravimetric analyses (TGA) are performed under Ar or air (25 mL min-1) atmosphere on 

an EXSTAR thermogravimetric analyzer (TG/DTA) Seiko 6200, the temperature is raised from 

room temperature to 900 oC with a heating rate of 10 oC min-1. 

Fourier transform infrared (FTIR) measurements were carried out using a Nicolet iS10 FTIR 

spectrometer (Thermo Scientific) equipped with a Smart Diamond attenuated total reflection (ATR) 

accessory in the spectral range of 400 - 4000 cm-1. 

Transmission electron microscopy (TEM) is carried out on a JEOL 2100F working at 200 kV 

accelerated voltage, equipped with a probe corrector for spherical aberrations and a point-to-point 

resolution of 0.2 nm. The sample is dispersed by ultrasounds in an ethanol solution for 5 min and 

a drop of the solution is deposited on a copper grid covered with a holey carbon membrane for 

observation. 

X-ray photoelectron spectroscopy (XPS) measurements are carried out in an ultrahigh vacuum 

(UHV) spectrometer equipped with a VSW Class WA hemispherical electron analyzer. A 

monochromatic Al Kα X-ray source (1486.6 eV) is used as incident radiation. Survey and high-

resolution spectra are recorded in constant pass energy mode (90 and 50 eV, respectively).  

X-ray diffractograms (XRD) is recorded using Cu Kα radiation (40 mA, 45 kV) in the 10–80o 2θ 

range, using step size and step time of 0.05o and 80 s, respectively. 

The pore structural property of the different samples is determined by N2 adsorption/desorption 

isotherms at 77 K with a Micromeritics Tristar II instrument (Micromeritics GmbH, Munich, 

Germany). Before measurement, the sample is outgassed at 200 oC under vacuum overnight.  
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X-ray adsorption spectroscopy (XAS) measurements is carried out in fluorescence mode at the 

BL14W1 station of the Shanghai Synchrotron Radiation Facility (SSRF, 3.5 GeV, 250 mA in 

maximum, Si (311) double crystals). IFEFFIT software packages are used to process the data. The 

extended X-ray absorption fine structure (EXAFS) contributions is separated from different 

coordination shells using a Hanning window (dk = 1.0 Å-1). 

3. Preparation of electrode and oxygen reduction reaction (ORR) 

In order to prepare working electrode, various catalyst loadings are investigated, and the 

optimal catalyst loading for ink preparation in four works are described as following:  

(1) for the first work (Chapter 3), 6 mg catalyst is first dispersed in mixture solution 

containing 100 L ethanol, 300 μL ultrapure water and 15 L Nafion solution (5 wt. % in 

isopropanol and water), followed by sonicating for 30 min to form a homogeneous ink. Then, 10 

μL ink is drop-casted on the surface of glassy carbon rotating (ring) disk electrode (RDE(RRDE) 

Metrohm, 5 mm in diameter), followed by naturally drying in room temperature. The dried 

electrode is used as working electrode with a catalyst loading of 0.75 mg cm-2;  

(2) for the second work (Chapter 4), the 5 mg catalyst is first dispersed in mixture solution 

containing 750 μL ultrapure water, 250 μL isopropanol and 80 μL Nafion solution (5 wt. % in 

isopropanol and water), followed by sonicating for 30 min to form a homogeneous ink. Then, 16 

μL ink is drop-casted on the surface of glassy carbon rotating (ring) disk electrode (RDE/RRDE 

Metrohm, 5 mm in diameter), followed by naturally drying in room temperature. The dried 

electrode is used as working electrode with a catalyst loading of 377 μg cm-2;  
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(3) for the third and fourth works (Chapter 5 and 6), 5 mg of catalyst powder are dispersed in 

a 1 mL solution including 250 L of ethanol and 750 L of ultrapure water. 50 L of a Nafion® 

solution (5 wt. % isopropanol and water) are added to above solution. The obtained mixture 

solution is then ultrasonically treated for 30 min until uniform ink formed. 16 L ink is drop-casted 

on the surface of glassy carbon rotating (ring) disk electrode (RDE/RRDE, Metrohm, 5 mm in 

diameter), followed by naturally drying in room temperature. The dried electrode is used as 

working electrode with a catalyst loading of 388 g cm-2;  

Ag/AgCl electrode and graphite rod as reference and counter electrode respectively, all of the 

potentials are calibrated to reversible hydrogen electrode (RHE) according to following equation: 

ERHE = EAg/AgCl + 0.197 + 0.0592 pH. All measurements are performed in three-electrode cell with 

compartments of working and counter electrode separated by porous glass membrane to exclude 

any transfer of possible products of processes on CE to WE compartment. Electrochemical 

measurements are performed with Bio-Logic SP-300 potentiostat by using EC-Lab 11.32 software. 

Linear sweep voltammetry (LSV) is conducted in O2-saturated 0.1 M KOH electrolyte with a scan 

rate of 10 mV s-1 at a rotating rate of 1600 rpm. For comparison, the standard Pt loading amount 

of 20 μg cm-2 is used for the Pt/C (Vulcan carbon XC-72, 20 wt. %, E-TEK, Inc. USA) sample. 

The accelerated durability tests (ADT) are measured by cycling the catalysts between 0.6 and 1.0 

V at scan rate of 50 mV s-1 under O2 atmosphere. The chronoamperometry response is collected 

by polarizing the catalyst with a rotating speed of 1600 rpm at 0.65 V (vs. RHE). The methanol 

poisoning experiment is performed in O2-saturated 0.1 M KOH with addition of 1 % (v : v) MeOH. 

The number of electrons involved in oxygen reduction reaction (ORR) is determined by the 

Koutecky-Levich equation as follow:  
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Bω1 2⁄
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1

JK
      (1) 

B = 0.62nFCODO
2 3⁄ υ−1 6⁄       (2) 

where J is the measured current density per electrode geometric surface area, JK and JL are 

the kinetic and diffusion-limiting current densities respectively, ω is the angular velocity (rad s-1), 

n is a number of electrons in ORR reaction, F is the Faraday constant (96485 C mol-1), Co is the 

bulk concentration of O2 (1.2 × 10-6 mol cm-3), Do is the diffusion coefficient of O2 in 0.1 M KOH 

(1.9 × 10-5 cm2 s-1), and υ is the kinetic viscosity of the electrolyte (0.01 cm2 s-1). 

For rotation ring-disk electrode (RRDE) tests, the working electrode (PINE AFE6R2GCPT, 

glassy carbon disk with a diameter of 5 mm, Pt ring with inner diameter of 6.5 mm and outer 

diameter of 7.5 mm) is prepared with the same catalyst loading as RDE test, the ring potential is 

kept at 1.2 V vs. RHE. The number of electron transfer and HO2
- yield are evaluated by following 

equations: 

XHO2
− =  

200 Ir/N

Id + Ir/N
   (3) 

ne− =  
4 Id

Id + Ir/N
       (4) 

wherein Ir and Id are the ring and disk current, respectively, and N (0.25) is the ring collection 

efficiency.  

The electrochemical double layer capacitances (Cdl) of catalysts are calculated by the use of 

simple CV method. A potential range of 1.02 - 1.12 V vs. RHE is selected for the capacitance 

measurements. Then, the average capacitive currents derived from difference of anode and cathode 
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current at potential of 1.07 V vs. RHE are plotted as a function of the CV scan rate of 5, 10, 15, 

20, 25, 30 mV s-1. These data are then fit to a line, the slope of which is used as Cdl value.  
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Chapter 3 

 

 An Open Gate for High-Density Metal 

Ions in N-doped Carbon Networks: 

Powering Fe-N-C Catalyst Efficiency in 

Oxygen Reduction Reaction 
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Abstract 

Non-noble metal catalysts displaying catalytic activity for Oxygen reduction Reaction (ORR) 

comparable or even superior to that of the commercial Pt/C catalyst are of high interest for the 

development of a mature fuel cells technology. Fe-N-C moieties exhibit excellent performance in 

the ORR although a synthetic strategy for their production still remains a challenging matter. 

Herein, an original and general protocol for the preparation of high-density and discrete Fe-N-C-

based atomically dispersed catalysts on carbon-based matrix has been proposed. The catalysts were 

produced starting from cheap and food-grade raw components which significantly contributes to 

the reduction of energy incentive treatment after the synthesis step. The rational combination of 

chelating citrate ions with the ancillary monodentate SCN- ligand has established as an “open gate” 

for water soluble iron ions to be accommodated in the form of Fe-N-C moieties within final C-N 

networks. NH3 post thermo-chemical treatment further introduces the highly basic N-terminated 

groups, as well as enhancing the exposure of active sites by creating more abundant porosity. 

Although recent findings in the field of electrocatalysis have pointed out the often-beneficial 

synergistic action between isolated and metallic iron species or iron carbides and their protecting 

C-N shells, the poor selectivity on the nature of the final Fe-species in N-doped C-networks 

remains matter of debate and does not contribute to shed light on the effective nature of the active 

species in the process. The highly metal-loaded catalysts in the form of atomically dispersed Fe-

N-C moieties prepared with the synthetic protocol described in this chapter have been tested as 

electrocatalysts in the oxygen reduction reaction (ORR), showing excellent electrocatalytic 

performance under alkaline environment. Detailed study suggested that the high catalytic activity 

observed can be ascribed to the optimal porous structure, surface chemical composition as well as 
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specific active site of FeNx moieties, generated between iron oxyhydroxide and N-doped graphitic 

C network.  

 

1. Introduction  

In order to keep with the relentless pace in the development of H2-O2 fuel cells (PEMFC, 

AFC), the kinetically sluggish oxygen reduction process (ORR) is among the most investigated 

reactions with both metal-[244] and metal-free [245, 246] catalysts.[247] On this regard, the last 

years have witnessed impressive progresses in the development of innovative synthetic 

methodologies for the straightforward preparation of efficient (electro)catalysts from cheap and 

non-critical components with a special attention to the replacement of scarce and costly platinum-

group metals (PGMs) [248, 249]. In addition, Numerous researches have been devoted in 

controlling the shape and reducing the size of the active phases from a nanometer scale down to 

few-atoms cluster-sized and finally, to single atomic site catalysts (SACs). Such an effort has been 

dictated by the need of reducing the active-phase amount, maximizing the atom utilization and 

optimizing the metals microenvironment by improving their stabilization with appropriate donor 

atom sets. In other words, all this work has been focused on the improvement of catalysts 

performance in key (electro)catalytic processes [250-254]. Although reducing nanocatalysts sizes 

down to atomically dispersed metal systems still represents a challenging matter and especially for 

medium-to-high metal loading [255], it is commonly recognized that the control of both electronic 

and geometric structural features of metal sites is the key tool to get catalysts exhibiting unique 

and improved electro(catalytic) performance [256-258]. 
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In our previous work we have proposed a green and versatile synthetic method for the 

preparation of N-enriched mesoporous carbon-based materials starting from cheap and food-grade 

raw building blocks [259-261]. Such an approach was successfully used to translate powdered 

catalyst into hierarchically 3D foam catalyst structures [259, 260] and organic-inorganic 

composites [262-264] to be employed as effective, stable and single-phase metal-free systems for 

catalyzing a relatively wide number of industrially relevant transformations. At odds with more 

conventional methods to produce N-rich carbon networks, i.e. the chemical-vapor-deposition 

(CVD) technique, C and N sources employed for the synthesis of these novel materials were 

selected from commonly available solid feedstock to be simply dissolved in water. D-glucose 

(C6H12O6) was selected as C-source, a leavening agent [i.e. ammonium carbonate (NH4)2CO3)] as 

N-source and citric acid (C6H8O7) as a sacrificial carrier for harvesting and conveying NH3 

released from the carbonate decomposition under the form of ammonium citrate [HO-

C3H4(COO)3Hx(NH4)3-x)] (x = 0 - 3). Successive and controlled material thermal treatments have 

led to mesoporous carbon networks featuring with relatively high specific surface areas (i.e. 150 

m2 g-1) and N-contents up to 5 wt.%.  

The presence of a potentially tridentate chelating agent (i.e. citrate ions) prompted us to 

reconsider our original metal-free scheme as a protocol for the preparation of highly dispersed and 

atomically sized metal-based catalysts. Indeed, citrates are known to act as chelating agents 

towards a variety of transition metals, forming relatively stable and water-soluble complexes. 

Accordingly, their generation can be regarded as an “open gate” for water soluble metal ions to be 

accommodated and stabilized within final C-N networks.  

Although in the past few years’ huge efforts have been devoted to power single-atom catalysts 

technology within light-heterodoped nanocarbon networks, their large-scale production with a 
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high metal-active site density, avoiding the generation of inhomogeneous metal agglomerates or 

the co-generation of less active metal species, remains a challenging task to be properly addressed. 

Seminal works from two independent teams have recently shed light on the role of thiocyanate 

(SCN-) as a sacrificial ancillary ligand for Fe-metal ions in the synthesis of atomically dispersed 

Fe-N-C composites with superior electrocatalytic activity [265, 266]. In particular, Wu et al. have 

demonstrated the role of sulfur ligands addition (in the form of SCN-) to a mixture of 2,2-bipyridine 

and FeCl3 on the ultimate composition of an acid-washed CNT-coating layer obtained from the 

materials pyrolysis at 900 °C [265]. They found that S-salt addition to the mixture during pyrolysis 

resulted in the formation of Fe-sulfides mainly instead of the more acid-resistant Fe carbides. 

Given the higher solubility of the former in acidic media, the large excess of Fe not present in the 

form of Fe-Nx coordinated ions was easily etched and removed during the washing treatment, 

leaving behind atomically dispersed Fe-Nx species [267]. Wei, and co-workers proposed another 

intriguing example for the control of SACs in Co-N/C systems through the pyrolysis of an urea 

and glucose mixture in the presence of SCN- as the counterion for a Co2+ salt precursor [268]. 

They found that SCN- addition reduced the temperature at which Co-rich particles grew respect to 

the temperature at which their C-shell encapsulation occurred. Accordingly, their removal along 

with other various impurities was easily accomplished by a simple acid washing while preserving 

the SA-Co-N/C active phases only. 

On the other hand, it is well known that the Fe-N-C catalysts derived from pyrolysis in NH3 

possess relatively high ORR activity but limited durability [174, 269]. Zitolo et al. [183] claimed 

the formation of the same Fe-center moieties in both Ar pyrolysis and NH3 post-treatment by the 

use of XANES and Mössbauer spectra, and attributed the much higher activity, after NH3 post-

treatment, to the change of the chemical-physical properties of support. Subsequently Kramm et 
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al. [113] fabricated Fe-N doped carbon with exclusive presence of FeN4-type sites taking 

advantage of N2/H2 treatment of Fe/N/C followed by acid leaching. They came to the conclusion 

that the second N2/H2 treatment allowed one to increase the surface area of the catalyst whereas 

the inorganic Fe species migrate to the surface that is easier to be washed out by acid treatment. 

Hence, an enhanced surface area and better utilization of active sites is at the origin of higher ORR 

activity after purification. Although recent advances have significantly improved Fe-N-C catalytic 

performance by NH3 treatment, but the role of such post-synthesis NH3 thermal treatment on the 

modification of the active sites still remains a problem to be resolved. 

Herein, we report a novel and effective approach towards the preparation of highly dispersed 

Fe-N-C frameworks, starting from the chelating ability of the tridentate citrate ion with a Fe3+ salt 

as metal precursor, followed by two thermal pyrolysis steps in different atmosphere (Ar and NH3). 

The simultaneous entering of the monodentate thiocyanate (SCN-) ion in the metal coordination 

sphere was found to be highly beneficial for the ultimate preparation of a Fe-N-C composite. 

Indeed, the excess of iron which was not stabilized in the form of Fe-N-C nuclei throughout the 

high-temperature pyrolysis, was preferably converted into iron sulfide species on the outer surface 

of carbon matrix which can be easily etched and removed compared to iron carbides upon the 

sample acid washing. Although any mechanistic consideration on the Fe-coordinated SCN- ion(s) 

during the material pyrolysis remains merely speculative, our outcomes leave no doubts that 

catalysts prepared without the addition of SCN- ions lead to a more inhomogeneous Fe-containing 

samples with the evident formation of iron-carbide nanoparticles to a markedly higher extent. The 

NH3 post thermo-chemical treatment also plays a crucial role of improvement of ORR activity and 

its activation effect is also well unveiled. The as-prepared Fe-N-C catalysts, with and without SCN- 

and NH3 treatment, were thoroughly characterized and evaluated for the ORR process under 
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alkaline environment. The optimal catalyst Fe/NSMC-SHT exhibiting highly graphitic porous C 

networks structure enriched with high density FeNx moieties in the interface between N-doped 

carbon basal plane and Fe oxyhydroxide, shows outstanding electrocatalytic performance.  

 

2. Results and discusses 

D-glucose, citric acid, ammonium carbonate are cost-effective and non-toxic naturally 

carbon/nitrogen-containing chemicals, which have been intensively employed in food-processing 

industries. Integration these cheap and abundance components into the synthesis procedure of 

specific catalysts affords a great progress toward renewable energy technology. The use of these 

basic materials in the synthesis of the Fe-N-C catalyst, atomically dispersed on the surface of the 

catalyst, allows one to demonstrate the high efficiency of nitrogen doping with (NH4)2CO3 as an 

inorganic precursor. Typically, a mixture of D-glucose, citric acid, KSCN and (NH4)2CO3 are 

dissolved in deionized water to get a homogeneous solution followed by a dropwise addition of an 

aqueous solution containing Fe precursor. A subsequently drying process at 110 oC under air 

induces the formation of gelation accompanied by a series of complex transformations 

(condensations, acid-base reactions, decompositions). Particularly, this process results in the 

complete decompositions of ammonium carbonate [(NH4)2CO3 → 2 NH3 + CO2 + H2O] and 

subsequent trapping of ammonia (NH3) in the form of basic ammonium citrate [15]. Attenuated 

total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) is conducted to figure out 

the coordination state of Fe cation existed in the precursor phase. As can be seen in Figure 1A, the 

peaks at 1710 cm-1, 1657 cm-1, 1562 cm-1, 1390 cm-1, 1185 cm-1 and 1072 cm-1 can be ascribed to 

COOH, C=O, N-H, O-H, C-N, C-O characteristics vibration mode of different function groups 
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present in the precursor material, respectively [270, 271]. Notably, the presence of both SCN- 

adsorption peak, located at 2062 cm-1 [272] for KSCN solution and Fe/NSMC precursor while its 

absence in Fe(SCN)3 solution imply that Fe3+ ions are preferentially coordinated with citric acid 

or glucose rather than free SCN- anions, albeit strong binding force between Fe3+ and SCN-. 

Furthermore, the solution color (Figure 1B) is subjected to an immediate change from blood-red 

to yellow upon Fe(SCN)3 solution is added into mixture solution of D-glucose, citric acid and 

(NH4)2CO3, indicting the stronger binding strength of Fe3+ cations toward citric acid/glucose with 

respect to SCN- anions. Most likely, the Fe3+ cation preferences to chelate with citric acid due to 

its improved complexation capacity in comparison to D-glucose and SCN- under the action of 

dative bonds derived from vacant electron orbits of Fe3+ ions and the lone pair electrons of O 

existed in the form of -COO- groups [273].  

 

Figure 1 (A) ATR-FTIR spectra of Fe/NSMC, Fe/NMC and NMC precursor gel after 110 oC 

drying as well as KSCN and Fe(SCN)3 aqueous solution; (B) Digital photos of Fe/NSMC precursor, 

Fe(SCN)3 and KSCN aqueous solution. 

 

The phase structure and composition are detected by X-ray diffraction (XRD) for as-prepared 

catalysts. As shown in Figure 2, without addition of KSCN, Fe and FeCx crystalline phases are 
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formed which are hardly removed by acid leaching, demonstrating that the Fe-related species have 

been coated by highly anti-acid protective carbon layer. Instead, FeSx and Fe big particle are 

generated with addition of KSCN, which can be washed out more easily as a consequence of their 

improved dissolution in acidic medium. Thus, it can be deduced that the position for these species 

is probably located at out of carbon surface and not encapsulated by carbon layer. Furthermore, 

the stronger peaks intensity and positive shift of position (from 24° shift up to 26° assigned to (002) 

peaks of amorphous carbon and graphitized carbon, respectively) for KSCN-free catalysts verify 

again that Fe-related species are coated by carbon layer. It is well known that the Fe species 

surrounded by carbon layer have a significantly enhancement toward graphitization [274]. No 

apparent peaks regarding Fe particles or other impurities are detected after second heating 

treatment in NH3 atmosphere for Fe/NSMC-W, indicating the Fe atoms probably are confined into 

carbon matrix in highly dispersed form.  

 

Figure 2. XRD patterns of the different as-prepared iron-based catalysts after calcination. 
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Figure 3. FESEM images at low magnification of (A) Fe/NSMC-SHT, (B) NSMC-SHT, (C) 

Fe/NMC-SHT, (D) Fe/NSMC-W. 

 

Scanning electron microscope (SEM) is employed to investigate the morphology of the as-

prepared catalysts. The similar morphologies of Fe/NSMC-SHT, NSMC-SHT, Fe/NMC-SHT and 

Fe/NSMC-W at low magnification (Figure 3) indicate that the addition of Fe and S- source as well 

as the second NH3 treatment have a negligible effect on the overall morphology. As can be seen 

in Figure 4A, the nanosheet-like architectures, with thickness varied between 70 and 310 nm, are 

observed for Fe/NSMC-SHT. Interestingly, there are significant differences on the surface of 

control catalysts. As shown in Figure 4E, some holes with an average diameter of 100 nm can be 

clearly found on the outer surface of Fe/NSMC-W, which are caused by acid-washing of large 

FeSx and metal Fe particles. On the contrary, a large number of small nanoparticles with mean size 

of 20 nm coated by carbon layers along with bulge are observed in Fe/NMC-W presented in Figure 
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4F, which could be well preserved by the protection of carbon layer even with such a severe 

condition of acid medium.  

 

Figure 4. FESEM images of (A) Fe/NSMC-SHT at low magnification, of which high 

magnification images (B), and corresponding images of (C) Fe/NMC-SHT, (D) NSMC-SHT, (E) 

Fe/NSMC-W, (F) Fe/NMC-W, as well as energy-dispersive x-ray (EDX) mapping (G) of 

Fe/NSMC-SHT. 

 

The findings unambiguously illustrate that SCN- serves as surface mediator which can “catch” 

Fe atoms by S segments formed by the decomposition of SCN- during high annealing temperature 

thus devoid of the encapsulation of Fe species by carbon layer. After the second NH3 treatment, 
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the surface of the Fe/NSMC-SHT catalysts become more porous (Figure 4B) while only solid 

surface is found for Fe/NMC-SHT which can be ascribed to improved graphitization against NH3 

etching (Figure 4C). Accordingly, NSMC-SHT shows moderate porous structure (Figure 4D), 

suggesting the addition of Fe promotes the formation of porous structure. It can also be inferred 

that such puffed porous configuration of Fe/NSMC-SHT will facilitate the exposure of active sites 

and reactant accessibility, thus enabling the enhancement of electrochemical catalytic performance 

as compared with that of monolithic nanosheets with lower porosity and accessibility. The energy-

dispersive X-ray (EDX) mapping and the spectra of the different elements for Fe/NSMC-SHT 

(Figure 4G) confirm that the homogeneous distribution of C, N, O, Fe within the material. It is 

worth noting that there is no S signal observed on the analyzed catalysts, which could be attributed 

to the chemical reaction between S and NH3 in the second NH3 treatment at 900 oC as follow: 3 S 

+ 2 NH3 = 3 H2S + N2 [222]. 

The detailed microstructure is investigated by transmission electron microscope (TEM) and 

the results are presented in Figure 5A. The result shows that Fe/NSMC-SHT presents sheet-like 

morphology with no obvious large nanoparticles aggregation. Hierarchical porous structure with 

the presence of meso and micropores in the Fe/NSMC-SHT sample can be clearly observed at high 

resolution TEM image (Figure 5B). It is expected that such porous combination could greatly 

increase the wettability which thus contributes to the improvement of the mass transport of proton 

and O2 molecules in bulk solution to FeNx actives sites. High-angle annular dark-field scanning 

transmission electron microscope (HAADF-STEM) images (Figure 5C-D) reveal that both single 

atom Fe sites and prevalent Fe nanoclusters are presented in Fe/NSMC-SHT sample. On the other 

hand, a large number of nanoparticles are found in Fe/NMC-SHT, which can be assigned to Fe-

related species (Figure 5E-F). These findings are in good agreement with the XRD results on the 
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different samples. As revealed by XRD and TEM results, the Fe/NMC-SHT shows enhanced 

graphitization degree with respect to Fe/NSMC-SHT, resulting from the Fe-related species 

(especially for FeCx species) catalyzed graphitization mechanism. In turn, the improved 

graphitization degree is detrimental to obtain high density active FeNx active sites due to loss of 

nitrogen in high graphitization carbon matrix [275]. Moreover, the well-developed porous 

structure will significantly enhance exposure of FeNx active sites for Fe/NSMC-SHT, contributing 

to higher ORR activity than that of Fe/NMC-SHT and NH3 treatment-free Fe/NSMC-W. 

 

Figure 5. TEM (A-B) and (C-D) HAAF-STEM images of Fe/NSMC-SHT and TEM images (E-F) 

of Fe/NMC-SHT. 

 

TGA/DTG are conducted in Ar atmosphere at a ramp of 5 oC min-1 to investigate the 

carbonization process of control samples. As shown in Figure 6, the TGA spectra for three 
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precursor samples present almost the same thermal behavior at a moderate temperature 

decomposition range (below 600 oC) which can be associated to the dehydration of the precursors, 

condensation and thermal decomposition of D-glucose and citric acid. It is worthy to note that 

significant differences on DTA curves occur in the high temperature region with and without 

addition of KSCN to the synthesis process. Two peaks located at 692 oC and 799 oC in the 

Fe/NSMC-P can be observed (top spectrum in Figure 6) while only one broad peak centered at 

866 oC is visible for Fe/NMC-P. The peak at higher temperature for both samples is attributed to 

the carbon deposition showing that carbon deposition for Fe/NSMC-P occurred at lower 

temperature compared to that of precursor with no addition of KSCN [276]. The discrepancy can 

be ascribed to the introduction of S which increase the disorder of carbon lattice thus decreasing 

the carbon deposition temperature. Besides, the extra peak at 692 oC for Fe/NSMC-P can be 

assigned to the generation of Fe-related species such as FeSx and metal Fe. The absence of such 

typical peak in Fe/NMC-P illustrates the simultaneous occurrence of Fe species (metal Fe and 

FeCx in this case) and carbon deposit which lead to the direct formation of carbon layer coated Fe 

species resistant to acid leaching. Combined with the TGA results, the formation temperature for 

large FeSx and metal Fe precedes that of carbon deposition. Such phenomenon gives rise to the 

incomplete encapsulation of Fe species, thereby the atomically dispersion Fe can be generated by 

“top-down” process. Herein, single Fe atoms can escape at high temperature from the uncoated 

large Fe particles across the discontinuous carbon layers and eventually coordinate with N to form 

FeNx moiety with high thermodynamically stability. In sharp contrast, a large number of small Fe-

related particles coated by carbon layer are obtained due to its formation in parallel to carbon 

deposition without addition of KSCN.  
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Figure 6. TGA and DTG curves of Fe/NSMC, Fe/NMC and NMC precursor gel. 

 

The X-ray photoelectron spectroscopy (XPS) is conducted to investigate the surface 

elemental composition and electronic structure of the as-prepared samples. The different surface 

elemental compositions determined by XPS analysis are summarized in Table 1. The doped N 

content of Fe/NSMC-SHT is amounted to 6.1 at. %, higher than that of Fe/NMC-SHT (4.6 at.%), 

indicating that the introduction of S into the sample can be at the origin of the increase of N content 

in the catalyst. The origin of enhanced N-doping should be ascribed to the lower graphitization 

degree induced from S addition. The higher graphitization degree results in loss of N-doped level, 

which fails to form high active FeNx for ORR process. Owning to the etching effect of NH3, the N 

and Fe content for Fe/NSMC-SHT are evidently improved with respect to those of Fe/NSMC-W. 

Deconvolution of high-resolution spectra at their N 1s core regions accounted for five distinct N-
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components whose relative % (before and after the NH3 thermo-chemical treatment) were used to 

fix the materials composition (Table 1). 

 

Table 1 Selected chemico-physical and morphological properties of catalysts and precursors. 

Entry Sample 
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1 Fe/NSMC-W 220 0.125 0.084 n.d. 0.8 3.7 21.8 25.9  30.3  17.4  4.6  

2 Fe/NSMC-SHT 622 0.346 0.235 2.54 1.7 6.1 21.9 31.1 19.8 20.8 6.4 

3 Fe/NMC-W 260 0.268 0.015 n.d. 0.5 4.3 26.7 23.3 29.9 17.9 2.2 

4 Fe/NMC-SHT 461 0.406 0.058 1.67 0.9 4.6 26.8 25.4 20.1 20.5 7.2 

5 NSMC-SHT 618 0.318 0.251 - - 6.8 51.4 - 36.5 9.3 2.9 

a Brunauer-Emmett-Teller (BET) specific surface area (SSA) measured at T = 77 K. b Total pore volume 

determined using the adsorption branch of N2 isotherm at P/P0 = 0.98. c Determined by t-plot method. d 

Determined by ICP analysis on the properly digested samples. e Determined by XPS analysis. f Determined by 

high resolution XPS N 1s core region and its relative peak deconvolution.  

 

An appreciable increase of the components at 399.9 eV, conventionally ascribed to iron-

coordinated N sites [64, 277], are found in NH3 treated samples (Fe/NSMC-SHT and Fe/NMC-

SHT) (Figure 7).  On the other hand, the amount of pyridinic N and graphitic N are also enhanced. 

Both of these two sites have been well documented to be highly active for ORR [127, 278]. It can 

be well expected that Fe/NSMC-SHT will display best electrochemically activity among all other 

catalysts. The actual weight fraction of Fe in the Fe/NSMC-SHT and Fe/NMC-SHT is 2.54 wt. % 

and 1.67 wt. % by inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis. 

Sample with a relatively high metal loading in the Fe/NSMC-SHT strengthens the role of SCN- 

for the preparation of atomically dispersed Fe-N-C nuclei. The high resolution of Fe 2p spectrum 
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(Figure 8) of Fe/NSMC-SHT can be deconvoluted into five peaks. The binding energy at 710.9 

eV and 724.0 eV are assigned to Fe2+ 2p3/2 and Fe2+ 2p1/2 peaks, respectively. While the peaks at 

714.8 eV and 727.3 eV correspond to Fe3+ 2p3/2 and Fe3+ 2p1/2 peaks [182]. Besides, the satellite 

peak at 719.0 eV further demonstrates the co-existing of mixture valence of Fe2+ and Fe3+ [279]. 

No zero valence of metallic Fe is observed in Fe/NSMC-SHT, which is consistent with most 

reported atomically dispersed FeNx catalysts [100, 280]. Unfortunately, it is difficult to 

deconvolute Fe 2p spectra in the Fe/NSMC-W and Fe/NMC-SHT due to its relative weak signal 

resulted from low Fe surface concentration. 

 

Figure 7. High resolution XPS N 1s core level region of samples Fe/NSMC-W, Fe/NMC-W (D 

and C) and Fe/NSMC-SHT, Fe/NMC-SHT (B and A) along with the respective curve fittings. The 

vertical view of these spectra C vs. A and D vs. B accounts for the N 1s profile changes recorded 

upon neat-NH3 treatment of samples at 900 °C for 10 min. 
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Figure 8. The deconvolution spectra of high-resolution Fe 2p for Fe/NSMC-SHT. 

 

 

Figure 9. (A) N2 absorption-desorption isotherms curves recorded at 77 K, and (B) respective pore 

size distribution curves with Barrett-Joyner-Halenda (BJH) method based on desorption branches 

of representative samples. 

 

N2 adsorption-desorption isotherms curves shown in Figure 9A exhibit type IV isotherm 

character with pronounced hysteresis loop implying the existence of mesoporous of all 

representative samples. Obviously, the N2 uptakes significantly increase after the second NH3 



89 

 

treatment, suggesting the improved specific surface area. As listed in Table 1, Fe/NSMC-SHT and 

Fe/NMC-SHT deliver specific surface area of 622 and 460 m2/g, respectively, much higher than 

that of Fe/NSMC-W (220 m2/g) and Fe/NMC-W (260 m2/g). The improved specific surface area 

is attributed to partly gasification of the carbon support by NH3 etching, giving rise to the 

generation of micropore as well as mesopore [281]. At odds with the pore size distribution of 

prevailing mesopores with the narrow 3-5 nm range in Fe/NMC-W, Fe/NSMC-W presents 

predominant micropores density (Figure 9A-B), as further evidenced by much larger micropore 

volume for Fe/NSMC-W with respect to Fe/NMC-W (Table 1). As a result, the Fe/NSMC-W 

exhibits slight lower total specific surface area than Fe/NMC-W (220 vs. 260 m2/g), which is 

different from those conclusions reported by most other works that S-doping can enhance specific 

surface area of carbon-based catalysts thus boosting catalytic activity [282-284]. However, the 

enhancement of specific surface area for Fe/NSMC-W is more prominent (from 220 to 622 m2/g) 

than that of Fe/NMC-W (from 260 to 460 m2/g) after the second NH3 heat treatment, in agreement 

with SEM observations. The result demonstrates that addition of KSCN result in the generation of 

more disorder carbon enriched defect and partial collapse of mesopores. The disorder carbon 

phases react much faster with NH3 and are preferentially gasified [174, 285, 286], eventually 

creating a larger amount of micropores and small mesopores due to the interconnected pore 

channels. The generated hierarchical porous structure is well agreement with the result observed 

in TEM. It is believed that the micropore is more beneficial to increase the number of active sites 

thus boosting ORR activity. 

To get additional details on the effective nature of the iron species in Fe/NSMC-SHT, and to 

address properly the nature of their coordination sphere and fix the nature of the metal-active sites 

engaged in ORR (vide infra), the model catalyst is investigated by X-ray adsorption spectroscopy 
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(XAS). Figures 10A-B refers to the X-ray absorption near edge structure (XANES) spectra at the 

Fe K edge of model catalyst along with that of common iron oxides and metallic iron as reference 

samples at comparison.  

 

Figure 10. A) Normalized XANES spectra for model catalyst (1N is referred to as Fe/NSMC-SHT 

for the sake of convenience) and more common iron oxide samples or metallic iron. B) 

Magnification section of Figure 10A dealing with the absorption pre-edge (1s → 3d) resonances. 

C) k2 weighted Fourier transform of EXAFS data of model catalyst and related fit. Color codes 

for the inset: C = gray, H = white, N = blue, Fe = orange, O = red 

 

A careful analysis of Figure 10A reveals a striking match between ferrihydrite (Fh) [287] and 

our sample Fe/NSMC-SHT. Even if the former may be present in several forms and crystallinity, 

all of them share similar structural features such as the prevalence of six coordinated FeIII centers 

and distinct Fe-Fe second and third shells distributed around 3.0 and 3.4 Å. A closer look to the 

pre-edge peak (1s → 3d transition) in Figure 10B confirms that Fe/NSMC-SHT contains 

prevalently FeIII. While the positions of the absorption pre-edge (1s → 3d) as well as that of the 

edge peak (1s → 4p transition) resonances are sensitive to the iron oxidation state, the intensity of 

the 1s → 3d transition depends on the site symmetry. In particular, the lower the transition intensity 

the higher the symmetry of the Fe sites. Therefore, intense pre-edge peaks will account for 

tetrahedral or distorted octahedral geometries while octahedral coordination environments give 
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rise to less intense signals. As Figure 10B shows, the pre-edge resonance in Fe/NSMC-SHT well 

align with maghemite (-Fe2O3) and ferrihydrite (Fe2O3½H2O, Fh) with a peak intensity [288] 

evidently lower than that of other partially four coordinated compounds. This feature clearly 

suggests a prevalent six coordination sphere around the metal center. Finally, a quantitative 

evaluation of the local structure has been performed by fitting the Fe K edge EXAFS signal (see 

Figure 10C) and structural data are reported in Table 2.  

Table 2. Structural data from the fitting of Fe/NSMC-SHT sample Fe K-edge EXAFS signal. 

Path 
Coord. 

Numb.  
R(Å)a 2             

(10-2 Å2)b E0 
c R-factor d 

Fe-O(N) 6.2 (6) 1.957 (7) 1.2 (1) -5 (1) 0.007 

Fe-Fe (1) 1.3 (3) 3.00 (1) - - - 

Fe-Fe (2) 1.6 (4) 3.45 (2) - - - 

  a Interatomic distance. b Debye-Waller factor. c Difference in the threshold Fermi level between data and 

fit. d Goodness of fit parameters 

 

If the signal fitting establishes a coordination very close to that expected for ferrihydrite (Fh) 

[287], with a hcp form of Fe oxyhydroxide, where FeIII cations are coordinated with O atoms and 

terminal OH species, Fe-Fe(1,2) coordination numbers are appreciably lower (1.3 and 1.6, 

respectively) than those expected for bulk ferrihydrite [287] or crystallized goethite [289] whose 

Fe-Fe(1) and Fe-Fe(2) values are roughly estimated in 4 and 6, respectively. This structural 

features found a pretty good match between data recorded for Fe/NSMC-SHT and previously 

reported data on N-coordinated iron sites (Fe-N-C) as single atoms or polyatomic species at the 

interface between iron oxyhydroxide and a nitrogen-doped carbon network [258]. In their seminal 

contribution, Arrigo et al. concluded on the structural nature of their N-coordinated iron sites and 

their catalytic performance in the CO2 electrochemical reduction (CO2RR) by the combination of 
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operando XAFS analysis and in-silico studies. These authors demonstrated that their iron active-

sites were not directly embedded in nitrogen doped C-network but they were present as small Fh-

FeOOH clusters or Fe single atoms at the edge of N-doped graphitic frameworks (inset Figure 

10C). This is particular true for our present work that Fe nanocluster and single Fe atoms are co-

existed in the catalytic system reflected from the HAADF-STEM (Figure 5C-D). It should be 

stressed that EXAFS cannot establish if N or O are mixed in the first shell, since scattering 

amplitudes and phases are very similar. Anyhow, a fit with only N-coordinative sites would result 

in a too large coordination number. According to XPS evidences for the presence of a Fe-N 

component in the fitting of the N 1s high resolution peak (see Figure 7) and the last NH3 thermo-

chemical treatment Fe/NSMC-W underwent, it can be inferred that active iron sites of the latter 

possess a mixed N, O coordination environment. The Debye Waller factor reported in Table 2 is 

enough large as to confirm a distribution of distances in the octahedron (0.01Å2). However, the 

introduction of two distinct Fe-O, N sub shells does not improve the fit at all: the octahedron is 

deformed, but the contributions cannot be resolved.  

All these data taken together confirm the role of KSCN in the starting mixture to get highly 

dispersed Fe-N-C nuclei at the interface between an iron oxyhydroxide nanostructure and a 

nitrogen-doped carbon network almost exclusively in the final composite. The addition of SCN- 

ions was found to prevent the generation of iron carbides to a larger extent, while favoring the 

conversion of the excess of iron (not present as dispersed Fe-N-C nuclei of the type described 

above) into iron sulfides [265] that were leached and easily removed upon the acid washing step. 

Based on systematic analysis above, the formation mechanism toward model Fe/NSMC-SHT 

catalysts are put forward. As shown in Figure 11, the Fe ions/atoms tend to coordinate with citric 

acid in precursor solution/gel, during which SCN- anions are dispersed in precursor/gel in the form 
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of dissociation. The gelation under 110 oC is involved in a series of chemical reactions such as the 

decomposition of (NH4)2CO3 followed by acid-basic chemical reaction. The first thermal treatment 

at 900 oC under Ar atmosphere induces polymerization/condensation/aromatic processes, where 

D-glucose represents main carbon source while as-generated basic ammonium citrate plays double 

role of N-reservoir and pore-forming agents during first thermal treatment. As the temperature 

increasing, the added SCN- will be decomposed into sulfide and cyanide along with the 

incorporation of S into carbon matrix. The resultant sulfide subsequently serves as surface 

mediator to “catch” Fe by the formation of large FeSx and metal Fe nanoparticles prior to carbon 

deposition, thus preventing the formation of carbon coating layer. Simultaneously, the FeNx sites 

are created gradually by the top-down process, where atomically dispersed Fe can be obtained via 

direct transformation of Fe metal into Fe atom induced by high thermal treatment followed by 

trapping of atoms powered by N capture. After acid leaching, the composite of atomically 

dispersed Fe specie is finally obtained. The second thermal treatment (SHT) under NH3 are 

executed to develop porosity as well as activate the FeNx sites, during which more basic N-

containing groups (pyridinic N and graphitic N) are in-situ introduced. Resultantly, the densely 

accessible FeNx active sites coupled to Fe oxyhydroxide with high basic N-containing groups 

supported carbon nanosheets are achieved. As a comparison, a large number of Fe nanoparticles 

coated by carbon layer are visible when no additional SCN- introduced. Taken together, during the 

first Ar annealing stage, the addition of KSCN (i) mediates surface reaction by the formation of S-

related Fe species, preventing the formation of carbon coated Fe-related species. (ii) leads to lower 

graphitization degree, hosting more active FeNx sites. (iii) induces the formation of prevailing 

micropores, thus indirectly help improving FeNx active sites. On the other hand, the following NH3 

treatment (i) introduces more abundant pore structure by gasifying amorphous carbon. (ii) creates 
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more basic N-containing groups by in-situ doping. All these compelling benefits drive us to 

explore its further application in ORR.  

Figure 11. The proposed schematic illustration for synthetic route of Fe/NSMC-SHT 

The electrocatalytic ORR performance of catalyst is investigated in O2-saturated 0.1 M KOH 

solution by a typical three-electrode system. For the sake of comparison, commercial Pt/C (20% 

Pt/C), a series of control samples are also evaluated. As shown in Figure 12A-B, the Fe/NSMC-

SHT exhibits the superior ORR activity with onset potential (1.14 V) and half-wave potential 

(E1/2) of 0.87 V, which is highest amongst all investigated samples including commercial 

benchmark catalyst.  
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Figure 12. (A) ORR polarization curves, (B) Onset Potential, half-wave potential (E1/2) and kinetic 

current density (Jk) for different catalysts, (C) Tafel slop for as-prepared catalysts, (D) Accelerated 

durability test (ADT) for Fe/NSMC-SHT, (E) CA response for Fe/NSMC-SHT, (F) methanol 

tolerance test for Fe/NSMC-SHT. 

Furthermore, the kinetic current density (Jk) of Fe/NSMC-SHT reaches 8.43 mA cm-2 at 0.85 

V, which is higher than those for other samples and twice higher than 4.19 mA cm-2 for Pt/C. The 

ORR performance for the desired catalyst also outperforms reported most Fe-based atomically 

dispersed electrocatalysts. The Tafel slope (Figure 12C) of Fe/NSMC-SHT is determined to be 92 

mV dec-1, comparable with that of Pt/C (89 mV dec-1), and much lower than those of Fe/NMC-

SHT (106 mV dec-1), NSMC-SHT (119 mV dec-1) and Fe/NSMC-W (169 mV dec-1), indicating 

Fe/NSMC-SHT electrocatalyst manifests accelerated ORR kinetic and similar reaction mechanism 

with Pt/C catalyst. The limited diffusion current density (JL) for Fe/NSMC-SHT is measured to be 

5.08 mA cm-2, far outperforming those for Fe/NSMC-W (3.65 mA cm-2), NSMC-SHT (3.57 mA 
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cm-2), Fe/NMC-SHT (4.35 mA cm-2), albeit a slightly lower value than commercial Pt/C (5.5 mA

cm-2). The higher value of JL for Fe/NSMC-SHT compared with controlled catalysts can be

attributed to efficient four electron transfer process resulted from abundant hierarchical porous 

featured with larger specific surface area for efficient O2 diffusion and transportation as well as 

the more FeNx active sites [81, 290].  

  Figure 13. Polarization curve at different rotation speed for Fe/NSMC-SHT. 

To further explore the ORR kinetics, the rotating disk electrode (RDE) measurements with 

different rotation speeds are performed and corresponding Koutecky-Levich (K-L) plots are 

presented in Figure 13, the increase of limited-diffusion current with increasing of rotation speeds 

suggests the diffusion-controlled oxygen reduction process in alkaline electrolyte [291]. The linear 

and almost parallel K-L plots at different applied potential indicate the first-order reaction kinetics 

toward the concentration of dissolved oxygen [292]. The electron transfer number is determined 
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to 3.86 at applied potential of 0.4 V, demonstrating Fe/NSMC-SHT favors four-electron oxygen 

reduction process [293]. The electrocatalytic durability is key criterion for practical application of 

fuel cell. We conducted accelerated durability test (ADT) for Fe/NSMC-SHT, as shown in Figure 

12D, after continuous 10,000 cyclic voltammetry (CV) scans between 0.6 V to 1.0 V at a rate of 

50 mV s-1 under O2 atmosphere, the E1/2 for Fe/NSMC-SHT only decrease by 8 mV, exhibiting 

superb long-term stability in alkaline electrolyte. Besides, chronoamperometric (CA) response 

curves are also conducted to evaluate the stability and methanol tolerance at applied potential of 

0.6 V. As displayed in Figure 12E, the current density of Fe/NSMC-SHT retain up to 81% of its 

initial current density, while only 68% current density retention is obtained for Pt/C under the same 

experimental condition after testing more than 40,000 seconds. In comparison with the dramatic 

decrease of current density for Pt/C after injecting 1% (v/v) methanol, the current density for 

Fe/NSMC-SHT remains negligible decay. All above results disclose remarkable stability and 

methanol tolerance of Fe/NSMC-SHT (Figure 12F). Several important factors should be 

responsible for the superb electrochemical performance toward ORR for Fe/NSMC-SHT in 

comparison to other catalysts: (1) The hierarchical porous structures with dominating micropore 

resulting from KSCN surface mediator effect greatly foster mass-transport during electrochemical 

reaction on the premise of ensuring abundant FeNx active sites, which can significantly enhance 

the ORR activity. (2) NH3 heat treatment improves the exposure of FeNx active sites by producing 

slacker surface configuration, which increases the accessible active FeNx active sites and result in 

enhanced ORR activity. (3) more basic N-containing groups introduced by NH3 post-treatment 

especially for pyridinic N and graphitic N can afford extra active sites. These active sites can also 

contribute more activity for ORR. (4) On the basis of existing literature, the co-existing Fe 

nanoclusters (Fe oxyhydroxide) probably play a crucial role for improved intrinsic activity of 
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single FeNx site by optimization of reaction oxygenated intermediates over FeNx active sites, 

although a lack of more convincible evidence like DFT simulation for the comparison between 

exclusively atomically dispersed FeNx sites and FeNx/Fe oxyhydroxide mix sites in present work.  

 

3. Conclusions 

In summary, we have described an effective and general strategy to the clean production of 

highly metal charged Fe-based composites containing discrete FeNx moieties at the interface of 

iron oxyhydroxide sub-nanometric structures and N-doped carbon network through the 

combination of chelating citrate ions with the ancillary monodentate SCN- ligand. The control of 

the metal ion donor atom set originates an ideal “open gate” for water soluble iron ions to be 

accommodated in the form of Fe-N-C moieties within final C-N networks. A rational exploitation 

of their thermo-chemical and washing sequences has finally provided an effective and durable 

electrocatalyst for promoting the kinetically sluggish oxygen reduction reaction. Besides the 

general synthetic scheme that may apply to a variety of water-soluble transition-metal based salts, 

the protocol is a cost-effective path to the clean production of iron-composites containing 

catalytically active Fe-N-C moieties for the electrochemical process. The as-prepared highly 

metal-loaded catalyst has shown excellent electrocatalytic performance under alkaline 

environment. Studies devoted to the preparation and characterization of different transition metal 

SACs based on the functional protocol described in the paper are currently on-going in the lab and 

will be reported elsewhere in combination with different catalytic applications. 
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Abstract 

The preparation of atomically dispersed Fe on N-doped carbon (Fe-N-C) using separate metal 

precursor, N and C sources enables better flexibility of the synthesis and control on the structure 

and composition of the final product towards next generation viable fuel cell or metal-air batteries 

technologies, but remains a huge challenge to face. In this featured work, atomic Fe decorated N-

doped hierarchical porous carbon (Fe/NHPC) is successfully synthesized through the use of 

(NH4)2CO3 as single N source, citric acid as C source, and FeCl3 as metal precursor. Combined 

with template-assisted strategy, the formation mechanism of Fe/NHPC on the basis of gas-solid 

interfacial reactions is proposed. To the best of knowledge, this is the first time that inorganic N-

containing compound is employed as exclusive N source involving in the synthesis of Fe-N-C 

catalyst. Owing to this compelling feature of completely separated precursor, N-doped level can 

be finely tuned by adapting the amount of (NH4)2CO3 and the dependence of electrochemical 

activity of prepared catalysts in ORR on N-doping is observed. Detailed investigation reveals that 

both single Cl-FeN4 sites and pyridinic N are the active sites with Cl-FeN4 moieties being the most 

active sites, while Fe/Fe3O4 nanoparticles show no activity for ORR in alkaline condition. The 

optimized catalyst presents high ORR activity with a half-wave potential (E1/2) of 0.88 V, large 

kinetic current density (109.6 A g-1 normalized by catalyst loading at 0.8 V vs. RHE) along with 

outstanding stability, outperforming commercial Pt/C catalyst. This work affords a completely new 

route for the rational design of cost-effective highly active ORR electrocatalysts. 

 

 

 

 

 



101 

 

1. Introduction  

The sluggish kinetics of electrocatalytic oxygen reduction reaction (ORR) is one of the main 

obstacles in large scale commercialization of the next-generation energy storage and conversion 

devices such as fuel cell, metal-air batteries [23, 294]. Presently, Pt group metal (PGM) is the most 

efficient and viably ORR catalysts, while the problem of its high cost and availability has 

stimulated extensively searches for alternative cost-effective PGM-free catalysts [34, 295]. The 

exploitation of highly active, robust PGM-free catalysts especially for non-precious metal catalysts 

(NPMCs) with comparable or even better performance in ORR with respect to commercial Pt/C 

remains a challenging research topic nowadays.         

The metal-nitrogen coordination sites embedded into carbon matrix catalysts (M-N-C, M = 

Fe, Co, Mn, etc.) have been typically regarded as promising alternative to PGM catalysts [165, 

174, 296]. Four milestones can be outlined in the development of M-N-C catalysts. The first 

important step was an observation of cobalt phthalocyanine capable of catalyzing the ORR in an 

alkaline medium, reported by Jasinski [38]. Followed by this pioneering work, other M-N4 

macrocycles were also found to be active towards ORR in both alkaline and acid mediums [297]. 

The second important step was the discovery that high temperature treatment (400-1000 oC) in 

inert atmosphere of M-N4 macrocycles could significantly increase their activity and stability [298-

300]. The nature of active sites generated by thermal decomposition of M-N4 macrocycles has ever 

since been debated. Currently it is widely believed that M-N4 moiety inherited from parent 

configuration of macrocycles survived pyrolysis is most likely active site towards ORR [153]. The 

third breakthrough made by Yeager et al. was a synthesis of NPMCs using metal salts, N-

containing precursor and high surface area carbon. This approach opened a new avenue for 

preparation of M-N-C electrocatalyst independent on M-N4 macrocycles molecule [41], 
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suggesting that high temperature synthesis of M-N-C catalyst was typically involved in the 

simultaneous presence of metal salt, N, and C sources. Afterwards extensive efforts have been 

followed to the developments of highly active and durable M-N-C catalysts by this route, in 

particular Fe-N-C electrocatalysts due to its best ORR activity [290, 301, 302]. Of note is that in 

all these works, MOF-based [233, 234, 303], N-containing organic small molecule [304, 305] 

and/or polymers [306, 307], were primarily utilized as a simultaneous N and C sources. The fourth 

significant breakthrough was achieved by Dodelet’s group, who demonstrated that for the 

synthesis of Fe-N-C catalyst, the transition metal, N, C could be separately introduced by the use 

of reactive gas NH3 or CH3CN as exclusive N source [308, 309]. Subsequent numerous studies 

have been devoted to improving catalytic activity and stability of NH3-treated Fe-N-C catalysts 

[223, 225, 226]. However, high temperature NH3 treatment is a highly dangerous and hardly 

controllable procedure, hindering intensive development of Fe-N-C ORR catalysts. The 

preparation of Fe-N-C with high ORR performance using a single N source such as inorganic N-

containing compound rather than NH3 presents a desirable but yet challenging progress. On the 

other hand, the fabrication strategy for Fe-N-C catalysts relies mainly on error and trial process 

due to the complexity of chemical nature of as-prepared catalysts arising from high temperature 

pyrolysis as well as precursor species. The utilization of simple precursor molecules with well-

defined chemical structure will lead to better control on the properties of prepared Fe-N-C 

electrocatalysts. 

The identification of ORR active site is of great importance for the rational design of high 

ORR performance electrocatalyst. Actually, the real active sites which are responsible for 

operating the ORR process on Fe-N-C catalysts have been debated since relatively long time due 

to possible formation of multiple active species upon high temperature pyrolysis. For instance, the 
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metallic Fe [310, 311], oxidative FexOy [312-314], carbide FexC [147, 315] as well as nitride FexN 

[223, 316, 317] nanoparticles encapsulated into N-doped carbon layer have been proposed either 

as an active site itself or as co-catalyst exerting synergistic effect together with FeNx active sites. 

Existence of the multiple possible coordination of N-sites, such a pyridinic N and graphitic N, 

which are active toward ORR particularly in alkaline media, further complicates the analysis of 

the nature of active site. Although the controversy still exists in regards to a relative activity of Fe-

based species, the FeNx moiety is commonly considered to be most active sites with highly 

efficient 4-electron oxygen reduction [113, 114]. The activity of FeNx moiety can be further altered 

by tuning d-electron density of Fe center through heteroatom doping (e.g. O, S, B) [283, 318, 319] 

or by changing carbon sp2-plane size [320]. Alternatively, the most intuitive approach is to increase 

Fe loadings which enriches the total density of FeNx active sites. Zhao et al [321] prepared Fe-N-

C catalyst with a metal loading up to 12.1 wt % using cascade anchoring strategy. The as-prepared 

Fe–N-C catalyst shows a superior ORR activity with a half-wave potential of 0.90 V in 0.1 M 

KOH. However, in many cases, the excess Fe loadings inevitably generate less active metallic 

and/or carbide particles with possible deterioration of ORR activity, thus optimal Fe loading has 

to be optimized. Moreover, Kucernak’s group revealed that even in the case of Fe almost 

exclusively dispersed into FeNx sites, only a small proportion (less than 5 %) of these sites was 

actually involved in the ORR process [322], assuming that majority of sites may be hidden within 

the bulk of carbon and inaccessible for electrolyte/reactants. On this regard, increasing of exposure 

of FeNx sites is another viable strategy of improvement of ORR activity. Lee et al [323] 

investigated systematically the roles of macro and mesopore on the ORR performance of Fe-N-C. 

They found that mesopores serve as a channel for reaction medium accessibility into active sites, 

while macropores significantly decrease mass transport resistance of the electrocatalyst. Hence, 
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the rational design of hierarchical porous structure with interconnected macro, meso, and 

micropores not only affords high surface area for hosting more underlying active sites but also 

facilitate the ORR kinetic due to the improved exposure of active sites and facile mass 

(reactant/product) transfer.  

In our last work we have reported an original and general synthetic route for atomically 

dispersed Fe-N-C catalysts with aid of ancillary monodentate thiocyanate ligand [324]. The 

synthesis allowed fine control on the composition of the final product, but required a step of high 

temperature annealing in NH3 atmosphere to develop a carbon structure optimal for ORR 

electrocatalyst. In this present work, a modified strategy is reported, allowing to avoid NH3 

annealing at high temperature by using inorganic salt (NH4)2CO3 as single nitrogen precursor and 

citric acid as only carbon precursor. With the aid of silica template, the as-prepared catalyst 

presents favorable hierarchical porous structure containing interconnected micropores, bimodal 

mesopores and macropores with tunable pore distribution. Importantly, N-doping level can be 

finely tuned using separated sources for carbon and nitrogen in this synthesis and respective 

formation mechanism of atomic Fe-decorated hierarchical porous carbon is proposed. To our best 

knowledge, this is the first example of a synthesis of Fe-N-C catalyst by the use of separated N 

and C source instead of using gas phase N resource (NH3, etc.). As a result, the optimal catalyst 

exhibits outstanding ORR activity and stability as well as methanol tolerance, outperforming 

commercial Pt/C catalyst. Moreover, the ORR reactivity dependence on the level of N-doping is 

observed. Systematic investigation reveals that both porphyrin-like single Cl-FeN4 sites and 

pyridinic N are active sites in ORR with Cl-FeN4 moieties being the most active sites, and Fe/Fe3O4 

metal nanoparticles show no activity for ORR in alkaline media. This work highlights the great 

promises of cost-effective Fe-N-C in electrocatalysis and offers a completely new route for the 
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synthesis of Fe-N-C catalyst. Last but not least, this work also presents a general strategy for the 

synthesis of other single metal atom catalysts with superior performance for other applications.  

 

2. Results and discussion 

2.1 The formation mechanism of Fe/NHPC catalyst 

Ammonium carbonate ((NH4)2CO3), one of the cheapest inorganic ammonium salts, has been 

extensively applied in the field of fertilizer industry. Utilization of this abundant and ecofriendly 

inorganic feedstock in the synthesis of atomically dispersed Fe-N-C electrocatalyst is challenging, 

especially due to its low decomposition temperature (as low as 60 oC). We propose a synthesis 

route for atomic dispersed Fe decorated N-doped hierarchical porous carbon employing silica 

template-assisted strategy with citric acid as single carbon source, and (NH4)2CO3 as single N-

precursor. The entire synthetic procedure takes full advantage of strong coordination of citric acid 

with cations (Zn2+, Fe3+ and NH4
+).  

 

Figure 1. The digital picture of pH value for precursor sol solution of model catalyst. 
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First of all, the mixture of citric acid, (NH4)2CO3, silica nanosphere powder are dissolved into 

deionized water to form uniform liquid sol, during which (NH4)2CO3 is subjected to initial 

hydrolysis accompanied by release of CO2 gas and the formation of large number of NH4
+ in the 

aqueous solution. After adding metal salts, Zn2+ and Fe3+ cations can be readily complexed by 

citrate ion due to the strong coordination interaction [325]. The total contents of metal cations 

(1.87 mmol) are much lower than that of carboxylate ion (31.23 mmol based on addition amount 

of citric acid) giving rise to the formation of ammonium citrate [14, 15]. The pH of sol precursor 

solution is measured to be about 8.5 (Figure 1), higher than isoelectric point (pH = 2.5) of SiO2 

aqueous solution, implying that the surface of silica nanosphere is negatively charged. Hence, 

excess NH4
+ ions are presumably adsorbed at surface of silica nanosphere. After drying at 110 oC 

a solid deposit is obtained. Upon pyrolysis under Ar at 900 oC, the black power is formed. After 

silica template removal by NaOH etching, the atomic Fe decorated hierarchical porous carbon, 

referred to as 2Fe/NHPC5AC is finally produced by the second thermal treatment in Ar at 900 oC. 

On the contrary, the viscous gel-like substance is formed after drying the solution of citric acid, 

ammonium carbonate, and metal salts, when no silica template particles are added. After pyrolysis 

under Ar at 900 oC, the silver-gray foam product is obtained which is also subjected to second 

thermal treatment in Ar at 900 oC (Figure 2).  
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Figure 2. The digital picture of synthetic procedure of model catalyst 2Fe/NHPC5AC (above), and 

control sample 2Fe/NC5AC-w/o SiO2 (below). 

 

In order to understand the processes of pyrolysis of precursors mixture and formation 

mechanism of atomic Fe decorated N-doped hierarchical porous carbon, TPD-MS experiment of 

precursor powder of 2Fe/NHPC5AC obtained after 110 oC dryness are first conducted. As Figure 3 

shows, the main mass loss occurs with the temperature range from 100 oC to 500 oC along with 

generation of considerable amount of H2O (m/z = 18), CO2 (m/z = 44), NH3 (m/z = 17) and small 

portion of H2 (m/z = 2), O2 (m/z = 32), CO (m/z = 28). This process is attributed to the dehydration 

along with thermal decomposition of citrate ions and NH4
+ in the precursor mixture. The process 

results in the formation of citraconic anhydride and itaconic anhydride [326], during which the 

evolved NH3 reacts with oxygen-containing functional groups of carbon network resulting in the 

in-situ N-doping. At the temperature above 500 oC, a significant amount of H2 is gradually released, 

along with generation of small amount CO, which can be attributed to dehydrogenation 

carbonization process with formation of amorphous carbon and decomposition of more thermal-
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resistant oxygen function groups [327]. As pyrolysis temperature increases, Fe atoms are reduced 

by amorphous carbon and trapped by N atoms, leading to the formation of highly stable FeNx 

active sites incorporated into carbon matrix. When pyrolysis temperature reaches up to 900 oC, the 

metal Zn is vaporized and leave micropore channel, which is highly beneficial for hosting more 

FeNx active sites thus improvement of ORR activity.  

 

Figure 3. TPD-MS (above) and corresponding TGA plots (below) of precursor powder of 

2Fe/NHPC5AC after a drying step at 110 oC. 

 

N2 adsorption isotherms for catalysts prepared with different amount of (NH4)2CO3 are then 

measured to get an insight into the formation of porous structure containing atomic Fe catalyst. As 

Figure 4A shows, all investigated samples display type IV isotherm profiles with markedly type-
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H3 hysteresis loop, a typical characteristic of mesoporous carbon structure [328]. Dependencies 

of BET specific surface area (SSA) and relative pore volume on the amount of (NH4)2CO3 are 

presented in Figure 4B. The SSA of catalyst prepared in the absence of (NH4)2CO3 is 931 m2 g-1. 

An introduction of small amount of (NH4)2CO3 (0.5 g) induces a slight decrease in surface area 

(840 m2 g-1). However, further increase of (NH4)2CO3 amount results in increase in SSA to 925 m2 

g-1 for 2Fe/NHPC5AC and 1036 m2 g-1 for 2Fe/NHPC8AC. The relative volumes of micro-, meso-, as 

well as total pore volume monotonically increase with the increasing of amount of (NH4)2CO3. In 

order to better understand the role of (NH4)2CO3 in the formation of the catalyst porous structure, 

we analyze the dependence of relative surface area and volume of micro-, meso- and macropores 

as function of the added amount of (NH4)2CO3, for detail see Figure 4B and Table 1. Compared 

with N-free catalyst, addition of small amount of (NH4)2CO3 (0.5 g) results in significant increase 

in surface area and micropores volume. However, a decrease in surface area of mesopores is 

observed, while their relative volume is increased. This can be rationalized by the fact that the total 

length of mesopores becomes slightly shorter but their average diameter increases as (NH4)2CO3 

is introduced. Therefore, the surface area, proportional to the product of length and diameter, is 

decreasing, while their volume, proportional to product of length and square of diameter, is 

increasing. Indeed, an average pore diameter, estimated from the ratio of volume to area (Table 1), 

is increasing from ca. 7.8 nm to ca. 12.8 nm with addition of (NH4)2CO3. We can speculate that 

NH3 evolution produces a large number of micropores by etching carbon matrix during pyrolysis, 

and hardly contributes new mesopores which results in shortening/broadening of mesopores 

formed by silica template. Further increase in (NH4)2CO3 amount (5 g) results in a slight increase 

in average diameter of mesopores (13.3 nm), and gradual increase in both pores volume and 

surface area, while for larger amount of (NH4)2CO3 added (8 g) a slight decline in average pore 
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diameter is detected (12.7 nm). In this case, mesopores surface area improves sharply while the 

micropores surface area and pores volume reach up to saturation and shows limited improvement. 

The observation suggests that an excess amount of NH3 probably forms bubbles, enabling the 

formation of new mesopores. The conclusion is further verified by analysis of pore size distribution.  

 

Figure 4. (A) N2 adsorption-desorption isotherm plots for samples with different amount of 

(NH4)2CO3 recorded at 77 K; (B) The correlation plots of specific surface area (SSA) and pore 

volume as function of addition of (NH4)2CO3; (C) The respective pore size distribution using the 

desorption branch of N2 isotherms (BJH method, the data recorded with a pore width from 1.7 nm 

to 100 nm). 

 

As shown in Figure 4C, all samples show hierarchical porous features with two apparent 

mesopore regions along with a small amount of macropores. The bimodal mesopore contains two 

domains: with low pore diameter region (Mesopore I) mostly presented by silica template-derived 

mesopores, and larger mesopores region with broad diameter distribution (Mesopore II) mostly 

formed consecutively by gas (CO2, CO, H2, NH3) generation during pyrolysis. Without addition 

of (NH4)2CO3, the main peaks in region I is centered at ca.7 nm, well in accordance with the size 

of silica template (7 nm). The peak gradually positively shifts to 9.5 nm for 2Fe/NHPC0.5AC, 11.5 

nm for both 2Fe/NHPC5AC and 2Fe/NHPC8AC, respectively.  
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Table 1. Textural properties of as-obtained catalysts 
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2Fe/HPC0AC 931 85 831 1.70 0.03 1.61 7.8 

2Fe/NHPC0.5AC 840 141 661 2.33 0.06 2.20 12.8 

2Fe/NHPC5AC 925 205 677 2.40 0.09 2.23 13.3 

2Fe/NHPC8AC 1036 213 785 2.59 0.10 2.42 12.7 

NHPC5AC 1158 293 809 2.93 0.14 2.01 13.9 

w/o ZnCl2 828 196 591 2.28 0.09 2.12 14.0 

a Brunauer-Emmett-Teller (BET) specific surface area (SSA) measured at T = 77 K. b Total pore volume 

determined using the adsorption branch of N2 isotherm at P/P0 = 0.98. c Determined by t-plot method. d 

Determined by BJH desorption average pore width (4V/A).  

 

Table 2. Chemical composition properties of as-obtained catalysts 

Sample 

XPS data 

Element composition a 

(at. %)c 
N species  (at. %) b 
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2Fe/HPC0AC 96.21 3.79 - - - - - - 

2Fe/NHPC0.5AC 88.90 6.24 4.85 1.74 1.37 0.82 0.3 0.64 

2Fe/NHPC5AC 88.59 5.07 6.35 1.96 1.47 1.18 0.6 1.13 

2Fe/NHPC8AC 88.04 4.30 7.66 3.30 2.28 1.17 0.36 0.55 

NHPC5AC 88.86 5.09 6.05 2.69 2.31 0.60 0.45 - 

w/o ZnCl2 89.20 3.96 6.84 1.95 2.03 1.44 0.66 0.78 

a Determined by XPS analysis. b Determined by high resolution XPS N 1s core region and the product of relative 

deconvoluted peak and total nitrogen content on each sample. 
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Figure 5. A) N2 adsorption-desorption isotherm linear plot of 2Fe/NHPC5AC, 2Fe/NHPC5AC-w/o 

ZnCl2, 
2Fe/NC5AC-w/o SiO2, and NHPC5AC recorded at 77 K and respective pore size distribution 

determined by BJH method using the desorption branch of N2 isotherm (the data recorded with a 

pore width from 1.7 nm to 100 nm). 

 

Likewise, in the region II, the density of large mesopores (ca. 31 nm) increases with addition 

of 0.5 g (NH4)2CO3. The further increase in amount of (NH4)2CO3 leads to an increase of pores 

density, both small (11.5 nm) and large mesopores with wider pore size dimension (ca. 52 nm), 

which could be induced by the formation of NH3 which is at the origin of pore expansion and 

formation of new mesopores. It can be also mentioned that the macropores in samples prepared 

with (NH4)2CO3 have larger relative pore volume and surface area as compared to N-free samples. 

It is still believed that macropores play a critical role for the improved electrochemical 

performance due to kinetic accessibility of active sites during electrocatalytic reaction [323]. N2 

adsorption isotherms for 2Fe/NC5AC-w/o SiO2 and 2Fe/NHPC5AC-w/o ZnCl2 have also been 

performed to investigate the ZnCl2 and silica template effects on the textural nature. The BET 

surface area of sample prepared without silica template is 204 m2 g-1 (Figure 5A), much lower than 
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that of 2Fe/NHPC5AC, suggesting the pivotal role of silica for the formation of porous structure. 

The introduction of ZnCl2 does not significantly affect micropore surface area with only slight 

enhancement of mesopore surface area compared to that on 2Fe/NHPC5AC-w/o ZnCl2 (Table 1). 

Similar pore size distribution (Figure 5B) for both 2Fe/NHPC5AC and 2Fe/NHPC5AC-w/o ZnCl2 

further confirms the introduction of ZnCl2 indeed has a negligible contribution for the generation 

of micropores and the change of pore structure. The observation differs from often reported 

conclusions that ZnCl2 can serve as micropore-forming agent due to its “escape pore” after 

evaporation at high temperature. In present work, the generation of micropore is governed by NH3 

evolution as aforementioned, and ZnCl2 is likely positive beneficial to improvement of ORR 

activity in different manner. For instance, the Zn atoms can also be acted as isolator to enlarge 

distance between Fe atoms, which prevents the aggregation of Fe atoms at high pyrolysis 

temperature and consequently promotes the FeNx active sites density [329]. Further evidences on 

this hypothesis will be given in the following part. 

Based on the results discussed above, the schematic illustration of the formation mechanism 

of atomic Fe decorated hierarchical porous carbon is proposed in Figure 6. The strong coordination 

ability of citric acid results in interaction between citrate ion and metal cations as well as NH4
+ 

ions, while the excess NH4
+ is adsorbed on the surface of silica nanosphere due to electrostatic 

interaction. The gas-solid interfacial reaction occurred on the rigid outer surface of silica 

nanosphere, resulting in decomposition of precursors, in-situ N-doping, carbonization, and 

formation of FeNx active sites. To be specific, as the temperature of pyrolysis increases, the 

decomposition of citrate complexes and NH4
+ result in generation of a large amount of gas. Gases 

issued from decomposition of citrate, i.e. CO, CO2, H2O, etc., primary escape from precursor 

matrix, forming large mesopores and small portion of macropores with wide pore size distribution. 



114 

 

On the other hand, NH3 formed from the decomposition of NH4
+ on the surface of silica 

nanoparticles, produces a large number of escape channels. These escape channels further enlarge 

the pore size of small mesopores derived from silica etching. Simultaneously, the escaping NH3 

readily reacts with carbon matrix and O-containing functional groups of carbon precursor [330], 

along solid-gas interface, leading to the formation of micropores and in-situ N-doping at relatively 

low temperature. As pyrolysis temperature increases, Fe atoms are trapped by N atoms and FeNx 

active sites are formed along the channel walls, in which rigid interface plays an important role in 

suppressing the aggregation of Fe atoms and consequently prevent the formation of large Fe 

particles. As temperature reaches up 900 oC, the metal Zn reduced by carbon is volatilized due to 

its relatively low boiling point, which enables the achievement of more densely FeNx active sites 

due to the effect of steric hindrance (the presence of Zn atoms enlarging the distance between Fe 

atoms). Finally, the atomic Fe decorated N-doped hierarchical porous carbon consisting of 

interconnected micropores, bimodal mesopores and macropores is obtained. Such a hierarchical 

structure significantly facilitates fast mass transport and offers efficient utilization of FeNx sites. 

More importantly, the porosity of as-prepared catalysts can be easily tuned ranging from micro- to 

macro pores scale by adjusting the addition amount of (NH4)2CO3. All of these compelling features 

are highly beneficial for an electrochemical process.  
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Figure 6. The proposed schematic illustration for the formation of atomic Fe decorated N-doped 

hierarchical porous carbon. 

 

2.2 Structural characterization of as-prepared catalysts  

X-ray diffraction (XRD) patterns (Figure 7A) of as-prepared catalysts shows the formation 

of Fe3C nanoparticles in absence of SiO2 template. Well defined peak at 26o of this sample suggests 

the enhanced graphitization in the 2Fe/NC5AC-w/o SiO2 in comparison to samples prepared with 

silica template. On the contrary, when silica template is used, only Fe metallic phases, and no Fe3C, 

are found, even though no (NH4)2CO3 is added. This result indicates that SiO2 template plays 

critical role in suppressing the formation of Fe3C phase. All samples with simultaneous presence 

of (NH4)2CO3 and SiO2 template exhibit two broad peaks located at 24.4o and 44o, which can be 

assigned to (002) and (100) planes of graphitic carbon, respectively. No other peaks associated 
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with Fe metal phase are observed, suggesting that Fe is predominantly atomically dispersed into 

single site within the carbon matrix.  

 

Figure 7. (A) XRD profile of as-prepared catalysts; (B) representative SEM image; (C) TEM image; 

(D) HAADF-STEM image, and (E) EDX elemental mapping at a selected region of model catalyst 

2Fe/NHPC5AC; (F) The normalized XANES spectra at the Fe K-edge of 2Fe@NHPC5AC and 

respective Fe foil and Fe2O3 reference samples; (G) The k2-weighted Fourier transform spectra of 

2Fe@NHPC5AC catalyst as well as reference samples; (H) The corresponding EXAFS fitting curves 

of the 2Fe@NHPC5AC with Cl-Fe-N4 model. 
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Scanning electron microscope (SEM) in Figure 7B reveals the flower-like morphology with 

highly developed pore structure and open carbon network framework of model catalyst 

2Fe/NHPC5AC. In a sharp contrast, only solid bulk carbon with poor porosity is found for the sample 

prepared without silica-template (Figure 8A-B), demonstrating a key role of silica template in the 

formation of highly developed porous structure. Transmission electron microscopy (TEM) at low 

magnification with different selected region (Figure 9A-C) showing an overview of microscopic 

nature of model catalyst, suggests that almost no nanoparticle is present and Fe atoms probably 

exist in atomically dispersed form. The high-resolution TEM image (Figure 7C) shows a 

hierarchical porous structure with distinctive pore size scale spanning from meso- to macropore 

forming interconnected networks, in line with the observation by BET and SEM analysis. 

HAADF-STEM image (Figure 7D) shows a number of bright spots assigned to heavier Fe atoms 

that are observed across the carbon framework, unambiguously suggesting the formation of single 

Fe atoms. The energy-dispersive X-ray (EDX) mapping (Figure 7E) has presented a homogeneous 

distribution of Fe and N along with C, O elements, further confirming the formation of atomically 

dispersed FeNx moieties over N-doped porous carbon.  

 

Figure 8. SEM images of 2Fe/NC5AC-w/o SiO2 at low (A) and high (B) magnification, respectively. 
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Figure 9. The overview of low-magnification TEM images at different selected region (A and B) 

and corresponding high-resolution image (C). 

 

To better identify active site structure of FeNx sites, X-ray absorption spectroscopy (XAS) is 

performed to obtain more coordination information. Figure 7F shows X-ray absorption near edge 

structure (XANES) spectra at the Fe K edge of model catalyst. The absorption pre-edge peak at 

7118 eV assigned to 1s – 4pz shakedown transition (e.g. typical FePc structure) is of no presence 

for 2Fe@NHPC5AC, revealing the broken D4h symmetry [183]. In this case, an absorption pre-edge 

peak appeared at 7113.6 eV whose peak intensity lies between Fe2O3 and Fe foil, suggesting that 

the tetrahedral or distorted octahedral geometries feature is dominated in our system [331]. The 

finding further suggests that the Fe single atom is probably coordinated in the form of Fe-N4 moiety 

with porphyrin-like structure [332]. Of note is that the absorption edge (1s - 4p transition) of model 

catalyst is nearly superimposed on the Fe2O3 reference sample, which demonstrates the valence 

state of Fe3+ is prevalent in the sample 2Fe@NHPC5AC. This result is different from most usually 

report on single Fe atom supported carbon carrier with mixture chemical valence of + 2 and + 3. 

In this case, the Fe ions is oxidized from + 2 to + 3 during the pyrolysis, which is closely associated 

with involvement of more electronegative heteroatoms [333]. The Fourier-transformed (FT) k2-

weighted extended X-ray absorption fine structure (EXAFS) is further conducted to get more 



119 

 

insight into coordination structure of sample. As Figure 7G shows, the pronounced Fe-Fe 

backscattering signals can be found at 2.20 Å and 2.58 Å in the Fe foil and Fe2O3 samples, 

respectively [334]. On the contrary, the sample 2Fe@NHPC5AC exhibits a prominent peak at 1.47 

Å, assigned to Fe-N(O) in the first coordination shell, while another peak at 2.39 Å can be ascribed 

to Fe-C distance of the second neighbor shell [147]. No Fe-Fe bonds signal is detected, indicating 

the single metal Fe is incorporated into carbon matrix in the sample. The observation is consistent 

with results obtained by the XRD and HAADF-STEM techniques. The curve-fitting result of FT-

EXAFS (Figure 7H and Table 3) on the model catalyst reveals that the average coordinated number 

of Fe-N contribution is ca. 3.4, suggesting conventional Fe-N4 moiety structure. Interestingly, the 

additional Fe-Cl contribution in the first coordination shell with coordination number of ca. 1 is 

also observed, in which Cl atom is primarily originated from the ZnCl2 in the starting precursor.  

Table 3. Structural data from the fitting of Fe K-edge EXAFS signal in the 2Fe@NHPC5AC. 

Path 
Coord. 

Numb.  
R(Å)a 2             (10-

2 Å2)b E0 
c R-factor d 

Fe-N 3.4  0.2 1.97 ± 0.01 2.9 ± 0.9 -2.8 ± 0.4 0.009 

Fe-Cl 1.0  0.1 2.32 ± 0.01 2.7 ± 1.2 4.6 ± 0.9 - 

Fe-C 4.8 ± 0.6 2.90 ± 0.01 3.8 ± 1.9 -2.8 ± 0.4 - 

a Interatomic distance. b Debye-Waller factor. c Difference in the threshold Fermi level between data and fit. d 

Goodness of fit parameters. 

 

Therefore, the nature of active sites can be proposed as Fe-N4 center axially coordinated with 

one chloride anion, make it a Cl-FeN4 configuration (see picture in inset of Figure 7H). Indeed, 

the existence of Fe-Cl coordination shall be responsible for the predominant chemical state of Fe3+ 

revealed in the XANES analysis, further reinforcing the accuracy of fitting results. Worthy of note, 

such active site structure is similar to porphyrin-based macrocycle compound 
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(Iron(tetraphenylporphyrinato) chloride (FeTTPCl)) which is known to be high active toward ORR 

albeit with the unsatisfied durability [335, 336]. Such an active sites structure similar to 

macrocycle molecular catalyst presents two compelling benefits: I) the unique nature of active site 

inherits advantage of high ORR activity of macrocycle compound molecular catalyst; II) at odds 

with conventional macrocycle compounds which are known to be less stable in ORR process, the 

single FeN4Cl site is strongly stabilized in inert carbon matrix consequently giving rise to much 

enhanced durability toward ORR. All of these advantages make such carbon-based single-phase 

system ideal candidates to act as efficient electrocatalyst toward ORR with high active and stability.  

 

Figure 10. (A) Raman spectra of samples using various amount of (NH4)2CO3; (B) XPS spectra of 

high-resolution N 1s core region in the N-containing catalysts. 

 

Raman measurements are carried out to get a deeper insight into carbon structure information 

of catalysts prepared with different amount of (NH4)2CO3. As shown in Figure 10A, the spectra of 
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all samples are well fit by four Lorentzian peaks. The dominating peaks at 1596 cm-1 and 1352 

cm-1 are ascribed to G and D bands of carbon material, typically characteristic resonance of sp2-

hybridized carbon atoms within ideal graphene layer and carbon atoms close to edge of graphene 

sheet or structural defect, respectively [337]. The intensity ratio of D band and G band can be used 

as indicator for a density of defects of specific carbon-based materials. The calculated ID/IG values 

for 2Fe/NHPC0.5AC, 2Fe/NHPC5AC, 2Fe/NHPC8AC are 4.77, 4.04, 4.34, respectively, higher than that 

of N-free sample (3.6), indicating the introduction of N increases the more edge defects and 

disorder carbon. The two weak peaks centered at 1200 cm-1 and 1526 cm-1 are attributed to carbon 

atoms outside of perfectly planar graphene networks associated with aliphatic and amorphous 

carbon, and distortion carbon structure related to five-members or heteroatoms, respectively [338]. 

Both of these two peaks proportion gradually improve as the increase of (NH4)2CO3 (Table 4), 

suggesting that more N heteroatoms are introduced into carbon matrix.  

Table 4. Raman fitting results for samples prepared by using different amount of (NH4)2CO3 

Sample 

Deconvoluted results a (Area. %) 

Sp2 carbon 

Outside 
D peak 

Distortion 

C5 ring 

Heteroatom 

G peak b ID/IG 

c La 

(nm) 

2Fe/HPC0AC 3.77 65.63 12.36 18.24 3.60 5.34 

2Fe/NHPC0.5AC 4.00 67.38 14.48 14.13 4.77 4.03 

2Fe/NHPC5AC 7.00 62.36 15.19 15.43 4.04 4.76 

2Fe/NHPC8AC 7.16 62.53 15.92 14.40 4.34 4.43 

a fitting by Lorentz method, b determined by the area ratio between D peak and G peak, c calculated by the 

general equation proposed by Cançado et al [339]: La (nm) = (2.4×10-10) λ4 (ID/IG)-1, where λ is referred to 

wave length of laser (532 nm). 
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Table 5. N1s deconvoluted results of as-prepared catalysts 

 

XPS measurements are carried out to elucidate the effect N-doping on the electronic structure 

of the different samples. The relative elemental compositions determined by semi-quantitative 

analysis for various catalysts are summarized in Table 2. The Fe signal is invisible due to its low 

loading (the mass loading of 2Fe/NHPC5AC is determined to be 0.4 wt. % by ICP-AES 

measurement). It is found that much higher carbon content (96.2 %) are obtained for 2Fe/HPC0AC 

respect to that of N-containing catalysts, demonstrating the improvement of the carbonization and 

graphitization degree. Once (NH4)2CO3 is added, the carbon content is significantly decreased. The 

N contents gradually increase with increasing the amount of (NH4)2CO3 from 4.85, 6.35 to 7.66 % 

for 2Fe/NHPC0.5AC, 2Fe/NHPC5AC and 2Fe/NHPC8AC, respectively. On the contrary, oxygen 

contents decrease accordingly as a function of (NH4)2CO3 addition. Noteworthy, the total amount 

of N and O species remains unchanged, indicating that the introduction of N is mostly linked by a 

reaction between NH3 and oxygen functional groups. At odds with all of results reported for the 

Fe-N-C catalysts, the N-doping level can be carefully tuned by changing the amount of solid N 

precursor. The high-resolution N 1s spectra for N-containing samples is further analyzed to reveal 

the more details of N-doping species. As presented in Figure 10B, a deconvolution of high-

resolution spectra at their N 1s core regions accounted for five distinct N-components, where the 

 Sample 
N species (at. %) 

Pyridinic N Pyrrolic N  Graphitic N  Oxidized N Fe-Nx 

2Fe/NHPC0.5AC 35.81 28.16 16.82 6.11 13.10 

2Fe/NHPC5AC 30.83 23.30 18.64 9.47 17.77 

2Fe/NHPC8AC 43.09 29.71 15.21 4.75 7.24 

NHPC5AC 44.45 38.20 9.99 7.36 0 

2Fe/NHPC5AC-w/o ZnCl2  28.47 29.69 20.98 9.60 11.34 
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peaks at ca. 398.0 eV, 400.6 eV, 401.8 eV, 404.1 eV are assigned to pyridinic N, pyrrolic N, 

graphitic N and oxidized N respectively. The additional peak at 399.1 eV is conventionally 

ascribed to the contribution of Fe-N sites (Cl-FeN4 moiety in this case) [146, 340]. The relative 

fraction of N-species and the amount of nitrogen species calculated on a basis of total nitrogen 

content and its fraction on each sample has been summarized (Table 2 and Table 5). It is worth 

noting that the 2Fe/NHPC5AC-w/o ZnCl2 shares similar elemental composition and almost the same 

N-doped content to that of 2Fe/NHPC5AC (Table 2). However, at odds with predominant pyridinic 

N-doping of 2Fe/NHPC5AC, the graphitic N is main contributor for the ZnCl2-free catalyst with 

much lower Cl-FeN4 content (Figure 11, Table 2). The observation suggests that ZnCl2 plays 

important role of generation of more densely Cl-FeN4 active sites during pyrolysis. 

 

Figure 11. High resolution XPS N 1s core level region of 2Fe/NHPC5AC, 2Fe/NHPC5AC-w/o ZnCl2, 

and NHPC5AC. 
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2.3 The influence of different precursors on ORR activity 

 

 

Figure 12. Cyclic voltammetry (CV) curves under Ar and O2- saturated 0.1 M KOH solution at 

scan rate of 50 mV s-1 for 2Fe/NHPC5AC, 2Fe/NHPC5AC-w/o ZnCl2, and 2Fe/NC5AC-w/o SiO2. 

 

The ORR electrocatalytic performance of model catalyst 2Fe/NHPC5AC along with 

counterparts prepared without addition of ZnCl2 and silica template are evaluated. Figure 12 

presents the CV curves of various catalyst in Ar-saturated and O2-saturated 0.1 M KOH electrolyte 

with a scan rate of 50 mV s-1. The distinct reduction peaks are observed only in O2-saturated 

electrolyte, confirming that all the catalysts possess the capacity to catalyze oxygen reduction. The 

most positive reduction peak position for 2Fe/NHPC5AC suggests its highest onset potential and the 

best ORR activity. The polarization curve and calculated onset potential (Eon), half wave potential 

(E1/2) as well as kinetic current density at applied potential of 0.8 V (Jk@0.8 V) are displayed in 

mailto:Jk@0.8
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Figure 13A and Table 6. 2Fe/NC5AC-w/o SiO2 shows the much lower ORR activity compared to 

catalysts prepared with silica template irrespectively of addition of ZnCl2, indicating the 

indispensable role of silica addition for the generation of catalysts with improving ORR activity.  

 

Figure 13. (A) Linear sweep voltammograms (LSVs) curves of model catalyst along with control 

samples recorded in an O2-saturated 0.1M KOH electrolyte solution at a scan rate of 10 mV s−1 at 

a rotating speed of the working electrode of 1600 rpm; (B) corresponding Tafel plots; (C) K-L 

plots of 2Fe/NHPC5AC as obtained from the respective LSVs at 0.3 - 0.7 V; (D) The plots of electron 

transfer number and H2O2 yield of all concerned samples based on RRDE measurements at rotation 

speed of 1600 rpm with scan rate of 10 mV s-1 in O2-saturated 0.1 M KOH solution; (E) 

Chronoamperometric (CA) responses of 2Fe/NHPC5AC and 20% Pt/C catalyst at applied potential 

of 0.65 V with a rotating speed of 1600 rpm under O2 atmosphere; (F) Methanol poisoning and (G) 

durability tests.  

 

The silica template-boosting catalytic activity can be attributed to: (1) the sharply enhanced 

specific surface area along with developed pore structure, which significantly facilitates the mass 
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transfer during electrocatalytic process, (2) prevention of the formation of Fe3C particles and 

increased density of single atom Fe active sites. The model catalyst 2Fe/NHPC5AC
 shows superior 

ORR activity with Eon of 0.97 V and E1/2 of 0.88 V, outperforming that of 2Fe/NHPC5AC-w/o ZnCl2 

(Eon = 0.96 V, E1/2 = 0.86 V). The result demonstrates that the ZnCl2 also plays an important role 

for further improved ORR activity. In light of the similar textural properties for both catalysts 

with/without addition of ZnCl2, the improved ORR activity can be rationalized by the formation 

of denser FeNx active sites. The calculated kinetic normalized by electrode geometric area and 

catalyst loading, respectively, which are the highest value over all investigated samples. Note of 

worthy, the ORR activity for 2Fe/NHPC5AC surpasses that of commercial Pt/C (Eon = 0.97 V, E1/2 

= 0.85 V) catalyst, suggesting its great potential as a promising alternative to the commercial Pt-

based catalysts.  

Table 6. Electrochemical performance of all samples in ORR 

Entry Catalyst 
Eon 

a 

(V) 

E1/2 
b 

(V) 

JL
c    (mA 

cm-2) 

Tafel slope 

(mV dec-1) 

Jk 
d           

(mA cm-2) 

1 2Fe/HPC0AC 0.93 0.84 4.60 47.20 12.75 

2 2Fe/NHPC0.5AC 0.96 0.87 5.70 37.60 29.96 

3 2Fe/NHPC5AC 0.97 0.88 6.35 39.50 41.31 

4 2Fe/NHPC8AC 0.97 0.884 5.87 39.50 40.12 

5 NHPC5AC 0.90 0.80 4.60 40.0 4.93 

6 2Fe/NC5AC-w/o SiO2 0.91 0.77 2.45 62.9 1.8 

7 2Fe/NHPC5AC-w/o ZnCl2 0.96 0.86 5.56 42.2 19.05 

8 1Fe/NHPC5AC 0.95 0.85 5.72 39.7 23.84 

9 3Fe/NHPC5AC 0.96 0.87 5.52 44.0 33.84 

10 Pt/C 0.97 0.85 5.44 57.8 25.98 

a Onset and b half-wave potential values reported vs. RHE, c limited diffusion current density, d Kinetic current 

density calculated from K-L equation at 0.80 V vs. RHE. 
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The Tafel slope is closely linked surface reaction mechanism and can give insights into rate-

determining steps towards ORR process. As shown in Figure 13B, the Tafel slopes are calculated 

to be 62.9, 42.2, 39.5, 57.8 mV dec-1 for 2Fe/NC5AC-w/o SiO2, 
2Fe/NHPC5AC-w/o ZnCl2, 

2Fe/NHPC5AC, and Pt/C catalysts, respectively. The lowest Tafel slope for model catalyst further 

confirms the most superior ORR reaction kinetic amongst all samples. From the mechanism 

viewpoint, the Tafel slope of 39.5 mV dec-1 suggests the first order reaction towards OH-, which 

corresponds to FeIII-OH / FeII redox transition. Simultaneously, the rate-determining step (RDS) 

is proposed to be the formation of superoxide (O2
-) character on the surface of Fe2+ without 

concerted proton transfer [89]. The electron transfer numbers based on polarization curves of 

model catalysts at different rotation speeds are determined to ca. 3.75 at applied potential of 0.3 - 

0.7 V according to Koutecky-Levich (K-L) plots, suggesting the model catalyst follows ideally 

four-electron reduction process (Figure 13C, Figure 14A). The kinetic study on the basis of 

rotating ring disk electrode (RRDE) tests (Figure 13D, Figure 14B) further reveals the low H2O2 

yield of less than 10 % with approximately 4-electron transfer numbers across the whole potential 

range on the model catalyst. It is worth noting that the H2O2 yield for model catalyst is even slightly 

lower than that measured on Pt/C in the higher potential region of 0.45 - 0.8 V, suggesting the 

preferentially inner-sphere electron transfer (ISET) mechanism is dominant in the model catalyst 

during ORR. On the contrary, the Pt/C catalyst prefers to follow outer-sphere electron transfer 

(OSET) where specifically adsorbed OH- on the oxidized-Pt surface as bridge for electron transfer 

giving rise to the formation of H2O2 at higher potential region [93]. On the other hand, the ZnCl2-

free and SiO2-free samples show markedly higher H2O2 yield of approx. 20 % and 40 % 

respectively, strengthening the key role of both silica template and ZnCl2 in enhancing four-

electron selectivity toward ORR. The chronoamperometry (CA) response (Figure 13E) at applied 
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potential of 0.65 V in O2 atmosphere is carried out to confirm the stability of model catalyst. After 

12 h continuous operation, the 92 % retention respect to initial current density is obtained, much 

higher than that of commercial Pt/C catalyst (68%), manifesting much enhanced stability of 

2Fe/NHPC5AC. Accelerated durability tests (ADT) shows that the E1/2 of 2Fe/NHPC5AC exhibits 

minor degradation with only 5 mV negatively shift after 10000 continuous potential cycles at a 

scan rate of 50 mV s-1 in the potential range of 0.6 - 1 V, further indicating outstanding long-term 

durability (Figure 13G).  

 

Figure 14. (A) Linear sweep voltammograms (LSVs) for ORR in O2-saturated 0.1 M KOH solution 

for 2Fe/NHPC5AC at variable spin rates. Scan rates: 10 mV s-1; (B) RRDE current-potential curves 

of 2Fe/NHPC5A and respective control samples as well as Pt/C catalyst at 293 K for ORR in O2 

saturated 0.1 M KOH solution recorded at the Pt-ring potential of 1.2 V (vs. RHE). All ring currents 

have been measured at an angular rotation rate (ω) of 1600 rpm. 

 

As an additional trial, the tolerance of the best performing electrocatalyst towards alcohol 

poisoning has been investigated, which is known to critical consideration for practical application 

of fuel cell. As displayed in (Figure 13F), after introducing methanol, the dramatic decrease of 

current density is detected for commercial Pt/C catalyst. In contrast, no pronounced response can 
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be observed for model catalyst at identical operation condition, demonstrating its superior 

tolerance towards methanol crossover. All these measurement results indicate the model catalyst 

2Fe/NHPC5AC possesses remarkable catalytic activity, durability and methanol tolerance toward 

ORR, which hold great promise for the development of fuel cell with cost-effective, and high 

efficiency. 

 

2.4 The influence of N-content in precursor mixture on ORR activity 

The ORR activity for catalysts prepared with various amount of (NH4)2CO3 are systematically 

investigated. As shown in Figure 15A, the evident dependence of ORR activity on usage of 

(NH4)2CO3 is observed. More detailed electrochemical activity parameters are presented in Table 

6. The catalyst 2Fe/HPC0AC shows relatively low ORR activity with Eon of 0.93 V and E1/2 of 0.84 

V, along with low limited current density of 4.6 mA cm-2. After introduction of (NH4)2CO3, the 

catalytic activity for 2Fe/NHPC0.5AC is markedly improved, indicating that the N doping is 

indispensable to the construction of active sites. The enhanced catalytic activity is closely linked 

with the formation of N-containing active sites especially for atomically dispersed Cl-FeN4 sites. 

As the amount of (NH4)2CO3 increase, the optimal catalytic ORR activity is obtained for 

2Fe/NHPC5AC. Further increasing amount of (NH4)2CO3 results in unchanged Eon and slightly 

higher E1/2 but with significant decreased of the limited current density.  
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Figure 15. (A) The LSV curves of various catalysts prepared with different addition of (NH4)2CO3 

at O2-saturated 0.1 M KOH solution at a scan rate of 10 mV s-1; (B) The plots of electron transfer 

number and H2O2 yield of samples prepared by various (NH4)2CO3 addition based on RRDE 

measurements at rotation speed of 1600 rpm with scan rate of 10 mV s-1 in O2-saturated 0.1 M 

KOH solution; (C) the correlation plots between ORR activity (Jk@0.80 V) and micropore surface 

area; (D) The correlation between ORR activity (Eon and E1/2) and N-species. 

 

RRDE measurement further is carried out for the kinetic analysis on investigated samples. As 

shows in Figure 15B and Figure 16, the significant advance in generation of H2O2 products on 

2Fe@HPC0AC respect to that of N-containing samples reveals the probably mixture between ISET 

and OSET reaction mechanism. The generation of OSET reaction mechanism is ascribed to the 

introduction of Fe nanoparticles on 2Fe@HPC0AC, which in turn verifies the N-doped is highly 

mailto:Jk@0.80
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required to build Cl-FeN4 active sites with higher 4-electron selectivity by ISET reaction 

mechanism. In addition, the trend on H2O2 yield and electron transfer numbers of all N-containing 

samples are consistent with apparent ORR activity with the lowest H2O2 yield and the highest 

electron transfer numbers obtained on 2Fe@NHPC5AC.  

 

Figure 16. RRDE current-potential curves of samples prepared by different (NH4)2CO3 addition at 

293 K for ORR in O2 saturated 0.1 M KOH solution recorded at the Pt-ring potential of 1.2 V (vs. 

RHE). All ring currents have been measured at an angular rotation rate (ω) of 1600 rpm. 

 

To get the deeper insight into the origin of the dependence of ORR activity on N-doping, the 

correlation between textural property and activity is established. As Figure 15C shows, the ORR 

activity is clearly correlated with micropore surface area, as both are increasing with the amount 

of (NH4)2CO3. The finding indicates the active sites are mainly hosted in micropores created by 

NH3 evolution, in well agreement with reported conclusion [227, 228].  
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Figure 17. (A) The proposed model of carbon structure; (B) ID/IG values and La sizes obtained from 

Raman spectra; and (C) the d spacing values and Lc sizes from XRD analysis as function of 

addition amount of (NH4)2CO3. 

 

The intrinsic activity of Fe-N-C catalyst can be regulated by carbon plane size due to distinct 

electron-withdrawing/donating effects. A larger carbon plane size with electron-enriched -band 

results in the higher electron density of FeNx moieties due to electron-donating effect of carbon 

plane. The higher charge density of FeNx moiety is responsible for stronger affinity between Fe 

center and oxygen-containing species, thus reducing the ORR activity, and vice versa [320]. To 

quantitatively evaluate the carbon crystallite size arising from different N-doping, the La sizes are 

obtained from Raman spectrum according to the general equation proposed by Cançado et al. [339], 

the Lc sizes and d-spacing value are calculated by XRD pattern. The corresponding model structure 

of carbon crystallite is presented as Figure 17A. It is found that the La sizes for all investigated 
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catalysts show comparable value, and similar La size along with d-spacing value are also observed 

(Figure 17B-C). The result indicates that the change of carbon plane size is not responsible for N 

doping dependence on ORR activity. 

The correlation between ORR activity and N-doped composition are further established to 

give a deeper insight into N doping-dependent ORR activity. As Figure 15D shows, the contents 

of pyridinic N and graphitic N as well as Fe-N sites are simultaneously enhanced with the increase 

of (NH4)2CO3 addition from 0.5 g to 5 g, which gives rise to a significant increase of both Eon and 

E1/2. The further increasing amount of (NH4)2CO3 results in decreased Fe-N sites (1.13 % for 

2Fe/NHPC5AC to 0.55 % for 2Fe/NHPC8AC), along with a pronounced increase in the densities of 

pyridinic N and unchanged graphitic N. Accordingly, the ORR activity for 2Fe/NHPC8AC does not 

show significantly improve, with similar Eon and E1/2 and even lower JL compared to those of 

2Fe/NHPC5AC (see Figure 15A, Table 6). Hence, in this case of 2Fe/NHPC8AC, the comparable 

ORR activity respect to that on 2Fe/NHPC5AC is primary due to the enhancement of pyridinic N 

content, in spite of decreased density of FeNx sites. In light of the underlying active sites (pyridinic 

N, graphitic N and FeNx sites) documented by most studies in alkaline media [129, 132]. It can be 

well suggested that both pyridinic N and Cl-FeN4 sites are actual active sites with Cl-FeN4 sites 

being the most active for ORR in present work (the latter statement stems from the fact that the 

decrease in the density of Cl-FeN4 sites is much lower than the increase in the density of pyridinic 

N). To further verify the conclusion, the study of surface specific double-layer capacitance (Cdl) 

of electrocatalyst, a characteristic value proportional to electrochemically active surface area 

(ECSA) [341], is performed. The calculated Cdl values obtained from cyclic voltammetry 

measurements are 24.99, 26.62, 27.81, 31.45 mF cm-2 for 2Fe/HPC0AC, 2Fe/NHPC0.5AC, 

2Fe/NHPC5AC, 2Fe/NHPC8AC, respectively (Figure 18). The gradual increase in Cdl with the amount 
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of N precursor suggests the enhanced N doping level. The higher Cdl value of 2Fe/NHPC8AC 

compared to that of 2Fe/NHPC5AC further confirms that pyridinic N indeed serves as active sites. 

All taken together, the improved activity with increase of N doping is originated from the increased 

density of active sites associated with pyridinic N and Cl-FeN4 moieties, with Cl-FeN4 being the 

most active sites.  

 

 



135 

 

Figure 18. The CV curves in the potential range of 1.02-1.12 V vs. RHE with various scan rates in 

N2-saturated 0.1 M KOH solution and corresponding linear fitting of the capacitive currents vs. 

scan rates for (A) 2Fe/HPC0AC; (B) 2Fe/NHPC0.5AC; (C) 2Fe/NHPC5AC; (d) 2Fe/NHPC8AC. 

 

2.5 The influence of Fe content on Fe-N-C activity in ORR 

 

Figure 19. (A) The LSV curves of various catalysts prepared with different addition of Fe precursor 

at O2-saturated 0.1 M KOH solution at a scan rate of 10 mV s-1; (B) The plots of electron transfer 

number and H2O2 yield of samples prepared by various Fe precursor addition based on RRDE 

measurements at rotation speed of 1600 rpm with scan rate of 10 mV s-1 in O2-saturated 0.1 M 

KOH solution; (C) The LSV curves of 3Fe/NHPC5AC and 3Fe/NHPC5AC-AL at O2-saturated 0.1 M 

KOH solution at a scan rate of 10 mV s-1; (D) The LSV curves of 2Fe/NHPC5A in O2-saturated 0.5 

M H2SO4 solution at a scan rate of 10 mV s-1 with/without 10 mM KSCN. 
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The catalysts with various loading of Fe precursor based on the optimal addition of 

(NH4)2CO3 are ultimately investigated to get insight into nature of active site in ORR. The Fe 

loadings are determined to be 0.0714 wt.%, 0.4 wt.%, 5.27 wt.% using inductively coupled plasma-

atomic emission spectroscopy (ICP-AES) for 1Fe/NHPC5AC, 2Fe/NHPC5AC, 3Fe/NHPC5AC, 

respectively. The polarization curve and corresponding Eon, E1/2 as well as Jk@0.80 V are presented 

in Figure 19A and Table 6. Without introduction of Fe, NHPC5AC displays relatively poor activity 

with an Eon of 0.9 V and E1/2 of 0.80 V respect to those of Fe-containing catalysts. The much higher 

H2O2 yield and lower electron transfer number in whole potential range compared to those of Fe-

containing samples demonstrates Fe doping is indispensable for high ORR activity (Figure 19B 

and Figure 20). It can be attributed to the formation of more active Cl-FeN4 sites compared with 

CNx sites [161]. The ORR activity is greatly dependent on the Fe loadings. As increase in the Fe 

loading from 0.0714 % to 0.4 %, the E1/2 and Eon gradually shift positively, accompanied by 

significant decrease of H2O2 yield and enhanced electron transfer number, approaching optimal 

values (Figure 19B). This can be attributed to higher density of Cl-FeN4 active sites. Further 

increase in Fe loading (5.27 %) leads to decreased ORR activity with Eon of 0.96 V and E1/2 of 

0.87 V and increased H2O2 yield and declined four-electron selectivity. Similar tendency is also 

observed in regards to Jk at applied potential of 0.80 V with various Fe loading. This decrease in 

ORR activity is likely due to the severe aggregation of excessive Fe atoms (Figure 19A-B). XRD 

pattern and TEM images (Figure 21A-B) confirms the generation of Fe and Fe3O4 phase for 

3Fe/NHPC5AC. As a matter of fact, the specific role of Fe-based nanoparticles towards ORR is 

strongly debated to date. For example, Jiang et al. [147] reported the Fe/Fe3C nanoparticles 

encapsulated N-doped carbon layer boost activity of FeNx sites by altering the charge density of 

central Fe atom in FeNx configuration. Kramm et al. claimed [148] excessive Fe/Fe3C 

mailto:Jk@0.80
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nanoparticles lead to disintegration of FeN4 centers, thus degrading ORR activity. On the other 

hand, Zhang et al. [342] claimed that the synergistic effect between Fe3O4 and single FeNx sites 

contributes to the enhanced ORR activity. Tylus et al. [63] proposed that FeN4 moiety underwent 

single site 2e- ⁎ 2e- mechanism with no involvement of adjacent Fe/FexOy nanoparticles in alkaline 

electrolyte, while these nanoparticles serve as secondary active sites for reduction of intermediates 

in acidic medium. 

 

Figure 20. RRDE current-potential curves of samples prepared by different Fe addition at 293 K 

for ORR in O2 saturated 0.1 M KOH solution recorded at the Pt-ring potential of 1.2 V (vs. RHE). 

All ring currents have been measured at an angular rotation rate (ω) of 1600 rpm. 
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In this present work, the formation of Fe/Fe3C coated by carbon layer is prevented by silica-

protect strategy and only Fe/Fe3O4 nanoparticles are formed. These nanoparticles are easily 

washed out by acidic solution thus simplifying the identification of active sites. In order to further 

verify active sites, control experiment is conducted: catalyst 3Fe/NHPC5AC is leached by 0.5 M 

H2SO4 solution at 80 oC for 8 h to remove metal Fe/Fe3O4 nanoparticles (referred as 3Fe/NHPC5AC-

AL). XRD results (Figure 21C) demonstrates that no metal crystallite phase is observed, and TEM 

images (Figure 21D) further confirms nearly no nanoparticles are found after acid leaching. 

Accordingly, the polarization curve (Figure 19C) exhibits 3Fe/NHPC5AC-AL shows negligible 

activity deterioration compared with pristine 3Fe/NHPC5AC. The observation suggests that 

Fe/Fe3O4 nanoparticles do not display appreciable catalytic activity towards ORR. It is well known 

that the SCN- could be used as a probe to identify the active site of FeNx moiety due to the 

interaction between Fe metal center and SCN- ion [147, 302]. To precisely elucidate the role of 

Cl-FeN4 moiety, the poison test is further carried out under acidic media due to the more stable 

adsorption of SCN- on Cl-FeN4 moiety (Figure 19D). It is clearly found that the E1/2 shifts 

negatively by 80 mV after addition of SCN- along with significantly decrease of Eon and JL with 

respect to that on 3Fe/NHPC5AC, demonstrating the Cl-FeN4 moiety is actual active site towards 

ORR. Taken together, these control experiments unambiguously corroborate the Cl-FeN4 sites 

should be responsible for highly efficient ORR process and Fe-based nanoparticles show no 

activity in alkaline medium.  
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Figure 21. (A) XRD patterns of as-obtained catalysts using different amount of Fe precursor; (B) 

TEM image of 3Fe/NHPC5AC (HRTEM shown in the inset); (C) XRD patterns of 3Fe/NHPC5AC 

and 3Fe/NHPC5AC-AL; (D) TEM image of 3Fe/NHPC5AC-AL. 

 

3. Conclusion 

In summary, highly active Fe-N-C catalysts are developed via silica template-assisted 

strategy using inorganic (NH4)2CO3 as exclusive N source, citric acid as carbon source and FeCl3 

and ZnCl2 as metal precursor. Accounting for the strong coordination and hard-template effect of 

silica, the formation mechanism of atomically dispersed Fe catalyst based on gas-solid interfacial 
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reaction is proposed. The as-prepared catalyst shows hierarchical porous structure with 

interconnected micropores, bimodal mesopores and macropore size distributions. More 

importantly, the geometry of pore structure and N-doped level can be easily tuned by the in-situ 

doping of NH3 during pyrolysis leading to the formation of catalysts with N doping-dependent 

ORR activity.  

The systematic investigation demonstrates that ORR activity is gradually improved with the 

increase of (NH4)2CO3 added to the precursor, which is attributed to the formation of higher density 

of ORR active sites. However, the excess amount of (NH4)2CO3 also contributes to the formation 

of largest surface area (as high as 1036 m2 g-1), but exerts adverse effect on ORR activity. 

Additionally, silica template effect and ZnCl2 role on the catalyst preparation and ORR 

measurement are also scrutinized, both of them play crucial role for the achievement of high 

density of single Fe active sites and optimization of ORR activity. Finally, the identification of 

active site conducted by a series of control experiments and poisoning tests confirms that both of 

Cl-FeN4 moiety and pyridinic N are active sites. Cl-FeN4 moieties are concluded to be most active 

site, while Fe-based nanoparticles show no activity in alkaline condition.  

Our work opens a new path for the preparation of single site Fe-N-C by using separated N, C, 

and metal sources, which shed a light on the understanding of the nature of active sites and rational 

design of Fe-N-C catalyst. Most importantly, this work also represents a universal approach for 

the synthesis of other single metal atom catalysts for numerous downstream applications. 
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Chapter 5

Fe-N-C Electrocatalyst with High ORR 

Performance: Assessment of Fabrication 

Procedure. 
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Abstract 

Fe-N-C electrocatalyst has recently received a great deal of research interests due to its 

potential alternative to the commercial Pt/C catalyst towards oxygen reduction reaction. A deep 

understanding and optimization of fabrication process is necessary for the development of Fe-N-

C catalyst to step forward practical availability. In this work, a novel fabrication strategy is adopted 

by means of hard template with glucose as only carbon source, inorganic NH4Cl as solely nitrogen 

source, and FeCl3 as metal precursor. The effect of pyrolysis temperature on ORR activities is 

scrutinized by establishing the correlation between structure and performance from geometric and 

electronic insights. Resultantly, the study emphasizes the importance on the trend-off between the 

number of FeNx active sites and intrinsic activity of FeNx site as well as conductivity of materials. 

A pyrolysis temperature at 900 oC is found to be optimal temperature due to good balance of both 

relative high number of active sites, excellent intrinsic activity and electron conductivity. Along 

with a desire hierarchical porous structure composed of micropore pore, bimodal mesopore and 

macropore, the resulting Fe/NMC-900 exhibits high ORR activity, stability and methanol tolerance 

in both alkaline and acidic media, comparable with or even outperforms the commercial Pt/C 

catalyst. The work provides a comprehensive understanding of structure- performance relationship 

for rational design of Fe-N-C based on high temperature pyrolysis methodology. 
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1. Introduction 

The main obstacle for the widespread commercialization of hydrogen fuel cell electric 

vehicles is the lack of highly efficient, cost-effective, durable cathode catalyst toward oxygen 

reduction reaction (ORR) [23]. The current commercial cathode catalyst based on Pt group metal 

(PGM) makes up over 40 % of stack costs [343]. Over the past decade, there is consensus among 

researchers on the priority of decreasing PGM content, such as the use of alloy with 3d transition 

metal [344], and the modification of electrocatalyst morphology [345, 346]. Although both of 

performance improvement and reduction of Pt usage are obtained, there still is urgency on the 

investigation of PGM-free ORR electrocatalyst because these Pt-based catalysts contribute to most 

of cost of fuel cell stack resulted from the scarcity and limited global reserves. The development 

of PGM-free catalyst with comparable ORR activity and durability to those of low-PGM catalyst 

represents a reliable key to large-scale manufacturing of fuel cell with good cost competitiveness.  

M-N-C (M = Fe, Co, Mn, Zn etc.) catalysts have recently been extensively studied due to 

their excellent ORR activity, comparable with commercial PGM-based catalyst [176, 290, 347, 

348]. Specifically of an Fe-based catalyst (Fe-N-C) is emerged as most reliant electrocatalytic 

ORR materials due to its highest intrinsic activity amongst these 3d transition metals. Initial 

investigation on Fe catalyst is mainly concentrated on molecule catalyst on the basis of Fe 

macrocyclic complexes [3-5]. The performance can be further improved by pyrolysis of metal 

precursor, carbon and nitrogen source, called Fe-N-C [7, 64]. In spite of enhanced ORR activity 

on these pyrolysis-derived material, ration design of Fe-N-C electrocatalyst toward practical 

application is still impeded by insufficient cognition of nature of active sites due to multiplicity of 

potential active sites. One widespread opinion on such material for nature of active site is FeN4 

moiety incorporated into carbon matrix, which is claimed to be responsible for the ORR activity 
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in both acidic and basic medium. To maximum electrochemistry activity of Fe-N-C material, two 

strategies are taken into account: 1) increase the site density of FeNx moiety. Very recently, Jiao 

et al [210] successfully synthesized Fe-N-C catalyst with recorded site density of 1.92  1020 and 

100 % site utilization of FeNx on the basis of non-contact chemical vapour deposition of FeCl3 to 

Zn-N-C substrate at relatively low temperature at 750 oC, which exhibited unprecedented ORR 

activity very close to commercial Pt/C in the condition of fuel cell. It is worth noting that the site 

utilization of FeNx can be further enhanced by design of porous structure particularly for 

construction of hierarchical porous structure [323]. 2) increase intrinsic activity (or Turnover 

frequency, TOF) in single FeNx moiety. The coordination environment of Fe center [162], degree 

of -electron delocalization [95], and heteroatom doping (S, P, B etc.) [319, 320, 349] surrounding 

FeNx significantly change the intrinsic activity of Fe center. The ORR activity is mainly realized 

by regulation of adsorption energy of O intermediates on FeNx moiety during ORR. Pyrolysis 

atmosphere effect has been widely investigated and confirmed to be of importance for the 

fabrication of high active Fe-N-C particularly in NH3 [340, 350]. However, of note is that the 

pyrolysis temperature plays also a pivotal role especially because the formation of active sites is 

closely related to pyrolysis temperature [351, 352]. The most studies on influence of pyrolysis 

temperature on ORR activity mainly focus on geometric property of as-prepared catalyst [353, 

354]. A comprehensive understanding on both geometric and electronic properties of pyrolytic 

material should be paid more attention to obtain overall activity descriptor in ORR while remain 

hitherto no well explored. 

Our previous work has reported a novel strategy for the fabrication of single Fe-N-C catalyst 

using separate carbon and nitrogen source on the basis of gas-solid interfacial reaction, which 

could be used as highly efficient electrocatalyst towards O2 reduction reaction. However, the 
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influence of pyrolysis temperature on ORR activity has yet been optimized because the limitation 

of preparation condition. In present work, a modified method is adopted by the using of glucose 

as only carbon source, inorganic NH4Cl as nitrogen source and FeCl3 as metal precursor. With the 

aid of silica template, an atomic Fe decorated N-doped mesopore carbon electrocatalyst is obtained. 

Likewise, the final catalyst shows a desirable micropore, bimodal mesopore and macropore 

structure, which serves a requisite for high mass transfer and more electrochemically available 

active sites. On the other hand, it is found that pyrolysis temperature has significantly influence on 

ORR activity. By means of establishing structure-performance relationship, the pyrolysis 

temperature dependent ORR activity is well clarified in terms of geometric and electronic 

properties, which is a result from trend-off between site density and intrinsic activity as well as 

electron conductivity. The optimal catalyst obtained with a pyrolysis temperature of 900 oC 

exhibits an excellent ORR activity (E1/2 = 0.86 V) and durability as well as methanol tolerance 

which outperforms the commercial Pt/C catalyst in alkaline media. In acidic media, the Fe/NMC-

900 presents also decent ORR activity with E1/2 of 0.63 V and good stability. Our work emphasizes 

the importance of pyrolysis temperature on ORR activity, not only in geometric property, but also 

more in electronic structure. 

 

2. Results and discussion 

2.1 Preparation and characterization of Fe/NMC electrocatalyst.  

In our previous work, we proposed a synthesis route of atomic-decorated hierarchical porous 

carbon using (NH4)2CO3 and citric acid as only N source and carbon source respectively, to be 

applied for efficient O2 electroreduction. Inspired by such unique design strategy, modified 

approach is deployed for the development of atomic dispersed Fe supported N-doped mesopore 
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carbon (Fe/NMC) catalyst. In this work, D-glucose, a non-toxic and earth abundance component, 

is used as only carbon source. In addition, glucose is also known to serve as an excellent chelating 

agent for the anchorage of the metal cation (Fe3+ ions here) in the precursor solution [19, 20]. More 

importantly, the higher carbonization yield of glucose respect to that of citric acid enables more 

practicality and the large-scaled production. Ammonia chloride (NH4Cl) acts as an optimal N 

source throughout entire preparation process. The feature of C-free for NH4Cl makes the N-doped 

level more controllable, which is critical for the development of highly efficient electrocatalytic 

materials. The adopted approach for the synthesis of Fe/NMC is based on gas-solid interfacial 

reaction proposed on our previous work. Firstly, glucose dissolved into water interacts strongly 

with Fe cation in the precursor gel solution while NH4
+ ions are adsorbed on the surface of silica 

nanoparticles. The gel solution is then dried directly in an oven overnight at 110 oC. Afterwards, 

the first annealing treatment of obtained power is carried out at different pyrolysis temperature 

under Ar atmosphere for carbonization and graphitization. As pyrolysis temperature increases, the 

glucose is subjected to carbonization and NH4Cl is gradually also decomposed into NH3 and HCl 

at relative low temperature range. The generated NH3 reacts easily with oxygenated group in 

carbon intermediate framework leading to N-doped into carbon matrix. Meanwhile, the evaporated 

NH3 and HCl gas act as pore-expansion reagent in micro- and mesoscopic level which is conducive 

of the formation of hierarchical porous structure. Such structure has been intensively confirmed to 

be high desired toward electrocatalytic O2 reduction. As the further temperature increases, the Fe 

atoms is trapped N atoms induced by high temperature ultimately giving rise to the formation of 

Fe-Nx moieties. The obtained sample is followed by NaOH leaching to remove silica template. 

The final catalyst is collected by second thermal treatment in Ar with identical temperature as the 

first heat-treated step. Such a post heat-treatment is necessary because it is thought to be critical 
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for the improvement of ORR performance due to the elimination of adverse oxygenated groups 

created by NaOH etching as well as possible formation of vacancy defects [355]. The preparation 

conditions of electrocatalysts are optimized by changing pyrolysis temperature (800, 900, 1000 

oC), which are denoted as Fe/NMC-800, Fe/NMC-900, Fe/NMC-1000, metal-free N-doped 

mesopore carbon (NMC) is also fabricated with the same process as Fe/NMC-900 except for the 

addition of Fe precursor.  

 

Figure 1. SEM microscopic images for (A) Fe/NMC-800, (B) Fe/NMC-900, (C) Fe/NMC-1000, 

respectively. 

 

The morphology of as-prepared samples with different pyrolysis temperature is firstly 

measured by means of scanning electron microscopy (SEM). As shown in Figure 1A-C, all 

investigated samples exhibit almost the same geometric morphology with highly interconnected 

porous structure, which leads to developed open carbon network framework. Such a structure 

extremely facilitates mass transport in the catalyst layer, thus enhancing the ORR activity. 

 XRD pattern shown in Figure 2A reveals two distinct broad peaks at 24 oC and 43 oC, 

corresponding to (002) and (100) plane of typical amorphous carbon. Notably, Fe3O4 phase related 

to is observed as the pyrolysis temperature approaching to 1000 oC, demonstrating that Fe metal 
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atoms begin to aggregate. The generation of Fe nanoparticles potentially results in the decrease of 

active FeNx moieties, which in turn diminishes the ORR activity.  

 

Figure 2. (A) XRD pattern and (B) Raman spectra of as-prepared catalyst. 

 

Raman measurement is then carried out to get details on carbon structure. As shown in Figure 

2B and Table 1, the spectra of all samples are well deconvoluted into four components, where the 

peaks located at ca. 1350 and 1600 cm-1 can be attributed to D band related to structural disorder 

or defect and G band associated with in-plane tangential stretching vibration mode (E2g) of the 

graphite sheet [356]. The graphitization degree determined by ID/IG is calculated to be 3.75, 3.61, 

3.59, 3.39 for NMC, Fe/NMC-800, Fe/NMC-900, Fe/NMC-1000, respectively. This result 

indicates the increased pyrolysis temperature leads to higher graphitization degree. Generally, 

higher graphitization degree implies better conductivity which is beneficial for the enhancement 

of ORR. Besides, the additional peak at ca. 1530 cm-1 for Fe-containing samples, a characteristic 

peak assigned to five-member or heteroatoms in graphene-sheet structure [198], gradually 
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decreases in portion as the pyrolysis temperature increases. This result indirectly implies the higher 

pyrolysis temperature is detrimental for the N doping of final materials. 

Table 1 Raman fitting results for all samples 

Sample 

Deconvoluted results a (Area. %) 

Sp2 carbon 

Outside 
D peak 

Distortion 

C5 ring 

Heteroatom 

G peak b ID/IG 

c La 

(nm) 

NMC 4.78 62.79 15.68 16.75 3.75 5.12 

Fe/NMC-800 7.69 59.81 15.94 16.56 3.61 5.32 

Fe/NMC-900 2.93 64.00 15.24 17.82 3.59 5.48 

Fe/NMC-1000 3.13 64.93 12.79 19.15 3.39 5.67 

a fitting by Lorentz method, b determined by the area ratio between D peak and G peak, c calculated by the 

general equation proposed by Cançado et al [339]: La (nm) = (2.4×10-10) λ4 (ID/IG)-1, where λ is referred to 

wave length of laser (532 nm). 

 

The XPS spectra is further conducted to obtain more elemental composition and N doping 

details. No obvious Fe signal is visible due to the low Fe loadings. The Fe loading amount are 

determined to be 0.43 wt. %, 0.52 wt. %, and 1.42 wt.% for Fe/NMC-800, Fe/NMC-900, Fe/NMC-

1000, respectively, based on ICP-AMS measurement. As show in Table 2, it is found that the 

carbon content gradually increases as the pyrolysis temperature increases, which confirms the 

improved graphitization degree induced by high temperature as consistent with Raman analysis. 

Accordingly, N-doped contents show pronounced decrease, from 8.56 at. % for Fe/NMC-800 to 

6.26 at. % for Fe/NMC-900, finally decreasing to only 2.86 at. % for Fe/NMC-1000. This indicates 

the heat treatment at higher temperature leads to the loss of N content.  
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Figure 3. (A) High resolution spectra of N1s core level and O1s (B) for Fe/NMC-800, Fe/NMC-

900, Fe/NMC-1000. 

 

Table 2. Relative elementary content of samples on the basis of XPS analysis. 

Sample 
XPS element analysis (at. %) 

C N O 

NMC 89.61 6.58 3.81 

Fe/NMC-800 85.86 8.58 5.55 

Fe/NMC-900 89.14 6.26 4.60 

Fe/NMC-1000 93.17 2.86 4.00 

 

The high resolution N1s spectra for Fe-contained samples can be deconvoluted into five 

components (Figure 3A). The peak at ca.398.5, 401.2, 402.6, 405.2 eV are assigned to pyridinic 

N, pyrrolic N, graphitic N and oxidized N respectively while the peak at 399.7 eV can be 

conventionally attributed to Fe-N moieties [200]. The relative content of such five species is 
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present in Table 3 on the base of deconvolution fitting results. The relative content of pyridinic N 

remains negligible change while the graphitic N shows significantly increase as the pyrolysis 

temperature increase. It is reasonable that graphitic N possesses higher thermal stability as 

comparison to that of edge-located pyridinic- and pyrrolic- N species and thus graphitic N is 

typically predominant on higher pyrolysis temperature. Notably, the Fe-N content undergoes a 

gradually decrease as the pyrolysis temperature increases, which is believed to exert an important 

influence on ORR activity. On the other hand, an appreciable decrease in overall O content has 

also been observed ranging from 5.55 at. %, 4.6 at. % to 4.0 at. % for Fe/NMC-800, Fe/NMC-900, 

Fe/NMC-1000, respectively.  

 

Table 3. XPS fitting results of N1s spectra. (The values shown in the brackets refer to the absolute 

values of N species determined by the production of overall N content and relative content of N 

specie on each sample) 

Sample 

Content of N species (at. %), XPS 

Pyridinic N Pyrrolic N Fe-N Graphitic N Oxidized N 

NMC 40.64(2.67) 38.75(2.55) 0 18.18(1.20) 2.43(0.16) 

Fe/NMC-800 28.34(2.43) 30.42(2.61) 22.89(1.96) 14.62(1.25) 3.73(0.32) 

Fe/NMC-900 31.28(1.96) 26.68(1.67) 15.58(0.98) 19.95(1.25) 6.50(0.41) 

Fe/NMC-1000 27.85(0.79) 33.03(0.93) 6.11(0.17) 29.25(0.83) 3.76(0.11) 

 

The deconvoluted results of O1s high resolution spectra (Figure 3B) are assigned to four 

components, namely ketonic groups (-C=O, 531.1 eV), ether groups and/or lactone, anhydride (C-

O-C, 532.8 eV), carboxylic groups (-COOH, 534.6 eV), and satellite structure of the spectrum or 
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adsorbed oxygen-containing molecules (H2O/O2, 536.6 eV) [357, 358]. It is worth noting that the 

relative content of -COOH subjected to distinctly decrease as increase of pyrolysis temperature, as 

a result of low thermally stability respect to those of ketonic groups or ether groups [357]. The 

further analysis of effect of oxygen species on ORR activity is discussed in the following parts.    

 

Figure 4. (A) N2 adsorption/desorption isotherm plots for as-prepared catalysts recorded at 77 K; 

and (B) respective pore size distribution curves using desorption branch of isotherms for all 

samples (BJH method, the data recorded with a pore width from 1.7 nm to 100 nm).  

 

The texture properties of all as-samples are further revealed using N2 isotherms. As Figure 

4A shows, the curves show type IV isotherms with pronounced type H3 hysteresis loop, a typically 

characteristic of mesopore structure [359]. The corresponding structural parameter is summarized 

in Table 4. The specific surface area (SSA) values are 725, 886, 829, 1041 m2 g-1 for NMC, 

Fe/NMC-800, Fe/NMC-900, Fe/NMC-1000, respectively, with mesopore pore being mainly 

contributor of SSA. Pore size distribution (Figure 4B) exhibits that all samples feature two-modal 

mesopore, with small pore region located at ca. 7 to 10 nm, a characteristic pore arising from silica 
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template removal. Another large pore region is derived from gas-expansion effect.  (NH3, CO2, 

HCl etc.). Moreover, the average pore size gradually increases as pyrolysis temperature increases. 

Such hierarchical pore structure composed of micropore (not shown in N2 isotherms), 

interconnected bimodal mesopore and macropore (shown in PSD with size of lager than 50 nm) is 

known to favor the electrochemically accessibility into active sites [323], thus enhancement of 

electrocatalytic ORR performance.  

Table 4. Texture property of as-prepared catalysts. 

a Brunauer-Emmett-Teller (BET) specific surface area (SSA) measured at T = 77 K. b Determined by t-plot method. 
c Total pore volume determined using the adsorption branch of N2 isotherm at P/P0 = 0.98. d Determined by BJH 

desorption average pore width (4V/A).  

 

2.2 Electrochemical performance of as-prepared catalysts 

 

Figure 5. (A) Cyclic voltammetry of as-prepared catalyst under N2-saturated and O2-saturated (B) 

0.1 M KOH solution at scan rate of 50 mV s-1. 

Sample 
SSAa 

(m2/g) 

Smicro
b 

(m2/g) 

Sexternal 

(m2/g) 

Vc 

(cm3/g) 

Vmicro 

(cm3/g) 

PSDd 

(nm) 

NMC 725.36 236.04 492.86 1.361 0.112 13.35 

Fe/NMC-800 885.67 273.82 611.85 1.548 0.131 10.67 

Fe/NMC-900 829.18 250.07 579.11 1.603 0.118 11.62 

Fe/NMC-1000 1040.99 288.92 752.07 2.146 0.136 14.47 
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The electrochemical oxygen reduction activities of various catalysts prepared at different 

pyrolysis temperature is firstly evaluated at 0.1 M KOH. Figure 5 presents the cyclic voltammetry 

(CV) curves recorded at N2 and O2 saturated 0.1 M KOH electrolyte. In N2 saturated electrolyte, 

all samples exhibit similar quasi-rectangular pattern, demonstrating negligible faradic process 

occurs on the electrode surface with charging/discharging process of double layer current being 

predominant. The area of rectangle gradually decreases as following order: Fe/NMC-800 > 

Fe/NMC-900 = NMC > Fe/NMC-1000, indicating Fe/NMC-800 possesses highest 

electrochemical active surface area. In O2-saturated electrolyte, well-defined O2 reduction peaks 

are observed in all samples. Previous studies [89, 190] have pointed out that the peak is closely 

linked to Fe3+-OH/Fe2+ redox transition, and the more positive the potential is, the better the 

electrochemical performance is. Clearly, the Fe/NMC-900 shows the most positive oxygen 

reduction potential, implying that the most superior electrochemical performance is obtained 

among all samples.  

Table 5. ORR performance and respective electrochemical parameters in O2-saturated 0.1 M 

KOH solution. 

 

Entry Catalyst 
Eon 

a 

(V) 

E1/2 
b 

(V) 

JL
c    (mA 

cm-2) 

Tafel slope 

(mV dec-1) 

Jk 
d           

(mA cm-2) 

1 NMC 0.87 0.77 4.09 62 0.20 

2 Fe/NMC-800 0.91 0.82 4.68 57 1.53 

3 Fe/NMC-900 0.96 0.86 5.28 54 9.36 

4 Fe/NMC-1000 0.944 0.85 5.68 54 6.68 

5 Pt/C 0.97 0.85 5.44 68 25.98 

a Onset and b half-wave potential values reported vs. RHE, c limited diffusion current density, d Kinetic current density 

calculated from K-L equation at 0.80 V vs. RHE. 

 

RRDE measurement are next carried out to evaluate the ORR activity for samples obtained 

in different pyrolysis temperature. Detailed electrochemical parameters have been summarized in 
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Table 5. The metal-free sample exhibits an ORR activity with half-wave potential (E1/2) of only 

0.77 V along with onset potential (Eon of 0.87 V) and limiting diffusion current (JL of 4 mA cm-2), 

much lower respect to that of Fe-containing samples, suggesting that the Fe is indispensable for 

the construction of FeNx active sites. It is noted that the ORR activity gradually increases with the 

pyrolysis temperature increases, with optimal performance being obtained for Fe/NMC-900 

(Figure 6A). The high E1/2 of 0.86 V even outperforms that of commercial Pt/C (0.85 V), showing 

the potential commercial availability in the fuel cell application.  

 

Figure 6. (A) LSVs curves of disk current for all as-prepared catalysts recorded at O2 saturated 0.1 

M KOH at rotation speed of 1600 rpm, along with commercial Pt/C catalysts at comparison, and 

(B) respective ring current curves, the ring potential is fixed at 1.2 V vs. RHE; (C) The Tafel slope 

for all as-prepared catalysts; (D) H2O2 yield and exchanged electron transfer number of all samples; 

(E) Durability test for sample Fe/NMC-900 and (F) Methanol tolerance test for Fe/NMC-900 and 

Pt/C. 
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It is worth noting that H2O2 generation for Fe-containing samples occurs at much lower 

potential range than corresponding onset potential of ORR, which differs from the case in the 

commercial Pt/C that (see ring current curves in Figure 6B). This observation suggests different 

ORR mechanism between Fe-containing samples and Pt/C. Briefly, the ORR process on Fe-

containing samples initialized on single Fe center of Fe-Nx moieties by reaction as following: Nx-

Fe3+-OH + e- - Nx-Fe2+ + OH-, which leads to a direct O2 adsorption on Fe2+ center within inner 

Helmholtz plane (IHP) to favor inner sphere electron transfer process (ISET) [93]. In sharp contrast, 

the ORR starts on Pt/C is dominated by out-sphere electron transfer (OSET) (or parallel inner and 

outer sphere electron transfer mechanism) process in alkaline media due to the block effect of Pt 

surface by oxide species in high potential range, the oxide species on the surface of Pt serves as 

bridge for electron transfer from electrode surface to solvated O2 for the generation of H2O2. The 

all samples show similar Tafel slope (Figure 6C) and are found to fall within the range of 54 - 68 

mV dec-1, indicating the first electron transfer is rate-determining step (RSD) for all samples. The 

H2O2 yield and electron transfer number for all investigated samples are present in Figure 6D. For 

metal-free NMC sample, a high H2O2 yield (as high as 70 % at maximum) is found. And the 

average electron transfer number is 2.6, implying a predominant two-electron pathway with H2O2 

as mainly products. With the same pyrolysis temperature, the introduction of Fe significantly alters 

the reaction pathway which enables change from two-electron to four-electron (approximately 10 % 

H2O2 yield and almost completely four-electron pathway for Fe/NMC-900). This result further 

verifies the ORR process on single FeNx center prefers to direct 4e- pathway or indirect 2 * 2 e- 

pathway with H2O as main products. The H2O2 yield on Fe-containing samples shows similar trend 

to that in the LSVs curves. The H2O2 yield of Fe/NMC-900 decreases significantly respect to that 

of Fe/NMC-800, further increasing pyrolysis temperature contrarily results in increase of H2O2 
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yield. Therefore, a proper pyrolysis temperature is also of paramount importance for the 

optimization of electrode materials. To evaluate durability of Fe/NMC-900, cyclic voltammetry in 

O2-saturated atmosphere at a potential range of 0.6 - 1 V with rotation speed of 1600 rpm is carried 

out. After continuous 5000 recycles, the electrocatalytic performance exhibits negligible change 

with a slight decrease of limiting current density, demonstrating Fe/NMC-900 possesses excellent 

stability in alkaline media. An additional methanol poison trail is further conducted to ensure the 

practical availability in anti-crossover effect fuel cell. As shown in Figure 6F, the current 

significantly decreases once adding methanol on commercial Pt/C. In contrast, nearly no current 

change is observed for sample Fe/NMC-900, suggesting its superior methanol-resistance property.  

 

Figure 7. Cyclic voltammetry of as-prepared under N2-saturated (A) and O2-saturated (B) 0.5 M 

H2SO4 solution at scan rate of 50 mV s-1. 

 

Further assessment of electrocatalytic O2 reduction in acidic electrolyte (0.5 M H2SO4) is also 

carried out for all catalysts. Cyclic voltammetry behaviors in N2 and O2 atmosphere are firstly 

analyzed for all as-prepared samples (Figure 7). At odds with electrochemical behavior under N2 

displayed in basic electrolyte, the CV curves exhibit well-defined redox peaks with two broad 
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peaks, the cathodic peak is in the potential range of 0.8 - 0.3 V and another anodic peak is located 

in the range of 0.4 - 0.8 V for NMC, Fe/NMC-900, Fe/NMC-1000. The reversible redox peaks at 

almost the same peak position for these three samples are acknowledge to result from the 

oxidation/reduction of hydroquinone-/quinone-like groups on the carbon surface [104, 360]. Under 

O2 atmosphere, the distinct O2 reduction peaks occur at slightly more positive potential respect to 

that observed at N2 atmosphere for Fe/NMC-900 and Fe/NMC-1000 while the reduction peak is 

suppressed for Fe-free NMC sample, which is associated with Fe3+-OH/Fe2+ redox transition, 

similar to CV behavior found in basic media. Of note is that the less pronounced redox peaks are 

found on Fe/NMC-800 in both N2 and O2 atmosphere, which is correlated with surface properties 

of carbon surface (the enriched surface functional groups).  

 

Figure 8. (A) LSVs curves of as-prepared along with commercial Pt/C catalyst at comparison 

recorded at O2-saturated 0.5 M H2SO4 solution at a scan rate of 10 mV s-1 with rotation speed of 

1600 rpm; (B) Respective ring current density curves; (C) Tafel slope extracted by LSVs curves 

in the disk electrode; (D) H2O2 yield and electron transfer number derived from RRDE 

measurement; (E) The durability test for Fe/NMC-900. 
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The RRDE measurement of as-prepared samples along with commercial Pt/C catalyst are 

then conducted in O2-saturated 0.5 M H2SO4 solution to evaluate the ORR activity and 

corresponding electrochemical parameters are present in the Table 6. As Figure 8A, the 

dependence on pyrolysis temperature is also found. As expected, the ORR activity for all samples 

on acidic media is much less than that of alkaline media. The Fe-free sample shows negligible 

ORR activity with an onset potential (Eon) of 0.6 V and limited half potential (E1/2) of 0.39 V. Once 

Fe introduced, the ORR activity shows a visible improvement. Noteworthy, the Fe/NMC-800 

exhibits a limited enhancement of ORR activity respect to NMC, the increased pyrolysis 

temperature results in dramatically increase in ORR activity. The optimal catalyst (Fe/NMC-900) 

shows a decent Eon of 0.80 V and E1/2 of 0.63 V, although lower than that of commercial Pt/C with 

loading of 40 μg Pt cm-2. Further increase of pyrolysis temperature results in a slight decrease of 

ORR activity. As Figure 8B presents, the potential of H2O2 generation for Fe-containing samples 

is the same with onset potential of oxygen reduction. The observation suggests the reaction 

mechanism for these materials prefers to follow 2 * 2 e- pathway with successive generation and 

reduction of H2O2 on Fe-N moieties in acidic media. Meanwhile, this result further reveals the 

instable binding of generated H2O2 on Fe2+ active sites thus giving rise to desorption and/or 

decomposition of H2O2 intermediates into bulk electrolyte [93]. On contrary, the generation of 

H2O2 on Pt/C occurs at much lower potential range, demonstrating a dominant inner-sphere 

electron transfer mechanism in acidic media. Tafel slopes (Figure 8C) are determined to be 92, 

102, 147, 148 mV dec-1 for Fe/NMC-900, Fe/NMC-1000, Fe/NMC-800, NMC, respectively. This 

finding demonstrates the first electron transfer is rate-determining step as following reaction: Fe2+-

OH2 + O2 + e- → Fe2+ - O2
- + H2O [89]. The quantitatively of H2O2 yield and electron transfer 

number (Figure 8D) shows that all samples present almost complete four-electron reaction with 
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similar H2O2 yield of lower than 10 % over a wide potential range except for NMC sample (ca. 

13 % yield of H2O2). Further durability test shown in Figure 8E present an excellent stability with 

the same onset potential and kinetic-diffusion region besides the slight decrease of limiting current 

density at harsh acidic media for Fe/NMC-900 after 6000 recycles. 

Table 6. ORR performance and respective electrochemical parameters in O2-saturated 0.5 M 

H2SO4 solution. 

 

Entry Catalyst 
Eon 

a 

(V) 

E1/2 
b 

(V) 

JL
c    (mA 

cm-2) 

Tafel slope 

(mV dec-1) 

Jk 
d           

(mA cm-2) 

1 NMC 0.60 0.39 4.01 148 0.013 

2 Fe/NMC-800 0.65 0.61 4.40 147 0.024 

3 Fe/NMC-900 0.80 0.63 4.98 92 0.088 

4 Fe/NMC-1000 0.78 0.59 5.46 102 0.031 

5 Pt/C 0.87 0.76 5.0 60 1.51 

a Onset and b half-wave potential values reported vs. RHE, c limited diffusion current density, d Kinetic current density 

calculated from K-L equation at 0.80 V vs. RHE. 

 

2.3 Discussion of activity dependence on pyrolysis temperature.  

To reveal the origin of ORR activity trend on samples prepared by different pyrolysis 

temperature. The correlations between structure and performance are established (The ORR 

activity obtained at alkaline media is taken as a sample for comparison due to the same ORR 

activity trend in both acidic and alkaline medium). In general, a large specific surface area (SSA) 

particularly micropore-prevailing carbon materials is known to host higher number of FeNxCy 

moieties thus positively contributing to enhanced ORR activity. However, no pronounced 

correlation is observed between ORR activity (in terms of E1/2) and total surface area as well as 

micropore surface area (Figure 9), illustrating that the specific surface area is not main decisive 

factor for the ORR activity. In other words, the high SSA is sufficient to host all available FeNx 
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moieties into carbon matrix, and adverse effect especially for Fe/NMC-800 resulted from diffusion 

limitation is not true in this case due to developed hierarchical porous structure.  

 

Figure 9. The correlation between texture property and ORR activity in alkaline media. 

 

It is well acknowledged that the -electron delocalization of carbon basal plane exerts a 

significant effect on d-orbital charge density of Fe center on FeNx, which thus affects the ORR 

activity due to different binding energy between O species and Fe atom. The degree of -electron 

delocalization of carbon plane can be described quantitatively by C 1s full-width at half maxima 

(FWHM). A narrow FWHM of C1s indicates a higher degree of -electron delocalization and 

stronger electron-donating capacity, and vice versa [95]. The C1s spectrums for three samples 

showing in Figure 10 are deconvoluted into three components, the peaks located at 284.7, 285.9, 

289.0 eV are assigned to be graphitic carbon, C bonded to heteroatoms, and a high energy satellite 

plasmon peak [95]. A gradually decrease of C-heteroatoms content as the increase of pyrolysis 
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temperature are observed, indicating the loss of heteroatoms induced by high temperature pyrolysis. 

This result is well agreement with conclusion in previous elemental composition analysis of XPS. 

However, it is noted that FWHM values of graphitic carbon remain negligible change as the 

increase of pyrolysis temperature. Consequently, in combination with similar size of carbon 

crystallite (Lc and La, see Table 1 and 7), the activity differences of samples derived from change 

of -electron delocalization are thus ruled out.  

Table 7. The d-spacing and Lc value obtained by XRD pattern. 

Sample d-spacing Lc 

NMC 3.71 10 

Fe/NMC-800 3.71 10 

Fe/NMC-900 3.72 9 

Fe/NMC-1000 3.73 9 

 

 

Figure 10 The high resolution C1s spectra for samples prepared at 800 oC (A), 900 oC (B), 1000 
oC (C).  

 

The ORR activity in terms of E1/2 is then plotted as a function of N doping. As shown in 

Figure 11A, the Fe/NMC-900 exhibits the highest ORR activity with moderate overall N content 

and FeNx relative moieties. Further increasing the pyrolysis temperature leads to a significant drop 

of overall N content as well as FeNx relative content. The loss N content probably results in number 

of insufficient active FeNx sites or change of nature of FeNx active sites [361], which in turn 
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decreases the ORR activity. However, it is surprised that the Fe/NMC-800 exhibits the worst ORR 

activity, although possessing both of the highest overall N doping content and Fe-Nx relative 

contents. Hence, we come to conclusion that the low ORR activity of Fe/NMC-800 is not dictated 

by the number of active FeNx moieties, but the intrinsic ORR activity (Turnover frequency in 

single Fe sites). Preceding analysis has shown that the -electron delocalization of various 

catalysts prepared by different pyrolysis temperature has a negligible effect on ORR activity. In 

fact, the nature of O doping significantly affects the electronic structure of atomic Fe center in 

FeNx moieties. Ni’ et al [318] emphasized the critical role of carbonyl group next to FeN4 moieties 

on the enhanced ORR activity, which was mainly ascribed to the reduced formation barrier of 

*OOH and facilitation in reduction of *OH intermediates. However, for most cases, the higher O 

content is detrimental for ORR by four-electron pathway (prefer to two-electron pathway with 

H2O2 production), which is generally attributed too weak binding force between O-contained 

intermediates and electron-poor Fe atom center induced by excess of O-bearing groups in the 

carbon matrix [362, 363]. To reveal electron effect of O species on Fe center of FeNx moieties, the 

correlation between O composition and ORR activity is established (Figure 11B). It is worth note 

that the content of O specie is retained at large extent in relative low pyrolysis temperature 

especially for carboxyl group with low thermal stability. The carboxyl groups are subjected to a 

significantly decrease as pyrolysis temperature increases, which in turn leads to a gradually 

improvement of ORR activity. Given the electron withdrawing characters of carboxyl groups, it 

can be rationalized that much more positive charge state in single atom Fe center diminishes the 

interaction between the O species and Fe center. The too weak binding of O species on Fe center 

makes the first adsorption step of O2 difficult, thus resulting in low onset potential and activity of 

Fe/NMC-800. Indeed, the specific shape of CV curve with high polarization and irreversible redox 



164 

 

peaks feature for Fe/NMC-800 in N2-saturated acidic media (see Figure 7A) is additional hint for 

the enriched electron of surface property, which imparts adverse effect on ORR activity. On the 

other hand, the higher graphitization degree and conductivity are usually found at higher 

temperature which is beneficial for the enhanced electrocatalytic activity due to improved electron 

transport. Thus, the inferior electrocatalytic performance of FeNMC-800 respect to those observed 

in Fe/NMC-900 and Fe/NMC-1000 is partially attributed to the poor conductively arising from 

high heteroatom dopants. Taken together, an appropriate trend-off between N-doped level (FeNx 

moiety) and graphitization degree (electron conductivity) as well as proper O-doped level (electron 

effect on FeNx moiety) should be paid more attention for the optimization of ORR activity. 

 

Figure 11 (A) Correlation between nitrogen composition and ORR activity; (B) correlation 

between oxygen composition and ORR activity. 

 

3. Conclusion 

In this work, an active and durable single atom Fe catalyst toward ORR over both alkaline 

and acid media is developed based on pyrolysis approach using silica as hard template, glucose as 

carbon source, NH4Cl as nitrogen source, and FeCl3 as metal precursor. The ORR activity is found 



165 

 

to be greatly dependent of pyrolysis temperature, with 900 oC being the optimal temperature. The 

obtained optimal catalyst Fe/NMC-900 exhibits an excellent ORR activity (E1/2 = 0.86 V) and 

durability as well as methanol tolerance which outperforms the commercial Pt/C catalyst in 

alkaline media. In acidic media, the Fe/NMC-900 shows also decent ORR activity with E1/2 of 

0.63 V and good stability, although inferior than those of Pt/C. No direct correlation between ORR 

activity and total specific surface area and micropore surface area as a function of pyrolysis 

temperature is found because the sufficient surface area for host almost all Fe active sites. Further 

analysis discloses that both overall nitrogen and oxygen content undergo significantly decrease as 

increasing of pyrolysis temperature. Too high pyrolysis temperature (1000 oC) leads to the 

aggregation of Fe atoms and generation of Fe-based nanoparticle, as well as dramatic decrease of 

N content, which avoidably deteriorate ORR activity due to lower density of FeNx active sites. On 

the other hand, although N-content and active FeNx moieties are retained at largest extent under a 

relative low pyrolysis temperature (800 oC), the ORR activity is still limited by low electron 

conductivity and the highest oxygen content. The high oxygen content especially for carboxylic 

groups with electron-withdrawing property is detrimental for ORR activity due to the too weak 

binding force between single Fe atom center and O intermediates during ORR arising from 

decreased electron-density of Fe center. An improved pyrolysis temperature (900 oC) decreases 

the overall N content and FeNx moieties, but intrinsic activity of FeNx moiety is significantly 

enhanced due to optimized electron structure of Fe center associated with decreased amount of 

oxygen groups. In combination of higher graphitization degree, the Fe/NMC-900 exhibits highest 

ORR activity. This work emphasizes the importance on the trend-off between the number of FeNx 

active sites and intrinsic activity of FeNx site as well as conductivity of materials and it also affords 

an extra way for the fundamental insights into temperature dependent ORR activity.  
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Abstract 

The synthesis of Fe-N-C catalyst, for oxygen reduction process, showing comparable and 

even better performance with respect to Pt-based catalyst via simple and high-efficient strategy is 

still a challenge for the next-generation clean and sustainable energy technologies like fuel cell 

and metal-air batteries. This chapter describes a straightforward and easy-scale-up methodology 

for the fabrication of Fe, N co-doped graphene-like carbon nanosheet/carbon black hybrid 

featuring Fe3C/Fe3O4 nanoparticles wrapped by graphitic carbon layer. The catalysts were 

prepared via one-step thermal pyrolysis, starting from incipient wet impregnation of Fe salt 

aqueous solution of a mixture of cost-effective raw components. Such a heterostructure allows 

synchronous construction of open porous network and high density exposure of single FeNx active 

sites, leading to an enhanced electrocatalytic ORR performance, outperforming the benchmarked 

Pt/C catalyst. Importantly, in-depth investigation on hybrid material have unambiguously 

unraveled that FeNx moieties are real active sites for ORR and less acid-resistant Fe3O4 itself does 

not serve as active site but exert promotion effect on activity of FeNx site. This work not only 

clarifies the origin of high catalytic performance of Fe-N-C catalysts, but also affords a simple and 

large-scale synthetic strategy toward high performance ORR catalyst. 
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1. Introduction 

Addressing the concerns related to massive depletion of fossil fuels and increasing 

environmental and climate changes are becoming urgent priority of modern chemistry. The next 

generation of energy conversion devices, such as fuel cells have been receiving a great mark of 

interest as a part of clean and renewable energy systems, which represent a viably scheme for 

tackling the upcoming energy crisis due to its compelling merits of zero-carbon emissions along 

with high energy conversion efficiency [25, 364]. The high cost and scarcity of platinum group 

metal-based (PGM) electrocatalyst at the cathode to be applied for driving oxygen reduction 

reaction (ORR) with sluggish kinetic have been considered as a heart issue to be reckoned with 

[117]. Therefore, the exploitation employing non-critical components like cost-effective PGM-

free catalyst with improved catalytic performance and high robustness is highly expected but 

remains quite challenging research topic. 

The recent years have witnessed a real boom in the development of innovation synthetic 

strategy for the preparation of PGM-free electrocatalyst. A variety of novel PGM-free catalyst 

have been explored, including heteroatom-doped nanocarbons [365, 366], metal oxides [367, 368], 

and metal coordinated with N doped carbon materials (M-N-C, M = Fe, Co, Mn etc.) [37, 369]. 

Specifically, the atomically dispersed Fe-N-C catalysts have recently been extensively 

investigated due to its excellent ORR activity comparable to or even better than commercial Pt/C 

catalyst. Numerous efforts have been devoted to improving electrocatalytic intrinsic activity of 

single atom Fe-N-C catalytic by optimization of geometric and electronic structure as well as Fe 

coordination chemical state [89, 317, 370]. On the other hand, a structural design with higher 

density of exposed active sites ensuring the reactants/electrolyte availability provides an access for 

the improvement of ORR activity. A carbon scaffold (e.g. carbon black) not only provides high 
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population of single atom Fe active sites arising from large surface but also afford a soft self-

template to avoid the aggregation of Fe atoms during high temperature pyrolysis. The carbon black 

has been widely employed especially on preliminary exploration as support of metal macrocycle 

compounds [371-373].  

Recently, graphene or graphene-like two-dimensional carbon nanosheet has emerged as a 

new-generation carbon carrier because of its outstanding electrical conductivity, high surface area, 

and excellent chemical stability. More importantly, the flexible surface chemical structure can be 

readily regulated by introduction of light-heteroatoms (nitrogen, sulfur, boron, etc.) to stabilize 

metal atoms in the form of atomically dispersed dopants [374]. Compared with conventional post-

functionalization of as-existed graphene oxides, a “Top-down” strategy on the basis of high 

temperature pyrolysis is preferentially required for simultaneous construction of graphene 

framework and active atomically dispersed Fe sites [375]. However, the low carbonization yields 

particularly derived from small molecular carbon and/or nitrogen source, hinder its fabrication at 

large-scale production for practical application. On this regard, the preparation of hybrid network 

composed of cheap carbon black as primary phase and in-situ generated graphene-like material as 

secondary carbon phase afford a synergistic advantage with both high-production and abundant 

single atom Fe sites. Moreover, the presence of carbon black phase is thought to play a crucial role 

for the separation of two-dimension graphene/graphene-like carbon sheets thus enhanced 

accessibility of electrolyte and O2 molecule [366, 376]. Indeed, the combination benefit based on 

N- doped mesopore carbon phase coupling with other flexible substrates toward challenging 

industrial application have been reported recently by our groups [15, 377-382], which further 

prompts us to explore a novel hybrid electrocatalyst with high catalytic activity by simple and 

scalable strategy.  
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Another key step for further improvement of Fe-N-C catalytic performance is to increase the 

density of FeNx active sites, as well they accessibility, within a specific carbon support. 

Unfortunately, simple increase in the quantity of Fe precursor leads to Fe-based nanoparticles 

(oxides, carbide) or nanoclusters co-generation along with FeNx sites. In particular, excessive Fe 

loading (> 10 wt. %) inevitably leads to the formation of larger size Fe-based nanoparticles coated 

with carbon layers upon high temperature pyrolysis. Previous studies have demonstrated that metal 

Fe [310, 311], Fe3C [315, 383], oxidative FeOx [313, 384-386] nanoparticles encapsulated into N-

doped carbon show high and stable ORR activity. All these works come to the conclusion that the 

electronic interaction between Fe-based nanoparticle and N-doped carbon layer is mainly 

responsible for excellent electrocatalytic activity and durability. However, in most cases, the 

formation of FeNx sites is not taken into account, it is worth noting that actually single atom Fe 

coordinated N site is easily formed in concert with Fe-based nanoparticles which underlying 

contribute to catalytic activity. On the contrary, from high active single atom Fe viewpoint, these 

less-active Fe-based nanoparticles are typically removed by acid leaching in most works in attempt 

to achieve exclusive atomically dispersed Fe specie [113, 282]. Noteworthy, recent studies have 

also revealed that these Fe-based nanoparticles play a crucial role of enhanced ORR activity 

through synergistically cooperation effect with FeNx moiety. Wei and co-workers reported the 

interaction between Fe/Fe3C nanocrystals and FeN4 sites favored the adsorption of oxygen 

molecule, which significantly boosted the activity of Fe-Nx sites [147]. Yang and co-workers 

revealed the FeNx moieties played a critical role for ORR activity and the co-existed Fe2N 

nanoparticles could further improve activity of FeNx by weakening the adsorption of ORR 

intermediates on active sites [317]. Zhang’s group [342] and Xiang’s group [314] have disclosed 

that the synergistic effects between the Fe3O4 nanoparticles and the atomically dispersed Fe-Nx 
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resulted in enhanced ORR activity. Contrarily, Li et al. claimed that metallic Fe/Fe3C promoted 

ORR activity on FeNx sites while Fe3O4 nanoparticles exerted an adverse effect on FeNx sites [387]. 

These disputable results along with multiple active components besides Fe-Nx coordination further 

complicates the identification of exact activity origin of Fe-N-C electrocatalysts in catalyzing the 

ORR process. Hence, a viably experimental proof for action mechanism of each component toward 

ORR is highly desired but still challenging.   

Herein, we report a facile and easily-scalable strategy for the preparation of highly active Fe-

N-C hybrid catalyst based on one-step thermal pyrolysis starting from cheap and non-toxic raw 

components. The as-obtained hybrid catalyst exhibits a unique hierarchical structure consisting of 

carbon black as primary carbon phase and in-situ generated graphene-like carbon nanosheet as 

secondary carbon phase, along with the generation of highly porous structure. With appropriate 

amount of Fe precursor addition, the optimal catalyst not only possesses the highest content of 

single atom FeNx active sites, which plays a decisive role for the most superior ORR activity 

amongst all investigated samples, but also generates acid-resistance graphitic onion-like 

nanocarbon-shells wrapped Fe3C nanoparticles in concert with less acid-tolerance Fe3O4 

nanoparticles. Interestingly, in-depth investigation based on a series of control trials have 

unambiguously shown that the Fe3O4 nanocrystals significantly boost the electrocatalytic activity 

of adjacent FeNx sites for ORR while themselves show negligible activity. The synergistic effect 

between FeNx active sites and Fe3O4 nanocrystals is claimed to be responsible for the enhanced 

ORR activity. As a result, the optimal catalyst (4.5Fe@NGC/CB) displays a superior ORR 

performance with an onset potential of 1.0 V and half-wave potential of 0.87 V along with 

outstanding durability and methanol tolerance, outperforming the commercial Pt/C catalyst and 

most reported non-precious catalyst. This present work provides a simple and large-scale materials 

mailto:4.5Fe@NGLC/CB
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fabrication strategy using cheap raw components. More importantly, this finding shed light on the 

activity origin of high-performance Fe-N-C catalyst toward ORR, and affords a new cognition for 

rational design of high active ORR electrocatalysts. 

2. Results and discussions 

2.1 The Synthesis of Fe@NGC/CB catalyst 

 

Figure 1. Schematic illustration of fabrication procedure of 4.5Fe@NGC/CB hybrid electrocatalyst. 

 

Figure 1 illustrates the adopted synthetic methodology of Fe@NGC/CB hybrid. Carbon black 

(Vulcan XC-72, Cabot) is used as a “standing scaffold” (primary carbon phase) for the 

accommodation of porous N-doped graphene-like nanosheets (secondary carbon phase) to enable 

the host of graphitic carbon layer encapsulated Fe3O4/Fe3C along with high densely atomic Fe-Nx 

nuclei. The physical mixture of three raw components starting from carbon black, D-glucose, urea 

is firstly subjected to incipient wetness impregnation with control concentration (0, 0.016, 0.08, 

0.4 M) of iron chloride precursor solution, hereafter referred to as NGC/CB, 1.15Fe@NGC/CB, 

mailto:Fe@NGLC/CB
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4.5Fe@NGC/CB, 16.2Fe@NGC/CB, respectively). In contrast to conventional solid phase synthesis 

from direct physical mixtures of N and C-contained components and Fe precursor powder, the 

impregnated phase with an aqueous Fe-based solution allows a uniform distribution of metal 

cations where Fe3+ can be firmly bound to deprotonated alcoholic hydroxyl groups in the glucose 

molecule due to its strong chelating ability [20]. The impregnated samples after dryness are then 

annealed at 900 oC under argon atmosphere without any post-treatment (e.g., acid/basic leaching, 

the second NH3/N2 thermal treatment). During annealing process, urea is first thermally 

polymerized into layered graphitic carbon nitride (g-C3N4) at around 550 oC which then assists the 

directed formation of two-dimension carbon nanosheet on the carbon black scaffold [388]. 

Specifically, the in-situ formed layered g-C3N4 acts as space-limited self-sacrificial template to 

confine the patches of aromatic carbon derived from decomposition of glucose-metal complex, 

while N sites in the g-C3N4 is thought to be an ideal nucleation and stabilization sites for Fe atoms. 

Above 750 oC, the thermally unstable layered g-C3N4 is completely decomposed accompanied 

with evolution of N-containing gases and graphene-like carbon nanosheet, with defects, is then 

liberated [389]. Together with NH3 generated from urea at relatively low temperature range, N-

doping and pore structure are created by reaction between N-containing gases and oxygen function 

group in the glucose/carbon intermediate/carbon black and subsequently substitution of carbon 

atom at elevated temperature. Simultaneously, the Fe atoms are moved into carbon matrix and then 

trapped by N- species giving rise to the formation of atomically dispersed FeNx sites at a relatively 

high temperature range. Some of Fe atoms are not coordinated to N sites, resulting in the formation 

of graphitic carbon layer encapsulated Fe-based nanoparticles through thermal-induced carbon 

diffusion inside/outside crystalline lattice of Fe [147, 390]. Eventually, Fe-based nanoparticles 

mailto:Fe@NGLC/CB
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encapsulated by graphitic carbon layer are coupled with FeNx moieties and supported on porous 

N-doped graphene-like carbon nanosheet/carbon black hybrid (Fe@NGC/CB).  

 

2.2 Characterization of Fe@NGC/CB catalysts. 

 

Figure 2. The SEM micrographs at different selected region (A-B), low-resolution (C-D) TEM 

images (inset in Figure D showing the nanoparticle size distribution), high-resolution (HRTEM) 

images (E-F), and energy-dispersive-X ray (EDX) mapping images (G). 
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Figure 3. Energy-dispersive-X-ray (EDX) mapping on the 4.5Fe@NGC/CB. 

 

The selected representative micrographs (SEM) recorded for 4.5Fe@NGC/CB sample reveal 

hierarchal structure with carbon black nanoparticles as mainly carbon phase and ultra-thin, highly 

crumpled nanosheets as secondary carbon phase (Figure 2A-B). The entangled layered carbon 

structures on the carbon black grains give rise to the formation of open network framework and 

well-developed meso-macro scale pore structure of as-prepared electrocatalyst. The open network 

framework with abundant porous structure is thought to play an important role in the ORR process 

as it provides an easily accessibility of the reactant to the active sites.  

Transmission electron microscopy (TEM) image (Figure 2C) further displays ultrathin 

characteristic of transparent carbon nanosheet localized on the edge of carbon grains which might 

be (-in part at least-) attributed to graphene. Indeed, several works in regard to the use of glucose 

and N-containing small molecules to be employed for the fabrication of N-doped graphene 

nanosheet-based materials have been documented [374, 375]. An overview of 4.5Fe@NGC/CB 

mailto:4.5Fe@NGC/CB
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(Figure 2D) reveals the presence of some nanoparticles with mean size of ca. 13 nm, while a close 

look at high resolution image (HR-TEM) shown in Figure 2E-F unveils that these nanoparticles 

are composed of Fe3C nanoparticle encapsulated by onion-like graphitic carbon nano-shells with 

around 5 layers, along with less carbon layers coated Fe3O4 nanocrystal. In light of the similar 

interplanar distance (0.21 nm) for (400) plane of Fe3O4 and (211) plane of Fe3C, the direct evidence 

for the presence of Fe3O4 phase with less carbon layers encased is further validated by energy-

dispersive-X-ray (EDX) mapping (Figure 3). A more representative region selected on this sample 

has explicitly shown a co-existence of homogeneous distribution of atomic Fe nuclei sites and Fe-

based nanoparticles along with N and O elements over the entire carbon hybrid carrier (Figure 2G). 

X-ray diffraction (XRD) patterns of samples prepared with distinctive amount of Fe precursor

along with respective control samples are present in Figure 4A. The broad diffraction peaks at 2 

= 24.7o, 43.8o for 1.15Fe@NGC/CB, ascribed to (002), (100) planes of amorphous carbon, share 

almost the same pattern with sample obtained without Fe precursor (NGC/CB), indicating the 

highly dispersed Fe are presumably incorporated into carbon hybrid framework. As the amount of 

Fe precursor increases, the distinctive reflection peaks associated with Fe3O4 and Fe3C crystalline 

phase are observable for 4.5Fe@NGC/CB, in agreement with the results shown in TEM analysis. 

Further increase of Fe precursor amount (16.2Fe@NGC/CB) leads to sharper diffraction peaks of 

Fe3C phases, corresponding to the formation of larger size of Fe3C nanoparticles, while the Fe3O4 

nanoparticles are no longer detected and a new crystalline phase related to Fe0.945O starts to appear. 

The control catalysts are also reproduced with the same synthetic procedure as 4.5Fe@NGC/CB 

but without the use of glucose, urea as to afford Fe@NCB, Fe@C/CB samples for comparison, 

respectively. Apart from as-existed Fe3O4 and Fe3C crystalline phases, the additional metallic Fe 

phase (-Fe) are clearly observed for Fe@NCB. As for Fe@C/CB, the sharp peaks regarding 
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metallic Fe phase occur while Fe3C phase could not be found. These outcomes disclose that both 

urea and glucose play a crucial role for the transformation of crystal phase, while the distinctive 

composition of Fe-based phases might be responsible for the apparent variability in activity 

towards ORR.  

 

Figure 4. (A) The XRD profiles of all as-prepared catalysts; (B) The TGA (above) and DTG (below) 

curves of 1.15Fe@NGC/CB, 4.5Fe@NGC/CB, 16.2Fe@NGC/C, and Fe/NCB; (C) N2 adsorption-

desorption isotherm plots of samples with variable Fe addition recorded at 77 K along with (D) 

the respective pore size distributions (BJH method) based on desorption branch.   

 

Thermogravimetric analysis (TGA) is conducted (from r.t. to 900 oC with a heating rate of 10 

oC min-1 under air atmosphere) to further reveal the composition of catalysts synthesized with 

variable amount of Fe precursor together with Fe/NCB at comparison. As shown in Figure 4B, the 

weak peak at  400 oC observed on the 1.15Fe@NGC/CB, 4.5Fe@NGC/CB, 16.2Fe@NGC/CB 
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samples, which is not present in Fe/NCB, can be attributed to the decomposition of graphene-like 

carbon nanosheet. The mass fraction of the graphene-like carbon phase in the hybrid carbon 

framework account for roughly 10 wt. % on the basis of weight loss at low temperature range. The 

broad peak located at relatively high temperature region (510 oC) for 1.15Fe@NGC/CB, 

4.5Fe@NGC/CB arising from the carbon black-relevant degradation, shifts up to higher 

temperature range for 16.2Fe@NGC/CB and Fe/NCB. The higher decomposition temperature of 

carbon black is closely associated with enhanced graphitization degree. Based on the analysis of 

Fe2O3 phase residues in the final product, the mass loadings of Fe are calculated to be 1.5, 4.7, 

18.9 wt. % for the 1.15Fe@NGC/CB, 4.5Fe@NGC/CB, 16.2Fe@NGC/CB, respectively, basically 

consistent with outcomes of ICP-AES measurement. 

Table 1. Textural properties of as-obtained catalysts 

Sample SSAa  

(m2 g-1) 

SSAmicro 

(m2 g-1) 

 

SSAexternal b 

(m2 g-1) 

V c  

(cm3 g-1) 

Vmicro 
d 

(cm3 g-1) 

Mean pore 

size e 

(nm) 

NGC/CB 286 85 201 0.482 0.040 13.8 

1.15Fe@NGC/CB 258 64 194 0.452 0.030 12.8 

4.5Fe@NGC/CB 256 63 193 0.447 0.028 11.7 

16.2Fe@NGC/CB 218 47 171 0.343 0.022 8 

Fe@C/CB 244 123 120 0.383 0.060 16.8 

Fe@NCB 209 77 132 0.332 0.037 13.8 

4.5Fe@NGC/CB-AL 255 61 194 0.411 0.029 11.9 

a Brunauer-Emmett-Teller (BET) total specific surface area (SSA) measured at T = 77 K. b The total specific 

surface area of mesopore and macropore. c Total pore volume determined using the adsorption branch of N2 

isotherm at P/P0 = 0.98. d Determined by t-plot method. e Determined by BJH desorption average pore width 

(4V/A).  

 

Further textural properties for as-prepared samples are evaluated at N2 adsorption isotherms 

(T = 77 K). All concerned catalysts present type IV isothermal profiles (Figure 4C and Figure 5A) 

mailto:16.2Fe@NGC/CB
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with pronounced H3 - type hysteresis loop in the range of 0.4 - 1.0 P/P0, a typical characteristic of 

mesopore carbon featuring with slit-shaped pore structure [328]. Notably, as Fe precursor amount 

increases, the hysteresis loop and N2 adsorption amount (Figure 4C) at relatively high-pressure 

range (P/P0 > 0.9) are gradually suppressed which could be linked to the decreasing of the external 

surface area (the total SSA of mesopores and macropores). The pore size distribution curve shown 

in Figure 4D exhibits two types of characteristic mesopores. The small mesopore region (ca. 5 nm) 

is originated from the N-doped graphene-like carbon phase, on which both of the use of glucose 

and urea play pivotal role in the formation of small mesopore (Figure 5B), and the pore size 

distribution at ca. 40 nm can be ascribed to the interstitial pores of carbon black particles. The 

smaller population of large mesopore range is found with the increase of Fe loading (Figure 4D), 

which is originated from the blockage of large mesopores by Fe-based nanoparticles due to 

agglomeration of excessive Fe. This conclusion is further verified by a lower mean pore size (Table 

1). The quantitative results on the texture properties shown in Table 1 present a SSA of 256 m2 g-

1 over 4.5Fe@NGC/CB, higher than that measured on Fe@NCB (210 m2 g-1), indicative of the 

contribution of secondary graphene-like carbon phase on the enhancement of SSA enabled by the 

use of glucose. Interestingly, in spite of the comparable SSA for both samples with and without 

the use of N-source (256 m2 g-1 for 4.5Fe@NGC/CB vs. 244 m2 g-1 for Fe@C/CB), the larger 

fraction of micropore (SSAmicro : 123 m2 g-1; Vmicro : 0.06 cm3 g-1) for Fe@C/CB, twice higher 

respect to that of 4.5Fe@NGC/CB (SSAmicro : 60 m2 g-1 ; Vmicro : 0.028 cm3 g-1) affords an evidence 

of the formation of Fe-Nx active sites due to the well-known micropore-hosted atomically 

dispersed FeNx moieties in the 4.5Fe@NGC/CB. Indeed, the gradual decrease of micropore surface 

area is mainly responsible for smaller SSA as Fe loading increases (Table 1), which further 

enhances formation of FeNx moieties even though the higher graphitization degree also results in 

mailto:4.5Fe@NGC/CB
mailto:4.5Fe@NGC/CB
mailto:Fe@C/CB%20of%20243.5
mailto:4.5Fe@NGC/CB
mailto:4.5Fe@NGC/CB


180 

 

inevitably the decrease of micropores. The as-formed FeNx sites are thought to occupy a certain 

number of micropores, for sure the part of N-doped sites should also be considered as a 

contribution for the micropore loss. The observation exhibits that N-source is of paramount 

component for construction of essential active sites towards ORR process.  

 

Figure 5. (A) N2 adsorption-desorption isotherm plots of 4.5Fe@NGC/CB and control samples 

without using glucose (Fe@NCB), urea (Fe@C/CB) recorded at 77 K along with (B) the respective 

pore size distributions (BJH method) based on desorption branch. 
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Figure 6. (A) The Raman spectra of samples prepared with different amount of Fe precursor; (B) 

XPS spectra of high-resolution N 1s core region in the samples containing variably Fe content 

along with FePc as reference sample at comparison; (C) XPS spectra of high-resolution Fe 2p3/2 

core regions in all concerned samples. 

 

To get more insights on carbon structure information, the Raman spectra is carried out for all 

investigated samples. All samples can be well fit into four Lorentz peaks (Figure 6A and Figure 

7), and the respective fitting results are shown in the Table 2. The calculated intensity ratios of D 

and G band (ID/IG), typically used as indicator of graphitization degree on specific carbon materials, 

are 3.30, 3.31, 3.21 for 1.15Fe@NGC/CB, 4.5Fe@NGC/CB, 16.2Fe@NGC/CB, respectively, slightly 

lower respect to that on NGC/CB (3.91). This finding demonstrates that the introduction of Fe 

increases the graphitization degree of the sample. On the other hand, the ID/IG values for Fe@NCB 

and Fe@C/CB are accounted for 2.41, 2.37, respectively, significantly lower compared to the other 

samples (Figure 7 and Table 2). Given the fact that a relative low density of FeNx sites are 

generated in high graphitized carbon due to the low nitrogen content in the graphitic matrix [275], 

the high graphitization degree of Fe@NCB and Fe@C/CB is mainly associated with a large 

number of Fe-based nanoparticles. The larger proportion of nanoparticles in turn results in 

decreased FeNx active sites and subsequently lower ORR performance. This observation further 

strengthens the viewpoint that introduction of glucose and N-source plays important role in the 

improvement of FeNx site density. Further effect on ORR catalytic activity will be unveiled in the 

following electrochemistry part. 
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Figure 7. The Raman spectra of Fe@NCB, Fe@C/CB, and acid leached 4.5Fe@NGC/CB-AL 

samples (0.5 M H2SO4 at 80 oC for 8 h). 

 

X-ray photoelectron spectroscopy (XPS) is further performed to gain more insight about the 

chemical composition of the as-synthesized samples. The pure FePc is used as a reference to 

precisely identify the assignment of chemical composition and bonding state of target elements. 

The relative elemental compositions on the different samples are displayed in Table 3. The N 

content of Fe-containing samples is significantly decreased compared to that of the counterparts 

without Fe addition, suggesting the Fe doping promotes the decomposition of N-configuration 

with weak thermostability [375]. The N1s core level spectrum of samples is further deconvoluted 

to gain more insight into the coordination state of N atom. As Figure 6B shows, the FePc reference 

sample shows main peak at 399.4 eV accompanied with a satellite at 400.7 eV, ascribed to four 

nitrogen coordinated with Fe atom (FeN4 configuration) [147, 391]. Accordingly, the peak 
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occurred at 399.21 eV in all Fe-containing samples confirms the presence of Fe-Nx moieties similar 

to FeN4 configuration in FePc. Additional signals at around 398, 400.4, 401.8, 403.8 eV can be 

assigned to pyridinic N, pyrrolic N, graphitic N and oxidized N, respectively [7, 200]. According 

to the total nitrogen and respective fraction of N species on each sample based on the 

deconvolution results (Table 4), the N species contents are calculated and displayed in Table 3. 

The amount of FeNx moiety is determined to be 1.06 % in 1.15Fe@NGC/CB, which further 

increases to 1.18 % with the increase of Fe content (4.5Fe@NGC/CB), while the value decreases 

to 0.96 % in 16.2Fe@NGC/CB since the excessive additional of Fe gives rise to severe aggregation 

of Fe atoms during pyrolysis step. High-resolution Fe core level spectra (Fe 3/2p) is further 

deconvoluted to obtain deeper insight into the effect of Fe species change on electrocatalytic 

activity. As Figure 6C shows, the peaks at 710.2 eV, 712.6 eV shown in FePc reference sample 

can be ascribed to Fe2+, Fe3+ in the macrocycle in the form of FeN4 moiety with mostly being in 

he FeII state (Fe2+ : Fe3+ = 3, Table 5) [392, 393]. As for 1.15Fe@NGC/CB, the same feature peaks 

as that of FePc are found but with lower ration of Fe2+/Fe3+ (Fe2+ : Fe3+ = 2), and the ratio gradually 

ecreases with increasing Fe precursor amount (Table 5), demonstrating the formation of Fe3O4 

nanoparticles in all three samples. However, an additional peak occurred at 707.6 eV, which could 

be assigned to Fe3C phase, is visible for both 4.5Fe@NGC/CB and 16.2Fe@NGC/CB, consistent 

with the XRD and TEM results. The relative fraction of Fe species and the amount of Fe species 

calculated on a basis of total Fe content and the fraction of Fe species has also been summarized 

(Table 5, Table 6).  
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Table 2. Raman fitting results for all samples 

Sample 

Deconvoluted results a (Area. %) 

sp2 carbon 

outside 
D peak 

Distortion 

C5 ring 

Heteroatom 

G peak b ID/IG 

NGC/CB 6.62 61.6 16.03 15.76 3.91 
1.15Fe@NGC/CB 4.10 60.7 16.70 18.40 3.30 
4.5Fe@NGC/CB 4.11 62.6 14.34 18.95 3.31 
16.2Fe@NGC/CB 4.89 60.0 16.41 18.70 3.21 

Fe@NCB 5.85 57.7 12.46 23.99 2.41 

Fe@C/CB 6.29 56.8 12.87 24.02 2.37 
4.5Fe@NGC/CB-AL 5.06 59.9 15.43 19.60 3.06 

 

a fitting by Lorentz method, b determined by the area ratio between D peak and G peak. 

 

Table 3. Chemical composition properties of as-obtained catalysts 

Sample 

XPS data 

Element composition a 

(at. %)c 
N species (at. %) b 
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NGC/CB 93.68 0.98 5.34 0 1.44 1.42 1.56 0.915 -- 

1.15Fe@NGC/CB 93.94 1.97 3.75 0.33 0.75 1.01 0.66 0.27 1.06 

4.5Fe@NGC/CB 93.22 2.09 4.14 0.55 0.878 1.14 0.724 0.22 1.18 

16.2Fe@NGC/CB 93.0 3.15 3.22 0.63 0.497 0.97 0.5 0.29 0.962 

Fe@C/CB n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Fe@NCB n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

4.5Fe@NGC/CB-AL 92.76 3.92 3.15 0.18 0.66 1.00 0.263 0.194 1.03 

a determined by XPS analysis; b Determined by high resolution XPS N 1s core region and the product 

of relative deconvoluted peak and total nitrogen content on each sample. 
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Table 4. N1s deconvoluted results of as-prepared catalysts 

 

 Sample 
N species (at. %) 

Pyridinic N Pyrrolic N  Graphitic N  Oxidized N Fe-Nx 

NGC/CB 27.0 26.52 29.21 17.13 - 

1.15Fe@NGC/CB 19.98 27.03 17.6 7.12 28.26 

4.5Fe@NGC/CB 21.21 27.55 17.49 5.33 28.42 

16.2Fe@NGC/CB 15.43 30.14 15.52 9.03 29.88 

4.5Fe@NGC/CB-AL  20.97 31.94 8.35 6.17 32.57 

 

Table 5. Fe 2p3/2 deconvoluted results of as-prepared catalysts 

 

Sample 
Fe species 

Fe3C（at. %） Fe2+ (at. %) Fe3+ (at. %) Fe2+/Fe3+ 

FePc 0 75.4 24.6 3.07 
1.15Fe@NGC/CB 0 68.2 31.8 2.14 
4.5Fe@NGC/CB 8.37 49.88 41.75 1.19 
16.2Fe@NGC/CB 11.7 35.3 53 0.67 

4.5Fe@NGC/CB-AL 35.54 64.46 0 - 

 

Table 6. Fe composition based on production of Fe contents and respective fraction of Fe species 

on each sample. 

 

Sample 
Fe species 

Fe3C（at. %） Fe2+ (at. %) Fe3+ (at. %) 

1.15Fe@NGC/CB 0 0.201 0.129 
4.5Fe@NGC/CB 0.046 0.274 0.230 
16.2Fe@NGC/CB 0.074 0.222 0.334 

4.5Fe@NGC/CB-AL 0.064 0.116 0 
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2.3 Electrochemical properties of Fe@NGC/CB catalysts 

 

Figure 8. The CV curves of control samples at potential range of 0 - 1.2 V vs. RHE with a scan 

rate of 50 mV s-1 under N2 and O2- saturated 0.1 M KOH solution, respectively.  

 

The ORR electrocatalytic activity of sample 4.5Fe@NGC/CB along with control catalysts 

without the use of glucose and urea are firstly evaluated. As Figure 8 shows, the CV curves 

recorded on N2 and O2-saturated 0.1 M KOH with a scan rate of 50 mV s-1 show pronounced 

reduction peaks in O2 atmosphere for all concerned samples with the most positive potential 

observed in 4.5Fe@NGC/CB, indicating all samples display oxygen reduction ability with 

4.5Fe@NGC/CB being the most active catalyst for ORR.  
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Figure 9. (A) Steady-state polarization curves of all control samples along with commercial Pt/C 

recorded in an O2-saturated 0.1 M KOH electrolyte solution at a scan rate of 10 mV s−1 at a rotating 

speed of 1600 rpm and (B) corresponding electrochemical parameter (Eon, E1/2, and kinetic current 

density at potential of 0.8 V, Jk@0.8 V); (C) Tafel plots for all control samples along with 

benchmarked Pt/C; (D) K-L plots for 4.5Fe@NGC/CB; (E) The H2O2 yield and electron transfer 

number for 4.5Fe@NGC/CB and control samples along with Pt/C derived from rotation disk-ring 

electrode (RRDE) measurement at a scan rate of 10 mV s-1 at a rotation speed of 1600 rpm in O2- 

saturated 0.1 M KOH electrolyte; (F) Methanol poisoning and (G) durability tests. 

 

The LSV curves and corresponding electrocatalytic parameter (onset potential (Eon), half-

wave potential (E1/2), and kinetic current density at applied potential of 0.8 V (Jk@0.8 V)) collected 

at rotation speed of 1600 rpm at scan rate of 10 mV s-1 are depicted in Figure 9A-B and Table 7. 

The control catalyst Fe@C/CB shows much lower ORR activity with a limited E1/2 of 0.66 V and 

Eon of 0.77 V, indicating that Fe/Fe3O4 nanoparticles (see XRD result in Figure 4A) show 

negligible activity toward ORR and N doping is indispensable for the construction of active sites. 

However, the introduction of N-source alone (NGC/CB) leads to a limited enhancement of ORR 
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activity (E1/2 of 0.76 V and Eon of 0.88 V). Noteworthy, the presence of both Fe and N source 

(4.5Fe@NGC/CB) dramatically boosts the ORR activity with optimal Eon of 1 V, E1/2 of 0.87 V 

along with a highest limited current density (5.75 mA cm-2). The finding reveals Fe and N 

synergistically contribute to enhanced ORR activity, implying the formation of FeNx coordination 

configuration.  

Table 7. Electrochemical performance of all samples in ORR 

Entry Catalyst 
Eon 

a 

(V) 

E1/2 
b 

(V) 

JL
c    (mA 

cm-2) 

Tafel slope 

(mV dec-1) 

Jk 
d           

(mA cm-2) 

1 NGC/CB 0.88 0.76 4.66 83.9 1.59 

2 1.15Fe@NGC/CB 0.95 0.85 5.55 84.29 22.15 

3 4.5Fe@NGC/CB 1.0 0.87 5.75 73.40 36.56 

4 16.2Fe@NGC/CB 0.95 0.85 5.23 86.25 19.2 

5 Fe@C/CB 0.77 0.66 3.78 182.0 0.026 

6 Fe@NCB 0.92 0.78 5.2 128.5 3.59 

7 4.5Fe@NGC/CB-AL 0.97 0.85 5.36 - 25.20 

8 20 Pt/C 0.97 0.85 5.44 69.3 25.98 

a Onset and b half-wave potential values reported vs. RHE, c limited diffusion current density, d Kinetic current 

density calculated from K-L equation at 0.80 V vs. RHE. 

 

On the other hand, Fe@NCB presents an inferior ORR activity (Eon = 0.92 V, E1/2 = 0.78 V) 

with respect to that of 4.5Fe@NGC/CB, indicating that the addition of glucose also plays important 

role for the improved ORR. In consideration to similar Fe content and crystal phase composition 

(see XRD and TGA results in Figure 4A-B) for 4.5Fe@NGC/CB and Fe@NCB, the enhanced 

electrocatalytic performance could be rationalized that N-doped graphene-like carbon nanosheet 

derived from glucose facilitate accommodation of larger portion of active sites due to higher total 

specific surface area and lower graphitic degree (Table 1, Figure 6A and Figure 7).  
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Figure 10. The CV curves of Fe@NCB (A) and 4.5Fe@NGC/CB (B) in the potential range of 1.02-

1.12 V vs. RHE with various scan rates in N2-saturated 0.1 M KOH solution and corresponding 

linear fitting of the capacitive currents vs. scan rates (C). 

 

Indeed, the double-layer capacitance (Cdl)- a parameter applied as a characteristic of 

electrochemically active surface area (ECSA) [341] - is calculated to be 3.96 mF cm-2 for Fe/NCB, 

nearly twice lower than that on 4.5Fe@NGC/CB (7.3 mF cm-2) (Figure 10), further strengthening 

the pivotal role of glucose on the formation of higher active sites density for the electrocatalytic 

ORR process. More importantly, the improved electric conductivity and desired hierarchical open 

framework imparted by N-doped secondary carbon phase are important for both easily electron 

and mass transport. All of beneficial actions on the 4.5Fe@NGC/CB contribute to the eventually 

excellent ORR activity, which even outperforms the commercial Pt/C catalyst (Eon = 0.97 V, E1/2 

= 0.85 V) and most previously reported non-precious metal catalyst. The Tafel slope (Figure 9C) 

determined on 4.5Fe@NGC/CB exhibits a value of 73.4 mV dec-1, lower than that of NGC/CB 

(83.9 mV dec-1), Fe@NCB (128.5 mV dec-1) and Fe@C/CB (182 mV dec-1), demonstrating the 

fastest reaction kinetics over all control samples.  
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Figure 11. (A) Linear sweep voltammograms (LSVs) for ORR in O2-saturated 0.1 M KOH solution 

for 4.5Fe@NGC/CB at variable rotation rates with a scan rate of 10 mV s-1; (B) RRDE current-

potential curves of 4.5Fe@NGC/CB and respective control samples as well as benchmarked Pt/C 

catalyst in O2 saturated 0.1 M KOH solution recorded at the Pt-ring [A = 0.11 cm2]. All ring 

currents have been measured at a rotation rate (ω) of 1600 rpm; (C) The chronoamperometric (CA) 

response curves of 4.5Fe@NGC/CB at a potential of 0.65 V vs. RHE with rotation speed of 1600 

rpm in O2-saturated 0.1 M KOH solution; (D) RRDE current-potential curves of samples prepared 

by variable Fe addition in O2 saturated 0.1 M KOH solution recorded at the Pt-ring [A = 0.11 cm2], 

and all ring currents have been measured at a rotation rate (ω) of 1600 rpm. 

 

The LSV curves of 4.5Fe@NGC/CB at different rotation speeds are investigated and 

corresponding Koutecky-Levich (K-L) plots are present in Figure 9D and Figure 11A. The 
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proportional increase of limited-diffusion current density with increasing rotation speeds (Figure 

11A) implies a diffusion-controlled oxygen reduction process, and the good linearity of K-L plots 

at various applied potentials indicates the first-order reaction toward dissolved O2. The average 

electron transfer number (nE) based on K-L equation is calculated to be 4.2 in the range of 0.3-0.7 

V (The value of nE over 4 is ascribed to the deviation between theory parameter and practical 

parameter under operate condition), exhibits an ideally 4-electron transfer pathway.  

 

Figure 12. (A) Steady-state polarization curves of samples produced by the use of different Fe 

precursor and (B) respective electrochemical parameter (Eon, E1/2, kinetic current density, Jk@0.8 

V); (C) Tafel plots for samples prepared by variably addition of Fe; (D) The H2O2 yield and 

electron transfer number for samples with different Fe loadings derived from rotation disk-ring 
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electrode (RRDE) measurement at a scan rate of 10 mV s-1 at a rotation speed of 1600 rpm in O2- 

saturated 0.1 M KOH electrolyte.  

 

Rotation ring-disk electrode measurements (RRDE) are further performed to gain more 

understanding on kinetic behavior over all samples. As Figure 9E and Figure 11B show, the H2O2 

yields of Fe@C/CB and NGC/CB are as high as 84.9 % and 37.5 %, corresponding to electron 

transfer number of 2.3 and 3.2 at applied potential of 0.6 V, respectively, exhibiting poor selectivity 

toward 4-electron transfer path. The simultaneously introduction of Fe and N (sample Fe@NCB) 

significantly decreases the H2O2 yields and increases the number of electron transfer, strengthening 

the beneficial role of FeNx sites towards ideally 4- electron reduction process. The addition of 

glucose (sample 4.5Fe@NGC/CB) further improves the selectivity of reaction with H2O2 yield 

accounted for less than 10 % and almost full 4-electron path across the whole investigated potential 

range (H2O2 yield of as low as 3.72 % and electron transfer number of 3.93 at 0.6 V, even lower 

than those of benchmarked Pt/C). This result demonstrates the outstanding 4-electron selectivity 

of 4.5Fe@NGC/CB and the importance of secondary graphene-like carbon phase on the 

improvement of the ORR activity.  

As an additional trial, the durability and methanol tolerance of the most active catalyst 

4.5Fe@NGC/CB have also been investigated, which are considered to be fundamental prerequisite 

for the successful exploitation on the side of cathode at the heart of fuel cell. As shown in Figure 

9G, the E1/2 shows negligible degradation after 5000 continuous potential cycling in the range of 

0.6 - 1 V at a scan rate of 50 mV s-1 under O2 atmosphere, only with slight decrease of onset 

potential and limited-diffusion current density, thus demonstrating the excellent long-term stability 

of the catalyst. The additional chronoamperometric (CA) response curves are also performed to 
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evaluate the stability and methanol tolerance at applied potential of 0.65 V. As Figure 11C shows, 

the current density for 4.5Fe@NGC/CB with respect to initial value retains up to 95 % after 12 h 

continuous operation, much higher than that measured on Pt/C (68 %). Furthermore, upon 

introduction of methanol (1 % v/v), a rapidly irreversible drop of current density is observed for 

Pt/C catalyst while no appreciable change is observed for 4.5Fe@NGC/CB under the identical 

operation condition (Figure 9F). All these measurement results unambiguously confirm 

4.5Fe@NGC/CB presents superior stability and tolerance toward methanol crossover. Combined 

with high ORR activity along with facile, scalable fabrication methodology, the as-prepared hybrid 

holds great promise as non-precious metal catalyst for the replacement of Pt-based noble catalyst 

toward next generation of fuel cell.  

The deeper insight into Fe loading effect on electrocatalytic activity and identification of 

active sites for as-prepared hybrid are further explored. As shown in Figure 12A-B and Table 7, 

the 1.15Fe@NGC/CB displays an Eon of 0.95 V and E1/2 of 0.85 V, 50 mV and 20 mV lower than 

that on 4.5Fe@NGC/CB (Eon = 1 V, and E1/2 = 0.87 V). Further increasing Fe content 

(16.2Fe@NGC/CB) leads to a deteriorated of both Eon (0.95 V) and E1/2 of (0.85 V), comparable 

electrocatalytic performance but with slightly lower limited-diffusion current density respect to 

that of 1.15Fe@NGC/CB. The highest kinetic current density (36.56 mA cm-2 calculated on a basis 

of K-L equation) at 0.80 V (Figure 12B, and Table 7) and lowest Tafel slope for 4.5Fe@NGC/CB 

(Figure 12C) verifies its most superior ORR activity among three samples. RRDE measurement 

(Figure 11D and Figure 12D) shows that 1.15Fe@NGC/CB catalyst presents moderate ORR 

selectivity respect to that of 4.5Fe@NGC/CB, while 16.2Fe@NGC/CB displays the worst selectivity 

among three samples in terms of highest yield of H2O2 and lowest electron transfer number 
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throughout scanning region. This finding suggests an appropriate amount of Fe precursor is of 

great importance for the optimal activity and selectivity toward ORR.  

 

Figure 13. (A) The correlation plots between amount of FeNx moieties and ORR activity for 

samples with variable Fe loadings; (B) LSV curves of pristine 4.5Fe@NGC/CB, acid leached 

sample 4.5Fe@NGC/CB-AL, and subsequently second heating treatment sample 4.5Fe@NGC/CB-

AL-SHT recorded at a rotation speed of 1600 rpm with scan rate of 10 mV s-1 in O2-saturated 0.1 

M KOH solution; (C) linear fitting plots of the capacitive currents vs. scan rates for samples with 

variable Fe loadings along with acid leached sample 4.5Fe@NGC/CB-AL; (D) LSV curves of 

sample 4.5Fe@NGC/CB before and after addition of 10 mM KSCN in O2-saturated 0.5 M H2SO4 

solution with scan rate of 10 mV s-1 at a rotation speed of 1600 rpm. 
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To unveil ORR activities trend on the samples with various amount of Fe contents, the 

correlation plot between the density of FeNx sites based on XPS analysis and ORR activity is 

established. As shown in Figure 13A, the ORR activity is proportional to amount of FeNx moieties. 

Given the fact that N-doped carbon with higher amount of pyridinic N and graphitic N (NGC/CB) 

exhibit much inferior activity compared to that measured on 4.5Fe@NGC/CB, the FeNx is thought 

to be the most electrochemically active sites for ORR, as it is generally accepted [119, 394]. In 

light of possible role of nanoparticles existed in the form of Fe3C and Fe3O4 in the electrocatalyst 

4.5Fe@NGC/CB on enhanced electrochemical performances, some additional control experiments 

are conducted to gain deeper insight into potential synergism/promotion effect of Fe3C/Fe3O4 and 

FeNx active sites toward ORR. First of all, a conventional acid etching of 4.5Fe@NGC/CB, which 

is expected to remove the Fe-based nanoparticles (the leached sample is denoted as 

4.5Fe@NGC/CB-AL), is employed and respective electrocatalytic activity is investigated. Of note 

is that the potential deconstruction on the carbon structure and generation of oxygen function 

groups induced by acid etching process should be took into account on the leached sample. These 

factors may significantly influence on the identification of active sites, and, unfortunately, nearly 

no study previously systematically reported on these impacts. Indeed, the oxygen contents have 

been significantly improved by approximately twice (3.92 at. % for 4.5Fe@NGC/CB-AL vs. 2.09 

at. % for 4.5Fe@NGC/CB) after 0.5 M H2SO4 acid leaching at 80 oC for 8 h (Table 3), which in 

turn results in decrease of N relatively content. Hence, as an additional parallel trial, NGC/CB 

sample is also subjected to acid leaching with identical condition at comparison (referred as to 

NGC/CB-AL). As can be seen in Figure 14A, the ORR electrocatalytic activity of NGC/CB-AL 

almost retains the original level in terms of Eon and E1/2 only with slightly drop of limited current 

density respect to that of sample before acid leaching (NGC/CB). In sharp contrast, a significantly 
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decreased ORR activity with Eon of 0.97 V and E1/2 of 0.85 V for 4.5Fe@NGC/CB-AL, 30 mV and 

20 mV lower than that of 4.5Fe@NGC/CB, is observed (Figure 13B). This finding demonstrates 

that the increase of the oxygen content on the surface of carbon itself is not responsible for the 

decreased ORR activity. The similar texture properties (Table 1) and graphitization degree (Figure 

7) for both 4.5Fe@NGC/CB and 4.5Fe@NGC/CB-AL also exclude the impact of potential 

destruction of carbon structure resulted from acid leaching on electrocatalytic activity. 

 

Figure 14. (A) LSVs for NGC/CB and respective acid-leached sample NGC/CB-AL; (B) The XRD 

patterns of 4.5Fe@NGC/CB and respective acid-leached sample 4.5Fe@NGC/CB-AL; (C) TEM 

images at different magnification for sample 4.5Fe@NGC/CB-AL. 

 

 To further eliminate the impact of protonation of basic N-groups and subsequent HSO4
- 

adsorption during acid leaching, along with oxygen-containing groups generated on the carbon 

matrix, which results in a decreased turnover frequency of adjacent FeNx sites for the ORR [106, 

395], 4.5Fe@NGC/CB-AL is thermally treated at 900 oC for 1 h under Ar again to remove adsorbed 

anion ions and oxygen functional groups on the surface of carbon matrix, and the sample is labelled 

as 4.5Fe@NGC/CB-AL-SHT. Surprisingly, a dramatically decreased electrocatalytic ORR activity 

is observed after the thermal treatment at 900 oC (Figure 13B), with Eon of 0.9 V and E1/2 of 0.78 

V, both 70 mV lower than that of 4.5Fe@NGC/CB-AL, respectively, indicating that both 
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protonation of N groups followed by anion adsorption and generation of oxygen-containing groups 

are not also responsible for the degradation of ORR activity after acid leaching. All above control 

trials imply that the removal of Fe3O4/Fe3C nanoparticles existed in the 4.5Fe@NGC/CB during 

acid leaching is the only origin of the ORR activity loss. As Figure 14B shows, the distinctive 

reflection peaks ascribed to Fe3C phase still present, while ones corresponding to Fe3O4 crystalline 

phase are no longer visible in the 4.5Fe@NGC/CB-AL. The result indicates that the Fe3O4 NPs are 

preferentially etched by acid washing, which is related to the insufficient carbon coating layers 

around Fe3O4 and easier acid etching. On the contrary, the Fe3C NPs can survive the harsh acidic 

etching conditions due to the presence of robust carbon layer encapsulation which prevent contact 

with the acid medium. It is worthy to note that similar results have also been reported previously 

about the resistance of carbon encapsulated iron nanoparticles during the carbon nanotubes 

synthesis [396]. The TEM images (Figure 14C) of the 4.5Fe@NGC/CB-AL catalyst support the 

conclusion that there are indeed some graphitic carbon layers coated Fe3C NPs preserved, and the 

intact scaffold buildings with integrated N-graphene and carbon blacks are also well maintained 

after acid leaching. From a quantitative viewpoint, the Fe mass loading of 4.5Fe@NGC/CB-AL 

deceases to 2.2 wt. %, approaching half of mass loss observed with respect to 4.5Fe@NGC/CB on 

the basis of ICP-AES measurements. The significant decline of surface Fe atom content has also 

been observed by XPS analysis (Table 3). Interestingly, there is still presence of Fe3C phase with 

much higher proportion (Figure 6C and Table 5-6), while the peak related to Fe3+ is no longer 

detected for 4.5Fe@NGC/CB-AL, further confirming that acid etching preferentially eliminates 

Fe3O4 nanoparticles and Fe3C nanoparticles are retained during acid leaching. Given the fact that 

FeNx sites is known to be highly robust moieties which is difficult to be removed by acid leaching 

(the lower amount of FeNx shown in Table 3 in 4.5Fe@NGC/CB-AL respect to that of pristine 

mailto:4.5Fe@NGC/CB
mailto:4.5Fe@NGC/CB-AL
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4.5Fe@NGC/CB is aroused from the introduction of O species during acid leaching procedure), all 

these systematically analysis unambiguously suggest the removal of Fe3O4 nanoparticles is 

responsible for the ORR activity loss after acid leaching. To figure out the promotion mechanism 

of Fe3O4 nanoparticles on ORR process, the ESCAs for various prepared electrocatalyst are further 

evaluated. The calculated Cdl values are 5.81, 7.12, 6, and 7.7 mF cm-2 for 1.15Fe@NGC/CB, 

4.5Fe@NGC/CB, 16.2Fe@NGC/CB, and 4.5Fe@NGC/CB-AL, respectively (Figure 13C and Figure 

15). The higher Cdl values for 4.5Fe@NGC/CB-AL respect to that of pristine 4.5Fe@NGC/CB 

evidence the loss of Fe3O4 nanoparticles do not lead to the decline of ESCA values. In fact, the 

enhanced ESCA values are probably attributed to the more exposed active sites located at the edge 

of Fe3O4 nanoparticles. This result indicates Fe3O4 nanoparticle itself does not serve as active site, 

which is well agreement with most inferior ORR activity on Fe@C/CB featuring Fe/Fe3O4 

nanoparticles phase (Figure 4A, Figure 9A-B).  

Taken together, it comes to the conclusion that these Fe3O4 nanoparticle indirectly boost ORR 

process on FeNx sites via the beneficial electronic interaction, agreeing with some previously 

reports on Fe3O4-involved accelerated ORR reaction [384-386, 397, 398]. The poison experiment 

is finally carried out on sample 4.5Fe@NGC/CB to confirm the role of FeNx sites on dominating 

ORR activity. As show in Figure 13D, the remarkably degradation of electrocatalytic activity 

(decreased by 103 mV in terms of E1/2) after introduction of SCN- is observed, which can be 

attributed to the block of FeNx sites by SCN-, indicating ORR process prefers to occur on the FeNx 

active sites. The finding reinforces the point that FeNx moieties are real active sites in catalyzing 

ORR, and Fe3O4 nanoparticles positively promote the ORR catalytic activity on FeNx sites. It is 

worthy to note that we afford a clear-cut experimental proof on the role of Fe3O4 nanoparticles 

mailto:4.5Fe@NGC/CB
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played in the hybrid electrocatalyst toward ORR process, which shed light on the real activity 

origin of multiple active sites with high complexity.  

 

Figure 15. The CV curves in the potential range of 1.02-1.12 V vs. RHE with various scan rates in 

N2-saturated 0.1 M KOH solution of (A) 1.15Fe@NGC/CB; (B) 4.5Fe@NGC/CB; (C) 

16.2Fe@NGC/CB; (D) 4.5Fe@NGC/CB-AL 

 

3. Conclusion 

In summary, a facile and scalable strategy has been well developed for the preparation of 

hybrid catalyst enriched abundant FeNx moieties coupling with highly graphitic carbon layer 

encapsulated Fe3C/Fe3O4 nanoparticles. The synthesis is performed by an incipient wetness 

impregnation of Fe aqueous solution on physically mixture of glucose, urea, and carbon black, 

mailto:1.15Fe@NGC/CB
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followed by one-step pyrolysis without any other post-treatment (e.g. acid leaching, NH3 second 

treatment etc.). The as-prepared electrocatalyst exhibits an heterostructure composed of N-doped 

carbon black as primary carbon scaffold and interweaved N-doped graphene as secondary carbon 

phase, featuring hierarchical porous structure with micro, meso and macropores. The addition of 

glucose is responsible for the formation of N-doped graphene, which significantly increases 

specific surface area and is believed to host more active sites, thus exerting a positive effect on the 

ORR activity. Thanks to above compelling merits, the optimal catalyst with an appropriate amount 

of Fe addition (4.5Fe@NGC/CB) displays a superior ORR performance.  

A series of control experiments have unambiguously unraveled that FeNx moieties are real 

active sites toward ORR and Fe3O4 nanoparticles endow positive promotion effect on activity of 

FeNx sites via electronic interaction. Our present work affords a simple and cost-effective route 

for the rational design of highly performance ORR electrocatalyst. More importantly, this work 

systematically illustrates the real activity origin of electrocatalyst with high complicated multiple 

active sites toward ORR process, which would be a valuable guideline for the design of next 

generation non-precious metal Fe-based electrocatalyst. 
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Chapter 7                           

 Conclusions and perspectives 
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7.1 Concluding remarks and respective perspectives  

In summary, the contribution describes a general and original strategy for the fabrication of 

atomically dispersed Fe-N-C catalysts, using food-grade precursor as carbon source for C- 

networks, and inorganic ammonia salts as nitrogen source. The preparation condition and chemical 

composition of the as-prepared catalysts have been systematically investigated. Finally, the as-

synthesized Fe-N-C catalysts are evaluated for the oxygen reduction reaction and the structure-

performance relationship properties have also been established and discussed. 

Chapter 3 focuses on the synthesis of highly metal charged Fe-Nx moieties located at the 

interface of iron oxyhydroxide sub-nanometric structures and a N-doped carbon network through 

the combination of chelating citrate ions with the ancillary monodentate SCN- ligand. The role of 

SCN- on the chemico-physical properties and composition of the final catalysts along with their 

respective electrocatalytic ORR performances are investigated in detail. The result evidences that 

the introduction of SCN- is of great importance for the preparation of the atomically dispersed Fe-

N-C active site configuration. The SCN- plays a role of structural mediator to prevent the formation 

of the inactive carbides phase. Ammonia post thermo-chemical treatment further promotes the 

exposure of surface atomic Fe sites by introducing the formation of more abundant porosity and 

to introduce simultaneously the highly basic N-terminated groups. The optimal catalyst obtained 

displayed high electrocatalytic performance towards ORR in alkaline media. We attribute the high 

performance of such model catalyst to the combination effect of desired geometric properties and 

high density of proposed atomic sites, i.e. FeNx located between Fe oxyhydroxide and N-doped C 

networks. However, the nature of the active sites on ORR is still needed to be unraveled from  DFT 

calculation according to the proposed active sites configuration by EXAFS fitting results (FeNx 

moiety between Fe oxyhydroxide and N-doped C networks), particularly in the aspect of electron 
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structure. The stability of such unique active sites under operation should also be studied by in-

situ XAS, which can be conducive for the understanding of the stability of the catalyst as a function 

of cycling tests. On the other hand, the ORR activity in acid media should be also optimized in our 

catalytic system. Lastly, the as-synthesized catalyst should be also evaluated in the membrane 

electrode assembly (MEA) such as anion-exchanged membrane fuel cell (AEMFC) for the 

consideration of future practical application. Indeed, regarding the future practical operation of 

such catalyst the problem of mass transfer should be assessed and benchmarked with that of the 

platinum-based catalysts. 

Chapter 4 describes a modified strategy for the synthesis of highly N-doped hierarchical 

porous carbon networks decorated with single atom Fe sites without using high temperature NH3 

post thermo-treatment. Herein, the citric acid and ammonium carbonate are used as only carbon 

and nitrogen source, respectively. Thus, this methodology enables the flexible modulation on N-

doped level by tuning in an independent way the amount of N-source. The addition of the third 

components (SiO2 and ZnCl2) also plays a crucial role on the modification of the physico-chemical 

properties of the as-synthesized active phase. The use of SiO2 not only produces the prevalent 

mesopore but also allows the preferential generation of single Fe sites. Besides, the formation 

mechanism of single Fe sites based on the gas-solid interfacial reaction is proposed based on the 

use of SiO2 as hard template. The ZnCl2 addition is found to be also important for the improvement 

of the ORR activity. Nonetheless, at odds with conventional conclusion that ZnCl2 usually acts as 

“porogen” to create micropore for hosting more FeNx sites, the role of ZnCl2 in our work is 

supposed to operate in other ways. Further, the Fe sites are proposed to exist in the form of Cl-

FeN4 moieties revealed by EXAFS fitting result. The control experiments reveal that both of Cl-

FeN4 moieties and pyridinic-N are active sites with Cl-FeN4 being the most active sites and the 
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Fe-based nanoparticles shows no activity towards ORR in alkaline media. However, similar to the 

first work, the activity of Cl-FeN4 moieties and its comparison analysis with pristine FeN4 sites 

still need to be verified by DFT calculation. On the other hand, the role of Cl in axial orientation 

and its stability under operation are elusive, and corresponding XAS measurement of model 

catalyst after reaction should be further tested to reveal the reduction mechanism of O2 at such 

active sites. Likewise, the ORR activity in acidic media and application in real condition like MEA 

are also required for further development. 

Chapter 5 presents a simplified fabrication methodology for the synthesis of Fe-N-C 

hierarchical porous carbon networks using glucose as optimal carbon source, ammonium chloride 

as nitrogen source and SiO2 as hard template for the construction of porous electrocatalyst. In this 

work, pyrolysis temperature has been investigated to obtain an optimal synthesis condition. The 

result suggests that the ORR activity is greatly dependent to the pyrolysis temperature, with 900 

oC being the optimal one. Indeed, the excessive pyrolysis temperature (1000 oC) will lead to 

aggregation of Fe atom and the loss of N contents (FeNx moieties) which compromise the ORR 

activity. While the high N content and FeNx moieties are retained with low pyrolysis temperature 

(800 oC) compared with those of sample prepared in 900 oC, the ORR activity is still inferior with 

respect to those of other samples. Systematical studies reveal that too high oxygen content, 

especially for that belonging to carboxyl groups, with strong electron withdrawing property and 

low electron conductivity, are mainly responsible for the low ORR activity. The too strong effect 

of electron withdrawing results in the reduction of TOF on the Fe center, thus decreasing the ORR 

activity. This work sheds light on the importance of trend-off between the exposure density of 

FeNx active sites and its intrinsic activity as well as the whole conductivity of the samples. 

However, there still are some prospective investigations for the development of this work. First of 
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all, the precise nature of the samples prepared with different pyrolysis temperature should be 

analyzed by XAS analysis and HAADF-STEM images. In fact, there have been precedents 

regarding the role of pyrolysis temperature on tailoring the coordination number of FeNx (X = 1, 

3, 4, 5, 6) [162, 351]. Once the nature of the active sites is identified, corresponding DFT 

calculation is required to confirm the reactivity of different FeNx moiety. In this end, the structure-

performance might be resized in our present work. Secondary, the site density (SD) of single Fe 

sites on different samples, prepared with different pyrolysis temperature, should be evaluated by 

nitrite stripping voltammetry as to determine the corresponding TOF. Further comparison on TOF 

of various samples allows more directly and convinced establishment of structure-performance 

relationship. Lastly, although optimal catalyst shows a decent ORR activity in alkaline media, the 

performance in acidic media still needs to be further improved.  

Chapter 6 reports a new catalytic system which allows facile one-step thermal pyrolysis 

using carbon black as primary carbon source and backbone structure, glucose as secondary carbon 

source, and urea as nitrogen source. The use of carbon black not only significant increases the 

yield of the final production of the catalyst, but also acting as soft template to facilitate the 

dispersion of secondary carbon phase and Fe-based species. The resulting material presents a 

desired hierarchical porous structure with co-existence of FeNx moieties and Fe-based metal 

compounds. Specifically, the Fe-based metal phases are composed of high carbon-coated Fe3C 

phase and low carbon-coated Fe3O4 phase, which afford a great chance for the selective removal 

of single Fe3O4 phase by post-synthesis acid leaching step. A series of control experiments suggest 

that FeNx moieties are the actual active sites while Fe3O4 itself is inactive but exerts an electron 

synergistic effect on FeNx moieties for improving ORR activity. This work unravels the ORR 

activity origin on Fe-N-C catalyst with high complicated multiple active sites, which would be a 
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valuable guideline for the design of next generation non-precious metal Fe-based electrocatalysts. 

However, direct evidence for the existence of FeNx moieties needs to be verified by HAADF-

STEM and XAS is required to get more insight into coordination information of Fe. In addition, 

the DFT calculation is also required to reveal the electron interaction between FeNx moiety and 

Fe3O4 nanoparticles which is expected to be at the origin of the ORR activity in alkaline medium. 

Further MEA should also be evaluated for the assessment of the ORR performance in view of 

practical application.  

The results obtained from this work confirm that single FeNx sites are active sites for 

performing ORR process with full 4-electron selectivity. The results also confirm that Fe3O4 

nanoparticles shows no activity toward ORR in alkaline but the synergistic effect between Fe3O4 

nanoparticles and FeNx moiety might exist which is dependent of different catalytic systems. There 

are still additional works remain to complete the investigation such as stability degradation 

mechanism for the proposed catalytic active sites (FeNx moiety at interfacial between Fe 

oxyhydroxide and N-doped C networks, and Cl-FeN4 active sites) in the alkaline medium. Finally, 

it is worth noting that this work also represents a universal approach for the synthesis of other 

single metal atom catalysts such as Co-N-C, Mn-N-C, Ni-N-C, Cu-N-C etc., which can be further 

applied in numerous applications of interest, i.e. CO2 electroreduction, N2 electroreduction; Li-

sulfur battery etc. Besides, such single site catalysts could also be used as heterogeneous catalysts 

and not only to the field of electrocatalysis. 
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