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I - INTRODUCTION 

I. A - ETAT DE L’ART 

La chimie supramoléculaire a connu un énorme essor ces dernières années. Les processus 

supramoléculaires et, en particulier, les interactions hôte-invité sont étudiées pour leurs 

implications possibles dans une variété d'applications (vectorisation de molécule d’intérêt, 

catalyse, modulation des propriétés physicochimiques…). En améliorant la stabilité ou en 

modifiant les propriétés d'un composé encapsulé, ou même en augmentant la sélectivité 
réactionnelle, nous prévoyons un large éventail d’applications qui s'étendent des processus 

industriels au domaine médical.  

Actuellement, les progrès en chimie supramoléculaire hôte-invité sont entravés par la 

complexité de la caractérisation thermodynamique et cinétique des processus 

d'inclusion/libération, ce qui rend difficile la génération de prédictions utiles sur l'encapsulation 

moléculaire. La prédiction quantitative des énergies d’interaction est particulièrement difficile 

mais fondamentale car elle est associée à une perte de temps et d'argent due à l'effort de 

synthèse et d’essai d’invités non-actifs.  

Dans ce contexte, ce projet de thèse se concentre sur le développement d'un outil de prédiction 

in silico pour trouver des invités appropriés pour différents hôtes qui seront développés par les 

partenaires du projet européen NOAH (Network Of Functional Molecular Containers With 

Controlled Switchable Abilities H2020-MSCA-ITN-2017). 

De cette façon, nous espérons non seulement améliorer les connaissances globales dans le 

domaine de la chimie supramoléculaire, mais aussi fournir de nouvelles opportunités et 

applications pour les invités déjà existants et fournir un supplément d’information dans le 

développement rationnel d’invités porteurs de nouvelles activités. 
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I. B - BUT GENERAL DU PROJET 

Au cours de cette thèse, nous avons comparé plusieurs méthodes pour pouvoir calculer 

l’enthalpie libre de différents systèmes. Nous avons comparé le calcul DFT à une nouvelle 

méthode semi-empirique appelée GFN2-xTB qui sera finalement utilisée pour le calcul des 

paramètres thermodynamique. 

Les différents outils informatiques (Figure 0. 1) bien qu’ils soient séparés ici, sont 

complémentaires et ont été développés simultanément au cours du projet. L'outil de criblage 

virtuel est utilisé pour paramétrer l'hôte et l'invité, et pour générer le mode d'interaction entre 

l'hôte et les invités, nécéssaires pour toute analyse ultérieure. Un protocole de simulation est 

ensuite utilisé afin de prédire les constantes de liaison des complexes dans différents solvants 

et évaluer le comportement de ces complexes sous différents stimuli. Toutes les énergies de 

liaison calculées par notre approche et toutes les valeurs expérimentales qui seront fournies par 

les partenaires du projet seront stockées afin d'être comparées, affinées et servir de base pour 

une approche faisant intervenir des algorithmes d’intelligence artificielle : « Machine 

Learning ». 

 

Figure 0. 1 : objectif général du projet : une approche multiple pour prédire le comportement dynamique 

des systèmes hôte-invité 

Nous nous sommes concentrés sur les différents outils informatiques développés, de façon à ce 

que ceux-ci soient compréhensibles et utilisables par des utilisateurs non-expert, qui sont les 

utilisateurs attendus de la plateforme. 

Durant les dernières années, plusieurs instances du défi SAMPL (Statistical Assessment of the 

Modeling of Proteins and Ligands) nous ont montré des approches intéressantes pour calculer 

l'enthalpie libre de liaison des complexes hôte-invité, avec une gamme relativement large de 

méthodes et de performances. Hélas, aucun des composés étudiés au cours des challenges 

SAMPL ne concernent des molécules contenant des métaux. Néanmoins, les diverses 

informations extraites des défis précédents, nous ont permis de développer une méthode 
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générale de prédiction d’énergie libre de Gibbs, pouvant être utilisée pour la prédiction de 

molécules possédant des métaux dans leurs structures. Les nouvelles instances du défi ont 

également pu être utilisé au cours de la thèse de façon à valider nos méthodes à l’aveugle sur 

un large éventail de système différent, pour lesquels la prédiction d’énergie libre de Gibbs est 

particulièrement difficile. 

Dans le contexte du réseau européen NOAH, notre intérêt a été de développer des méthodes 

automatisées pour la prédiction du comportement de systèmes hôte-invité dans différentes 

conditions de solvatation et autres conditions expérimentales pour répondre aux besoins des 

différents partenaires du projet dans lequel s’inscrit la thèse.  

À terme, les utilisateurs de la plateforme sont supposés pouvoir générer des prédictions pour 

un large éventail de systèmes (décrits ou innovants) sans pour autant avoir une formation en 

chimie computationnelle. Ce pour quoi notre plateforme se veut automatique, performante et 

précise : elle doit être capable de fournir des résultats rapidement et de manière fiable, tout en 

ne nécessitant pour son utilisation que des informations connues des utilisateurs (charge 

ionique, type et quantité d’ion métallique, modèle de solvatation utilisé…). 
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II - METHODES 

II. A - VUE D’ENSEMBLE DES METHODES UTILISEES 

De façon à mesurer notre capacité à prédire les énergies de liaison des composés hôte-invité, 

deux méthodologies différentes ont été développés lors de cette thèse. Dans les deux cas, le 

résultat rendu est une valeur numérique correspondant à l’énergie de liaison prédite pour un 

système hôte-invité. 

La figure ci-dessous (Figure 0. 2) résume les deux différentes méthods et leurs spécificités : en 

bleu à gauche, la méthode basée sur les connaissances, et en rouge à droite la méthode basée 

sur la détermination des paramètres thermodynamiques. 

 
Figure 0. 2 : présentation des deux méthodes utilisées pour le calcul d'enthalpie libre (en bleu la méthode 

basée sur l’apprentissage automatisé, et en rouge la méthode basée sur la thermodynamique) 

II. B - LA METHODE PHYSIQUE OU THERMODYNAMIQUE 

La méthode physique ou thermodynamique (en rouge sur la Figure 0. 2) est une méthode basée 

sur les conformations 3Ds des complexes hôte-invités, qui utilise une méthode semi-empirique 

pour le calcul de l’enthalpie libre. Celle-ci est calculée à partir de la différence des énergies 

libres du complexe, de l'hôte et des molécules invitées. A la fois les termes enthalpiques et 

entropiques sont considérés pour calculer un ∆G0 numérique. 

Les énergies libres de Gibbs (∆G0) des géométries optimisées ont été calculées comme étant la 

somme de l’énergie électronique (E), qui comprend la correction de dispersion D4, les 
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corrections thermostatiques (GRRHOT) calculées selon une approche couplée à un oscillateur 

harmonique à rotor rigide, et la contribution de solvatation (Gsolv) calculée par le modèle de 

solvatation implicite GBSA, tel que : 

∆� = � + �����	 + �
��  0.1 

Avec : 

∆�
�� = ∆����� + ∆�
�
� + ∆��� + ∆�
���� 0.2 

 

Ainsi, l’énergie libre de Gibbs est calculée à partir de la différence des énergies libres du 

complexe, de l'hôte et des molécules invitées, tel que : 

∆����� = ∆�������� − ∆���
� − ∆����
�  0.3 

 

Compte tenu de la complexité du paysage énergétique conformationnel du complexe et de la 

molécule hôte, différentes géométries du système sont utilisées comme points de départ pour 

la minimisation, augmentant ainsi la probabilité de trouver le minimum absolu. Pour cela, de 

multiples structures sont extraites des simulations classiques de dynamique moléculaire pour 

effectuer une optimisation géométrique à un niveau semi-empirique, suivie d'un calcul de la 

matrice hessienne pour confirmer que l'énergie finale est un véritable minimum (c'est-à-dire 

que toutes les fréquences vibrationnelles sont positives). Bien que les degrés de liberté de 

l'invité soient beaucoup plus réduits, nous utilisons pour celui-ci un protocole similaire par 

souci de cohérence. 

II. C - LA METHODE BASEE SUR LES CONNAISSANCES 

La méthode basée sur les algorithmes d’apprentissage automatisés (en bleu sur la Figure 0. 2), 

utilise les données disponibles extraites de différentes bases de données ou de la littérature, et 

utilise des algorithmes d'apprentissage automatique afin de prédire l’enthalpie libre pour un 

complexe hôte-invité donné. Pour cela, elle utilisera les descripteurs moléculaires fournis par 

les utilisateurs pour apprendre des données préexistantes afin de prédire l'énergie libre de 

liaison pour d'autres complexes utilisant les mêmes descripteurs moléculaires.  

Le modèle ayant donné les meilleurs résultats se trouve être le réseau de neurone. L'algorithme 

de réseau neuronal est un algorithme qui appartient à la classe de l'apprentissage profond. 

L'apprentissage profond est un ensemble de méthodes d'apprentissage qui vont utiliser des 
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transformations non linéaires pour modéliser un ensemble de données avec des architectures 

complexes. Le modèle le plus simple de l'apprentissage profond est constitué par les réseaux 

neuronaux qui sont combinés pour former le réseau neuronal profond. Il existe de multiples 

architectures de réseaux neuronaux, les perceptions multicouches étant les plus simples, ce sont 

celles que nous avons utilisées dans cette thèse (Figure 0. 3).  

 
Figure 0. 3: représentation schématique d’un neurone artificiel ou ∑ = 〈"#, %〉 + '()# 

Mathématiquement parlant, un réseau de neurones artificiels est une application non linéaire 

présentant un paramètre * qui associe à une entrée +, une sortie y telle que , = -.+; *0. Ceci 

permet la prédiction directe de ,, dans notre cas : la prédiction de valeur numérique 

correspondant aux énergies libres de Gibbs (∆G0) de complexe hôte-invité.   
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III - LA PLATEFORME HG-DYNAUSOR 

III. A - VUE D'ENSEMBLE DE LA PLATEFORME 

La plateforme HG-DYNAusor (Host-Guest DYNamic an Automated application) est une 

application automatisée de manière à faciliter l'exécution de tâches courantes dans la 

modélisation des complexes hôte-invité, y compris l’utilisation de différentes méthodes pour 

la détermination de la géométrie, de la dynamique, et de l’énergie des complexes 

supramoléculaire, ainsi que leurs composants individuels. Une vue d’ensemble de la plateforme 

HG-DYNAusor est présenté dans la Figure 0. 4 suivante : 

 
Figure 0. 4 : vue d’ensemble de la plateforme HG-DYNAusor ; les trois premiers modules font partie de 

la l’approche basée sur la thermodynamique : le premier module est dédié à la génération des 

paramètres, le second à la prédiction du mode de liaison, alors que le troisième module est utilisé pour la 

prédiction stricto sensu de l’énergie libre de Gibbs, alors que le dernier module est dédié à l’approche 

basée sur les connaissances (en vert) 

Cette plateforme, qui a été conçue et développée au cours de la thèse, est d’ores et déjà 
opérationnelle bien qu’elle soit toujours en cours de développement. Elle a pu être utilisée pour 

l’étude de plusieurs complexes hôte-invité qui seront présentés dans les chapitres suivants. La 

plateforme peut être séparée en quatre modules différents : trois sont dédiés au calcul de 

l'énergie libre de liaison en utilisant l’approche basée sur la thermodynamique. Un quatrième 

module est dédié à la prédiction de l'énergie libre de liaison en utilisant une approche basée sur 
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les connaissances. Le principe de chacun des modèles est présenté brièvement dans les parties 

suivantes. 

III. B - GENERATION DES PARAMETRES POUR LES SIMULATIONS DE 

DYNAMIQUE MOLECULAIRE 

Le module 01 de la plateforme, dédiée à la génération des paramètres pour l’exécution de 

simulation de dynamique moléculaire, est présentée dans la Figure 0. 5 suivante : 

 
Figure 0. 5 : vue d’ensemble du module 01 de la plateforme HG-DYNAusor dédiée à la génération des 

paramètres pour les simulations de dynamique moléculaire. 
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Ce premier module, utilise un fichier d'entrée contenant les informations nécessaires à 
l’application concernant le système à simuler (charge ionique, nom du fichier, type de 

métal…). Le premier module de la plateforme HG-DYNAusor peut être séparé en six 

différentes parties : 

1) Génération d'une conformation 3D raisonnable du système hôte, qui sera utilisée dans 

toutes les étapes suivantes. Cette étape peut être évitée dans le cas où la structure 

moléculaire considérée provient d'une structure cristalline bien résolue. 

2) Paramétrisation du centre métallique. Une fois encore, cette étape est optionnelle si le 

système hôte ne contient pas de métal. 

3) Calcul des charges partielles pour le système d'intérêt en utilisant une approche que 

nous avons développée basée sur la génération d’une base de données de charges 

partielles. 

4) Génération des fichiers topologiques pour le système considéré. Les fichiers 

topologiques contiennent tous les paramètres nécessaires à la réalisation des 

simulations moléculaires. 

5) Minimisation du système avant la dynamique moléculaire. 

6) Création des fichiers d'équilibrage et de production. 

III. C - GENERATION DU MODE DE LIAISON POUR LES SYSTEMES 

HOTES INVITES 

Le second module de la plateforme HG-DYNAusor est dédié à la génération du mode de liaison 

du complexe hôte-invité. Il existe différentes méthodes de génération du mode de liaison qui 

dépendent principalement des données existantes sur l'hôte et sa structure moléculaire. 

Dans notre application, l'étude du mode de liaison est construite comme un module 

supplémentaire après le paramétrage du système hôte. Trois approches différentes peuvent être 

envisagées : (i) Soit le mode de liaison est connu et peut être directement extrait d'une structure 

cristallographique, (ii) soit le mode de liaison n'est pas connu mais l'hôte est dans une 

conformation adaptée à la liaison, (iii) l'hôte a une mobilité intrinsèque très élevée et donc une 

approche de liaison spontanée peut être considérée. Il est admis que l’étape la plus limitante de 

notre analyse pour les calculs d’énergie libre de Gibbs consiste en la génération du mode de 
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liaison pour le système hote-invité. Une vue d'ensemble du module 02 de la plateforme HG-

DYNAusor est présentée dans la Figure 0. 6 suivante : 

 

Figure 0. 6 : vue d’ensemble du module 02 de la plateforme HG-DYNAusor dédié à la détermination du 

mode de liaison 
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III. D - CALCUL DES ENERGIES LIBRES DE GIBBS PAR LA METHODE 

THERMODYNAMIQUE 

Le module 03 de la plateforme dédiée au calcul des énergies libre de Gibbs, est présenté dans 

la Figure 0. 7 suivante : 

 
Figure 0. 7 : vue d’ensemble du module 03 de la plateforme HG-DYNAusor dédiée au calcul des énergies 

libres de Gibbs 

Le troisième module réalise des prédictions d'énergie libre de Gibbs en utilisant les résultats 

des simulations de dynamique moléculaire. Il dépend entièrement des deux modules précédents 

de la plateforme car il nécessite : une simulation de dynamique moléculaire de l'hôte seul et 

une dynamique moléculaire du complexe. Si les utilisateurs veulent prédire plusieurs composés 

sur le même récepteur, une seule simulation de l'hôte est nécessaire, mais chaque système hôte-

invité doit être simuler indépendamment.  

III. E - PREDICTION DE L’ENERGIE LIBRE DE GIBBS PAR LA 

METHODE BASEE SUR LES CONNAISSANCES 

Le dernier module de la plateform HG-DYNAusor est dédié à la prédiction de l'énergie libre 

de liaison en utilisant une approche basée sur les connaissances. Pour cela, des données 

concernant de nombreux système hôte-invité sont extraites de la BindingDataBase 

(BindingDB). Ces données sont ensuite traitées, et les informations concernant l’hôte et l’invité 
sont considérées séparément. Environ 200 descripteurs moléculaires décrivant à la fois les 
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paramètres 2D et 3D des hôtes et des invités sont calculés pour chacun d’entre eux, et les deux 

jeux de données sont ainsi formés : un décrivant les systèmes hôtes, et un décrivant les invités.  

Après une analyse dimensionnelle et une réduction du nombre de descripteurs pour chacune de 

ses tables, chaque invité est associé à l’hôte correspondant, et l’information concernant 

l’activité (énergie libre de Gibbs) associée est sauvegardée dans le jeu de données finales. 

Finalement, notre jeu de données finales prend en compte à la fois les informations 

moléculaires des invités, mais également des hôtes avec lesquelles ils interagissent. Ainsi deux 

invités interagissant avec deux hôtes différents et présentant donc deux valeurs différentes 

d’énergie libre de Gibbs, vont être considérés différement par l’algorithme d’apprentissage 

automatique. 

Ce principe est présenté dans la Figure 0. 8 suivante : 

 
Figure 0. 8 : principe de fonctionnement du module 04 de la plateforme HG-DYNAusor dédiée à la 

prédiction des énergies libres de Gibbs 
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IV - EXEMPLE D’UTILISATION DE LA PLATEFORME : LE 

SAMPL7 CHALLENGE 

IV. A - ÉCHANTILLONAGE CONFORMATIONNEL 

Compte tenu de la complexité du paysage énergétique conformationnel du complexe et de la 

molécule hôte, nous avons utilisé plusieurs géométries du système hôte libre comme point de 

départ de la minimisation, augmentant ainsi la probabilité de trouver le minimum absolu. Pour 

ce faire, le protocole présenté dans la Figure 0. 9 est utilisé : nous extrayons environ 15 

structures des simulations classiques de dynamique moléculaire et effectuons une optimisation 

géométrique à un niveau semi-empirique, suivie d'un calcul de la matrice hessienne pour 

confirmer que l'énergie finale est un véritable minimum (c'est-à-dire que toutes les fréquences 

vibrationnelles soient positives).   

 
Figure 0. 9 : protocole utilisé pour générer des conformations de l’hôte, de l'invité et des systèmes hôte-

invité. Différentes méthodes ont été testées pour générer des modèles initiaux du complexe hôte-invité. La 

dynamique moléculaire est réalisée dans l’eau et un modèle de solvatation explicite est utilisé pour 

échantillonner l'espace conformationnel. Ensuite, pour les calculs des paramètres thermodynamiques, les 

molécules de solvants sont supprimées et la géométrie est minimisée à l’aide du logiciel xTB en utilisant 

un modèle de solvatation aqueuse implicite (GBSA). 
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Les différentes géométries issues de cette analyse présentent jusqu’à 10 kcal/mol de variations, 

confirmant l'importance fondamentale de l'échantillonnage conformationnel. La structure 

globale de plus basse énergie est définie comme référence pour le calcul de l'énergie libre. Bien 

que les degrés de liberté de l'invité soient beaucoup plus réduits, nous utilisons un protocole 

similaire par souci de cohérence. 

I.A. 1 - ANALYSE RETROSPECTIVE SUR UN SYSTEME SIMILAIRE  

Comme preuve de concept pour notre méthodologie, nous avons utilisé les données du défi 

SAMPL3. Cet hôte est similaire mais plus simple que celui de SAMPL7. Une procédure 

d’amarrage (docking) est réalisée en considérant une grande boîte de simulation (15 Å3) 

conduisant à la formation de complexes prédit par la fonction de score (scoring) comme 

possédant une énergie de liaison négative, cependant une analyse des interactions révèle que 

l'invité n'a formé que des interactions de surface avec l'hôte. Cela nous a conduit à tester deux 

autres conditions d’amarrage où l'espace d’amarrage (la taille de la boite) est progressivement 

réduit. Les géométries résultantes possèdent cette fois des scores positifs, indiquant des 

possibles problèmes dans la conformation du système hôte-invité, mais dans ce cas, l'invité 
s'insère dans la cavité de l'hôte. Trois à cinq modes de liaisons différentes ont été sélectionnées 

pour chaque protocole d’amarrage. La minimisation à l'aide du logiciel CHIMERA a permis 

une relaxation du système avant l’étape de minimisation et le calcul de l'énergie libre au niveau 

semi-empirique.  

 
Figure 0. 10 : résultat de l’analyse rétrospective sur le système hôte-invité issu du challenge SAMPL3. Les 

prédictions sont montrées en bleu, et comparées aux valeurs expérimentales en rouge.  

Comme le montre la Figure 0. 10, les énergies libres de liaison prédites sont en excellent accord 

avec l'expérience (RMSE = 1,16 kcal/mol ; MAE = 0,87 kcal/mol ; corrélation de Pearson (r) 

= 0,90 ; corrélation de rang de Spearman (1) = 0,75, corrélation tau de Kendall = 0,62(τ)). En 

fait, dans quatre des sept cas d'essai, nous obtenons un accord quantitatif, et l'erreur est 

inférieure à 1 kcal/mol, dans les deux autres cas, les erreurs sont respectivement de 1,6 kcal/mol 

et 2,2 kcal/mol. Cela nous a conduit à penser que, si le mode de liaison est correct, la méthode 
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semi-empirique GFN2B-xTB est susceptible de fournir des résultats d’une niveau de précision 

semblable à la mécanique quantique pour seulement une partie du coût de calcul. Pour cette 

analyse rétrospective réalisée sur les données du challenge SAMPL3, la prédiction d’énergie 

libre d’interaction montre des résultats très précis par rapport à ceux qui ont été publiés 

initialement. 

I.A. 2 - PREDICTION D’ENERGIE LIBRE DE GIBBS SUR LE SYSTEME TRIMERTRIP 

ISSU DU CHALLENGE SAMPL7 

En ce qui concerne le jeu de donnée du challenge SAMPL7, pour chaque complexe, nous 

extrayons 5 à 10 modes de liaison différents générés avec les protocoles décrits ci-dessus. 

Chacune des géométries est ensuite minimisée individuellement au niveau semi-empirique, et 

seules celles pour lesquelles toutes les fréquences vibratoires sont positives sont considérées. 

Le complexe de plus basse énergie est considéré comme le minimum de référence, sauf dans 

quelques cas où une inspection visuelle a permis l’identification de problèmes structurels avec 

la géométrie correspondante, vraisemblablement liés à un filtrage inadéquat des charges lié à 
la méthode de solvatation implicite.  

 
Figure 0. 11 : comparaison entre valeurs expérimentales et valeurs prédites pour le challenge SAMPL7. 

(A) Graphique de corrélation, la zone en verte, représentant le seuil de +1/-1 kcal/mol. Les symboles 

indiquent la nature de la méthode utilisée pour la prédiction du mode de liaison. (B) Histogramme de la 

prédiction, chaque couleur correspondant à la méthode utilisée pour la prédiction du mode de liaison. 

B 

A 
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Pour les invités G18 et G19, nous n'avons pas pu trouver un mode de liaison correct, et les 

résultats de l’amarrage moléculaire ont donné une énergie de liaison positive. Comme les deux 

protocoles ont échoué pour ces deux invités cycliques (vraisemblablement en raison de leurs 

grands volumes), nous avons renoncé à faire des prédictions pour ceux-ci. 

Dans le cas du SAMPL7 challenge, les modes de liaison, ont été générés de trois façons 

différentes de la moins précise à la plus précise : (i) l’amarrage moléculaire (Docking), (ii) 

l’amarrage moléculaire suivi d’une dynamique moléculaire (MD-Docking), (iii) l’association 

spontanée de l’hôte et l’invité par dynamique moléculaire non biaisée (SaMD). 

D’une manière générale, nos prédictions peuvent être séparées en trois classes dépendant de la 

précision de nos prédictions :  

- (i) Les prédictions présentant un excellent accord avec les données expérimentales (< 

2 kcal mol). 5 systèmes hôtes-invités se trouvent dans cette catégorie, trois d’entre eux 

extrait du protocole d’association spontanée (G01, G02, et G07), deux d’entre eux issus 

de l’amarrage moléculaire suivi d’une dynamique moléculaire (G08 et G10). 

 

- (ii) Les prédictions incorrectes mais qui restent proches des valeurs expérimentales (3 

à 5 kcal/mol d'erreurs). Ces complexes (G03, G05, G15, G16, G17) sont principalement 

des molécules présentant une structure linéaire, et les résultats proviennent des résultats 

de l’amarrage moléculaire, à l'exception de G05, qui provient du protocole 

d’association spontanée. 

 

- (iii) Les prédictions avec de grandes erreurs (> 4 kcal/mol). 6 systèmes hotes-invités 

appartiennent à cette catégorie, y compris les G18 et G19 (pour laquelle aucune énergie 

de liaison négative n'a été trouvée). La plupart d'entre eux correspondent à des hôtes 

cycliques, et les erreurs peuvent être attribuées principalement à notre incapacité à 

trouver des modes de liaison raisonnables dans le délai du défi. 
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Dans la Figure 0. 11B, nous montrons que pour les complexes pour lesquels SaMD fournit un 

mode de liaison correct, les prédictions d'énergie libre de liaison sont bien plus précises que 

pour les résultats obtenus à partir des poses d’amarrage moléculaire. En fait, la plupart des cas 

(G01, G02, G05, G07) sont en accord quantitatif avec l'expérience (+/- 1kcal/mol) et les 

statistiques de performance globale sont excellentes : pour RMSE = 1,45 kcal/mol ; MAE = 

0,96 kcal/mol ; corrélation de Pearson (r) = 0,86 ; corrélation de rang de Spearman (1) = 0,94, 

corrélation de rang de Kendall = 0,91(τ). Par rapport à la méthode SaMD, les résultats du 

docking sous-estiment l'énergie libre de liaison, ce qui suggère que les conformations à faible 

énergie du complexe hôte-invité peuvent être échantillonnées avec la méthode de la dynamique 

moléculaire, mais que l’amarrage moléculaire seul se révèle insuffisant. 

I.A. 3 - APPROCHE BASEE SUR LA CONNAISSANCE 

Pour la prédiction du GDCC, comme il y avait une quantité importante de données 

préexistantes provenant de défis précédents, nous avons décidé d'essayer une approche 

orthogonale basée sur le ML. L'ensemble de données comprend 35 composés au total, 

appartenant à trois classes de systèmes hôtes qui sont similaires en termes de structure et de 

composition chimique : OA, TEMOA et exoOA. Les valeurs d'énergie libre de liaison sont 

comprises entre -3,73 kcal/mol et -8,38 kcal/mol. Le modèle utilisé est un réseau neuronal, 

utilisant 90 descripteurs moléculaire généré à l’aide de la web-plateforme CORINA (60 

décrivant l'invité et 30 décrivant le système hôte). Les prédictions pour l'ensemble 

d'apprentissage sont très précises, avec RMSE = 0,92 kcal/mol et toutes les valeurs prédites 

dans une fourchette de 1 kcal/mol par rapport aux valeurs expérimentales (Figure 0. 13). Pour 

l'ensemble de test, toutes les valeurs prédites sont proches des valeurs expérimentales, avec des 

erreurs maximales et minimales de -1,49 kcal/mol et +0,22 kcal/mol, respectivement. 
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Figure 0. 12 : (A) Performance du jeu d’entrainement incluant 27 invités différents interagissant avec 

deux hôtes différents. (B) the jeu de test inclus 8 invités différents et l’énergie libre de Gibbs est prédite 

par le modèle utilisant le jeu d’entrainement. 

L'ensemble de données GDCC à prédire consistait en 8 composés invités (quatre chargés 

positivement et quatre neutres) se liant à deux systèmes hôtes apparentés. Après les diverses 

optimisations du modèle, il ne faut que 10 secondes pour calculer l'énergie libre de liaison des 

huit invités dans les deux hôtes. Avec des valeurs RMSE et MAE de 1,67 kcal/mol et 1,21 

kcal/mol, respectivement, les performances globales sont plutôt satisfaisantes. Il est intéressant 

de noter que pour les quatre invités présentant des charges négatives, les prédictions ne sont 

pas optimales, ce qui peut s'expliquer par les limites du modèle imposé par la composition de 

l’ensemble d’apprentissage : comme la valeur d'énergie libre de liaison la moins favorable est 

de -3,73 kcal/mol, le modèle ne peut pas prédire des valeurs plus positives. Cependant, même 

dans ce cas, la hiérarchie entre les valeurs des invités est respectée (G4 < G3 < G2). Il n'y a pas 

de valeur expérimentale pour G1, il n'a donc pas été pris en compte dans cette analyse. Si nous 
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appliquons la même analyse à chaque sous-groupe (en fonction de la charge positive ou 

négative et de l'hôte avec lequel ils interagissent), nous obtenons une prédiction hiérarchique 

presque parfaite. La seule exception est le complexe OA-G7, qui a été prédit plus bas que OA-

G6 en raison du fait que OA-G7 a été sous-estimé (-5,67 kcal/mol au lieu de -6,98 kcal/mol) 

alors que OA-G6 a été prédit très proche de ses valeurs expérimentales (-5,92 pour -5,83 

valeurs expérimentales). Tous les systèmes, à l'exception des quatre composés négatifs 

interagissant avec le système exo-OA, sont prédits à moins de 1 kcal/mol des valeurs 

expérimentales (Figure 0. 13). Pour les complexes impliquant le système OA, qui figure en 

bonne place dans l'ensemble d'apprentissage, les prédictions sont encore meilleures, avec MAE 

= 0,55 kcal/mol et RMSE = 0,85 kcal/mol. 

 
Figure 0. 13 : comparaison des valeurs expérimentales et prédites pour les énergies libres de Gibbs. (A) 

Graphique de corrélation, la zone en verte, représentant le seuil de +1/-1 kcal/mol. Les symboles 

indiquent la nature des invités et chaque prédiction possède une couleur différente. (B) Histogramme de 

la prédiction, avec en bleu les valeurs prédites et en rouge les valeurs expérimentales. Les barres 

d’erreurs reflètent l’erreur moyenne du modèle (RMSE).  

A 

B 
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I.A. 4 - CONCLUSION SUR LE DEFI SAMPL7  

La participation à SAMPL7 nous a permis de tester deux approches orthogonales pour calculer 

les énergies libres de liaison hôte-invité, en identifiant dans chaque cas les forces et les limites 

qui ont été prises en compte pour la conception finale de la plateforme automatisée HG-

DYNAusor.  

L'approche basée sur la thermodynamique est absolument générale et peut être utilisée, en 

principe, sur n'importe quel système hôte-guide. L'utilisation d'un ensemble de base semi-

empirique avancé (GFN2B-xTB) pour calculer les énergies et les corrections thermostatiques 

offre des performances accrues par rapport aux approches de mécanique moléculaire avec un 

coût de calcul modéré et élimine la dépendance vis-à-vis des champs de force des petites 

molécules, qui sont souvent imprécis. Différents aspects critique pouvant conduire à conduire 

à des prédictions incorrectes ont cependant pu être identifié : 

Le premier est une dépendance critique de la structure du complexe hôte-invité utilisé pour la 

génération du mode de liaison. Pour les systèmes présentant une flexibilité importante de l'hôte, 

l'arrimage rigide du récepteur peut être inapproprié, et un échantillonnage conformationnel est 

alors nécessaire. L'observation directe de la formation de la paire hôte-invité en utilisant la 

dynamique moléculaire dans un modèle de solvatation explicite représente une solution 

optimale en termes de qualité des prédictions de l'énergie libre de liaison, mais peut être limité 
par les temps de simulation, qui augmentent avec le nombre de degrés de liberté du système. 

Dans le cas du système dit « Trimertrip », nous avons identifié une transition lente entre la 

conformation fermée et ouverte de l'hôte comme étant le goulot d'étranglement du processus 

d'association. Dans ce cas, le fait de commencer les simulations de dynamique moléculaire à 
partir d’une conformation ouverte de l'hôte peut donner d'excellents résultats pour une fraction 

du coût de la simulation.  

La deuxième limite de notre approche est la méthode de solvatation implicite (GBSA) qui peut 

sous-estimer le coût de désolvatation des espèces ioniques en solvatation aqueuse, conduisant 

à la formation de paires ioniques dont la contribution est surévaluée. Nous n'avons pas observé 
avec notre méthode de biais systématique, cependant le modèle de solvatation implicite reste 

l'une des faiblesses de l'approche. Des versions plus récentes du logiciel xTB ont remplacé le 

formalisme GB pour un modèle de Poisson-Boltzmann linéarisé analytiquement (ALPB). Il 

sera intéressant de vérifier les performances du modèle ALPB dans les futures éditions de 

SAMPL. Dans tous les cas, la solvatation explicite dans les simulations MD est mieux adaptée. 
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Ainsi, l'utilisation d'instantanés MD comme géométries d'entrée dans les calculs GFN2B-xTB 

semble fournir de meilleurs résultats que l'échantillonnage conformationnel exhaustif avec 

solvatation implicite.  

L'utilisation de méthodes basées sur la connaissance peut être très avantageuse lorsqu'il existe 

suffisamment de données préexistantes. Contrairement aux complexes protéine-ligands, pour 

lesquels il existe un grand nombre de données, les systèmes hôte-invité ne peuvent pas 

bénéficier d'ensembles d'entraînements massifs. Ainsi, nous étions particulièrement intéressés 

par l'examen de l'adéquation des approches d'apprentissage automatique, avec une attention 

particulière sur le risque de sur-apprentissage. Les résultats obtenus sur le système GDCC sont 

vraiment encourageants et nous ont incité à construire une base de données de systèmes hôte-

invité avec leurs énergies libres de liaison correspondantes de manière à améliorer la prédiction 

par des méthodes d’apprentissage automatisées.  
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V - SYNTHESE ET CARACTERISATION D’UNE NOUVELLE 

PINCE MOLECULAIRE Zn(II)-PORPHYRINE-

ACRIDINIUM 

V. A - SYNTHESE ET CARACTERISATION  

Dans la dernière partie de cette thèse, nous avons réalisé la synthèse et la caractérisation d’un 

nouveau récepteur Zn(II)-porphyrine-acridinium suivant la voie de synthèse présentée ci-

dessous sur la Figure 0. 14. 

  

 
Figure 0. 14 : synthèse d'un nouveau récepteur Zn(II)-porphyrine-acridinium, utilisant le DABCO pour 

coordiner les deux Zincs ions métalliques  zinc(II). Le récepteur ainsi formé peut encapsuler le perylène. 

Concernant la modélisation du système Zn(II)-porphyrine-acridinium complexant le DABCO, 

trois dynamiques moléculaires différentes sont lancées à partir de trois points de départ 

différents. Comme nous l'avons fait précédemment, un ensemble de descripteurs moléculaires 

décrivant la déviation, le rayon de giration et la surface du récepteur sont calculés. En outre, 

plusieurs autres descripteurs numériques décrivant plus en détail la structuration des récepteurs 

sont ajoutés à l'analyse. Ces descripteurs sont séparés en trois types : les descripteurs de 

distance, les descripteurs d'angles et les descripteurs d'angles dièdres et décrivent 

principalement la chaîne alcène et la dynamique de l'acridinium. Au total, 33 descripteurs 
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supplémentaires sont ajoutés. Comme le jeu de données contient beaucoup plus d'informations 

que les fois précédentes, la variabilité est plus diluée dans les différentes composantes. Avant 

l'analyse, un processus de réduction dimensionnelle est effectué, 12 variables sont 

sélectionnées et utilisées pour une analyse plus approfondie. 

Les résultats sont présentés dans la Figure 0. 15 : : ~80% de la variabilité est expliquée par les 

quatre premières composantes. En ce qui concerne "MD2", et"MD3" respectivement colorés 

en vert et en rouge dans le graphique, ils échantillonnent un espace conformationnel très 

similaire mis en évidence par le fait qu'il se chevauche. "MD1" quant à lui présente une certaine 

variation. Bien que la plus grande partie de la dynamique se chevauche avec les deux autres, 

certaines géométries ne sont échantillonnées que par ce système, ce qui représente 

probablement une conformation particulière associée à un événement rare. Certaines de ces 

géométries spécifiques sont mises en évidence dans la partie inférieure de la Figure 0. 15. En 

bleu, une conformation rare mise en évidence par *1 dans le graphique représente une 

conformation du récepteur ou la chaîne alcène entre dans la cavité, générant un encombrement 

stérique important, et bloquant l’entrée d’un éventuel invité dans le site de liaison.  

La majeure partie des géométries présente une cavité de liaison accessible où le récepteur est 

dans une configuration ouverte permettant de complexer un invité entre les deux acridiniums 

(*2 en bleu et *1 et *2 en orange dans la Figure 0. 15). Cette forme est prédominante dans 

toutes les simulations, les points sont donc pour la plupart situés dans la même zone et se 

chevauchent. Pour MD3 (vert), deux géométries spécifiques peuvent être extraites : la première 

(*1) montre la conformation fermée du récepteur avec les deux acridiniums interagissant entre 

eux.  En revanche, la seconde (*2) représente la conformation très ouverte, où les deux 

acridiniums ont tourné de 90° et ne se font plus face. La chaîne alcène semble être 

suffisamment flexible pour permettre ce changement de conformation dans la structure. 

D'après les observations de la dynamique moléculaire, la conformation ouverte prédominante 

peut prendre plusieurs orientations au fil du temps. D'après ce que nous avons vu dans les 

simulations, la conformation ouverte peut être considérée comme un point d'équilibre à partir 

duquel la géométrie est susceptible de diverger vers une autre conformation (fermée, semi-

fermée, tournée...). Nous nous attendons à ce que la géométrie avec la configuration ou la 

chaîne alcène entre dans la cavité, ait une énergie absolue plus faible que la configuration trans, 

qui est généralement celle utilisée pour lier un invité à l’intérieur de la cavité de liaison. 
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Figure 0. 15 : analyse en composante principale du nouveau récepteur Zn(II)-porphyrine-acridinium 

décrit par un ensemble de descripteurs moléculaires calculé à partir des simulations de dynamique 

moléculaire. L’espace formé par la combinaison des quatre premières composantes explique ~80% de la 

variabilité de l’échantillon. Chaque point représente une géométrie, et chaque couleur représente une 

simulation différente de dynamique moléculaire. 
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V. B - CRIBLAGE VIRTUEL DE NOUVEAUX INVITES POTENTIEL 

L’identification de nouveaux invités potentiels par criblage virtuel de base de données d’intérêt 

(Drug Bank et T3DB) a été réalisé, de façon à identifier de possibles applications du système : 

vectorisation de molécule d’intérêt thérapeutique, recapture de polluant… Un premier aperçu 

des résultats est présenté dans les deux tables suivantes : 

Table 0. 1 : vue d’ensemble des 10 meilleurs résultats d’amarrage moléculaire sur la base de données 

T3DB  

 
 

Table 0. 2 : vue d’ensemble des 10 meilleurs résultats d’amarrage moléculaire sur la base de données 

DrugBank 
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Les dix meilleurs résultats de la procédure de l’amarrage moléculaire sont présentés avec le 

score associé pour chacune des bases de données. Chaque base de données a été considérée 

séparément, et l’amarrage moléculaire est réalisé une fois pour chacune d'entre elles dans un 

récepteur extrait des dynamiques moléculaires précédentes et présentant une cavité de liaison 

ouverte. Sur les vingt meilleurs résultats, toutes les molécules sont situées dans la cavité. 

Les dix meilleures molécules extraites de la base de données T3DB sont principalement des 

polluants. Elles peuvent toutes être classées comme des hydrocarbures aromatiques 

polycycliques (HAP), susceptibles d'interagir avec une bonne affinité avec la pince moléculaire 

en utilisant des interactions π-π. Si l'on considère les scores des composés de la T3DB, ils sont 

globalement élevés, ce qui suggère que ces molécules sont de bons substrats pour le récepteur. 

Concernant la DrugBank, seul le meilleur résultat est un HAP, mais la majorité des molécules 

classées peuvent interagir avec le récepteur avec des interactions π-π. Il est très intéressant de 

souligner que parmi les dix meilleures molécules, quatre d'entre elles présentent un squelette 

stéroïdien (Figure 0. 16). Cela pourrait suggérer une particularité intéressante du récepteur pour 

lier ces types de molécules.  

 
Figure 0. 16 : représentation du squelette stéroïdien 

L'une des principales limites du processus d’amarrage moléculaire est la géométrie initiale du 

récepteur. Contrairement aux molécules de l'invité, l'hôte, ne peut pas être considéré comme 

totalement flexible dans l'algorithme d’amarrage moléculaire. Cela signifie que la structure 

initiale a été extraite de la simulation précédente de dynamique moléculaire. Pour l'instant, les 

propriétés thermodynamiques de l'hôte ne sont pas encore calculées. Cependant, compte tenu 

du peu de temps nécessaire à l'exécution de la procédure d’amarrage moléculaire, il est toujours 

possible d'envisager d'exécuter un nouvel amarrage moléculaire sur un nouvel ensemble de 

conformation basé sur plusieurs géométries différentes présentant une faible énergie. 

D’une manière générale, les résultats de l’amarrage moléculaire présentent des ligands qui sont 

presque tous des molécules capables d'interactions π-π avec le récepteur. Le mode de liaison et 

la dynamique de ces dix molécules sera étudiée dynamique moléculaire en suivant le protocole 
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décrit précédemment concernant l'utilisation de la plateforme HG-DYNAusor.  En conclusion, 

les cinq meilleures molécules de chaque amarrage moléculaire seront extraites, et l'énergie libre 

de liaison sera mesurée pour ces dix molécules. 

V. C - ECHANTILLONAGE PHARMACOPHORIQUE 

Enfin, une approche d’échantillonnage pharmacophorique est réalisée de façon à identifier 

dans ces mêmes bases de données, certains composés pouvant directement agir comme ligand 

ditopique et se lier aux porphyrines de Zn(II), permettant d’envisager de nouvelles applications 

possibles pour ce système innovant. 

 
Figure 0. 17: vue d’ensemble des résultats préliminaire de l’approche pharmacophorique 

La recherche pharmacophorique est effectuée avec le logiciel MOE en utilisant les bases de 

données 3D construites. Quatre pharmacophores différents sont étudiés (partie supérieure de la 

0. 17). Seule la distance entre l'azote et le caractère donneur ou accepteur est considérée pour 

chacun d'entre eux. La banque de médicaments est utilisée, et les différents filtres sont 

appliqués. Un aperçu de certains résultats est présenté dans la Figure 75. L'idée est de 

sélectionner des molécules qui coordonneraient les deux Zn(II) des porphyrines. 

Malheureusement, la plupart des molécules extraites présentent des groupes près de l'azote qui 

sont susceptibles de réduire ou d'inhiber l'affinité de cet invité ditopique pour le Zn(II), rendant 

leur utilisation compliquée dans ce contexte. En conclusion, il est nécessaire de générer des 

filtres plus détaillés pour éviter les collisions stériques ou, au contraire, moins restrictifs mais 

limitant la base de données en ne considérant que les molécules « approuvées ». 
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VI - CONCLUSION GENERALE 

En conclusion, au cours de cette thèse, nous avons construit une plateforme automatisée qui : 

(i) paramètre rapidement et avec précision des systèmes supramoléculaires hôte-invité pouvant 

être modélisés et simulés en mécanique moléculaire classique, et ce, sans nécessité de 

connaissances particulièrement poussées en informatique ; (ii) pour lesquels l’enthalpie libre 

avec d'éventuels invités peut-être mesurée via deux différentes méthodes fonctionnant 

indépendamment l’une de l’autre. 

Nous avons synthétisé un nouveau récepteur Zn(II)-porphyrine-acridinium, préorganisé par la 

complexation du DABCO, pour lequel le comportement dynamique et énergétique a été 
analysé, conduisant à un échantillonnage conformationnel des différentes orientations 

géométriques du système au cours du temps, ainsi qu’à une analyse de son comportement dans 

les solvants organiques. De cet échantillonnage, la structure de plus basse énergie a pu être mis 

en évidence. Dans un second temps, nous avons pu extraire de nos analyses computationnelles 

un échantillon représentatif de composés susceptibles d’interagir de façon forte avec notre hôte, 

et pour lesquels l’enthalpie libre sera mesurée et testée ultérieurement.



 

I 
 

CONTENTS 

List of the abbreviations .......................................................................................................... 1 

Chapter 1: Introduction .......................................................................................................... 3 

I - Computational chemistry ................................................................................................... 4 

II - Supramolecular chemistry ................................................................................................ 6 

II. A - General definition .................................................................................................... 6 

II. B - The intermolecular forces in molecular association ................................................ 8 

II. C - Host-guest chemistry ............................................................................................. 10 

III - Computational methods for the determination of binding free energy in host-guest 

complexes ............................................................................................................................. 12 

III. A - State of art of the computational methods used for binding free energy prediction

 .......................................................................................................................................... 12 

III. B - Molecular modelling approaches.......................................................................... 15 

III. C - Knowledge-based approaches .............................................................................. 17 

IV - Computational exploration of host-guest complexes ................................................... 19 

IV. A - Presentation of the NOAH project ....................................................................... 19 

IV. B - General aim of the thesis project .......................................................................... 19 

Chapter 2: Computational methods ..................................................................................... 21 

I - Simulations methods........................................................................................................ 22 

I. A - Quantum mechanics (QM) ...................................................................................... 22 

I. B - Semi-empirical quantum mechanic (SQM) ............................................................. 27 

I. C - Molecular mechanics (MM) .................................................................................... 30 

II - Solvation models ............................................................................................................ 44 

II. A - Introduction............................................................................................................ 44 

II. B - Explicit solvation ................................................................................................... 44 

II. C - Implicit solvation ................................................................................................... 46 



 

II 
 

III - Machine learning methods ............................................................................................ 49 

III. A - Unsupervised methods ......................................................................................... 49 

III. B - Supervised methods .............................................................................................. 55 

IV - Binding Free energy determination .............................................................................. 67 

IV. A - Principle of the thermodynamic based method .................................................... 67 

V - Docking .......................................................................................................................... 69 

V. A - Principle ................................................................................................................. 69 

V. B - Programs ................................................................................................................ 69 

Chapter 3: The HG-DYNAusor platform............................................................................ 72 

I - Introduction ..................................................................................................................... 73 

I. A - Capabilities.............................................................................................................. 73 

II - Proof of concept using acridinium tweezer .................................................................... 74 

II. A - Introduction............................................................................................................ 74 

II. B - Generation of parameters ....................................................................................... 74 

II. C - Association in water: .............................................................................................. 75 

II. D - Behaviour analysis of host-guest system in solution ............................................. 77 

II. E - DFT and GFN2-xTB comparison: ......................................................................... 80 

III - The Thermodynamic based approach of the HG-DYNAusor platform ........................ 83 

III. A - Required software ................................................................................................. 83 

III. B - Parametrisation of the Host system (module 01).................................................. 84 

III. C - Parametrisation of the guest system and binding mode generation (module 02)

 ........................................................................................................................................ 100 

III. D - Thermodynamic based approach for binding free energy prediction (module 03)

 ........................................................................................................................................ 103 

IV - Behaviour analysis ...................................................................................................... 105 

V - The knowledge-based approach of the HG-DYNAusor platform (Module 04) .......... 106 

V. A - Overview of the Knowledge-based methods ....................................................... 106 

V. B - Optimisation of the ML algorithm ....................................................................... 114 



 

III 
 

V. C - Dimensional reduction procedure: ....................................................................... 115 

VI - HG-DYNAusor platform: future directions................................................................ 126 

VI. A - Clustering methods............................................................................................. 126 

VI. B - Thermodynamic based approach ........................................................................ 126 

VI. C - Knowledge-based approach ............................................................................... 126 

Chapter 4: Application of de HG-DYNAusor platform ................................................... 128 

I - Investigated systems: ..................................................................................................... 129 

I. A - Gibb Deep Cavity Cavitand (GDCC) ................................................................... 129 

I. B - Cucurbituril CB[8] ................................................................................................ 131 

I. C - Trimertrip .............................................................................................................. 134 

I. D - Calix[4]-Pyrrole .................................................................................................... 135 

II - SAMPL challenges as a validation step for the platform ............................................. 136 

II. A - The SAMPL7 challenge ...................................................................................... 136 

II. B - SAMPL8: CB[8] drug abuse challenge ............................................................... 148 

II. C - SAMPL8 GDCC challenge .................................................................................. 177 

III - Solvent exchange analysis in Calix[4]pyrrol capsule: ................................................ 180 

III. A - Presentation of the host system .......................................................................... 180 

III. B - Simulations of the hosts:..................................................................................... 181 

Chapter 5: Computational analysis, synthesis, and characterisation of novel Zn(II)-

porphyrin-acridinium receptors ......................................................................................... 185 

I - Zn(II) bisporphyrin-acridinium scaffold ....................................................................... 186 

I. A - Porphyrin receptor ................................................................................................. 186 

I. B - Allosterism ............................................................................................................ 187 

II - Presentation of the Zn(II)-porphyrin receptor .............................................................. 191 

II. A - General structure .................................................................................................. 191 

III - Generation of parameters for Zn(II)-porphyrin receptor ............................................ 194 

IV - Computational analysis of ditopic ligand binding ...................................................... 195 



 

IV 
 

IV. A - Conformational Analysis of Zn(II)-porphyrin Receptors .................................. 195 

IV. B - Binding free energy prediction of ditopic ligands .............................................. 203 

V - Synthesis and characterisation of a new Zn(II)-porphyrin acridinium receptor .......... 205 

V. A - Generality ............................................................................................................ 205 

V. B - Synthesis and characteriSation ............................................................................ 206 

V. C - Characterisation ................................................................................................... 210 

VI - Identification of potential binders for the new Zn(II)-porphyrin acridinium: a future 

perspective .......................................................................................................................... 214 

VI. A - Protocol .............................................................................................................. 214 

VI. B - Behaviour of new Zn(II)-porphyrin acridinium host ......................................... 215 

VI. C - Virtual screening ................................................................................................ 217 

VI. D - Perspective ......................................................................................................... 220 

Experimental part ................................................................................................................ 221 

I - Synthesis of 2-(4-bromophenyl)-4,4,5,5-tetramethyl-1,3-dioxolane ............................ 222 

II - Synthesis of 10-(but-en-1-yl)acridin-9(10H)-one ........................................................ 223 

III - synthesis of the 10-allyl-9-(4-formylphenyl)acridin-10-ium ...................................... 224 

IV - Synthesis of porphyrin-acridinium conjugate (2 ⋅ 456) ............................................ 225 

V - Synthesis of 7 ⋅ .45608 ............................................................................................... 227 

VI - Synthesis of 7 ⋅ .45608�9:;<= .............................................................................. 228 

VII - Synthesis of [7 ⋅ .45608�9:;<=] ⊃ 4(ABC('( ................................................... 229 

List of the figures ................................................................................................................. 230 

Bibliography ......................................................................................................................... 239 



 

Page 1 / 254 
 

 

LIST OF THE ABBREVIATIONS 

 

SAMPL = Statistical Assessment of the 

Modelling of Proteins and Ligands 

D3R = Drug Design Data Resource 

MM = Molecular mechanic 

QM = Quantum Mechanics  

SQM = Semi-empirical Quantum 

Mechanics. 

GBSA = Generalized Born Surface Area 

PBSA = Poisson–Boltzmann Surface Area 

FEP = Free Energy Perturbation 

MD = Molecular dynamics  

RESP = Restrained Electrostatic Potential 

AI = Artificial intelligence 

ML = Machine Learning  

DL = Deep Learning 

NOAH = Network Of Functional 

Molecular Containers With Controlled 

Switchable Abilities 

HG-DYNAusor = Host-Guest DYNamic 

an Automated application 

HF = Hartree Fock 

SCF = Self-Consistent Field  

DFT = Density Functional Theory 

NDDO = Neglect of Differential Diatomic 

Overlap 

ZDO = Zero Differential Overlap 

DFTB = Density-Functional Tight-Binding 

XRD = X-ray crystallography 

NRM = Nuclear Magnetic Resonance 

OBC = Onufriev–Bashford–Case 

PCA = Principal Component Analysis 

QSAR = Quantitative Structure-Activity 

Relationship 

SVM = Support Vector Machines 

RF = Random Forest 

Knn = K-nearest neighbours 

NNET = Neural Network 

SaMD = Spontaneous association 

Molecular Dynamics 

RMSD = Root Mean Square Deviation 

Rg = Radius of Gyration  

SASA = Surfaces Accessible Solvent Area 



 

Page 2 / 254 
 

ALPB = Analytical Linearized Poisson-

Boltzmann 

MPD = Molprint2D 

BindingDB = Binding Database 

GDCC = Gibb Deep Cavity Cavitand 

OA = Octa-Acid 

exo-OA = exo-Octa-Acid 

TeMOA = Tetra-endoMethyl Octa-Acid 

TeeTOA = Tetra-endoEthyl Octa-Acid 

CB[n] = CucuBirt[n]uril 

DBI = Davies-Bouldin Index  

psF = pseudo-F statistic 

THF = TetraHydroFurane 

NDI = Naphthalenetetracarboxylic diimide 

DABCO = 1,4-diazabicyclo[2.2.2]octane 

 

  



 

Page 3 / 254 
 

1 

INTRODUCTION  
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I - COMPUTATIONAL CHEMISTRY 

In the last decades, the important development of informatics has led to a revolution in many 

fields of science, including chemistry and, specifically, the study of molecular association 

processes.1,2 The modelling of any chemical process between molecules is generally very 

informative and can be used first to explain chemical phenomena and secondly to predict the 

outcome of a specific reaction or process. All of this falls into the realm of computational 

chemistry. So, we can ask ourselves, what is computational chemistry? 

In 2001, in his book “computational chemistry”, David C. Young stated two definitions3: “The 

term theoretical chemistry may be defined as the mathematical description of chemistry. The 

term computational chemistry is generally used when a mathematical method is sufficiently 

well developed that it can be automated for implementation on a computer.” In summary, 

computational chemistry can be defined as a branch of chemistry that uses computer simulation 

to assist in solving chemical problems. It uses methods of theoretical chemistry, incorporated 

into efficient computer programs, to calculate the structures and properties of molecules and 

solids.4,5  

It is interesting to highlight the fact that these definitions say nothing about the accuracy of the 

prediction. Any mathematical operation that leads to the description of a chemical process has 

limitations due to the extreme complexity of the natural process. Even though the mathematical 

algorithms have found very intuitive and provable results, the basis of these equations is based 

on approximations, which can lead to unrealistic results in some cases. Of particular note, 

predicting the changes of entropy and enthalpy upon the formation of a molecular complex is 

a very challenging problem for a computational chemist, even though this process is 

theoretically well understood. Determining the equilibrium constant of a binding event (or the 

binding free energy, which is equivalent) is of fundamental interest in chemistry, but its 

computational prediction is most difficult.6 A large proportion of my thesis deal with this 

problem. 

In his book “Essentials of Computational Chemistry”, Cramer7 defined the theory as one or 

more rules postulated to govern the behaviour of physical systems. For him, the role of the 

computational chemist is not devoted to the chemical aspects of the problem but more to the 

computer-related aspects (writing improved algorithms or developing new ways to visualize 

data…). What is interesting in this approach is the idea that behind the multidisciplinary aspect 

of computational science, all biological processes are modelled through the prism of 
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approximations, with the idea that in many cases, the real complexity of the system is not 

precisely measurable and must therefore be approximated. 
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II - SUPRAMOLECULAR CHEMISTRY 

II. A - GENERAL DEFINITION 

In 1978, J-M Lehn defined supramolecular chemistry as the chemistry interested in a new 

chemical entity, more complex than molecules: supermolecules.8 A supermolecule represent a 

complex of molecules held together by noncovalent bonds, generally referred to as a 

supramolecular complex or supramolecular assembly. The complexed elements are associated 

according to the principles of molecular association. These supramolecular complexes can 

perform multiple functions, separated into three main groups: (i) molecular transformation, (ii) 

molecular vectorization, and (iii) molecular association.9  

The molecular transformation represents the capabilities for some supramolecular complexes 

to act as a catalyst (supramolecular catalysis).10  

Molecular vectorization can be defined as the process of association between a molecular 

substance and a molecular carrier to improve biological distribution, prevent potential 

degradation, decrease toxicity or improve the Physico-chemical properties of the molecular 

substance.11  

The molecular association process is the most important one. It represents one of the most 

important events in chemical and biological processes, and both molecular transformation and 

molecular vectorization depend on it.12–14 In supramolecular chemistry, the analysis of these 

events gives a lot of information about the chemical diversity and functions during the 

assembling of the host and the guest, particularly how they interact with each other. Figure 1 

shows a classification of the possible combination of host and guest in the supramolecular field, 

depending on the dimension of the guest and the host jointly. Following the assembling process 

between the guest and the host, we can define three different families of supramolecular 

complexes based on the scaling of the complex: the molecular scale, the mesoscale, and the 

nanoscale. At the molecular scale, the complex is mainly formed by a 1:1 combination of a 

macrocycle or cavitand host with a relatively small guest.  
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Figure 1: Classification of the supramolecular complex14 

The meso-scale groups are steadily increasing, and in recent years host having a larger cavity 

(> 1nm) have been designed to interact with guest presenting a high diversity of shape and 

molecular function, with different stoichiometry: 1:1, 1:2, … (n-guest for one host). The 

molecular capsules for drug delivery enter this category. At the nano-scale level, the host and 

the guests are assembled with dimensions around hundreds of nanometers. In recent years, 

interesting approaches have been published to interact with biological systems at the nanoscale 

level.15 In all these fields, many systems have been studied these past years for many possible 

applications.16–20 

With the Nobel prize of chemistry of 2016 awarded jointly to Jean-Pierre Sauvage, Sir J. Fraser 

Stoddart, and Bernard L. Feringa "for the design and synthesis of molecular machines", the 

interest in the supramolecular chemistry field and its possible applications have grown 

significantly.21–24 
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II. B - THE INTERMOLECULAR FORCES IN MOLECULAR 

ASSOCIATION 

The molecular association is one of the key concepts in chemistry. It deals with the affinities 

between types of atoms and the interactions they form. The association of two or more 

molecules implies the formation of multiple favourable interactions between them. The precise 

geometric constraints of the interactions also imply that small chemical or geometrical changes 

result in loss of binding. This gives rise to the selectivity of the molecular association, a 

phenomenon of special interest in biology. This is explained by the rather dogmatic model of 

lock and key, proposed by E. Fisher in 1894: for any molecular interaction, the substrate must 

present the correct topology to form a complex with the receptor.25 This topology allows any 

molecular receptor to recognize its specific substrate. But the molecular flexibility of many 

ligands (free rotation of some bonds, angles, torsion…) and particularly of the receptor 

invalidates this simple model. Any theory of binding must also consider the ability of ligand 

and receptor to adapt to each other. 

Molecular receptors are host molecules that contain a binding site or a cavity available to bind 

a smaller guest molecule. These hosts systems are capable of binding smaller molecules using 

reversible non-covalent interactions: interactions that do not involve the sharing of electrons 

but rather involve a more dispersed variation of electromagnetic interactions.26 To form a host-

guest complex, there must exist molecular complementarity between the host and the guest, 

and this complementarity must translate into a negative binding free energy.27  

The non-covalent interactions are also called the “weak forces” due to their low energy values 

compared to the formation of covalent bonds. These non-covalent interactions are multiples, 

and most of them come from the electrostatic interaction among particles. Historically, they 

are classified into two main parts: the long-range and the short-range interactions. A brief 

overview of the forces is presented in Table 1: 
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Table 1: Non-covalent interactions (NCI) classification for the molecular association.28 

 

I.A. 5 - THE LONG-RANGE INTERACTIONS 

The long-range interactions are mainly composed of electrostatic, inductive, and dispersive 

contributions. These interactions are involved when the interacting particles are separated by 

long distances. Coulomb's law quantifies the electrostatic effect, pairwise additive and can be 

attractive or repulsive depending on the charge of the particles. The induction (polarization) 

effect is the resultant of a net electric field on the atom by the environment. It is an attractive 

effect but non-additive because the electric field of the atoms in the environment can cancel 

each other out. The last interaction (dispersion effect) has an additive effect, which mainly 

takes place when the two molecules move closer to each other. This effect, also known as the 

instantaneous dipole–induced dipole effect, is due to fluctuations in the electron distribution 

over time, which are the nearby molecule feels and responds to. 

The resonance and magnetic contributions are very small, and for practical reasons, they can 

be neglected because they are not involved in the molecular association process of most binding 

events at room temperature. 

I.A. 6 - THE SHORT-RANGE INTERACTIONS 

Short-range interactions are dominated by the exchange-repulsion force: a quantum mechanical 

effect resulting from two opposing effects, one attractive and the other repulsive. When the 

distance between two atoms decreases, their electron clouds approach each other, and their 

charge distributions gradually overlap. The Pauli exclusion principle prohibits all the electrons 
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from occupying the overlap region and reduces the electron density in this region. The 

positively charged nuclei of the atoms are then incompletely shielded from each other and 

therefore exert a repulsive force on each other. Thus, the electron overlap increases the system's 

total energy and gives a repulsive contribution to the interaction. In practice, the repulsive 

component is greater than the attractive component, so the resultant of the exchange-repulsion 

interaction has a net repulsive effect. Compared to the exchange-repulsion, the exchange-

induction, the exchange-dispersion, and the charge transfer have a neglected effect. 

II. C - HOST-GUEST CHEMISTRY 

Host-guest chemistry is a concept related to supramolecular chemistry, where complexes are 

composed of at least two molecules (host + guest), for which the theory of non-covalent 

interactions describes the strength of the interaction.29 Host-guest chemistry is strongly linked 

to the concept of molecular association, where the two components of molecular complexes 

are held together by non-covalent interactions (hydrogen bonds, π-π interactions...) and for 

which the binding mode is specific to its molecular interactions.30  

In supramolecular chemistry, the hosts have a well-defined classification. They can be (i) 

constituted by a monomeric scaffold that provides the information about the family of the host: 

like the cucurbituril[n] where n represents the numbers of monomers or (ii) constituted by a 

particular chemical scaffold that gives the identity of the host: like the metalloporphyrin 

complexes.31  

In general, and compared to proteins, molecular hosts have a low molecular weight and exhibit 

a much lower degree of freedom. For this reason, host-guest systems were initially used as a 

representative model to evaluate computational methods for predicting ligand-protein 

binding.32,33 Indeed, although they present an important geometrical difference, they have 

nevertheless a certain number of common critical points known to be fundamental in the 

binding mode, such as the flexibility of the receptor, the cost of solvation/desolvation, the 

change of protonation state, the consideration of hydrophobic effects, or tautomerism...6,34 Due 

to their size, these systems are – in principle – well designed for testing computational methods 

owing to their comparatively low computational cost, but also due to the reproducibility of the 

experiments where the uncertainties in host-guest protonation are more controlled than in 

protein-ligands systems. Following that thought, a group of scientists composed of 

experimentalists and computational scientists created a challenge called SAMPL35 (Statistical 

Assessment of the Modelling of Proteins and Ligands) and D3R36 (Drug Design Data 
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Resource) that used during many years host-guest system to try several computational methods, 

comparing to experimental data blindly. The SAMPL project, initiated in 2008, has 

traditionally included challenges based on small molecular systems, such as the hydration-free 

energies of small molecules and the binding thermodynamics of host-guest systems. Since 2018 

the SAMPL challenge is funded by the National Institutes of Health (NIH).37 These past years, 

a broad range of biologically relevant systems with different sizes and levels of complexities, 

including different host-guest complexes, has been selected by the SAMPL challenges. The 

aim of the challenge is to test the latest modelling methods and force fields and how they 

perform predicting blind data. The experimental data, such as binding affinity and hydration 

free energy, are withheld from participants until the prediction submission deadline so that the 

predictive method is ranked and compared based on the performance of the systems. 

These challenges provide a fair assessment of state of the art, an objective comparison of 

methods, and, over the years, a large available dataset that can be used for testing new 

methodology.34,35,38–42 Unfortunately, the SAMPL challenges are not using supramolecular 

complexes, including metal compounds in various solvated environments, but more 

biologically related and water-soluble systems. As this is one of the only significant knowledge 

bases for the computational prediction of the binding free energy of non-protein molecular 

complexes, we consider that the analysis of previous SAMPL methodologies could give us a 

good overview of the accurate methods used for prediction. For the aim of the thesis, the 

methods will need to be adapted to suit supramolecular complexes, including simulated metal 

complexes in a non-aqueous environment. 
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III - COMPUTATIONAL METHODS FOR THE 

DETERMINATION OF BINDING FREE ENERGY IN 

HOST-GUEST COMPLEXES 

III. A - STATE OF ART OF THE COMPUTATIONAL METHODS USED FOR 

BINDING FREE ENERGY PREDICTION 

Retrospective analysis based on previous SAMPL challenges, and specifically the SAMPL642 

challenge, gives us some interesting information about the state of the art of binding free energy 

prediction in host-guest complexes. Before presenting several computational methods, we must 

highlight that the method can depend on the system used. As we stated in the molecular 

association part, the binding between host and guest is realised using non-covalent interactions. 

The non-covalent interactions are diverse, and depending on the size of the cavity and the type 

of the interactions, the accuracy of the resulting prediction with one method or another can 

vary. Considering the computational approach for predicting host-guest binding free energy, 

we decided to mainly focus on what was described in the previous SAMPL challenges, as they 

represent – in theory – the more recent advances in terms of computational techniques. In 

addition to the fundamental differences between the methods, there are numerous variations 

for each of them, such as the force field, the partial-charge model, the solvation models used, 

or the sampling method. 

I.A. 7 - METHODS 

The different methods can be separated into two main classes: the classical molecular 

mechanics (MM) and the Quantum Mechanics (QM) / Semi-empirical Quantum mechanics 

(SQM). The classical mechanics can be used to calculate binding free energies following three 

approaches: End state methods43 (MM/GBSA and MM/BPSA), the Umbrella Sampling44, and 

the Perturbation methods45 (FEP).  For the end-state methods, the application of the MM 

consists of using the Molecular Dynamics (MD) simulations in addition to Poisson–Boltzmann 

or generalized Born and surface area continuum solvation (MM/PBSA and MM/GBSA) 

methods to predict the difference in binding free energy between the bound and unbound states 

(i.e. only the end states are considered). These methods are fast and moderately accurate, highly 

dependent on the system, and are known to overestimate the binding free energy of the host-

guest complexes.  

Umbrella sampling is a free energy method that allows one to probe regions of the free energy 

curve that would not be available using simple MD. The general idea of the method is to restrict 
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the reaction coordinate without constraining it by applying a bias potential to explore the 

dissociation process of the ligand-receptor and measure the binding free energy.46,47 

The perturbation methods use molecular simulations (MD or Monte Carlo simulations) to 

compute the free energy difference between two molecular structures. The perturbation theory 

is an old technique that was initially used in physics in celestial mechanics to analyse the effect 

of bodies on the elliptical orbits of planets. These techniques have been adapted to 

computational chemistry to measure the free energy difference between a reference system and 

a target system, with the conditions that the target system is sufficiently similar to the reference 

system. It uses an alchemical transformation to go from molecule A (reference) to molecule B 

(target). 

The last classes consist of the usage of QM (mixed with the MM or performed at SQM level) 

for the binding free energy prediction. In theory, the quantum mechanical formulation is almost 

exact and describes the underlying physics of the system, including all the energetical 

contributions. Multiple interactions or phenomena are missing in a force field and can be 

considered using a quantum mechanical framework (such as electronic polarization, charge 

transfer…). Another advantage of QM is the absence of pre-parameterisation of the system that 

accurately describes the chemical space. Unfortunately, practically speaking, the QM 

methodology faces some limitations, especially considering (i) the solvent’s effect on the host-

guest system, (ii) the calculation of entropic terms, and (iii) the computational cost compared 

to other methods.48 In practice, QM methods can only be used to calculate binding free energies 

following an end-state formalism. Recent implementations of SQM allow sufficient sampling 

to make the Umbrella Sampling approach accessible. Perturbation methods, particularly those 

involving no-physical states, are not amenable to QM formalisms. 

I.A. 8 - FORCE FIELDS 

For host and guest structures, as they are not composed of amino acids, it is necessary to 

generate the parameters to represent them in a force field. Multiple different force field exists. 

In the SAMPL6 challenge, two different classes of force field have been used: the classical 

force-field (Gaff / Gaff2, CGenFF, OPLS, …) and the polarizable force field (AMOEBA).49–

52 The representation of the charge of the host and guest molecules is also a challenging 

problem. Multiple partial-charge models exist. The simplest ones are the Gasteiger-Marsilli 

charges53, this is one of the fastest methods based on the electronegativities and connectivity 

of the atoms, but unfortunately, known to be too inaccurate to describe a molecule when 
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parameters have to be added for the force field. In the AMBER54,55 force-field, the RESP56 

charges (or the AM1bcc57 ones, which are considered to be a faster approximation) are 

preferred for the partial-charge calculation of the host-guest system for the calculation of the 

binding free energy. The RESP charges are derived at the Hartree-Fock level of theory and are 

supposed to be more accurate. Other methods exist and depend on the force field, such as the 

AMOEBA charges or the CgenFF charges.58 

I.A. 9 - METHOD FOR BINDING MODE PREDICTION 

As we already mentioned, to predict binding free energy, the binding mode of the host-guest 

complexes has to be generated. In recent years, multiple sampling methods have been tested to 

generate the initial estimate of the molecular complex. Most prominently, the complexes can 

be generated using a docking protocol. 

Docking was born in 1982, and with the development of informatics capabilities associated 

with the important growth of co-crystallized ligand-protein in the PDB (Protein Data Bank), 

docking has been more often used and can now be considered as a standard approach in the 

panel of the computational approaches.59 

I.A. 10 - GENERATION OF AN ENSEMBLE OF CONFORMATIONS 

In most cases, docking protocol cannot accurately describe the molecular environment between 

host and guest. For that, some sampling methods are considered to generate an ensemble of 

different host-guest conformations. One of the most used techniques for sampling is MD 

simulations. Using the docking to generate a first guess of the host-guest complexes, their 

behaviour in a solvated environment is then analysed by MD simulations. Two main outcomes 

can be expected from the sampling procedure: 

- After a few nanoseconds, the guest is stabilized in the host cavity, the molecular 

complex is considered stable, and the representative conformation is extracted. 

 

- When the host-guest equilibrium is complex, multiple structures differing by their 

geometries are extracted corresponding to the different representative conformations of 

the complex. 

I.A. 11 - SOLVATION MODELS 

The solvation effect is known to have considerable importance in the determination of the non-

covalent interactions. In MD simulations, the solvent is considered explicitly through the 
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inclusion of water molecules. Several water models exist (e.g., TIP3P, TIP4P60, SPC/E61) that 

should be used with compatible force fields. Because the solvent can have long-range effects 

and has a multitude of degrees of freedom, to obtain equilibrium properties, it is necessary to 

consider multiple layers of solvation and a very large ensemble of the solvent’s configurational 

states. When this is not possible due to the computational cost, one can use implicit solvation 

models (COSMO-RS62, SMD63, KMTISM64), where the solvent is treated as a continuous 

polarizable medium. 

III. B - MOLECULAR MODELLING APPROACHES 

One of the solutions for the binding free energy calculation is the thermodynamic-based 

approach using a mix of molecular modelling approach with the usage of SQM65 for the binding 

free energy calculation. In this context, the accurate calculation of the binding free energy of 

host-guest systems depends on several parameters: (i) the potential energy surface of the 

system, (ii) the flexibility of the host, (iii) the non-covalent interaction type realised by the 

guest with the host, (iv) the importance of the solvent molecules in the dynamic behaviour of 

the complex and (v) the implication of solvent molecules in the binding.66 

Considering the outcome of the thermodynamic based approach (i.e., binding free energy 

prediction), three possible cases can be highlighted: 

- (i) The host-guest complex structure is known, and the binding mode can be extracted 

from the crystallographic data. 

 

- (ii) The geometry of the host is known, but the location and the dynamic of the guest 

are not. This includes specific cases where the binding mode of several guests is known 

and where the investigation concerns the binding of new guests in a well-described 

system. 

 

- (iii) The impact of the guest in a host changes the global dynamic of the system, and 

the host in the complex has a different equilibrium state than the host alone, including 

qualitative change in geometric structure. 

The geometry of the complex is fundamental for free energy prediction.67 Thus, the protocol 

for the binding-mode prediction has to be based on different algorithms that are system-

dependent and correlated to the three cases presented above. An overview of the different cases 

is presented in the following Figure 2: 
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Figure 2: Flowchart of the molecular modelling approaches 

When the binding is observed by crystallographic data, precise information about the binding 

mode and the representation of the solvent in the cavity are known. In that case, the SQM 

approach can be directly used to calculate the entropic and enthalpic contribution of the 

complex and thus determine the binding free energy. If some solvent molecules are involved 

in the binding, they can be considered explicitly at the SQM level to improve the prediction 

(Figure 2A). 

In both other cases, the precise binding mode is unknown and must be determined using 

molecular modelling methods. In these cases, different options based on the considered system 

can be investigated. When the studied system is well described and then precise information 

about the binding site is known, only the binding mode of the guest in the host cavity has to be 

studied. In that case, a docking protocol can generate the first guess of the host-guest complex, 

followed by an MD simulation to sample the binding. Multiple representative structures of the 

complex can then be extracted from the simulations, and the SQM approach can be used on all 

the extracted structures leading to the calculation of multiple energy corresponding to multiple 

different complexes (Figure 2B). 

In the last case, the binding mode has to be found. If the information about the geometry of the 

host in solvated media is missing, and the host can be considered flexible enough to change its 

geometry over time, a sampling procedure using MD of the host alone has to be considered, 

and two main cases can be highlighted: (i) In the first case, the thermodynamic properties are 
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calculated, and the minimal energy is extracted for the binding. However, this assumes that the 

minimum energy of the host without a guest is in an accessible conformation that allows the 

binding. This is equivalent to saying that the host does not have very important flexibility, 

susceptible to converge on a geometry distant from the binding geometry (Figure 2C). In the 

second case (ii), from an MD simulation of the host alone, multiple representative 

conformations can be extracted with the idea that the host alone has superior flexibility without 

a guest and takes on different conformations over time, one of which represents the binding 

conformation. A docking protocol can then be done in all the different conformations leading 

to multiple complexes that could be simulated by MD simulations, and followed by 

thermodynamic calculation at the SQM level. The major problem of this protocol is that a large 

number of simulations are launched on all the structures extracted from the previous step, but 

finally, only one represents the binding, resulting in a significant increase in the calculation 

time (Figure 2D). 

III. C - KNOWLEDGE-BASED APPROACHES 

Knowledge-based approaches offer an orthogonal strategy to predict molecular properties. As 

the name implies, in this case, one aims to learn from pre-existing data, hoping that it can be 

used to extrapolate properties of molecules for which data does not exist yet.68 Humans are 

well adapted to extrapolate from specific examples but lack the ability to deal with large 

volumes of data. Since man started to have scientific reasoning, they tried to invent a machine 

able to imitate human reasoning. But the term artificial intelligence is a very recent concept 

born in the mind of the mathematician Alan Turing in 1950.69 Alan Turing, in his book 

"Computing Machinery and Intelligence", mentioned for the first time the notion of artificial 

intelligence. He described a test known as the Turing test, in which a subject interacts with 

another human and then with a machine programmed to formulate a meaningful response. If 

the subject is unable to make the difference between the machine and the human, then the 

machine passes the test and can be considered “intelligent”. A more recent definition of 

artificial intelligence stated: The artificial intelligence (AI) is a process of imitating human 

intelligence based on the creation and the application of algorithms. The final goal of AI is to 

enable computers to think and act like humans being.70,71  

AI is a very general concept in which we can find the scientific algorithms: Machine Learning 

(ML) and Deep Learning (DL).72 ML is an evolving branch of computational algorithms based 

on mathematical and statistical approaches designed for the emulation of human intelligence 
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by using the surrounding environment as a learning step. It gives the computers the capabilities 

to learn from pre-existing data and finally increase their performances to solve processes 

without being explicitly programmed to do so.73 DL can be considered as a subtype of ML 

where the learning algorithms represent a specific type of ML algorithms based on artificial 

Neural Networks (NNET) where the machine can train itself and improve the prediction based 

on this self-learning.74 

An overview of the previous definitions is represented in the Figure 3: 

 
Figure 3: Artificial intelligence history and description inspired by nvidia75 

In the field of host-guest chemistry, the artificial intelligence techniques are not well used, but 

as we said in the previous part, the supramolecular science is expanding, and the quantity of 

available data is also growing, giving a nice opportunity to develop a knowledge-based method 

for the explorations of the host-guest complexes.  
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IV - COMPUTATIONAL EXPLORATION OF HOST-GUEST 

COMPLEXES 

IV. A - PRESENTATION OF THE NOAH PROJECT 

This thesis is a part of the NOAH (Network Of functional molecular containers with controlled 

switchable Abilities) European consortium. The NOAH project is a European project involving 

ten early-stage researchers (ESRs) in a multidisciplinary chemical research program in the area 

of functional molecular containers, encapsulation processes, and their applications. This 

multidisciplinary project involves academic teams and industrial partners across Europe, and 

except for the University of Barcelona that is carrying the computational part of the project, 

each of the involved groups has expertise in the synthesis and experimental study of a specific 

type of molecular container, and skills in specialized techniques for their characterization and 

an interest in a specific type of functional behaviour. 

IV. B - GENERAL AIM OF THE THESIS PROJECT 

Because of the increasing complexity of supramolecular systems, the computational analysis 

of the host-guest complexes has become indispensable in the field of supramolecular research 

to understand the complex behaviour of these systems under different stimuli or to select from 

databases suitable guests for a given host system. At the moment, breakthrough discoveries in 

molecular host-guest chemistry are hampered by the complexity of the thermodynamic and 

kinetic characterization of the inclusion/release processes, which make it difficult to generate 

useful predictions about molecular encapsulation.76 Quantitative prediction of binding energies 

is particularly difficult but fundamental because they are associated with a loss of time and 

money due to the effort to synthesize, characterize and test several compounds that are finally 

not active. We aim to develop computational tools to explore the interactions between host and 

guest molecules.  

A brief overview of the steps done in this thesis can be shown in the Figure 4: 

 
Figure 4: General aim of the project: multiple approaches we used for the exploration of the host-guest 

complexes 
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Although these steps are separated here, they were carried out simultaneously. It led us to create 

a computational platform we called HG-DYNAusor (Host-Guest DYNamic and Automated 

application for binding free energy prediction). In general, the virtual screening tool is used to 

prepare the host and the guest and to generate the binding mode interaction between the host 

and the guest systems, which are necessary for almost all further analysis. We developed a 

simulation protocol to try to predict the binding constants of the complexes in different solvents 

and evaluate the behaviour of those complexes under different stimuli. All the computed 

binding free energies associated with the experimental values provided by the project partners 

have been stored to be compared and refined during the PhD. The knowledge-based methods 

mainly depend on the databases, thus can be considered independent of the screening and 

simulation steps. 

This thesis takes place in a multidisciplinary project involving mainly synthetic chemists who 

work on different systems. In this context, the project focused on developing a computational 

platform for the analysis of a broad range of host-guest systems, including the ones synthesized 

by the academic and industrial partners of the project. In this way, we aim to improve the global 

knowledge in the field of supramolecular chemistry and provide new opportunities and 

applications for existing containers and provide direction in the rational development of 

containers with new activities.77 

At the end of the thesis project, several months have been dedicated to the chemical synthesis 

of supramolecular complexes, with the aim of measuring binding free energy of host-guest 

complexes and comparing them with the computational prediction. After a brief presentation 

of the computational methods used in Chapter 2, the computational platform we developed 

during the thesis will be presented in Chapter 3. Then several important results obtained with 

the platform using SAMPL challenges and molecular structure provided by the NOAH partners 

will be presented (Chapter 4). In the end, the synthetic chemical procedure, including the 

computational protocol and the perspective, will be presented in Chapter 5.
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2 

COMPUTATIONAL METHODS 
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I - SIMULATIONS METHODS 

In this part, we will describe the methods used during the thesis. 

I. A - QUANTUM MECHANICS (QM) 

QM was initially developed at the beginning of the 20th century by several scientists 

(Heisenberg, De Broglie, Einstein, Bohr …). At this moment, QM is the most precise theory 

to describe molecular systems. The application of QM is based on the Schrödinger equation 

that is described in the Born-Oppenheimer approximation.78 For a system of N electrons and 

A nuclei, the equation is presented such as: 

 D. F.A0 = �. F.A0 1 

where F.A0 represents the polyelectronic wave function. 

With: 

 DG = − H 12
K

�LM ∇�O + H H 1P�Q
K

QR�
K

�LM − H H STP�T
K

�LM
U

TLM  2 

In the equation (1), H is the Hamiltonian operator, E is the total electronic energy of the system, 

and ψ is the wave function associated, describing the exact behaviour of the electron of the 

system. The Hamiltonian development (equation 2) can be separated into three different terms: 

- The first term corresponds to the mono-electronic Hamiltonian that is calculated for 

every electron of the system. 

- The second term corresponds to the bi-electronic Hamiltonian, used to determine the 

interaction between the electron. 

- The third and last term corresponds to the electrostatic interaction between the nuclei 

and electrons. 

The electron belongs to the fermion family, implying the fact that following the Pauli-exclusion 

principle, and in consequence, the wave function has to be antisymmetric. The slater formalism 

allows us to define the polyelectronic wave function (F.A)) as the determiners of orthogonal 

monoelectronic wave functions (V�.AW)): 
 F.A0 = 1√Y! [VM.A70 ⋯ VK.A70⋮ ⋱ ⋮VM.A_0 ⋯ VK.A_0[ 3 
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The analytic resolution of this system corresponding to the second term of the equation 2 (i.e., 

interaction between the electrons) cannot be calculated in most cases, leading to an inability to 

solve the equation for almost all of the non-hydrogens-like systems. For that reason, to solve 

this equation, we need to use approximations given by ab-initio methods (Hartree Fock (HF) 

and post-HF) and electronic density functional methods (DFT). 

I. A. 1 - HARTREE FOCK (HF) METHOD 

The HF method is used to solve Schrödinger’s equation approximatively, assimilating the bi-

electronic integrals in a coulombic interaction integral (J) and an exchange integral (K). This 

method describes a novel operator (F) called Fock operator such as: 

 `. V = �. V 

4  à = − H 12 ∇�O − H H STP�T +K
�LM

U
TLM H H b�Q − c�Q

K
QR�

K
�LM

K
�LM  

 

The integral forms are known, so it is possible to solve the equation. But the wave function is 

correlated to the J and K parameters, and J and K also depend on the wave function directly. 

For this reason, a linear resolution of the equation could not be envisaged. The self-consistent 

field (SCF) method is used to resolve the equation based on a set of basis functions called basis-

set. 

This initial basis-set is used to calculate for the first time the J and K parameters, and these 

parameters are used to recalculate the orbitals and so on until the convergences of the 

energetical parameters. The initial basis set could be more or less developed based on the 

expectations. The more the basis is developed, the more accurate the results will be, but the 

calculation will take longer.  

This approximation led us to resolve with accuracy the Schrödinger equation. However, the 

previous approximation made the calculated energy larger than the exact solution (this 

difference is called correlation energy). From a physical point of view, the electron's position 

in a given timeframe is not independent. We say then the electrons are correlated, which can 

induce a considerable difference between the HF energy and the real energy of a system. For 

that reason, several ab-initio methods called post-HF can lead to a better approximation of the 

energy, and therefore to get closer to the exact solution, but they increase the computational 

time exponentially. 
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I. A. 2 - DENSITY FUNCTIONAL THEORY (DFT) METHOD 

In the past decades, DFT methods have become very popular for calculating the energies and 

the properties of the molecules. The theory behind the DFT developed by Hohenberg and Kohn 

in 196479 states: 

- The electron density of a system in its ground states is sufficient to determine the 

energy: the energy can be described as a density function. The exact energy of a system 

corresponds to the global minima of the function of density. 

- For an external potential (Vext), any system composed of multiple interactive particles 

will have a unique electronic density. 

In theory, DFT is an ab-initio method, but it could be considered as an empirical method as it 

is necessary to approximate the energy functional.  

As the energy of the system is a function of the density, �[1] can be written as: 

�[1] = d��[1] + e[1] + d��[1]
 = f 1.A0g.A0hiA + e[1] + d��[1] 5 

 

In the equation (5), e[1] represent the kinetic energy associated with the given electron density, d��[1] is the electron-electron interaction energy, and d��[1] is the interaction energy between 

the electron and the "external" field. The formal problem is that the functionals e[1] and d��[1] 
are not known, and it is impossible to determine them using the actual knowledge. For that 

reason, in 1965, Kohn and Sham80 developed an iterated (auto-coherent) equation describing 

the energy of a system as a function of density in the presence of an external potential. In the 

equation below (6), the starting point is a deterministic wave function for N non-interacting 

electrons in N orbitals φi. For this system, the electron density and the kinetic energy are exact: 

1.P0 = H|V�.A0|O � , e
[1] =  − 12 H〈V�|∇O|V�〉�  6 

While the coulomb (classical) part b[1] of the electron repulsion energy can also be calculated 

easily. The energy functional now takes the form of the equation (7): 

�[1] =  d��[1] + e
[1] + b[1] + ���[1] 7 
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Where e
[1] is called the Kohn–Sham kinetic energy and ���[1] is the exchange-correlation 

functional that is described in the following equation (8): 

���[1] =  e[1] − e
[1] + d��[1] − b[1] 8 

 

The orbitals φi, satisfy the Kohn and Sham equations: 

cV� =  k�V� 9 

Where:  

l =  − 12 ∇O + m.A0 + f 1.Pn0|A − An| hiAn + g��.A0  10 

 

And g��.A), the exchange-correlation potential is a functional derivative of ���[1]. ���[1] 
Characterizing the correlation and exchange (directly calculated by the DFT methods, unlike 

HF methods). The exchange-correlation functional ���[1] and its potential g��.A) are still 

unknown and need to be approximated to solve the Kohn and Sham equation. 

Several functionals have been developed these past years to represent the exchange-correlation 

contributions. These functionals can be separated for practical reasons into three parts: LDA, 

GGA, and hybrid-GGA. 

- LDA (Local density approximation) functional is based on the theory of the uniform 

electron gas; the inhomogeneity of the system is neglected. In that case, the energy of 

the exchange-correlation ���opT[1] can be written like that:  

���opT[1] =  f hiA1.A0k��[1.A0]  11 

 

With k��[1.A0] representing the energy of exchange-correlation per electron. The LDA 

approximation is well adapted for small isolated molecules, which present low variation 

in their density. Still, in most cases, this method is too inaccurate to be useful for 

chemistry. 
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- The GGA (Generalized gradient approximation) functional has been developed to deal 

with the inaccuracy of the LDA. This time the GGA functionals take into account a 

density gradient such as: 

���qqT[1] = f hiA1.A0k��qqT[1.A0, ∇1.A0] 12 

 

Hybrid-GGA functionals have been introduced to improve the description of exchange-

correlation energy. These functional results to the combination between the HF 

exchange and the LDA/GGA functionals. The logic behind this combination is based 

on the fact that as the HF calculations are treating the exchange energy correctly, they 

can be combined empirically with LDA or GGA density functionals. The best-known 

and most widely used of this hybrid-GGA is the B3LYP functional developed in 1993 

by Becke81 based on the adiabatic connection between the real system and the fictive 

system introduced in the Kohn-Sham approach (described in the previous part). For the 

initial work, the B3LYP functional has been used in this thesis. 

I. A. 3 - BASIS SET 

As previously stated, the numerical resolutions of the Kohn-Sham equation (9) need the usage 

of a basis-set. The choice of the basis set is a very complex question, and generally, one wishes 

to use the largest possible basis-set to improve the results. Still, the cost of the calculation 

increases very sharply with the size of the basis set. The main reason explaining that is the two-

electron integral calculations that have the form of: 

.rs|tu0 = f f v�.10∗vQ.10 1PMO vx.20∗v�.20 hyM hyO 13 

 

Where χi corresponds to the basis functions. Almost 
Mz Y{ two-electrons integrals are considered 

for a calculation involving N basis function. These functions χi are centred on every atom of 

the system and define what we call a basis set.  

They are generally composed of two parts: 

 

- (i) The radial part:  

o Which can be either orbital slater type: v = |�x.A0 }+~�Ϛ�0 14 
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o Or gaussian type: 

v = |�x.A0 H ��Y�� }+~����  15 

 

- (ii) The angular part |�x.A0 is a type of a spherical harmonic function. 

Concerning all these basis sets, and the spherical harmonic functions are always used to 
describe the angular part of the orbital, meaning that only the radial part of the orbital changes.  

I. B - SEMI-EMPIRICAL QUANTUM MECHANIC (SQM) 

I. B. 1 - THEORY BEHIND 

The SQM methods are the simplest variant of electronic structure theory. These methods 

involve approximations that could limit their accuracy but make them very efficient and able 

to be used as screening methods. The SQM methods cannot be described as ab-initio, 

practically they are simplified versions of HF theory.82 As presented in the previous part, the 

computation of the two-electrons integrals is the most time-consuming step of the true ab-initio 

SCF calculations. The SQM methods use empirical corrections derived from experimental data 

in order to neglect most of them and approximate most of the rest. The one-electron integrals 

are also approximated.  

These methods are usually referred to by acronyms. The most frequently used methods (AM183, 

PM684) are all based on the Neglect of Differential Diatomic Overlap (NDDO85) integral 

approximation that belongs to the class of Zero Differential Overlap (ZDO86) methods, in 

which all two-electron integrals involving two-centre charge distributions are neglected. 

These SQM methods are widely used to calculate structures and charges distributions for 

molecules that are too large for standard ab-initio methods. They are also often used to obtain 

a first geometrical structure of a large molecule in order to save time in a subsequent geometric 

optimisation using ab-initio methods.87,88 Additionally, these past years, SQM methods have 

reached a really good level of sophistication, and they are now providing really good 

results.89,90 However, historically, SQM methods were generally using heats of formations data 

to be calibrated, supposing their inaccuracy for the calculation of small energy differences of 

molecular complexes such as binding free energy.48 The recent growth in those SQM methods, 

with the usage of different methods for the calibration, lead us to study these new methods for 

binding free energy prediction. Particularly, the development of new SQM methods has 
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recently seen a renewed interest triggered primarily by the advent of the density-functional 

tight-binding (DFTB) method pioneered by Seifert, Elstner, and Frauenheim.91  

We made the hypothesis that the new SQM methods, because of their computational 

performances, will allow us to carry out thermodynamic calculations with an acceptable 

precision on systems which, because of their size, could not have been studied via ab-initio 

methods considering the calculation times.  

I. B. 2 - THE GFNn-xTB METHODS 

Initially, the GFN family of methods was designed as a special-purpose tool focusing on 

molecular properties. The idea behind these methods is to be able to describe with relatively 

good accuracy the Geometries, the Frequencies, and the Non-covalent interactions leading to 

the acronym GFN.92 These past years, these methods have grown really fast, the first version 

(called GFN1-xTB) employs the same approximations for the Hamiltonian and for the 

description of the electrostatic energy as the DFTB393 basis without relying on an atom pair-

wise parametrisation. Instead, the ZDO type method is used. One of the advantages of the GFN-

xTB method is the covering of a large part of the periodic table (up to Z =86). For that reason, 

the GFN-xTB methods have been considered in that thesis because they are known to be fast, 

robust, reasonably accurate, and works for many metallic systems. 

In early 2019, the GFN2-xTB65 method was released with the xTB software leading us to use 

this method in this thesis work. Figure 5 shows an overview of the GFN family: 

 
Figure 5: Overview of the GFN family of methods with main components and classification of the most 

important terms. Dark grey shaded areas denote a quantum mechanical description, while light grey 

parts indicate a classical or semi-classical description94 
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I. B. 3 - TIGHT-BINDING THEORY  

xTB methods, like all the related DFTB methods, are rooted in the Kohn–Sham density-

functional theory and formally represent an SQM approximation to the latter. In the following 

part, the connection of the xTB methods to DFT, DFTB, and classical FFs will be highlighted. 

Starting from a non-local DFT energy expression, we get: 

����
= ��� + H �� f F�.A0 � ea.A0 + d�.P0 + k��opT[1.P0] +12 � 1|P − Pn| + Φ�Ko.P, Pn0� 1.Pn0hPn�

K��
� F�.A0hP  16 

 

With F�, the molecular spatial orbitals with occupation ��. The kinetic operator is represented 

by ea.A0 and d�.A0 is the coulombic operator due to the interaction with the nuclei. k��opT[1.P0] 
is the expression of the predefined exchange-correlation (XC) function. Finally, the kernel Φ�Ko.P, P′0 is used to obtain the inner integral over P′ containing the nonlocal (NL) correlation 

and the interelectronic Coulomb term. With this term, we can find that in the same case as the 

intermolecular force fields methods, the dispersion interaction naturally occurs. The idea using 

the GFN-xTB method is to use a system of formally independent particles, from which the 

density can obtain as: 

1.P0 = H �� f F�∗.A0F�.A0hPK��
�  17 

 

Then the total energetical term is reformulated in terms of (i) a reference density 1� (ideally 

close to the final converged density 1) and (ii) a density difference ∆1 with 1 = 1� + ∆1. 

Allowing us to decompose the energy in the form of a Hartree energy at the reference density: 

���� = ��� + ∆�� + ���opT[1] + ��Ko[1, 1n] 18 

 

This equation (18) is totally equivalent to the equation (16) just reformulated in terms of the 

difference of density ∆1. In DFTB methods, the total energy is expanded using Taylor series 

around ∆1 = 0 such as: 

�[1] = �.�0[1] + �.M0[1�, �1] + �.O0[1�, �1O] + �.i0[1�, �1i] + ⋯  19 
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The GFN2-xTB approach truncate this expansion after the third-order term given, and for the 

second term, a self-consistent version of D4 based on the Mulliken charges derived from 

GFN2-xTB are used. 

I. C - MOLECULAR MECHANICS (MM) 

I. C. 1 - MOLECULAR MODELISATION 

MM represent a further step in the simplification of the molecular systems, where the electrons 

are removed altogether, and their effects are represented by simple mathematical functions. In 

this manner, each atom is represented as a particle, and the molecular system can be described 

using classical newton mechanics, where there is a straightforward relationship between atomic 

coordinates and the energy of the system. Carrying out this calculation for the different 

conformations of the considered structure allows the characterization of other points of the 

potential energy surface associated with the system. Therefore, each point of the surface is 

associated with a probability of sampling and induces a statistical procedure for the simulated 

molecular conformations. The potential energy of a system can be described as follow: 

���������� = �bonded + �non−bonded 20 

With: 

�bonded =  �����
 + ������ + ���������
  21 

And: 

�non−bonded =  ��������
����� + ���  22 

The bonded terms correspond to the contributions of the bonds, the angles, and the dihedrals. 

The atoms are considered as a non-deformable sphere described by a charge and a Van der 

Walls radius. The bonds that link the atoms and associated angles are represented by a harmonic 

potential. Dihedrals angles are, as far as they are concerned, modelized by a sinusoidal function 

that allows the characterization of all the states that can be sampled by a torsion of those angles. 

�����
 = t�+ − +���O
 23 

������ =  t�� − ����O
 24 

��������� = d�2 .1 + cos[rV − �]0 
25 
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Ebonds, Eangle, and Edihedral represent the energy of deformations of the considered bonds and 

angles and also the rotation of the dihedral angle. +�� and ��� from the equation 23 and 24 are 

respectively the distance and the angle at the equilibrium of the considered atoms. The force 

constant potential is given by k and (Vn for the dihedrals). More thereof, the higher the binding 

(or angle) that represents this potential will be strong, involving a drastic increase in energy in 

the event of removal of the equilibrium value. For the dihedral angle, φ represent the values of 

the angle while γ represents the phase of the angle. 

To control the physics of the system, it is necessary to consider the intermolecular terms to 

represent the interactions between two distant atoms. As presented above, these terms are the 

electrostatic interaction term and Van der Waals interactions term. Such as: 

��������
����� = H ���Qkh�Q
�
QR�  26 

And: 

��� = H � �Qh�Q�MO
QR� − � �Qh�Q�¡

 27 

 

σ is called vdW radius and is equal to the distance at which the intermolecular potential between 

the two particles is zero. It gives an idea of how close two nonbonding particles are. The Van 

der Waals bond potential is often approximated by a Lennard-Jones potential of the form: 

�o¢ = 4k ¤� �Qh�Q�MO −  � �Qh�Q�¡¥ 28 

 

The electrostatic energy is calculated based on the coulombic potential and is dependent on the 

dielectric constant. In equation (26), i and j represent two atoms with a respective charge �� 
and �Q, separated by a distance of h�Q and a dielectric epsilon (values >1 can be used as a crude 

implicit solvation method). 

For the vdW energetic term, the equation considers (a) the interaction between atoms distanced 

by three bonds at a minimum and (b) the interaction between non-bonded atoms. It allows to 

take into account the weak interactions that can be separated into three-part: 
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• The London dispersion force is the dominant contribution of the vdW term and 

describes the instantaneous dipole-induced dipole attraction. Due to the permanent 

motion of the electron, a molecule can develop and temporary (instantaneous) dipole 

when the distribution of the electrons is unsymmetric about the nucleus. 

• The Debye force represents the contribution between the induced dipole and permanent 

dipole. 

• The Keesom force represents the contributions between permanent dipoles (dipolar 

molecules). 

The three forces that are involved above are both attractive where they represent the term 

to the six in equation 26 (¦§�¨��¨©¡
) and repulsive, described by the term to the twelve ¦§�¨��¨©MO

.  

 �Q represent the equilibrium distance between two atoms i and j. 

These parameters used for these methods have been determined experimentally (using XRD 

structures) or using QM and are regrouped in a force field. There are many force fields 

(CHARMM, Martini, AMBER, OPLS, GROMOS…). In our case, the central force field we 

used is the AMBER ff14SB that is applicable for the simulation of the molecules that present 

a biological interest. 

All the difficulty of the molecular simulations lies in the sampling of the conformational 

geometries. This sampling has to be representative to describe the conformational space of the 

system in a reasonable time. Practically, two methods exist to generate the conformations of a 

system: the MD and the Monte-Carlo simulations. The Monte Carlo simulation is a stochastic 

method that explores the configuration of the system. The MD simulation is a technique based 

on the analysis of the system's particles temporal evolution. During this thesis, we have used 

MD to explore the configurations of the systems. 

I. C. 1. A - ENERGETICAL MINIMIZATION 

In molecular modelling, to simulate a system, a pre-minimization is required in the preparation 

phase of the system. This energy minimization makes it possible to correct any defects in the 

initial structures, adapt the system to the force field, and then find the minimum of a novel 

surface of potential energy associated with the used method. For this reason, the initial structure 

is fundamental. In the best cases, we start from the crystallographic structures (obtained by 

XRD or NMR).  
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The potential energy surface is highly correlated with the energy of the system and depends on 

the geometry. The general principle of minimization is to modify the geometry of the system 

by changing some atoms to decrease its energy and force it into a potential well corresponding 

to a possible energetic minimum. Figure 6 shows the minimization principle in a schematic 

one-dimensional energy surface and the minima that would be obtained starting from three 

different geometries A, B, and C. 

 
Figure 6: A schematic one-dimensional energy surface: starting from three different geometries, the 

minimization methods move downhill to the nearest minimum95 

Different algorithms exist to perform the energetic minimization: the steepest-descent96 and 

conjugated-gradient97 are the most used algorithms and the ones used in this thesis. 

I. C. 1. A. (I) - THE STEEPEST-DESCENT ALGORITHMS 

This method is called "steepest-descent" because it consists of finding the most significant 

slope, from which the function representing the energy is likely to decrease the most. 

The steepest descent method moves in the direction parallel to the net force. For 3N Cartesian 

coordinates, the direction is most conveniently represented by a 3N-dimensional unit vector 

(ª««⃗ x) such as: 

ª««⃗ x = −∇�«⃗ .�0 29 

 

The variable α defines the calculation step representing the gap between two calculations and 

is adjusted for each iteration. α will be increased if an energetical reduction follows the energy's 

direction and decreases in the opposite case. Each direction considered for approaching the 
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energetical minima is orthogonal to the previous one. This new vector P⃗x®M is calculated using 

the P⃗x vector from the previous state, the α variable, and the direction ª««⃗ x: 

P⃗x®M = P⃗x + ¯xª««⃗ x 30 

 

This algorithm has multiple advantages, it is fast and can be used on a local computer with high 

performance. Unfortunately, he is known to have convergence problems when the geometry is 

close to an energetic minimum where geometric oscillations can appear around the energetical 

minima. 

I. C. 1. A. (II) - THE CONJUGATED-GRADIENT ALGORITHM 

The conjugated-gradient method is different: it produces directions that do not show the 

oscillatory behaviour or the steepest descent methods in narrow valleys. In the previous 

process, both the gradients and the direction of all the successive steps are orthogonal. In 

contrast, in conjugated gradient, the gradients at each point are orthogonal, but the direction is 

called conjugate. That means this method takes into account all the previous steps to define 

more precisely the direction of the vector ª««⃗ x. This vector is defined using the direction ª««⃗ x�M 

following the equation (31): 

ª««⃗ x = −∇�«⃗ .�0 + ∇�«⃗ .�0	 ∙ ∇�«⃗ .�0∇�«⃗ .�±²0	 ∙ ∇�«⃗ .�±²0 ª««⃗ x�M 31 

 

The main interest of this algorithm is to avoid the convergence problems due to the geometric 

oscillations that can appear around the energetical minima with the steepest-decent method. 

This algorithm improves the accuracy because the direction is adjusted at each step to optimize 

the energetical minimum search. Regrettably, this one also has two primary deficiencies: first, 

it has a low efficiency correcting structural failure in the initial geometry of the system. 

Secondarily, the conjugated-gradient approach is highly dependent on the initial structure 

because all the new directions are dependent on the previous ones, implying that if the initial 

geometry has defaulted, the results with the conjugated-gradient algorithm will be unreliable. 

In conclusion, one of the best solutions would be to use the steepest-descent algorithm to 

correct the initial geometry and contacts between atoms and then use the conjugated-gradient 

algorithm to precisely find the structure corresponding to an energetical minimum. 



 

Page 35 / 254 
 

I. C. 2 - MOLECULAR DYNAMICS (MD) 

MD is a molecular simulation method that allows sampling the phases of the system starting 

from an initial configuration. This method can predict a huge number of phenomena (host-

guest receptor interaction, host behaviour under different solvents). 

The MD follows the Boltzmann law, meaning that the probability of sampling a particular 

conformation bears an exponential relation with its relative energy. As the passage between 

two wells of potential energy can be considered a rare event, we need to extend the simulation 

(i.e., sample a larger number of configurations) or start from another geometry to observe these 

transitions. The ergodic hypothesis states that the average of a process parameter over time and 

the average over the statistical ensemble are the same. Assuming this hypothesis, we could 

determine the interaction free energy between a host and a guest and compare it to the 

experimental values. Of course, this will only be valid if we have observed the binding and 

unbinding event a sufficiently large number of times. Additionally, the MD allows us to study 

the dynamic behaviour under different stimuli (solvation type…). 

MD follows Newton’s second law of motion, which relates the sum of the forces applied to the 

system to its acceleration, such as: 

H `⃗ = ³ × µ⃗ 32 

 

Where F represents the sum of the force exerted on the atom, of mass m and acceleration µ⃗. As 

we stated in the previous part, the force on an atom is obtained by calculating the energy of the 

system. And as we explained in the last part, the energy of the system (�
¶
���) is a summation 

of the calculated ���������� and the kinetic energy: 

�
¶
��� = �potential + �kinetic 33 

 

Considering the energy of the system, if we derive the energy as a function of the position of 

atom i, we can say that: 

�̀ = − h�hP� 34 
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Following that transformation, we can rewrite the equation (34) simply by rewriting the 

acceleration as the second derivative of the position with respect to time, giving the following 

equation (35): 

− h�hP� = ³� . µ� =  ³� hOP�h½O  35 

 

This transformation gives the relation between the energy of the system and the coordinates.  

Practically, It is impossible to calculate the coordinates directly as there is no analytical 

resolution of this equation. Then the coordinates are going to be approximated using a 

polynomial function. First: the accelerations of the atoms are calculated using the newton law. 

The integration of the accelerations allows to estimate the velocity, and finally, the position is 

obtained by the integration of the velocity:  the Taylor expansion (equation 36): 

P.½ + �½0 = P.½0 + m.½0�½ + µ.½0 �½O2 + ⋯
m.½ + �½0 = m.½0 + µ.½0�½ + ¾.½0 �½O2 + ⋯
µ.½ + �½0 = µ.½0 + ¾.½0�½ + ¿.½0 �½O2 + ⋯

 36 

 

The integration step �½ defined as the gap between the initial values at time ½ and the values at 

the time t1 (equal at ½ +  �½). Thus, the position at the time ½ are used to determine the positions 

at the time ½ + �½, themselves then used to obtain the positions at time ½ + 2�½ and so on. 

The Taylor expansion allowing to reach these values necessarily leads to an approximation in 

the obtained results, as truncated at the 2nd term. The validity of this development is all the 

more significant as performed on a small value of δt. Moreover, since the objective of this 

algorithm is to correctly represent the motion of the atoms with respect to each other, it must 

be able to describe the fastest molecular motions. This constraint exists in all cases where the 

molecular motion must be represented by an algorithm leading to discrete values. This notion 

is called Nyquist frequency and is defined as the maximal frequency that a signal must contain 

to allow its unambiguous description by sampling at regular intervals. In the case of the 

molecular systems, the Nyquist frequency corresponds to the frequency of the fastest 

interatomic vibration and is equal to 1fs. For that reason, δt cannot be higher than this value. 
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Multiple algorithms that allow this estimation of the new coordinates exist. The two well-

known are the Verlet98 and Leap-frog99 algorithms and are presented in the following part. 

I. C. 2. A - VERLET ALGORITHM 

The verlet algorithm takes into account the coordinates at the time ½ − �½ and ½ and the 

acceleration at time ½ to calculate the position at time ½ + �½. 

P.½ + �½0 = P.½0 + m.½0�½ + µ.½0 �½O2P.½ − �½0 = P.½0 − m.½0�½ + µ.½0 �½O2
 37 

 

The addition of the two previous equations gave us the position at the time ½ + �½: 

P.½ + �½0 = 2P.½0 − P.½ − �½0 + µ.½0�½O 38 

This algorithm does not use the velocity to calculate the new positions of the atoms. It is a very 

stable method that has to advantage of being reversible. 

I. C. 2. B - LEAP-FROG ALGORITHM 

The leap-frog algorithm is divided into two integration steps in order to be more precise in the 

calculation of the new coordinates. The velocities are calculated at the time ½ + MO �½ and they 

are used to calculate the positions at the time ½ + �½ such as: 

P.½0 = P ¦½ + �½2 − �½2 © =  P ¦½ + �½2 © − m ¦½ + �½2 © �½2P.½ + �½0 = P ¦½ + �½2 + �½2 © =  P ¦½ + �½2 © + m ¦½ + �½2 © �½2
 39 

 

By subtracting the two equations, we obtain the expression of the position at the time ½ + �½: 

P.½ + �½0 = P.½0 + m ¦½ + �½2 © �½2  40 

 

The velocity at the time ½ + MO �½ are calculated using the velocity at the time ½ − MO �½ and the 

acceleration at the time t: 
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m ¦½ + �½2 © = m ¦½ − �½2 © + µ.½0�½ 41 

 

As the Verlet algorithm, the Leap-frog algorithm presents as well stability and reversibility 

properties. The Leapfrog one is generally more precise than the Verlet integration by using a 

smaller integration step. It is the one that we use with the AMBER software for MD. 

I. C. 2. C - THE BERENDSEN THERMOSTAT AND BAROSTAT 

The microcanonical statistical ensemble (N, V, E) for which the system's total energy is 

conserved is the natural study set of the classical MD. But practically, our interest is to study 

systems close to the experimental condition, implying a temperature or a pressure defined by 

the environment. For that reason, which is led by the experimental condition, It is possible to 

introduce a thermostat and a barostat in the modelling that will fix the temperature and pressure 

of the system, respectively. Multiple thermostats and barostats exist.100 One of the most known 

is the Berendsen one.101 

I. C. 2. C. (I) - BERENDSEN THERMOSTAT 

The Berendsen thermostat introduces the energy exchanges in the simulation to maintain 

constant the temperature of the system. It is a method of weak coupling that is modifying the 

equation of motion to introduce the first-order relaxation from the temperature e to the 

reference temperature e�:  

he.½0h½ = e� − e.½0y	  42 

 

The relaxation of the temperature is controlled by a constant that depends on the thermostat: y	. In each step of the simulation, the particles' velocity is corrected to add or remove energy 

in the system. The correction factor À.�0 is written: 

À.�0 = Á1 + ∆�y	 ¦ e�e.e0 − 1©ÂMO
 43 
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The constant y	 have to be well controlled, this parameter is dependent on the system and needs 

to be smaller enough to maintain the temperature close to the reference temperature (e�) but 

sufficiently big to avoid any perturbation of the dynamic. 

I. C. 2. C. (II) - BERENDSEN BAROSTAT  

Like the thermostat, the barostat of Berendsen is a weak coupling method that will dictate to 

the system external mechanical constraints assimilated to the external pressure. This constraint 

is generally isotropic but, in some particular cases, can be non-isotropic. The principle of the 

barostat algorithm is very close to the thermostat one. Still, in that case, the corrected 

parameters are the atomic positions and the mesh of the simulation box, such as: 

hÃ.½0h½ = Ã� − Ã.½0yÄ  44 

 

Where yÄ correspond to the time constant associated with the relaxation of the barostat. As the 

pressure at constant temperature is linked to the volume by the isothermic compressibility (Å	), 

the coupling is carried out by correcting the coordinates of the particles and the size of the 

simulation box. In the case of an isotropic system in a cubic box, the correction factor µ.½0 can 

be written: 

µ.½0 = 1 − Å	∆�3yÄ �Ã� − Ã.½0� 45 

 

All the simulations have been done at constant pressure in that thesis. The Berendsen 

thermostat is extremely efficient for relaxing a system to the target temperature, but once your 

system has reached equilibrium, it might be more important to probe a correct canonical 

ensemble. For that reason, we decided to move to newer barostats and thermostats in some 

systems, and we made a try with Nose-hoover102 thermostat and Langevin103 thermostat to 

better interact with the solvents. The principle of these newer thermostats compared to the 

previous algorithm is basically to extend the real system by the addition of an artificial 

dynamical variable (associated with a “mass" and a velocity that plays the role of a time-scaling 

parameter. 
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I. C. 2. D - PERIODIC BOUNDARY CONDITIONS AND SUMMATION METHODS 

 
Figure 7: Schematic view of the periodic boundary conditions inspired by ISAAC program104 

The purpose of the MD is to simulate a molecular system in order to propose a model that 

relates the experimental measurement with a possible explanation at the atomic level 

considering the motion of the different moieties of the system. To do that, we have to reproduce 

as precisely as we can the biological conditions, implying the solvents that are known to be 

involved in the structuration of the molecules and conditionate the interactions between host 

and guest molecules. For that, the studies of a condensed phase are realised considering a 

simulation box of volume d containing Y particles. For that box, the energy potential of the 

system can be written as a double summation of their constituents: 

� = H H d�ÈÈR�� �|� − |È� = 12 H H d�ÈÈÉ�� �|� − |È� 46 

 

Then this system is going to be simulated in the periodic boundary conditions: the solvent box 

is replicated to infinity in the three directions of space. Figure 7 schematize this concept. This 

allows us to neglect the border effect and the dispersion of the solvent molecules: if a molecule 
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goes out of the box, it will reappear on the opposite side, which allows keeping a constant 

number of molecules in the simulation box. Then we can rewrite the previous equation to take 

into account the interaction between particles of the box and with all the periodic images: 

� = 12 H H H d�ÈÈ�� �|� − |È + �� 

Ê ≠ ¯ r- � = 0 

47 

 

Where n is a translational vector between the simulation box and one of the images. If we 

consider a cubic box of size Í, we have: � =  ���Í, �¶Í, �ÎÍ� with ���, �¶, �Î�  ∈  ℤi. As we 

stated before, most of the potential is isotropic and has long-distance dependence of the form: d.P0 ~ P��. Allow us to distinguish short-range potential (³ > 3) from the long-range 

potential (³ ≤ 3). 

The periodicity of the box does not cause any problems for the short-term interactions like the 

Lennard-Jones potential. And the equation (47) converges quickly, a truncation radius (P���0 

can be introduced in order to limit this summation for the terms that respect the relation: Ô�|� − |È + �� ≤ P���Ô. Then the successive terms corresponding 

to non-zero values of n, will then be neglected. The mean error introduced by this 

approximation is written using a radial distribution function (Õ�È.P0) of the form: 

〈∆�〉 = 2Ö Y�YÈd f hP PO�×Ø.P0d�È.P0Ù
�ÚÛÜ  48 

 

With the assumption that Õ�È.P0  →  1 at very long range, we can introduce a corrective term 

for the equation (48) such as: 

��È����. = 2Ö Y�YÈd f hP POÞ×Ø.P0Ù
�ÚÛÜ  49 

 

For the Lennard Jones potential, this correction term is expressed as follows: 

��Èo¢,����. = 8Ö Y�YÈd k�È �Èi à19 ¦ �ÈP���©â − 13 ¦ �ÈP���©iã # 50 
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But for the long-range energetic interaction such as the electrostatic one, It is necessary to 

introduce some specific method to be able to obtain the energy. The descriptions of the 

electrostatic interaction between two charges are usually done with long-range potentials such 

as d.P0 ~ P�M. The electrostatic energy of the system can be written like that: 

��������
����� = 18Ök� H H H ���ÈÔ|� − |È + �ÔÈ��  

Ê ≠ ¯ r- � = 0  
51 

 

The idea is to perform the summation over the different images (the sum on �) by order of 

increasing distance with the simulation box. Unfortunately, the sum converges too slowly for 

its direct evaluation to be possible. For that, we have to use the Ewald particle mesh method 

that differentiates the short and the long electrostatic interaction by using the Ewald 

summation. The Ewald summation will modify the equation (51) that converge too slowly by 

a summation of two terms that converge quickly: the charge is defined as the summation of 

two density: the real space + the reciprocal space (obtained by a Fourier transformation of the 

electrostatic potential). The following Figure 8 represents this schematic transformation: 

 

 
Figure 8: The schematic transformation of the Ewald summation method 

The electrostatic potential of the system can be written as follow: 

å.P0 = å����.P0 + å����������.P0 52 

 

And the electrostatic energy such as: 

��������
����� = 12 H ���å����.|�0+ å����������.|�0 − �
�����  53 
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With �
��� called the self-term and representing a corrective term introduced to remove the 

interaction of each charge with itself. Considering explicitly the potential, the expression of the 

electrostatic energy of the previous equation (53) became: 

��������
�����  = H H H ���È8Ök�
}P-¿�¯�Ô|� − |È + �Ô�Ô|� − |È + �Ô∗

È��
+ 2Öd H H H ���È4Ök�

}+~ ¦− t²4¯�O©
t²È }�x.��×��Ø�

�xÉ�
− H 2¯���O√Ö − 12 H H ���È4Ök�

}P-¿�¯�Ô|� − |ÈÔ�Ô|� − |ÈÔn
È��   

 

54 

 

Where k is a vector of the reciprocal space. The sum ∑  nÈ relates to all atoms β that belong to 

the same molecule as atom ¯, while the sum ∑  ∗È  instead relates to all atoms β that do not 

belong to the same molecule as atom ¯. 

In practical terms, we introduce a truncation radius P��� because the sum in the real space has 

a fast convergence. In the same way, the sum of the reciprocal space is dependent on the values 

of ‖t‖ and It is faster when ‖t‖ increase. The choice of the Ewald parameters (¯� , ‖t‖, P���) 

determine the precision and efficacy of the summation method. 
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II - SOLVATION MODELS 

II. A - INTRODUCTION 

In the molecular processes, most of the biological processes take place in a solvated 

environment. Solvation is known to be fundamental in molecular association and takes a very 

important place in the binding free energy. But finally, what is solvation? The IUPAC defines 

solvation as an interaction of a solute with the solvent, which leads to the stabilization of the 

solute species in the solution.105  

The solvent can be classified by their dielectric constant in vacuum (k): 

- A solvent is considered as polar if k > 15 (Water, Acetonitrile, Ethanol…). 

- A solvent is considered as non-polar if k ≤ 15 (Toluene, Chloroform, 

Dichloromethane…). 

 

For the polar solvent, we can add a subclassification between protic and aprotic: a solvent is 

called protic if it contains a labile proton that can be taken by another molecule. Aprotic 

solvents cannot donate protons. Three main models of solvation can be defined: 

- The explicit solvation model: where the molecular details of each solvent molecule are 

defined in the medium. 

- The implicit solvation model: where the solvents are treated as a continuous medium. 

- The Hybrid model: where the two previous models are used to simulate a molecular 

environment, one solvation sphere is treated explicitly while the rest of the simulation 

box is treated using an implicit solvation model. 

II. B - EXPLICIT SOLVATION 

As explained before, in the explicit solvation model, the solvent is considered in the simulation 

as a set of molecules with all the molecular details and the possibility of the solvent molecule 

to interact with themselves and with the solute. For the molecular simulations, this means the 

solute molecule needs to be parametrised by the force field to be simulated. We know that the 

intramolecular and intermolecular terms will be considered all along with the simulation. The 

free energy of solvation will be calculated by simulating the solute-solvent interactions. We 

clearly understand at this step that the initial configuration is fundamental and determine the 

quality of the simulation. 



 

Page 45 / 254 
 

II. B. 1 - TIP3P WATER MODEL 

A solvent model is defined by its geometry: with the addition of other parameters such as the 

Coulombic potential and Lennard-Jones parameters. 

A water molecule can be schematically represented as follow in Figure 9: 

 
Figure 9: Representation of a water molecule inside the TIP3P model 

with the values extracted from idc technical reference106 

Considering the Water solvent, there exist more than 46 different models, the one presented in 

the figure corresponds to the most commonly used water model: the TIP3P107. In the TIP3P 

three-site are considered, and they have three interaction points (one for each of the three atoms 

of the water molecule). 

II. B. 2 - OTHER SOLVENT MODELS 

For other solvents, the principle is exactly the same, and the equivalent parameters have to be 

defined related to the geometry of the solvent molecules. For some of the solvent molecules, 

the parameters are not implemented in the AMBER suite that we used for MD simulation. In 

those cases (chloroform, Acetonitrile…), the molecules were optimised at QM level using DFT 

calculation, and RESP charges were derived, then replicated in a box and equilibrated using 

the AMBER MD package. The parameters and coordinates were then saved for their use in 

other simulations. 

In conclusion, the explicit solvation model considers solvent-solvent interactions and is known 

to treat better the solvent-solute interaction, but they are mainly used at the MM level. To go 

into the SQM model and the DFT calculation, we have to take into account solvation implicitly. 
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II. C - IMPLICIT SOLVATION 

In the implicit solvation, the solvent is treated as a continuous polarizable medium, the 

dielectric constant k is fixed while the solute is simulated in the cavity in the medium. 

The free energy of the solvation is given by the general equation (55): 

�
�� =  ��� + ���
� + ����� + ��� 55 

 

With ��� representing the free energy required to form the solute cavity (there is an entropic 

cost due to the reorganization of the molecules of solvents around the solute), ���
� represent 

the Van der Waals interaction between the solute and the solvent. ����� represent the 

electrostatic interaction term between the solute and the solvent (i.e., coulombic component) 

while ��� represent the hydrogen bonding term. Depending on the particular implicit solvation 

model, these terms may differ, and not all of them need to be considered explicitly.  

The way the implicit models can be implemented is represented in the following schematic 

Figure 10. 

 
Figure 10: Implementation of implicit solvation on a solute 

II. C. 1 - GENERALIZED BORN SOLVATION AREA (GBSA) 

The GBSA implicit solvation model is implemented in the SQM program xTB. In the GBSA94 

model, a solute is considered as a continuous region with a fixed dielectric constant k�� and 
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surrounded by infinite solvent medium with a different dielectric constant k���. In the presence 

of the polarized solvent, the electrostatic interaction can be expressed as follow: 

∆�qê = − 12 ¦ 1k�� − 1k���© H H �T�ê
¦|TêO + µTµê}+~ Á− |TêO4µTµêÂ©MO

K
êLM

K
TLM  

56 

 

Where µT/ê is expressed as the effective Born radii of the respective atoms A and B. In the 

xTB Hamiltonian, the GB model is defined as second-order fluctuation in the charge density 

and can be described by the atomic potential dTqê such as: 

dTqê = ¦ 1k�� − 1k���© H �ê
¦|TêO + µTµê}+~ Á− |TêO4µTµêÂ©MO

K
êLM  

57 

 

The born radii that are required to measure the ∆�qê are estimated by Onufriev–Bashford–

Case (OBC) corrected pairwise approximation of the given volume as follow: 

1µT = 1µ
���� � 1|T�� − |���
�� − 1|T�� ∙ tanh[¾ΨT − ¿ΨTO + hΨTi]� 58 

 

Where |T�� define the covalent radius of atom A, µ
���� and |���
�� are global parameters, 

and ¾, ¿, and h are the parameters for the OBC equation and respectively equal to 1.0, 0.8, and 

4.85. We saw in this equation that the OBC correction increases the Born radii for atoms buried 

deep inside a molecular cavity, implying an underestimation of them logically. ΨT is the 

pairwise approximation of the given volume integral given by: 

ΨT = |T�� − |���
��2 H Ω.|Tê, |T��, ïê|ê��0ê  59 

 

With Ω, the pairwise function is used to approximate the volume integral that mainly depends 

on the distance and the covalent radii. The ïêterm is here to correct the overestimation of the 

volume generated by this approach by correcting the covalent radius of the second atom. 
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In addition to the polar contribution to the solvation energy, a non-polar surface area 

contribution that depends on the solvent-accessible surface area (SASA) is given by: 

∆�ðTðT = H �T T
K

TLM  60 

 

With �T representing the surface tension and  T the SASA of the atom A. The SASA approach 

is also used for the hydrogen-bond contributions such as: 

∆�qê®�ê = ∆�qê − H ÕT�ê�TO  TñTT  61 

 

Where ÕT�ê represent the strength of the hydrogen bonds between the considered atom and the 

solvent molecules and ñT represent the surface area of the free atom. Practically speaking, in 

xTB, the hydrogen-bond correction enters the Hamiltonian as a potential due to the charge 

dependency. 

Finally, the total solvation free energy is given by: 

∆�
�� = ∆�qê®�ê + ∆�ðTðT + ∆�
���� 62 

 

An additional ∆�
���� is also included to correct the equation (62) (implicitly taking into 

account the ��� and ���
� terms). Finally, this solvation free energy is fitted by four different 

parameters: the Born radius offset, the Born radius scaling, the probe radius of the solvent 

molecule, and the value of the ∆�
����. The xTB implementation of the GBSA implicit 

solvation model also adds three parameters that are specific to the considered element; the 

descreening value, the surface tension, and the hydrogen bond strength.108 
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III - MACHINE LEARNING METHODS 

III. A - UNSUPERVISED METHODS 

Unsupervised ML uses algorithms to analyse and cluster a dataset based on labelled data. The 

idea behind these algorithms is to find hidden patterns to group data without the need for human 

interventions. The unsupervised ML methods are not designed to predict but to cluster.   

III. A. 1 - PRINCIPAL COMPONENT ANALYSIS (PCA) 

III. A. 1. A - INTRODUCTION 

The problem of the PCA came when we studied a dataset with an important number of 

quantitative variables, how to plot them on a global graphic? The difficulties come from the 

fact that the studied individuals are not anymore represented one two-dimensional plot, but in 

an n-dimensional plot where n is related to the number of quantitative variables. The objective 

of the PCA is to reduce the dimensional space without deforming the reality of the sampling 

of the dataset. Mathematically speaking, the PCA consists of going from a representation in 

the canonical basis of the initial variables to a representation in the basis of the factors defined 

by the eigenvectors of the correlation matrix. The PCA has two main interpretations: (a) the 

statistical interpretation and (b) the geometrical interpretation.109,110 

III. A. 1. A. (I) - THE STATISTICAL INTERPRETATION 

Using the matrix of the correlation tables, we can have the coefficient of the linear correlation 

of the variables taken two by two:  a succession of bivariate analyses. The diagonalization of 

that matrix gives the variances of the considered variables. The variance can be used to take 

into account the dispersion of a quantitative variable. 

In the end, each line of the matrix corresponds to a virtual variable (called a factor) whose 

column gives the variance. One factor is a linear combination of the initial variables in which 

the coefficient is given by the coordinates of the eigenvectors. Then the PCA can be defined as 

the search for the linear combinations of the greatest variance of the initial variables (the 

eigenvalues). 
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III. A. 1. A. (II) - THE GEOMETRICAL INTERPRETATION 

Another interpretation of the PCA is geometrical. Each individual xi can be considered as a 

vector of p components in the vectorial space. The PCA is the search of the best plane of 

projection: the closest one considering the generalized least-squares method in order to obtain 

the best representation of the individuals in a reduced subspace. This concept can be visualized 

in Figure 11: 

 
Figure 11: Geometric interpretation of PCA as the search for the best representation subspace of the 

considered sample111 

III. A. 1. B - THE VECTORIAL SPACE OF THE PCA 

If we consider a ~ number of real variables òQ (j=1, …, p) observed in n individuals affected 

by their respective statistical weight ó� such as: 

∀�=  1, … , � ∶  ó� > 0 }½ H ó� = 1�
�LM∀�=  1, … , � ∶  +�Q = òQ.r0, ³}µ÷øP} ù- òQ  ù� ½ℎ} r�hrmrhøµu r  63 

 

These measures can be grouped on a .� × ~0 order matrix: 

ℳ =  
⎝
⎜⎜
⎛  ò1 ⋯ òs ⋯ òÃ1 +11 ⋯ +1s ⋯ +1Ã⋮ ⋮ ⋱ ⋮ ⋱ ⋮r +r1 ⋯ +rs ⋯ +rÃ⋮ ⋮ ⋱ ⋮ ⋱ ⋮� +�1 ⋯ +�s ⋯ +�Ã⎠

⎟⎟
⎞

 64 
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For each individual i, a vector xi is associated containing the ith line of X. It is an element of the 

vectorial space � with p dimension. With ℝ�, the canonical basis k and a matrix M giving it a 

Euclidean space structure we have E isomorph at .ℝ�, k, ℳ0. E is then describing the 

individual space. While foreach variable òQ a vector xj
 is associated containing the jth centred 

column (where the mean of the column is subtracted for all the columns). It is an element of 

the vectorial space noted F of dimension n. With ℝ� the canonical basis ℱ and a matrix D that 

is the diagonalize if the weight ó� with ª =  hrµÕ.ó�, . . . , ó�0. ℱ is isomorph at .ℝ�,ℱ, ª0 

and represent the space of the variable. 

In general, a model is written as: observation = signal + noise. In the PCA, the matrix of the 

data comes from the observation of n independent vector �+�, . . . , +��, with the same covariance 

matrix σOΓ but with different expected values 
�, contained in a sub-ensemble of dimension q 

(with q < p) of E. Finally, the PCA corresponds to the approximation of a matrix (n;p) by a 

matrix of the same dimensions but of rank q < p. 

III. A. 1. C - OBJECTIVE AND CONCLUSION 

The objectives of a PCA are multiples: 

1. The optimal graphical representation of the individuals minimizing the deformations of 

the scatter graph in a subspace Eq of dimension q (q < p). 

2. The optimal representation of the variables in the subspace Fq making explicit the initial 

links between these variables. 

3. The dimensional reduction of X by a table of rank q (q <p). 

 

As an unsupervised method, the PCA cannot be used for prediction, but it is a fundamental tool 

for the clustering analysis and as well to prepare the dataset in order to be used for proper ML 

analysis. In order to analyse the PCA, several graphics can be made with the methods and will 

be presented in the next part. 

III. A. 1. D - GRAPHICAL OUTCOME 

Several graphics can be generated for the analysis of the PCA: the projection of the individuals, 

the projection of the variables, and the dimensional analysis (screeplot) will be presented here. 
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III. A. 1. D. (I) - INDIVIDUALS’ ANALYSIS 

Each individual i represented by xi are approached by their projection ℳ-orthogonal 
���  in the 

subspace ��� created by the first q principal vector �mM, . . . , m��. With }� a vector of the canonical 

basis of E, the coordinate of the individual i in vk is given by: 

〈+� − +̅, mx〉U = .+� − +̅0n�mx = }n�ò��mx = ¿�x 65 

 

In that type of graphic, the quality of the representation is measured by the explained dispersion 

such as: 

P� = ½Pï�Ã�G½Pï� = ∑ Àx�xLM∑ Àx�xLM  66 

 

The dispersion of a one-dimensional scatterplot with respect to its mean is measured by the 

variance. In the multidimensional case, the dispersion of the scatterplot Y with respect to its 

barycentre x is measured by the inertia, generalization of the variance: 

��.Y0 = H ó�‖+� − +̅‖UO = ‖ò�‖U,pO = ½P.ò�′ªò��0 = ½P.ï�0�
�LM  67 

 

Then the quality of the representation of each xi is given by the cosinus square of the angle it 

forms with its projection: 

[cos.+� − +̅, 
��� 0]O = ÔÃ�G .+� − +̅0ÔUO‖+� − +̅‖UO = ∑ �¿�x�O�xLM∑ �¿�x�O�xLM  68 
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This concept is illustrated in the following Figure 12: 

 
Figure 12: Individuals analysis using the iris dataset provided by R and the factoextra package112 

III. A. 1. D. (II) - VARIABLES ANALYSIS 

A variable Xj is represented by the D-orthogonal projection ���+Q in the subspace Fq created 

by the q first factorial axes. The coordinate of xj on uk is: 

〈�Q, øx〉 = �Q�ªøx = 1�Àx +Q�ªòa�mx   
   = 1�Àx }Q�òa′ªòa�mx = �ÀxmQx

 69 

 

And the quality of the representation of each � j is given in a same relative way as presented 

before, by the cosinus square of the angle it forms with its projection: 

�cos ���Q,���+Q��O = Ô����QÔpO‖�Q‖pO = ∑ Àx�mQx�O�xLM∑ Àx�mQx�O�xLM  70 
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The variable analysis is illustrated in the following Figure 13: 

 
Figure 13: Variables analysis using the decathlon dataset provided by R and the factoextra package112 

III. A. 1. D. (III) - SCREEPLOT 

The screeplot (Figure 14) represents the decrease of the eigenvalues. In principle, we can search 

which components are important for the prediction using this graphic. Intuitively, the larger 

the difference �À� − À�®M� is significantly large, and the more we can be sure of the stability 

of ���. 

 
Figure 14: Screeplot using the decathlon dataset provided by R and the factoextra package112 
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As an example, in Figure 14, we might want to stop at the fifth principal component. 87% of 

the variances contained in the data are retained by the first five principal components. The 

minimal required values to stop the analysis is different by the dataset considered, but in 

general, you can consider you explained enough variability if you are > 80%.  

III. B - SUPERVISED METHODS 

III. B. 1 - INTRODUCTION 

QSAR (Quantitative Structure-Activity Relationship) is a method to predict molecular 

properties using mathematical models.113 Practically speaking, a QSAR model is a statistical 

model used to predict a function - using a panel of molecular descriptors114,115 (+0 and a 

labelled biological activity (�0 (such as binding free energy) such as � = -.+0. The objective 

of the model is to capture the relationship between molecular descriptors and biological 

activity. The elaboration of a QSAR model requires several components: (i) a dataset with 

experimental measurements of the biological activity (input data), (ii) a dataset of molecular 

descriptors that describing the studied molecules, and (iii) ML models to identify the 

relationship between the experimental values and the molecular descriptors.  

In this thesis, the molecular descriptors are calculated using the CORINA web platform116. The 

data pre-processing and the details about molecular descriptors will be given in the next part 

of the thesis. Unlike unsupervised ML, a supervised ML algorithm is an algorithm that relies 

on labelled input data to learn and predict a function producing a decent output when given 

new unlabelled data. This class of ML algorithm can be used for two different problems linked 

to the type of the labelled input: 

- The classification problem concerns the prediction of a class label represented in the 

learning dataset by a qualitative variable. In the classification problem, the learning 

algorithms will produce a function -: ℝ� → �1, … , t� with t representing the different 

categories. 

- The regression problem concerns the prediction of a numerical variable. The regression 

problems represent a very challenging problem in the field of numerical prediction. In 

the regression problem, the learning algorithm must define a unique function using a 

vector input to a categorical output. When some inputs are missing rather than 

providing a single classification function, the learning algorithm must learn a set of 
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functions. Each of the new functions will be used to classify the descriptors (+) with a 

different subset of its input missing.    

III. B. 2 - K-NEAREST NEIGHBOURS (KNN) 

III. B. 2. A - INTRODUCTION 

The Knn algorithm belongs to the discriminant analysis class.117 The idea behind the 

discriminant analysis is to model a variable Y of ³ conditions using ~ quantitative variable òQ , s = 1, … , ~ observed on the same sample Ω of size �. The general principle is to use 

individuals for whom the òQ are known but not the Y and to decide of the modality of e� of Y 

of these individuals. As the variables have to be quantitative, the qualitative variables are 

replaced by indicators variables. 

The final objective is to define some decisions rules: + =  �+M, … , +�� designing the 

observation of explanatory variables on an individual, with �Õ� , u = 1, … , ³� the barycentres 

of the classes calculated in the sample and +̅ the global barycentre. 

The empirical covariance matrix can be decomposing such as: 

ï =  ÷� +  ï� 71 

 

Where ÷� is called the explained variance and ï� is called the residual variance: 

ï� = ò��′ªò�� = H H ó�.+� − Õ�0.+� − Õ�0′�∈��
�

�LM
ï� = �̅′ª�����  = ò����′ªò������� = H ó�����

�LM .Õ� − +̅0.Õ� − +̅0′  72 

 

III. B. 2. B - NON-PARAMETRIC ESTIMATION 

The estimation is defined as non-parametric when the number of parameters to estimate is 

infinite. Then the statistical object became a regression function: , = -.+0 or a density of 

probability ℎ. In these cases, we can consider that the density is following a Gaussian 

distribution whose parameters are estimated. In practice that the density ℎ that is estimated: ∀+ ∈  ℝ, ℎ.+0 is estimated by ℎa.+0. To use this relationship with relatively good accuracy, 

you need to use it on large samples: this concept is called the “curse of dimensionality”. 
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The Knn algorithm is one of the approaches that estimate the density of ℎ�.+0. This method is 

described in the following Algorithm 1: 

 

ALGORITHM 1: The Knn algorithm ��A µ ÷µ³~u} Ω of size �, to predict a variable Y of ³ modalities, do 

1. Choice of an integer t: 1 ≥ t ≥ � 

2. Calculation of the distances hU.+, +�0, r = 1, … , � where � is the 

Mahalanobis metric (the inverse of the variance matrix). 

3. Save the k observations +.M0, … , +.x0 for which the distances are smaller. 

4. Count how many times these t observation: t.M0, … , t.�0 appear in each of 

the classes. !�'(  

 

Algorithm 1 

 

The number of clusters you want to define for a classification problem is defined by the user. 

III. B. 3 - SUPPORT VECTOR MACHINES (SVM) 

III. B. 3. A - INTRODUCTION 

The SVM is a class of powerful and flexible modelling techniques.118 The SVM is a class of 

learning algorithms initially defined for discrimination, i.e., the prediction of a binary 

qualitative variable. They were then generalized to the prediction of a quantitative variable. 

SVM can both be used for classification and regression problems but has only been used for 

regression problems in the thesis. 

III. B. 3. B - SVM FUNCTIONS 

SVM for regression use a function similar to the Huber function (i.e., a loss function that uses 

the squared residuals when the residuals are “small” and use the absolute residuals when the 

residuals are large), with one important difference. A threshold called ε is set by the user and 

separates the data points into two classes: those below the threshold that will not contribute to 

the regression fit and data points that are larger than the threshold that will contribute to a 

linear-scale amount. Two main consequences can be extracted from this approach, first, the 

large outliers have a limited effect on the regression equation due to the fact that we do not use 

the squared residuals. Second, small residuals that the model fits perfectly have no effect on 
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the regression equation. To estimate the model parameters, SVM uses the predefined loss 

function and also adds a penalty such as: 

�ù÷½ H Í".,� − ,�#0 + H ÊQO
Ä

QLM
�

�LM  73 

 

Where Í".∙0 represent the k-intensive function, and the Cost parameters is a user parameter 

that penalizes the large residuals. Remember that the linear regression model predicts new 

samples using linear combinations of the dataset constituents. For a given sample $, the general 

equation is written: 

,% = Ê� + ÊM$M + ⋯ + ÊÄ$Ä
 = Ê� + H ÊQ$Q

Ä
QLM

 74 

 

For the SVM, the equation is similar, and the estimated parameters can be written as a function 

of a set of unknown parameters .¯�0 and the training set data points so that: 

,% = Ê� + ÊM$M + ⋯ + ÊÄ$Ä
 = Ê� + H ÊQ$Q

Ä
QLM

 = Ê� + H H ¯�+�Q$Q
�

�LM
Ä

QLM
 = Ê� + H ¯�

�
�LM &H +�Q$Q

Ä
QLM '

 75 

 

We can highlight from this equation the fact that there are as many α parameters as there are 

data points (then considered overparameterized from the point of view of the regression 

model). In general, it is preferable to estimate fewer parameters than data points. Fortunately, 

the Cost function regularizes the model to help alleviate this problem. Second, the +�Q (training 

set data points) are needed for the new predictions. This can theoretically be a problem when 

the training set is large. But in fact, many of these data points will have no impact on the 

regression. Only a few of the data points that are judged to be used will be used for the 
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regression. Since the regression line is determined using these samples, they are called support 

vectors because they support the regression line. Finally, in the previous equation, the new 

samples correspond to a scalar product (+′ø), then the equation can be rewritten as: 

-.ø0 = Ê� + H ¯�
�

�LM c.+�, ø0 76 

 

Where c.∙0 is called the Kernel function, the kernel function can have multiple forms, and in 

this thesis, we used the polynomial kernel that can be used to generalize the regression model 

and encompass nonlinear functions of the predictors: 

~ùu,�ù³rµux����� = .å.+nø0 + 10������  77 

 
Figure 15: The SVM residuals versus the predicted values119 

III. B. 4 - RANDOM FOREST (RF) 

III. B. 4. A - INTRODUCTION 

The RF method is an ML method that is based on model aggregation.120 Two types of 

algorithms can be refined, the bagging method121 (bootstrap aggregation) and then the RF 

algorithm that is an improvement of the bagging by adding one random component. These 

algorithms are behind the ML algorithms and the statistics. 

The bagging principle can be adapted to every modelling method, but their interest is really 

highlighted in the case of “unstable” models (a model is defined as unstable if a slight change 

in the input has an important effect on the hypothesis). For that reason, the usage of these 

algorithms does not have a lot of sense in the case of multilinear regression and discriminant 
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analysis. In the case of the tree’s algorithms, the known instability of the trees appears as a 

necessary property for the reduction of the variance by model aggregation. These algorithms 

are based on the bootstrap principle initially. 

III. B. 4. B - PRINCIPLE OF THE BOOTSTRAP 

The bootstrap is defined as a way to replace the probabilistic hypothesis with simulations and 

calculations.121 The idea is to predict the distribution of an estimator when the real distribution 

of the sample is not known or, more often, when it cannot be assumed to be Gaussian. 

Starting with the Plug-in principle: if we consider + =  ��M, . . . ,���, an n-sized sample 

following an unknown distribution F on .Ω, ñ0. The empirical distribution à represent the 

discrete probability of the ��M, . . . ,��� affected by the weight 1/n such as: 

à = H ���
�

�LM  78 

 

Considering � a parameter that is a function of the à distribution. We can write � =  ½.`0, 
and � correspond then to: 

�a = �̅  =  1� H ���
�

�LM  79 

 

Where �̅ is the estimator of �, It is called a plug-in estimator. 

Definition 1: The estimator obtained by replacing the distribution F by the empirical 

distribution is called the plug-in estimator of a parameter θ of F: �a  =  ½� à� 

Bootstrap is used to estimate the standard deviation, such as Considering �a  =  ÷.�0 any 

estimator of θ for a given � sample. One seeks to appreciate the precision of �a and thus to 

estimate its standard deviation. 

Definition 2: we called a bootstrap sample of �, an n-sized sample written: �∗ = ��M∗, . . . ,��∗� 
and following the à distribution, and with �∗ defined as a resampling of � with replacement.  
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Definition 3: We called bootstrap estimation of the standard deviation  ()�θa� of �a, his plugin 

estimation:  (a�θa�. 

Unfortunately, considering the definition 3, apart from in the case where θ is a mean, there is 

no simple way to define this estimator explicitly. For that reason, an approximation of the 

bootstrap estimator is made by a Monte-Carlo like simulation described in Algorithm 2: 

 

ALGORITHM 2: standard deviation estimation 

Considering x a sample and θ a parameter. ��A ¾ = 1 ½ù +,!�  

 ÷}u}¿½ 1 ∶  +∗� =  �+M∗� , … , +�∗�� by sample with replacement in +. 

 �÷½r³µ½} r� ½ℎr÷ ÷µ³~u}: θ∗G .¾0 = ÷.+∗�0 ('! ��A  

  %êO = 1+ − 1 H 0θ∗G .¾0 − θ∗G .∙01 ²ê
�LM

ór½ℎ: θ∗G .∙0 = 1+H 0θ∗G .¾01ê
�LM

 

 

Algorithm 2 

 

With  %êdefined as the bootstrap approximation of the desired plug-in estimate of the standard 

deviation of �a. 

As a conclusion, we can say that the bootstrap relies on a very basic assumption: θ∗G  behaves 

with respect to �a as �awith respect to θ. The knowledge of θ∗G  (distribution, variance, bias, …) 

then informs about the knowledge of θ. 

III. B. 4. C - PRINCIPLE OF THE BAGGING 

Considering Y, the quantitative or qualitative variable we want to predict and �òM, … , ò�� the 

molecular descriptors (the variables) and -.+0 a model following the + function with + = �+M, … , +��  ∈  ℝ�. With � defined as the number of observations and 
 = �.+M, ,M0, … , .+�, ,�0� a sample of the distribution of F. 

Considering B independent sample such as: �
���LM,ê, a prediction using a model aggregation 

method depends on the class of Y: 
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• If Y is quantitative: -êG .⋅0 =  Mê ∑ -23� .⋅0ê�LM  a simple mean of the results for the models 

associated with each sample. 

• If Y is qualitative: -êG .⋅0 = arg³µ+Q ¿µPh5¾ | -23� .⋅0 = s6, in this second case, an 

ensemble of models is constituted to predict the most probable statistical response. 

Behind these two differences, the principle is simple: by averaging the forecasts of several 

independent models, it is possible to reduce the variance and thus to reduce the error. 

Unfortunately, due to the calculation cost, it is unrealistic to consider B independent sample, 

and for that reason, the samples are replaced by B replication of bootstrap sample obtained by � draws with replacement following the empirical measurement à. This concept is described 

below in Algorithm 3: 

ALGORITHM 3: Bagging 

Considering +�the variable to predict and: 
 =  �.+M, ,M0, … , .+�, ,�0� a sample ��A ¾ = 1 ½ù +,!�  

 Draws a bootstrap sample 
�∗ 

 Estimate -23� .+�0 on the bootstrap sample ('! ��A  

Calculate the average estimate -êG .+�0 =  Mê ∑ -23� .+�0ê�LM  for the quantitative 

variable or the results of the probabilistic response for the qualitative model. 

 

Algorithm 3 

 

Naturally, this algorithm gives an easy way to calculate the error of the prediction: the out-of-

bag error (o.o.b): for each observation .+M, ,M0 you can consider the estimated model on a 

bootstrap sample that does not contain this observation. The values of ,% is predicted following 

the algorithm of the bagging (Algorithm 3), and the calculation of the associated prediction 

error, averaged over all observations, gives an estimate of the o.o.b. 

III. B. 4. D - THE RF ALGORITHM 

The principle of the RF is a specific case of the CART (Classification and Regression Trees) 

algorithm that is a bagging algorithm improved by adding a random variable.122 In the CART 

algorithms, the final tree is constructed along with several optimisations that we call “split”. 

Multiple-way to split the trees existing: the most known are (a) the Gini criteria that organize 

the separation of the leaves of a tree by focusing on the most represented class in the data set 
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with the idea that the separation has to be fast as possible and (b). the entropic criteria where 

the construction is based on the reduction of the entropic disorder of the considered sub-dataset 

at each leaf of the tree. By adding a random variable, the idea is to make the aggregation trees 

more independent by adding some flexibility in the choice of the variable that constitutes the 

models. 

One known limitation of the bagging algorithms is the case of correlated variables. Let’s take 

the case of the B independent variables identically distributed, each with variance  ². The 

variance of the mean of B is 
§²ê  and if these variables are identically distributed and correlated 

two by two with a correlation = 1, the variance of the mean can be rewritten  

1 O +  1 − 1+   80 

 

In this case, the second term is decreasing with B, but the first one is limiting the interest of the 

bagging if the correlation is high. This reason motivates the introduction of the randomization 

to introduce in the RF algorithms in order to decrease 1 between the forecasts provided by each 

model. The RF algorithms are presented below in algorithm 4, where the bagging is applicated 

with binary trees, by adding a random draw of ³ explanatory variables among the ~: 

ALGORITHM 4: RF 

Considering +�the variable to predict and: 
 =  �.+M, ,M0, … , .+�, ,�0� a sample ��A ¾ = 1 ½ù +,!�  

 Draws a bootstrap sample 
�∗ 

 Estimate a tree on this sample with randomization of the variables: the search 

of each optimal spl preceded by a random draw of a subset of ³ predictors. ('! ��A  

Calculate the average estimate -êG .+�0 =  Mê ∑ -23� .+�0ê�LM  for the quantitative variable 

or the results of the probabilistic response for the qualitative model. 

 

Algorith

m 4 

 

Considering that, there are different parameters of the RF that you can modify in order to 

improve the prediction: (1) the mtry input setting that represent the number of variables 

randomly sampled as candidates at each split, (2) the ntree input setting that represents the 
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number of trees to grow. Including the general cross-validation parameters, the way you reduce 

the initial variables of the dataset, and the way you separate your sample into training-set / test-

set, there are billions of possibilities. 

III. B. 5 - NEURAL NETWORK (NNET) 

III. B. 5. A - INTRODUCTION 

The NNET algorithm is an algorithm that belongs to the deep-learning class.123 

DL is a set of learning methods that will use non-linear transformation to modelized a dataset 

with complex architectures. The simplest model of DL algorithm is the NNET that are 

combined to form the deep NNET.124,125 It exists multiple architectures of an NNET, the 

multilayer perceptrons are the simplest one and the one we used in this thesis. 

Mathematically speaking, an artificial NNET is a nonlinear application presenting a parameter * that associate to an entry +, an output , such as , = -.+; *0. The parameter * is estimated 

from a learning dataset. The virtual NNET can be used for both classification and regression 

problems. In 1989, Cybenko and Hornik126 defined the universal approximation theorem that 

made the triumph of the method. 

III. B. 5. B - THE ARTIFICIAL NEURONS 

An artificial neuron is a function -Q of the input + =  .+M, … , +�0, weighted by a vector of 

connection weights óQ =  �óQ,M, … , óQ,��, completed by a neuro bias �}½Q and associated to an 

activation function called V such as: 

,Q = -Q.+0 = V�〈"#, %〉 + �}½Q� 81 

 

It exists multiple activation function V, the most used one is the sigmoid function: 

V.+0 =  11 + exp.−+0 82 

 

The structure of the artificial neuron is represented in Figure 16 below: 
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Figure 16: Schematic representation of an artificial neuron where ∑ = 〈"#, %〉 + '()# 

III. B. 5. C - THE PERCEPTRON LAYER 

In the simple case, when implementing an NNET to a dataset, the nodes of the input layer 

consist of the � molecular descriptors that describe the sample (extracted from previous steps). 

The output layer consists of one or several nodes, depending on the classes of the prediction 

(classification or regression). Linking those two nodes will be a number of hidden layers 

composed of a number of hidden units. In the simple case, we only have one hidden layer. The 

prediction process will begin by assigning random weights to the connections between nodes, 

which are then iteratively updated as predictions are verified against the experimental data 

provided in the initial dataset, and the error is back-propagated. In an attempt to limit the 

overtraining of the dataset, another free parameter: the weight decay, is used to apply penalties 

with the aim of limiting such overfitting and controlling the quality of the prediction. 

In a more complex case, the multilayer perceptron (or NNET) is a structure composed of 

several hidden layers of neurons for which the output of a neuron of a layer becomes the input 

of a neuron in the next layer. Figure 17 below represents an NNET with three input variables 

in the input layer, one output variable expected in the output layer, and two hidden layers 

composed respectively by 4 and 5 hidden units. 
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Figure 17: Representation of an NNET 

III. B. 5. D - UNIVERSAL APPROXIMATION THEOREM 

In 1991, Hornik127 stated the fact that any bounded and regular function ℝ� →  ℝ can be 

approximated at any given precision by a NNET with one hidden layer containing a finite 

number of neurons. More precisely, the Hornik theorem can be stated as follows: 

Theorem 1: Let V be a bounded, continuous and non-decreasing function. Let c�be some 

compact set in ℝ� and 8.c�0 the set of a continuous function on c�. Let - ∈ 8.c�0. Then for 

all k > 0, there exists Y ∈ ℕ, real numbers m�and �}½Q and ℝ�-vector ó� such that, if we define: 

`.+0 = H m�
K

�LM V�〈ó�, +〉 + �}½Q�  83 

Then we have: 

∀+ ∈ c�, |`.+0 − -.+0| ≤ k  84 

 

From a theoretical point of view, this theorem is interesting, and even it is not really useful 

because the number of neurons in the hidden node may be very large, it is a stated fact that the 

strength of DL lies in the deep of the network.  
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IV - BINDING FREE ENERGY DETERMINATION 

IV. A - PRINCIPLE OF THE THERMODYNAMIC BASED METHOD 

IV. A. 1 - GIBBS FREE ENERGY 

Considering the general form of the association between a ligand and its receptor, respecting a 

1:1 stoichiometry, we can define the association process as follows: 

| + Í ⇌ |Í  85 

 

The equilibration reaction of this process depends on the thermodynamics properties of the 

Ligand (guest), the Receptor (host) and the complex (RL). The Gibbs free energy can be 

defined as follows: 

;�� = −|e ln.c��

����������0 = ;D� − e;ï� 86 

 

With T corresponding to the experimental temperature, and R is the gas constant. c��

�������� 

represents the equilibrium dissociation constants, and can be defined as the ratio between the 

concentration of the product, and the concentration of the reactants at equilibrium condition at 

1M concentration (��). ;D� represent the enthalpic term, while ;ï� represent the entropic 

term. 

A negative value for ;�� indicates that the binding reaction is favourable under standard 

conditions, and the process is exergonic and spontaneous toward the complex formation. A 

positive value for ;�� is described as the endergonic change, and the binding process is not 

spontaneous. In general, if binding occurs, the expected binding free energy prediction is 

supposed to be negative. 

IV. A. 2 - PROTOCOL USED DURING THE THESIS 

The Gibbs free energies of the optimised geometries were calculated as the sum of the total 

energy, which includes the D4 dispersion correction, thermostatistical corrections calculated 

following a coupled rigid-rotor-harmonic-oscillator approach (GRRHOT), and the solvation 

contribution (Gsolv) calculated by the implicit solvation model GBSA. 

∆� = � + �����	 + �
��  87 

With: 
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∆�
�� = ∆����� + ∆�
�
� + ∆��� + ∆�
���� 88 

 

The association Gibbs free energy is calculated from the difference of the free energies from 

the complex, host, and guest molecules, each on their respective conformational minimum. 

∆����� = ∆�������� − ∆���
� − ∆����
�  89 

 

Considering the complexity of the conformational energy landscape of the complex and host 

molecule, we used multiple geometries of the unbound host system as starting points for 

minimization, thus increasing the probability of finding the absolute minimum. For that, 

multiple structures are extracted from the classical MD simulations to and carry out a geometric 

optimisation at an SQM level, followed up by calculation of the hessian to confirm that the 

final energy is a true minimum (i.e., all vibrational frequencies are positive). Though the 

degrees of freedom of the guest is much reduced, we use a similar protocol for consistency. 
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V - DOCKING 

V. A - PRINCIPLE 

The docking is generally composed of two components: phases: (i) a search algorithm where 

the ligand is positioned in the defined cavity, then (ii) an evaluation of the energetical 

interaction called scoring. In the thesis, molecular docking is used to generate a first guess of 

the Host-Guest structure we chose AUTODOCKVINA128 for our assessment for several 

reasons. It (i) is faster and generally performs better than AUTODOCK itself, (ii) is freely 

available and competitive with commercial tools. 

V. B - PROGRAMS 

V. B. 1 - AUTODOCK4 

AUTODOCK4 is a freely available program that has been developed by Arthur J. Olson from 

the “Scripps Research Institute”. AUTODOCK has its own scoring function and uses a genetic 

algorithm for the search. A genetic algorithm is an algorithm inspired by the evolution process 

to improve a population of solutions iteratively. In the case of the docking, each solution 

corresponds to a possible conformation between the ligand (the guest) and the receptor (the 

host). The first population is randomly chosen. Then coming from that first population, all the 

solutions are considered like a “chromosome” and can randomly undergo mutation and genetic 

events (i.e., mutation type or "cross-over"). The mutation event corresponds to a modification 

of the structure of the given chromosome, whereas the cross-over event corresponds to the 

exchange of equivalent genetic material between two different chromosomes. The new 

conformations are then evaluated using the scoring function and replace the initial confirmation 

if they are better. The mutations are randomly chosen, but as the scoring function is used to 

select the best poses, the notion of selective pressure is introduced. In conclusion, the genetic 

algorithm is a stochastic algorithm that gives the opportunity to study several different 

conformations of the guest molecules. The host conformation, on the other hand, is rigidly 

fixed on the initially provided geometry. This concept is illustrated in the following Figure 18: 
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Figure 18: Illustration of a genetic algorithm129 

Though AUTODOCK is initially is based on a genetic algorithm, three different search 

methods can be used, (i) the pre-explained classic genetic algorithm where the “chromosome” 

is composed by the three cartesian coordinates representing the translation of the guest 

followed by four variables defining the rotation of the guest in the space and finally values that 

correspond to the possible torsion angles of the guest ; (ii) a local search based on simulated 

annealing method of type Monte Carlo can be added to minimize the energy ; (iii) a mixed 

method using both previous approaches in addition to a Genetic Lamarckian algorithm. The 

Lamarckian algorithm principle states the fact that the phenotypes (the individual 

characteristics) can modify the genotypes. In the case of the Docking, the genotype represents 

the ensemble of the genetic operations presented before: mutation, and cross-over, while the 

phenotype represents the score of the guest in the conformation of the genotype. For the 

Lamarckian algorithm, the local research based on the simulated annealing method can modify 

the coordinates of the guest (phenotype) that will be transferred to the corresponding 

chromosome (genotype) and thus to the descendants. 

AUTODOCK4 uses a free energy evaluation score function based on a force field using SQM 

parameters. This force field has been calibrated using a large heterogeneous group of 

experimental data of protein-ligand complexes. 

V. B. 2 - AUTODOCK-VINA 

AUTODOCK-VINA is a docking program entirely derivate from AUTODOCK4 with an 

improvement of the performance by using multithreading and multi-core calculations. At the 



 

Page 71 / 254 
 

same time, the vina algorithm is close to the AUTODOCK4 ones. The Vina scoring function 

uses a hybrid function (empirical + knowledge-based) based on the X-Score function that has 

been calibrated on the “PDBbind” database (a database that gathers the experimental affinity 

values for which the structures of the complexes are known in the PDB but unfortunately not 

well documented). 
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3 

THE HG-DYNAUSOR 

PLATFORM 
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I - INTRODUCTION 

I. A -  CAPABILITIES 

The HG-DYNAusor platform is an automated platform to facilitate the execution of common 

tasks in the modelling of host-guest complexes, including several methods to investigate the 

geometry, dynamics and energy of supramolecular complexes, as well as their individual 

components. An overview of the HG-DYNAusor platform is presented in the following Figure 

19: 

 
Figure 19: An overview of the modules of the HG-DYNAusor platform; the three first modules are part 

of the thermodynamic based approach: (in red) module 1 dedicated to the parametrisation, (in purple) 

the module 2 dedicated to the binding mode generation for host-guest complexes, (in blue) the module 3 

dedicated to the binding free energy calculation and in green the knowledge-based approach with the 

module 4 dedicated to the binding free energy prediction. 

The platform, designed and developed during the thesis, is operational but remains under 

development. It has been used in all the studies of molecular containers presented in the next 

chapters. The platform can be separated into four different modules: three dedicated to binding 

free energy calculation using a thermodynamic based approach. And one module dedicated to 

the binding free energy prediction using a knowledge-based approach. 
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II - PROOF OF CONCEPT USING ACRIDINIUM TWEEZER 

II. A - INTRODUCTION 

As a proof-of-concept, we used a bis-acridinium molecular tweezer. In supramolecular 

chemistry,  tweezer is a term defined for the first time in the late 70s by Whitlock and Chen130 

to indicate molecules capable of producing a 1:1 sandwich complex with a planar aromatic 

guest or dimerizing spontaneously in water. It forms a supramolecular object that looks like a 

pincer holding an object. The folding of this pincer and the formation of the binary complex 

with the guest are mainly intermolecular forces (π-π interactions and hydrophobic interactions). 

Practically speaking, a molecular tweezer consists of two binding units separated by a flexible 

conformational spacer. The conformational spacer is fixing the binding unit with a limited 

distance, thus holding the binding units in a specific conformational space. When the two 

binding units converge, they form a cavity, opened at three sides: a molecular cleft, allowing a 

guest to bind. This molecular tweezer is a part of the final porphyrin-receptor131. This molecular 

tweezer is known to realise self-assembly and narcissistic self-sorting in water: meaning it 

spontaneously organize in 1:1 dimer in water. It will be considered as a simplified model of 

receptor based on a similar scaffold132. 

The goal of the proof of concept can be separated into three parts:  

- Find a methodology for the determination of the binding mode of host-guest 

complexes 

- Find a way to analyze the behaviour of host-guest systems using MD simulations. 

- Validate a way to calculate thermodynamics properties in a relatively short 

computational time, allowing us to calculate the binding free energy for many different 

complexes. 

II. B - GENERATION OF PARAMETERS 

There are two ways to generate the parameters for the MD simulations: extracting the structure 

from a reference crystal or constructing the molecule from the 2D information. In our case, 

both options were tested.  

When there is no reference crystal, a first guess of the molecule's geometry is constructed from 

2D information. In our case, the SMILES code of the molecule is extracted, and a first 

estimation of the 3D structure is made using open-babel, following the gen3d protocol. Because 

the geometry is built from 2D information, some conformational problems may remain in the 
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structure. For that reason, DFT was used for better structural optimisation (using B3LYP, 6-

31G**). The atoms of the molecular tweezer are typed with gaff force field using the 

antechamber module from the AMBERTOOLS package. The missing parameters are generated 

using the parmchk module on the optimised geometry. The partial charge of the molecule is 

calculated using the AM1-bcc charge, implemented in antechamber using the AMBERTOOLS 

package. 

II. C - ASSOCIATION IN WATER: 

Two different methods are used to predict the binding mode: (i) the Spontaneous association 

Molecular Dynamics (SaMD) protocol, (ii) docking followed by MD. As there is an existing 

crystal of the dimer, the obtained structure using the MD simulations was compared to the 

crystal one in terms of geometry and energy. For the generation of the binding mode, unbiased 

MD were used in a protocol we called SaMD. In what we refer to at SaMD, the host and the 

guest are simulated in a TIP3P water box, starting from a dissociated configuration (distance ≥ 

8 Å), extending the simulation until the binding is observed. We believe that this method could 

be a good way to identify the bound state. Identifying several chemical states behind the 

binding mode allows us to understand the binding mechanism better and sample several 

geometries that can be used for binding free energy prediction. 

The other way to generate the binding mode consists of using AUTODOCK-Vina (ADV) to 

generate the first complex. For that specific case, it consists of using the molecular tweezer as 

a guest and host. As it is supposed to dimerize, the guest-tweezer will be docked in the host-

tweezer. The main difference consists in the flexibility of the tweezer. In the case of the host-

tweezer, the used geometry is the one optimised at the DFT level, and as It is the "receptor" for 

the docking, the structure is considered rigid. In contrast, for the guest-tweezer, the docking 

protocol considers the "ligand" fully flexible on his rotatable bonds.  

An overview of the docking and SaMD results is presented in Figure 20: The crystal structure 

(Figure 20A) present a closed-closed conformation. Docking can be done on the closed-

tweezer, the only difference between the host and the guest for the docking protocol will be the 

free rotation of the bonds highlighted in red for the guest (Figure 20B). The two best docking 

poses in the closed-tweezer shows two different conformations (Figure 20C): the best pose is 

close to the crystal one and present the best docking-score (-14.9 kcal/mol), the second pose 

present as well a closed-closed conformation with different conformation and a lower docking 

score (-12.8 kcal/mol). The DFT geometric optimisation of the tweezer led to the formation of 
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an open-tweezer that could be used both for SaMD and docking leading to the formation of the 

closed-open complex in both cases (Figure 20E). 

 
Figure 20: An overview of the docking results using AUTODOCKVina, starting from the crystal 

structure (A), for the docking of the crystal, one of the tweezer will be the host and considered as rigid 

while the other one considered as the guest will be allowed to rotate on some bonds (B), two different 

docking poses representing two different complexes can be extracted from the docking results (C), and 

one tweezer can be extracted, and his geometry optimised at DFT level (D), both using SaMD protocol 

and docking the DFT-optimised structure in the previous host lead to the formation of the similar 

complex (E).  

In the case of the open-configuration of the tweezer (Figure 20D), the dimerization process is 

favoured, but the structured dimer does not present the closed-closed crystal conformation. 

Suppose the switch from any conformation to the closed-closed conformation represents a 

break of an energetical well. It can be related to a rare event in the dynamic and may need an 

extension of the simulation times to see this conformation. 
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II. D - BEHAVIOUR ANALYSIS OF HOST-GUEST SYSTEM IN SOLUTION 

To study the self-assembly and narcissistic self-sorting processes, we investigated the 

dynamics of the molecular tweezer, first as a monomer and then as a dimer. Our main goal was 

to prove with a simple system that it was possible to study the assembly of the molecular 

tweezer computationally. Several MD simulations of 500ns each was carried out with 

GROMACS and AMBER: for the monomer alone in the water and two monomers in a cubic 

water box where they are expected to assemble. From the output of MD simulations, we made 

a protocol based on the generation of several molecular descriptors to describe the variability 

of the geometry over time (Root Mean Square Deviation (RMSD), Radius of Gyration (Rg), 

Surfaces Accessible Solvent Area (SASA), N-N distances…). These descriptors are then 

visualized with a PCA and used to define relevant clusters inside the MD simulations (Figure 

21 and Figure 22). These clusters represent the chemical space explored along with MD 

simulations with the idea that different clusters represent different types of geometry reached 

along with the simulations. In this graphic, all points correspond to a specific frame of the MD 

simulations: every point corresponds to a specific geometry at a specific time. The clustering 

of the monomer is presented in the following Figure 21: three different geometries could be 

extracted based on the orientation of the acridinium groups: the closed-form (Figure 21A), the 

semi-open or semi-closed form (Figure 21B), and the open-form (Figure 21C). 

Interestingly, these three geometries are represented throughout the simulations, suggesting 

that we sufficiently sampled the conformational space for the monomer. The conformational 

space could be defined as the space encompassing all possible positions of the molecule. We 

cannot say that we sample the whole conformational space. These graphics allow us to say that 

we sampled the conformational space sufficiently because we reach similar positions in 

different MD. 
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Figure 21: Clustering of the MD of the tweezer-monomer, (A) Clustering of the closed-tweezer in orange, 

(B) Clustering of the semi-open or semi-closed form in yellow, and (C) clustering of the open-tweezer in 

green, each point represent an individual geometry, the points are colored by the frames of the 

simulations 

For the second simulation, we built two monomers in a cubic box to study their assembly. The 

assembly process was realised very fast (few ~ ns), with disassembly not seen, suggesting the 

dimer once formed is very stable. As previously done for the monomer, the dynamics are 

clusterised using PCA (Figure 22). What is interesting to note is that only certain combinations 

of geometries were extracted from the monomer analysis. The closed-form in association with 

the open form (Figure 22 A-C), the semi-open or semi-closed form dimer in association with 

itself (Figure 22 B-B), and the open form in association with the semi-open / closed form 

(Figure 22 B-C).  
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Figure 22: Clustering of the MD of the tweezer-dimer, (A-B) Clustering of the closed-semi-open tweezer, 

(B-B) Clustering of the semi-open-semi-closed dimer, and (A-C) clustering of the open-closed dimer, each 

point represents an individual geometry, the points are colored by the frames of the simulations 

We know from the crystallographic data that the crystallographic form should be a closed-

closed dimer. An MD simulation starting from the crystal structure is also performed, and the 

structure remains stable during the whole simulation. Suggesting that the MD was not long 

enough to carry out the closed–closed conformation. Alternatively, a closed-closed 

conformation is a rare event that heavily depends on how our two monomers initially assemble 

themselves. A new dissociated MD was run after that and presented similar results with the 

additional formation of a closed-closed dimer with the same orientation of the previously 

presented second docking poses (Figure 20C).  

Some structures of the closed-closed dimer were extracted from the simulations, and a 

geometrical optimisation was performed using three different levels of theory: the DFT, the 

GFN2-xTB and PM6 SQM methods. Additionally, a representative structure of all the dimer 

conformations (A-B, B-B, A-C, and C-C) were extracted and compared in terms of energies 

with the other methods. 
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II. E - DFT AND GFN2-xTB COMPARISON: 

In Figure 23, several structures were extracted from the previous MD. These structures were 

then optimised in geometry and energy using three different methods: the Density-Functional 

Theory (using B3LYP basis set), the PM6 SQM method and the GFN2-xTB SQM method. All 

of them were optimised in water implicit solvation models. In this figure, the geometries are 

comparable, and only the geometry using the PM6 methods differed a bit from the two others. 

In most cases, the optimised geometries obtained with the GFN2-xTB method were similar to 

those obtained with the B3LYP method. The GFN2-xTB method, compared to the others, uses 

a much lower computational time. 

 
Figure 23: Geometrical comparison between QM level (B3LYP) and two SQM methods (PM6 and GFN2-

xTB), the number represents the frame of the MD from which the representative structure is extracted. 

Several geometries were extracted from the MD, and the thermodynamic properties were 

calculated using the DFT, GFN2-xTB and PM6 methods in the following Figure 24. Different 

methods used different ways to compute the thermodynamic properties, so the energy cannot 

be compared directly between the methods. What is comparable is the difference between the 

referenced crystal energy and the others. For these, the energetical difference was comparable 

between GFN2-xTB and the DFT. Only the energy calculated with the GFN2-xTB method is 

presented in the graphic, the others are omitted for clarity.  
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Figure 24: Energetical analysis of the molecular tweezer 

Analysis of the acquired energies showed that: 

- The MD of the crystal structure shows several geometries that have more favourable 

energies than the reference crystallographic structure with very similar geometry. 

- The SQM method GFN2-xTB results are comparable geometry with the DFT-

B3LYP,6-31** with a much lower computational time. 

- None of the geometries obtained by the unbiased MD obtains lower energy than the 

crystallographic structure even though they are close in energy (~3-6 kcal/mol). 

 

At this step, we find a way to determine the binding mode of host-guest complexes using 

several methods from the less accurate to the more accurate: (i) docking, (ii) docking followed 

by MD simulations, and (iii) unbiased MD leading to the spontaneous formation of the host-

guest complex. 

The behaviour of the system in a solvated environment have been analysed by an unsupervised 

ML method (PCA) using a set of automatically and manually generated molecular descriptors. 

This analysis has led to the identification of several possible conformational states from which 

the thermodynamic properties have been calculated. Also, molecular descriptors can be useful 

to clustering and discriminating the geometries of the host-guest complexes during MD 

simulations leads us to think that the development of ML methods for directly predicting the 

binding free energy could be an interesting perspective. 
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The geometric optimisation and the thermodynamic properties of host-guest systems have 

been calculated using the GFN2-xTB methods, with low computational times and interesting 

accuracy than the DFT standard method. 

The protocol used during the analysis of the molecular tweezer was extracted and used to 

develop an automated platform called HG-DYNAusor. The current platform uses an updated 

version of the previously presented protocol to determine the binding free energy of host-guest 

complexes. The clustering step is not well automatable, as it needs manual intervention and is 

not sufficiently automatized to be used by non-experts, but as it needs the MD simulation, it 

has been added to this chapter. The HG-DYNAusor platform is still in development and what 

is presented in this chapter represents the platform in its most successful form. The next chapter 

will be dedicated to the usage of the platform. 
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III - THE THERMODYNAMIC BASED APPROACH OF THE 

HG-DYNAUSOR PLATFORM 

III. A - REQUIRED SOFTWARE 

III. A. 1 - OPEN BABEL 

OPEN BABEL is an open-source software package used for cheminformatics applications. Its 

purpose is to provide users with programs and software libraries designed for molecular 

modelling, file and data format conversion.  OPEN BABEL is a free and open-source software 

released under a GNU General Public License (GPL) 2.0.133 OPEN BABEL was used in the 

platform to calculate the MolPrint2D (MPD) codes and file conversions. 

III. A. 2 - UCSF CHIMERA 

UCSF CHIMERA is a molecular visualizer program that can be used to generate high-quality 

images and animations. CHIMERA is free for academic, government, nonprofit, and personal 

use.134 CHIMERA was used to visualise and export the PDB and mol2 files of the host-guest 

complex. 

III. A. 3 - AMBER & AMBERTOOLS 

AMBER is a suite of biomolecular simulation programs. The term "AMBER" refers to a set of 

MM force fields for the simulation of biomolecules and a package of molecular simulation 

programs. AMBER is developed in an active collaboration of David Case at Rutgers 

University135 

AMBERTOOLS consists of independently developed packages that work with Amber20. The 

suite can also carry out complete MD simulations. 

The AMBERTOOLS suite is free, and its components are mostly released under the GNU 

General Public License (GPL).136 

The HG-DYNAusor platform used several packages of AMBERTOOLS: 

- antechamber and MCPB.py: programs to create force fields for general organic 

molecules and metal centres. 

- tleap and parmed: basic preparatory tools for AMBER simulations. 

- sander: workhorse program for MD simulations. 

- cpptraj: tools for analyzing structure and dynamics in trajectories. 
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III. A. 4 - VMD (VISUAL MD) 

VMD is another molecular visualizer program that can generate high-quality images and 

animations and export structures. The Theoretical and Computational Biophysics group has 

developed this software.137 We are using it to parse the xyz/mol2 files into a proper format that 

conserves all the pieces of information and coordinates and the usage of CHIMERA. 

III. A. 5 - GFN2-XTB 

The xTB software was developed by the Grimme group in Bonn. xTB is used for geometric 

optimisation and hessian calculation of the initial structure. This software is also used for the 

determination of the thermodynamic properties (enthalpy and entropy) of the guest, the host 

and the host-guest complexes.138 

III. A. 6 - R SOFTWARE 

R is a free software environment for statistical computing and graphics. It was used for both 

the development and the optimisation of the knowledge-based method along with the CARET 

package.139 

III. B - PARAMETRISATION OF THE HOST SYSTEM (MODULE 01) 

III. B. 1 - GRAPHICAL OVERVIEW 

Module 01 of the HG-DYNAusor platform is presented in the following Figure 25. It uses an 

input file containing the necessary information concerning the system to simulate. The first 

module of the HG-DYNAusor platform can be separated into six parts that will be presented 

in detail in the next sections: 

1) Generation of a reasonable 3D conformation of the host system, which will be used in 

all subsequent steps. This step can be avoided in case the considered molecular structure 

comes from a well-defined crystal. 

2) The parametrisation of the metal centre. Once again, in case the host system does not 

contain metal, this step can be avoided. 

3) Calculation of the partial charges for the system of interest using an approach that we 

have developed. 

4) Generation of the topological files for the considered system. Topology files contain all 

the parameters necessary to carry out molecular simulations. 

5) Minimization of the system before the MD. 
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6) Creation of the equilibration and production files. 

 

 
Figure 25: Overview of the first module of the HG-DYNAusor platform 

III. B. 2 - HG-DYNAUSOR INPUT-FILE 

As shown in Figure 25, the HG-DYNAusor platform needs two inputs: a 3D structure 

(optimised or not) and an input file containing the information defined by the users concerning 

the modelling information. This input-file contains two binary questions to let the users decide 

if he wants to launch (i) only the geometric optimisation and the parametrisation of the metal 

centre (frcmod file) or (ii) the full parametrisation of the system for MD simulation (including 

partial charges calculation and all following steps to the equilibration & production). 
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Concerning the geometric optimisation, the users can define in the input files the parameters: 

(i) the level of optimisation for the GFN2-xTB SQM method (presented in Table 2), and (ii) 

the solvation model that has to be used (both for SQM and MM modelling) and the available 

grid for implicit solvation procedure (presented in Table 3). Several structural information is 

also necessary for the modelling procedure: (i) the molecular charge of the host system, (ii) 

which metal has to be parametrised (Fe, Co, Zn…), and (iii) the number of metals in the system. 

Users will also need to define a "name", which will be used to name all files created during the 

modelling procedure by the HG-DYNAusor platform. 

The last necessary input contains the information about the substructures contained in the host. 

As the parametrisation of the metal centre requires the extraction of the metal from the host, at 

some point, it is possible to break certain bonds in the initial host leading to the formation of 

independent units. These independent units formed must be considered independent molecules 

in the modelling process, and therefore, they must be named and defined. An example of the 

procedure for defining how many substructures you will present in your host system is 

presented in the following Figure 26:  

 
Figure 26: Example of the substructure determination 

- In the case of the porphyrin-receptor (Figure 26A), when the metal (in red) is extracted, 

we realise that the 1,4-diazabicyclo[2.2.2]octane (DABCO, in green) does not make 

any bonds anymore with the system, meaning it became an independent substructure. 

In this specific case, by extracting the metal, we create two independent substructures 

that are parts of the receptor: substructure one corresponds to the porphyrin scaffold (in 

blue), and substructure two corresponds to the DABCO (in green). 
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- In the case of the other metal-cage (Figure 26B), the metal is coordinating three 

structures, i.e., by extracting the metal (in red): three independent substructures will be 

created: substructure one (in blue), the substructure two (in green) and the substructure 

three (in purple). 

 

To help users fulfil all the requested information about the input files, a dynamic shiny 

document have been created where the users fulfil the asked information and press the button 

"generate the input-files" to get a file that the system will properly read and that contains all 

the requested variable for the modelling procedure. 

III. B. 3 - GEOMETRICAL OPTIMISATION OF THE HOST 

The parametrisation of the metal centre is part of module one of the HG-DYNAusor platform,  

mainly dedicated to the geometrical optimisation of the host structure and the parametrisation 

of the metal centre. The geometrical optimisation uses the GFN2-xTB method to optimize the 

given 3D structure that may present some structural error. The geometrical optimizer develops 

in the xTB software called an approximate normal coordinate rational function optimizer 

(ANCopt), which uses a Lindh-type model Hessian to generate an approximate normal 

coordinate system. It exists multiple levels of optimisation (presented in Table 2) depending 

on the allowed change in the total energy at convergence (Econv) and the allowed change in 

the gradient norm at convergence (Gconv). 

Table 2: optimisation level of the xTB software140 

Level <=�'>/<? @=�'>/<? ∙ A�7 Accuracy 

crude 5 × 10�{ 1 × 10�O 3.00 

sloppy 1 × 10�{ 6 × 10�i 3.00 

loose 5 × 10�C 4 × 10�i 2.00 

lax 2 × 10�C 2 × 10�i 2.00 

normal 5 × 10�¡ 1 × 10�i 1.00 

tight 1 × 10�¡ 8 × 10�{ 0.20 

vtight 1 × 10�D 2 × 10�{ 0.05 

extreme 5 × 10�z 5 × 10�C 0.01 
 

The accuracy is handed to the single-point calculations for integral cut-offs and SCF 

convergence criteria. Adjusted to fit the geometry convergence thresholds automatically. The 

user of the platform is allowed to select the convergence criteria. Still, if the structure cannot 
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reach the converge criteria at the maximum level, the computational time increases 

dramatically. The maximum step of minimization authorized is a function of the number of 

atoms. The geometrical optimisation is done in the implicit solvation model defined by the user 

to be consistent with the chemical reality. There are two different models of implicit solvation 

that can be used in xTB when we wrote the thesis: the GBSA and the ALPB (Analytical 

Linearized Poisson-Boltzmann). For each model, several levels of the possible grid are 

available and can also be chosen by the users (Table 3). 

Table 3: different grid available for the calculation of the SASA term140 

Gridlevel Grid points 

normal 230 

tight 974 

verytight 2030 

extreme 5810 
Larger grids increase computational time and reduce numerical noise in the energy. They can 

help converge geometry optimisations for large molecules that would otherwise not converge 

due to numerical noise. 

Once the geometry is optimised in implicit solvation using the requested level of optimisation 

and grid-level, a vibrational frequency calculation is performed on the structure to verify that 

the initial starting point corresponds to a true minimal. If some vibrational modes are found, it 

does not mean the structure cannot be simulated, but strong attention has to be paid to the metal 

centre. Supposing the metal centre is not deformed and presents a good conformation, we can 

launch the MD from a starting point that does not represent a true minimum, with the idea that 

along the equilibration and the production, the structure is likely to change sufficiently during 

the simulation so that in the final sample, several structures correspond to a true energy 

minimum. 

III. B. 4 - PREPARATION & PARAMETRISATION OF THE METAL CENTER 

III. B. 4. A - PREPARATION 

After the geometric optimisation has been done, the resulting structure will be parsed to form 

(i) the frcmod and the mol2 files of the substructure files and (ii) the final PDB file used during 

the parametrisation using the MCPB.py module of AMBER141. The initial protocol designed 

by AMBER for the metal site parametrisation uses QM level and B3LYP basis set to optimize 

the structure. As we differ in protocol from the MCPB.py module (because we are not doing 
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the QM optimisation), we are only using the MCPB.py to generate the frcmod of the metal 

centre. 

A file containing the necessary information will be automatically created by the platform to be 

used by the MCPB.py module. The input files are a form of the following: 

original_pdb [NAME.pdb] 

group_name [NAME] 

cut_off 2.8 

ion_ids [ID1] [ID2] [ID3] […] 

ion_mol2files [METALS.mol2] 

naa_mol2files [SUBSTRUCTURE.mol2] 

frcmod_files [SUBSTRUCTURE.frcmod] 

large_opt 0 

There should be no blank lines in the input file. The values or parameters should follow the 

variables separated by a blank space.  

The required variables are the following: 

1) original_pdb: represent the file name of the final PDB file created at the previous step, 

which should have only one chain. The PDB file has to contain hydrogen atoms and 

metal ions. Users are advised to use the geometrical optimisation steps before 

performing the modelling in MCPB.py. 

2) ion_ids: represent the PDB atom Identification of the metal ion(s). If there is only one 

metal ion in the metal site (or only one metal site), you need to put its PDB atom 

Identification after the variable. If there are multiple metal ions in the metal site, you 

need to put the PDB atom I.D.s of all these metal ions separated by space after the 

variable.  

3) ion_mol2files: represent the names of the ions mol2 files. Depending on how many 

metals are included in the host, this can be one or several names. In most cases, we 

encountered cases where multiple metal centres were in the host, but all of them were 

equivalent.  

4) naa_mol2files: the variables used to indicate non-amino acid mol2 file(s) in the host 

system. Practically this represents all the substructures named by the users. These files 

are typed with gaff atom initially and at this step does not contain any charge as we are 

only generating the frcmod (and not modelling the system). 
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5) frcmod_files: represent the variable used to indicate the parameter modification file(s) 

for the host's nonstandard residue(s). It corresponds again to all the substructures named 

by the users. 

 

Concerning points (4) and (5), It is fundamental that the users define precisely the correct 

number of the substructure to achieve the metal centre modelling without any issues. Assume 

that users initially define � substructure in the host (in the HG-DYNAusor input files). In that 

case, the platform will automatically create at the end of the geometrical optimisation an input-

file for the MCPB.py containing � mol2 files typed with gaff for the substructures + the � 

associated frcmod files.   

There are also optional variables in our input files that represent: 

1) The group name: represent the name the user has specified in the HG-DYNAusor input 

files. The group name will be used as a prefix to name all the files generated with the 

MCPB.py module. 

2) cut_off: the cutoff value is used to indicate there is a bond between the metal ion and 

the surrounding atoms. The default is 2.8Å. In the current form of the platform, the user 

is not allowed to change this value. 

3) Large_opt: a variable used to indicate whether to do a geometry optimisation in the 

Gaussian input file. Several options are available. The 0 means no optimisation (as the 

optimisation were realised in the previous steps). 

III. B. 4. B - PARAMETRISATION OF THE METAL CENTER 

Once the MCPB.py input files have been created, the module will be launched. Three different 

files will be created: (i) the MCPBY_1.out file containing pieces of information about the 

metal-binding that will be used in the next part for the preparation of the metal centre (during 

module-two of the HG-DYNAusor platform) using tleap, (ii) the MCPB_2.out file containing 

all the information about the nonstandard residue(s) of the metal centre (angles, improper, 

bonds, …) and (iii) the frcmod files containing the pieces of information extracted from the 

MCPB_2.out file built in a way that AMBER can interpret them. 

Unlike the classical way of using the MCPB.py, we are not using QM to reduce the 

computational cost of the protocol because both the optimisation and the determination of the 

thermodynamic properties are done using the xTB-software. In addition, the modelling of such 
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host will be realised in the HG-DYNAusor module-02, apart from the MCPB.py. In conclusion, 

the MCPB.py module is used in our protocol only to generate the frcmod file because it contains 

an automatic way to extract the information about the metal-binding site.  

III. B. 5 - PARTIAL CHARGES DERIVATION 

III. B. 5. A - GRAPHICAL OVERVIEW 

An overview of the partial-charges calculation process is presented in the following figure: 

 
Figure 27: Overview of the MD-RESP protocol for the generation of the atomic partial charges 
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III. B. 5. B - MODEL OF CHARGES 

As we presented in the introduction, it exists several models of partial charges. A partial charge 

is always inferior in absolute value to the elementary charge. These partial charges are 

fundamental for the parametrisation of host and guest systems. Some of these are easy to 

calculate: 

- Gasteiger-Marsilli partial charge53: One of the simplest partial charge models used for 

the Docking protocol. Generally, these charges are calculated in two steps: first, the 

charges are assigned to each atom in the molecule, then in the second step, the initial 

charges are shared across the bonds, moving a certain amount of charges from one atom 

to another determined by the difference in term of electronegativities of the atoms at 

the end of each bond. These charges are mainly depending on the difference in terms 

of electronegativity. 

 

- xTB-GFN charges65: the xTB-GFN method has its own possibilities to calculate charges 

derivated from the Mulliken and Charge Model 5 (CM5) charges, taking into account 

the chemical specificities of the considered molecules. They are really easy to calculate, 

and it only takes seconds on a local computer to calculate the partial atomic charge of 

the constituents of a molecule. These charges can be considered as more efficient than 

the gasteiger one. 

 

The Gasteiger-Marsilli and the xTB-GFN charges may be too simple to accurately represent 

the host and guest system with metallic compounds, especially MD. And while the gasteiger 

charges are only used by certain docking programs, the xTB ones are used during the geometric 

optimisation steps. For more accuracy and to generate proper charge models for measuring the 

interaction between host and guest, SQM AM1-bcc and RESP charge will be considered and 

compared during the thesis work.  

- The RESP142 (Restrained Electrostatic Potential) method is a multistage approach that 

ensures atoms with free rotation are considered equivalent in charge (like hydrogen or 

methyl groups). It uses the HF/6.31G* QM calculation to generate the electrostatic 

potential. As we already said in the introduction, the RESP charge leads to better 

accuracy in the binding free energy prediction. Unfortunately, for the resp calculation, 

we need to use licensed software (GAUSSIAN), and it takes a larger simulation time 

than the other methods. Furthermore, as RESP calculations are geometry dependent, 
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for flexible systems, some artefacts are likely to occur during QM calculations for 

which RESP fits may be stuck in high energy minima. One way to reduce these artefacts 

is to use smaller molecules.143 

 

- AM1-bcc57: the AM1-BCC charges are composed of two parts: the SQM (AM1) with 

bond charge correction (BCC). AM1BCC charges start with Mulliken-type partial 

charges derived from the AM1 SQM wave-function. In a second stage, bond-charge 

corrections (BCCs) are applied to the partial charges on each atom to generate new 

partial charges. AM1-BCC charges can be calculated with antechamber, part of the 

AMBERTOOLS package. The main advantage of the AM1-bcc charges is the low 

computational cost (can be launched on a local computer) and that no licensed software 

is needed.  

 

In theory, the RESP charge calculation should be restrained to small molecules. In our case, 

the final expected receptor synthesized by the different partners of the project can be up to > 

400 atoms. In the course of our research, we faced several different problems regarding the use 

of RESP charge for MD simulations: (i) A high computational cost to the calculation, (ii) the 

3D conformation of the hosts often includes atoms that are not solvent-exposed. As such, the 

location of the points where the electrostatic potential is calculated can be quite distant from 

those atoms, and the derived ESP charges may not reflect the true nature of the atom, and (iii) 

since the receptors under consideration are mostly still in the research phase, some structural 

changes may occur due to changes in the chemical procedure of synthesis, and unfortunately, 

in this case, given the RESP procedure, the charge must be recalculated for the entire structure 

in case of change. 

For these reasons, we designed a protocol where each atom of the molecules is described by a 

2D code describing the molecular environment (neighbour). For each considered atom, the 2D 

code is associated with the RESP charge. We made the assumption that the partial charge of an 

atom of a huge receptor depends almost completely on its nearest neighbours and not on the 

entire receptor. Thus, being able to describe each atom according to its type and chemical 

environment, we can calculate the partial charges for a new structurally close receptor. For this 

purpose, the constant part of the receptor (which has not undergone any structural change on 

its closest neighbour) can be extracted from a database mapping the 2D code to the charge. 

Thus, the new charges need only be calculated for the variable part of the receptor. This 
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methodology saves a significant amount of time in the parameterisation of the receptors while 

ensuring the possibility of making structural modifications without restarting from scratch.  

III. B. 5. C - MOLPRINT2D (MPD) FORMAT  

MDP is an atom-environment fingerprint developed by Bender and al144, used in QSAR studies 

and for measuring molecular similarity.  Based on the molecular environment. At this step, we 

are not properly doing any QSAR analysis, but we wanted a way to consider and write every 

single atom of a molecule as a unique code that takes care of their neighbour.   

In the case of a heavy atom, the generation of the MPD format starts from mol2 files. From 

this mol2 file, the TRIPOS atom type is considered, with the idea that every atom type can be 

defined as a number. The decomposition of the MPD code is presented in Figure 28: 

 
Figure 28: MPD example: The aromatic carbon (in red) is described by his two neighbours 

The MPD code for the carbon atom highlighted in red would be (i) the considered aromatic 

carbon atom for the layer 0 (in red), (ii) followed by three atoms in the first layer (in blue), two 

aromatic carbons and the carbon linked to the acidic function, and (iii) the second layer 

corresponding to the atoms linked to the three ones considered in the previous layer: two others 

aromatic carbons: a sp3-nitrogen, hydrogen and the two acidic oxygen: one sp2 and the other 

sp3. 

In the specific case of hydrogen, two neighbours are not sufficient to efficiently describe the 

molecular environment. It makes sense because the first layer of the hydrogen represents only 

one atom leading to a simplification of the environment: almost all the hydrogens were 

considered equivalent. For that reason, for hydrogen, the third layer is considered, an example 

is presented in the following Figure 29: 



 

Page 95 / 254 
 

 
Figure 29: MPD example: the specific case of the hydrogens 

In this figure, another layer is considered for the hydrogen, meaning that for hydrogen, the first 

layer will always be composed of a single atom corresponding to the atom that links the 

hydrogen, after that, the layers are developed as just presented. 

III. B. 5. D - DATABASE BASED ON FRAGMENTS 

The MPD database is built in two columns, the first one represents the MPD code, and the 

second one represents the associated RESP charge. It contains 480 samples that have been 

calculated during the thesis. For the parametrisation of a new host system containing atoms for 

which existing missing values in the database, a new ESP charge calculation is necessary. 

The protocol is the following: at this step, we start from an optimised 3D molecule for which 

the metal centre and the substructure have been typed with gaff forcefield. The first step is to 

generate the MPD code of all the atoms in the molecule by following the procedure written in 

the following algorithm: 
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ALGORITHM 1: RESP charge generation 

Considering n atoms in a 3D molecule: 

��A r = 1 ½ù n,!�  

 Generate the MPD code. 

 }+½Pµ¿½ ½ℎ} �Ãª ¿ùh} ù- ½ℎ} µ½ù³ r .�Ãª�0: ÷}µP¿ℎ �Ãª�  ½ù ½ℎ} hµ½µ¾µ÷} 

 r- �Ãª�  r÷ }+r÷½r�Õ r� ½ℎ} hµ½µ¾µ÷}; }+½Pµ¿½ ½ℎ} µ÷÷ù¿rµ½}h ¿ℎµPÕ}
 r- �Ãª�  r÷ }+r÷½r�Õ r� ½ℎ} hµ½µ¾µ÷};   r = r + 1 

(CF(;!� 

GPr½} µ óµP�r�Õ ³}÷÷µÕ} -ùP µ½ù³ �ø³¾}P r 
GPr½} ½ℎ} ÷¿Pr~½ -ùP �}ó �ïÃ ¿µu¿øuµ½rù� ½ù µhh �}ó ¿ℎµPÕ} ½ù ½ℎ} hµ½µ¾µ÷} 

('! for;  

W =  ' 

 

At this moment, we have two possibilities: In the first case, one or more MPD codes have not 

been found in the database, the extraction of the RESP charge is incomplete, and the 

parameterisation cannot be completed. In the second case, all atoms have their corresponding 

MPD code in the database, and a RESP charge for all atoms can be extracted. But as we are 

extracting the charge from a database, we can expect that the sum of partial charges will have 

a little deviation compared to the actual net charge of the molecule. In that case, all the charged-

atom will be adjusted by distributing across all atoms the numerical difference between the 

calculated charge using the MPD-RESP protocol and the actual net charge. This difference is 

generally extremely low and is not expected to have any impact on the simulation. 

Assuming the MPD-RESP procedure have been done without any problem, at this step, we 

already obtained the optimised 3D molecules typed with gaff atom type, with RESP charge, 

and extracted from the first module: the parameters of the metal centre and all the substructure 

that compose the molecule. The next step concerns the creation of the topological files to be 

able to launch the MD simulations.  
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III. B. 6 - GENERATION OF THE TOPOLOGICAL FILES 

An overview of this process is presented in the following figure: 

 
Figure 30: An overview of the generation of the topological files 
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The procedure to generate the topological files for the AMBER force field and the solvated 

model use the tleap helper program from the AMBERTOOLS suite. tleap will (i) read the 

previously generated parameters of the different substructures and the metal centre, (ii) bind 

the atoms close to the metal for the generation of the bonded model, and (iii) solvate and 

neutralize the solute with the requested solvated model.  

The program will automatically check if the solvent specified in the input file is available or 

not. If the solvent is not parametrised, it is possible to generate the file to parametrize a new 

solvent model for the MD using turbomole software. But if the goal is to make binding free 

energy prediction, the solvent model has to be also available in the xTB software. A list of the 

available solvation model can be shown in the following Table 4. In both cases, if the solvent 

parameters are not available, the platform will stop with an error message. 

Table 4: Available solvation models in the different software 

Solvents Parametrised for 

MD 

Available in xTB software 

GFN2(ALPB) GFN2(ALPB) 

Acetone YES YES YES 

Acetonitrile YES YES YES 

Aniline NO YES NO 

Benzaldehyde NO YES NO 

Benzene NO YES YES 

CH₂Cl₂ YES YES YES 

CHCl₃ YES YES YES 

CS₂ NO YES YES 

Dioxane NO YES NO 

DMF NO YES NO 

DMSO YES YES YES 

Ether NO YES YES 

Ethylacetate NO YES NO 

Furane NO YES NO 

Hexandecane NO YES NO 

Hexane NO YES YES 

Methanol NO NO YES 

Nitromethane NO YES NO 

Octanol NO YES NO 

Phenol NO YES NO 

Toluene NO YES YES 

THF NO YES YES 
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Water (H₂O) YES YES YES 

III. B. 7 - MINIMIZATION, EQUILIBRATION, AND PRODUCTION 

The minimization, equilibration and production steps are presented in the following flowchart 

(Figure 31): 

 
Figure 31: An overview of the last phases of module 01 of the HG-DYNAusor platform 

Two different protocols for MD have been tried, the first on using the GROMACS software 

while the second one uses the AMBER software. In both cases, the topological files were 

generated using the AMBER force field. The AMBER topological files (prmtop and inpcrd) 

were converted into the GROMACS topological files (gro and top) using the parmed module 

of AMBERTOOLS. For simplification, only the details for the AMBER will be presented. 



 

Page 100 / 254 
 

The system is minimized with the sander program of the AMBERTOOLS suite, using both the 

steepest descent algorithm and conjugate gradient algorithms in several steps (i) 5000 cycles 

of minimization are performed using the steepest-descent algorithm applying a very large force 

constant (500 kcal/mol/A²) to the host and the guest, (ii) 5 000 additional cycle of minimization 

using 2 500 steps of each algorithms applying a lower restraint on the solute (10 kcal/mol/A²),  

(iii) at the end, an additional 10 000 cycles of minimization are performed using 5 000 steps of 

each algorithm without any force restraint. The system is then slowly heated from 0 to 300 K 

during 500ps and equilibrated for 400ps with the leapfrog integrator in the NTP ensemble 

(constant pressure). 

Both equilibration and production take too much time using the sander program available in 

the non-licenced version of AMBER. For that reason, a standard file for Slurm Workload 

Manager is created for the GPU usage inside a computing centre for the equilibration and 

production phases of the MD. 

III. C - PARAMETRISATION OF THE GUEST SYSTEM AND BINDING 

MODE GENERATION (MODULE 02) 

The second module of the HG-DYNAusor platform is dedicated to generating the binding 

mode of the host-guest complex. Different possibilities for binding mode generation are 

available in the platform and mainly depend on the host’s accessible data and molecular 

structure. The possible options will be developed in this section.  

In our application, the study of the binding mode is built as an additional module following the 

parameterisation of the host system. Three different approaches, already discussed in the 

introduction, can be considered: (i) Either the binding mode is known and can be directly 

extracted from a crystallographic structure, (ii) or the binding mode is not known but the host 

considered is in a conformation suitable for binding, (iii) the host has a very high intrinsic 

mobility and thus a spontaneous binding approach can be considered. An overview of module 

02 of the HG-DYNAusor platform is presented in the following Figure 32. 
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Figure 32: An overview of the second module of the HG-DYNAusor platform dedicated to the binding 

mode generation 
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In all the cases, the guest was parametrised apart using the AM1bcc charge model and gaff 

forcefield. Even though we said before that the RESP charge model is better for determining 

the molecular contact, if the guest is smaller enough, we can consider the difference between 

RESP and AM1-bcc charge as minimal. The platform will also generate both the files for the 

host without ligand and the files of the host-guest complexes apart, as the information about 

the systems without a guest is necessary for the binding free energy prediction. 

The difference comes from the way the binding mode is considered: 

- In the first case, as the structure come from a crystal, no further structural optimisation 

is necessary for the host, and then the coordinate remains unchanged. Thus, the 

coordinate of the ligand can be extracted and merged for the parametrisation of the host-

guest system.  

 

- In the second case, docking is used to generate a first guess of the Host-Guest structure. 

We chose ADV for our assessment for several reasons. It (i) is faster and generally 

performs better than AUTODOCK itself, (ii) is freely available and competitive with 

commercial tools. Docking is performed using AUTODOCK-VINA. Input comprises 

the host system, guest, and docking box, while output lists pose ranked by Δgbind, the 

predicted binding energy in kcal/mol (‘score’ = −Δgbind). To obtain the maximum 

number of poses, we set num_modes to 20. The top-scored solution is extracted. In 

some cases, the extraction was followed by the steepest descent and conjugated gradient 

minimization to correct any ligand distortion. 

 

 

- In the last case, the best docking pose is modified to start from a dissociated 

configuration where the guest is > 8Å apart from the host. 

 

Practically speaking, for the generation of new topological files, the pre-generated tleap 

file used for the parametrisation of the host is reused, and the information about the guest 

is added, leading to an easy generation of the topological files. Finally, the only difference 

between the host and the host-guest complex concerning the generation of the parameters 

consists of the addition of the guest's information during the step of generation of the 

topological parameters (tleap preparation). 
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III. D - THERMODYNAMIC BASED APPROACH FOR BINDING FREE 

ENERGY PREDICTION (MODULE 03) 

Module 3 of the HG-DYNAusor platform is presented in the following Figure 33: 

 
Figure 33: An overview of the third module of the HG-DYNAusor platform dedicated to the 

thermodynamic approach 
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The third module performs binding free energy predictions using a molecular simulation 

approach. It entirely depends on the three previous modules of the platform because it requires: 

an MD simulation of the host alone and an MD of the complex. If the users want to predict 

multiple compounds on the same receptor, only one host simulation is necessary. This module 

uses the cpptraj module of the AMBERTOOLS suite from the AMBER software to pre-process 

the MD.  

After the alignment and the extraction of the representative geometries, a thermodynamic 

calculation is performed to determine both enthalpic and entropic properties of the host, the 

guest, and the host-guest system using the xTB program package (version 6.4.1). It uses the 

GFN-2B basis on an extended SQM tight-binding model, which has shown to be efficient for 

determining structures and noncovalent interaction energies for large molecular systems (in the 

order of 1000 atoms)65. Solvents effects are included through GBSA and ALPB models, and 

the convergence criteria thresholds were set as extreme. Optimisation, followed by a hessian 

calculation, are performed for all extracted geometries. 
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IV - BEHAVIOUR ANALYSIS 

For the clustering of the systems studied in the thesis, non-supervised ML approaches are used 

to visualise the clusters. Generally speaking, for every MD simulation, some descriptors 

describing the macroscopic states are extracted for each step of the dynamic (every step 

represent a geometry): RMSD from the first frame (the equilibrated structure), the SASA, the 

Rg (representing the compactness of the studied object). To that macroscopic descriptors, 

multiple other geometrical descriptors can be considered depending on the structure: distance 

between twos atoms, angles, torsional angles, dihedrals… 

Using all the possible descriptors, a dimensional reduction analysis is performed using our 

protocol, followed by a PCA to cluster the systems using MD. The idea of that clusterisation 

is to compare similar systems (using the same descriptors) or compare for one system the 

different geometries taken over time. With the idea that we are able, with these procedures, to 

study any system over time as long as the descriptors considered are likely to describe the 

structural variability. During the dimensional reduction phase, the descriptors that are not 

positively correlated to the variability of the MD will be discarded. In this way, it is possible 

to study whether the MD should be extended or the effects of solvents on the same system. 
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V - THE KNOWLEDGE-BASED APPROACH OF THE HG-

DYNAUSOR PLATFORM (MODULE 04) 

V. A - OVERVIEW OF THE KNOWLEDGE-BASED METHODS 

A fourth and last module has been built in the HG-DYNAusor platform dedicated to predicting 

binding free energy using an ML approach. This last module is completely operational but still 

not released on the platform because, as we already stated, some steps need manual intervention 

and are not sufficiently automatized to be used by non-experts.  

V. A. 1 - GRAPHICAL OVERVIEW OF THE KNOWLEDGE-BASED METHODS 

This approach predicts the binding free energy as a combination of molecular descriptors. It 

only requires the molecular information of the host and the guest as input. Thus, it does not 

rely on the structure of the binary complex. The data used to train the ML module are extracted 

from the Binding Database (BindingDB) and are mainly dedicated to predicting binding free 

energy in water. 

For the knowledge-based protocol using ML algorithms, we tried to decompose the binding 

mode of the host-guest systems by using an innovative analysis that merges the molecular 

descriptors of the guest with those of the host to make a model that learns both from the host 

and the guest structure to predict binding free energy. The initial idea behind this methodology 

is to predict different binding free energy for the same guest depending on which host it is 

binding. In addition, we tried to make a model that predicts the binding free energy of one guest 

based on the molecular consideration of the host, meaning we are predicting more the binding 

free energy depending on the molecular environment. In conclusion, our ML protocol is a 

possible way to predict the "unpredictable" because ML learns from the molecular environment 

of multiple host systems. We hypothesize that by using a new host for which no data are 

available in the literature but described by molecular descriptors, we should be able to predict 

the binding free energy with relatively low error (or in the case where we cannot trust numerical 

prediction, by predicting the ranking of multiple guests in a new host system). 
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A graphical overview of the protocol is presented in the following Figure 34: 

 
Figure 34: Graphical overview of the knowledge-based protocol 

V. A. 2 - DATA PRE-PROCESSING 

V. A. 2. A - PROCEDURE 

All the binding data from the BindingDB have been extracted and parsed. All the guests 

involved in the BindingDB and SAMPLs challenge are reconstructed in two steps from 

SMILES using OPEN BABEL: (i) generating 150 3D conformers based on Genetic-Algorithm, 
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(ii) and selecting the lowest energy conformers. These conformers are then minimized at an 

SQM level using GFN2-xTB, giving us an optimised 3D structure. The guests from SAMPL6, 

SAMPL7, and SAMPL8 challenges are directly extracted in 3D from the GitHub repository 

and minimized at an SQM level using GFN2-xTB, giving us an optimised 3D structure.  

The same methods are used to reconstruct the hosts. In total, > 25 different hosts are extracted 

and constructed from SMILES provided by the binding-DB following the same protocol. In 

some cases, we encountered some problems reconstructing the hosts: (i) for the host 

represented by the following BindingDB(id): BDBM197280, BDBM197287, BDBM197309, 

BDBM197310, BDBM36281 that mainly correspond to hosts that were used in the previous 

SAMPL challenges, SMILES reconstruction failed, and we had to extract the 3D structure from 

different SAMPL-repository followed by minimization at an SQM level using GFN2-xTB 

giving us an optimised 3D structure, (ii) For BDBM36250 as it was impossible to reconstruct 

from SMILES, the cyclodextrins were so extracted from 4J3U PDB code that was structurally 

close, and manually modified with the molecular builder, then minimized at an SQM level 

within same procedure as before. 

V. A. 2. B - DISTRIBUTION OF THE BINDING FREE ENERGY IN THE MODEL 

In Figure 35 and Figure 36, the distribution of the binding affinity extracted from the 

BindingDB is analysed into two different graphics. In the first one (Figure 35), we saw how 

the binding free energy of our samples are distributed in the database: 

 
Figure 35: Barplot of the binding free energy distribution of the different systems extracted from the 

BindingDB 
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In contrast, Figure 36 shows the distribution of the energy along with all the considered 

systems. As the system does not have the same number of samples, they overlap. For example, 

we can see that the BDBM11 host has a much larger dataset than the others. 

 
Figure 36: Density plot of the distributed binding free energy of the different systems extracted from the 

BindingDB 

In both figures, we can see that the number of samples is much more important below < 7 

kcal/mol. 

The repartition of the samples for all the systems is the following: 

Table 5: Composition of the data table for the binding free energy ML prediction model 

BindingDB 

reference 

Number of samples Margins: (- 

kcal/mol) 

SAMPL6 14 [-6.45 – 13.5] 
BDBM11  191 [-0.57 – -7.32] 
BDBM197280 7 [-4.17 – -10.71] 
BDBM197287 15 [-3.72 – -9.36] 
BDBM197309 6 [-2.37 – -5.94] 
BDBM197310 10 [-2.50 – -10.34] 
BDBM36123 4 [-2.78 – -2.94] 
BDBM36124 4 [-2.84 – -3.15] 
BDBM36125 4 [-2.77 – -3.03] 
BDBM36126 49 [-1.43 – -5.64] 
BDBM36127 63 [-1.36 – -6.93] 
BDBM36171 4 [-4.69 – -5.76] 
BDBM36172 4 [-4.26 – -5.02] 
BDBM36250 2 [-3.30 – -4.34] 
BDBM36252 2 [-5.10 – -5.29] 
BDBM36267 8 [-3.53 – -6.19] 
BDBM36268 8 [-3.81 – -6.35] 
BDBM36269 8 [-3.90 – -6.85] 
BDBM36270 8 [-3.54 – -6.76] 



 

Page 110 / 254 
 

BDBM36271 8 [-3.80 – -6.98] 
BDBM36272 4 [-5.67 – -6.76] 
BDBM36281 17 [-5.20 – -14.08] 
BDBM36284 38 [-4.77 – -9.59] 

BDBM4 92 [-0.79 – -5.09] 

V. A. 2. C - DESCRIPTORS CALCULATED WITH CORINA 

Both host and Guest structures are passed into the CORINA web platform to compute 200 2D 

and 3D molecular descriptors for each host and guest. The descriptors of the Guest-dataset and 

the Host-dataset are reduced separately using the R software with different approaches: (i) 

deleting the descriptors that have a near-zero variance using Caret package; (ii) deleting the 

most correlated descriptors using Caret package; (iii) using PCA to combine descriptors that 

explain the most the variability. Host-dataset and Guest-dataset are merged to form the final 

dataset where each line corresponds to a guest interacting with a specific host. For creating data 

partition, for each numeric y, the sample is split into groups sections based on percentiles, and 

sampling is done within these subgroups. Several random seed numbers are used to generate a 

bunch of different partitions. 

The description of the calculated descriptors before dimensional reduction is presented in the 

following tables (Table 6, Table 7, and Table 8). The descriptors can be separated into three 

different tables: (i) global molecular descriptors table, (ii) the atom pair properties for 2D 

autocorrelation, and (iii) the atom pair properties for 3D autocorrelation. 

Table 6 represents the global molecular descriptors. It is composed of 16 different numerical 

molecular descriptors. These descriptors are very common and represent a chemical structure 

by a structural, chemical, or physicochemical feature or property of the molecule expressed by 

a numerical value. They are derived either from the growth formula, the 2D structure, or the 

3D structure. 
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Table 6: Global molecular descriptors145 

Descriptors Description Abbreviation 

Molecular weight Molecular weight in [g/mol] derived from 
the gross formula 

Weight 
 

Number of hydrogen 

bonding acceptors 

Number of hydrogen bonding acceptors 
derived from the sum of nitrogen and 

oxygen atoms in the molecule 

HAcc 
 

Number of oxygen atom-

based hydrogen bonding 

acceptors 

Number of hydrogen bonding acceptors 
derived from the sum of oxygen atoms only 

in the molecule 

HAcc_O 
 

Number of nitrogen 

atom-based hydrogen 

bonding acceptors 

Number of hydrogen bonding acceptors 
derived from the sum of nitrogen atoms 

only in the molecule 

HAcc_N 
 

Number of hydrogen 

bonding donors 

Number of hydrogen bonding donors 
derived from the sum of N-H and O-H 

groups in the molecule 

HDon_O 
 

Number of oxygen atom-

based hydrogen bonding 

donors 

Number of hydrogen bonding donors 
derived from the sum of O-H groups only 

in the molecule 

HDon 
 

Number of nitrogen 

atom-based hydrogen 

bonding donors 

Number of hydrogen bonding donors 
derived from the sum of N-H groups only 

in the molecule 

HDon_N 
 

Octanol/water partition 

coefficient (logP) 

Octanol/water partition coefficient in [log 
units] of the molecule following the XlogP 

XlogP 

Topological polar 

surface area 

Topological polar surface area in [Å2] of 
the molecule derived from polar 2D 

fragments 

TPSA 
 

Number of rotatable 

bonds 

Number of open-chain, single rotatable 
bonds 

NRotBond 
 

Number of Rule of 5 

violations 

Number of violations of the Lipinski's rule 
of 5 (Weight > 500, XlogP > 5, HDon > 5, 

HAcc > 10) 

NViolationsRo5 
 

Number of extended 

Rule of 5 violations 

Number of violations of the extended 
Lipinski's rule of 5 (additional rule: number 

of 
rotatable bonds > 10) 

NViolationsExt
Ro5 

 

Number of atoms Number of all atoms in the molecule 
(including hydrogen atoms) 

NAtoms 
 

Number of tetrahedral 

stereo centres 

Number of tetrahedral chiral centres in the 
molecule 

NStereo 
 

Molecular complexity Molecular complexity according to the 
approach by J. Hendrickson 

Complexity 
 

Ring complexity Ring complexity according to the approach 
by J. Gasteiger and C. Jochum 

RComplexity 

 

In Table 7, we have the Topological or 2D Property-Weighted Autocorrelation descriptors. 

These descriptors use the 2D structure of a molecule (i.e., the molecular graph as expressed by 
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the connection table) and atom pair properties as a basis to derive vectorial molecular 

descriptors. The products of atom pair properties are summed up for a certain topological 

distance: the number of bonds on the shortest path between two atoms. Thus, for each 

topological distance, a single value is obtained: one coefficient of the resulting 2D 

autocorrelation vector. 

Table 7: Atom pair properties for 2D autocorrelation145 

Atom Pair Property Description Abbreviation 

Identity 2D autocorrelation weighted by atom 
identities, i.e., "1" for an atom 

2DACorr_Ident 

σ charge 2D autocorrelation weighted by σ atom 
charges 

2DACorr_SigChg 

Ö charge 2D autocorrelation weighted by Ö atom 
charges 

2DACorr_PiChg 

Total charge 2D autocorrelation weighted by total 
atom charges (sum of σ and Ö charges) 

2DACorr_TotChg 

σ electronegativity 2D autocorrelation weighted by σ atom 
electronegativities 

2DACorr_SigEN 

Ö electronegativity 2D autocorrelation weighted by Ö atom 
electronegativities 

2DACorr_PiEN 

Lone pair 

electronegativity 

2D autocorrelation weighted by lone 
pair electronegativities 

2DACorr_LpEN 

Effective polarizability 2D autocorrelation weighted by 
effective atom polarizabilities 

2DACorr_Polariz 

 

The 2D autocorrelation vectors are calculated using the following parameters that have proven 

useful for most modelling: 

- Hydrogen atoms are ignored, and only non-hydrogen (heavy) atoms are taken into 

account. 

- The minimum topological distance is taken into account is 0, i.e., the first coefficient 

(element) of the 2D autocorrelation vector is the sum of the products of the properties 

of the atom pairs of each atom with itself. 

- The maximum topological distance taken into account is 10, i.e., there can be up to ten 

intermediate bonds between a pair of atoms. 

- Therefore, the dimensionality of a single 2D autocorrelation vector is "11".  

In total, eight eleven-dimensional 2D autocorrelation vectors using eight different atom pair 

properties are calculated for a molecule. 
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A similar procedure can be considered for Table 8 and the spatial or 3D Property-Weighted 

Autocorrelation. The spatial descriptors are calculated using the 3D structure of a molecule 

(i.e., the Cartesian atomic coordinates) and atom pair properties as a basis to derive vectorial 

molecular descriptors. The products of atom pair properties are summed up for certain 3D 

distance intervals. Thus, for each 3D distance interval, a single value is obtained: one 

coefficient of the resulting 3D autocorrelation vector. 

Table 8: Atom pair properties for 3D autocorrelation145 

Descriptors Description Abbreviation 

Identity 3D autocorrelation weighted by atom 
identities, i.e., "1" for an atom 

3DACorr_Ident 

σ Charge 3D autocorrelation weighted by σ atom 
charges 

3DACorr_SigChg 

Ö Charge 3D autocorrelation weighted by Ö atom 
charges 

3DACorr_PiChg 

Total charge 3D autocorrelation weighted by total 
atom charges (sum of σ and Ö charges) 

3DACorr_TotChg 

σ Electronegativity 3D autocorrelation weighted by σ atom 
electronegativities  

3DACorr_SigEN 

Ö Electronegativity 3D autocorrelation weighted by Ö atom 
electronegativities  

3DACorr_PiEN 

Lone pair 

electronegativity 

3D autocorrelation weighted by lone 
pair electronegativities 

3DACorr_LpEN 

Effective polarizability 3D autocorrelation weighted by 
effective atom polarizabilities 

3DACorr_Polariz 

 

The 3D autocorrelation vectors are calculated using the following parameters that have proven 

useful for most modelling: 

- Hydrogen atoms are ignored, and only non-hydrogen (heavy) atoms are considered. 

- The minimum spatial distance taken into account is 1 Å, i.e., the first coefficient 

(element) of the 3D autocorrelation vector is the sum of the products of the properties 

of the pairs of atoms that are 1 to 2 Å away from each other. 

- The maximum spatial distance considered is 13 Å, i.e., up to ten intermediate bonds 

between a pair of atoms. 

- The number of equal 3D distance intervals is set to 12, i.e., the first interval sums the 

property products of the atom pairs from 1 to 2 Å. Therefore, the dimensionality of a 

single 3D autocorrelation vector is "12".  

A total of eight 12-dimensional 3D autocorrelation vectors using eight different atom pair 

properties are calculated for a molecule. 
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Before calculating the global descriptors, hydrogens have to be added to all of the molecules. 

As the CORINA web platform uses 3D molecules, a strong focus has to be done on the 

constructions of the 3D molecules. For that reason, we used the GFN2-xTB SQM methods for 

geometrical optimisation on all the structures after their construction from the 2D SMILES 

code or after their extraction from the SAMPLs GitHub repository. 

V. B - OPTIMISATION OF THE ML ALGORITHM 

Several ML algorithms were used for this work and were described in chapter 2 (Methods). By 

modifying the tuning parameters of the four ML algorithms, multiple different models were 

able to be generated. The variation in the tuning parameters is presented in the following table: 

Table 9: Variation of the tuning parameters of the NNET (in blue), the SVM (in green), the RF (in red), 

the Knn (in yellow). 

 
In total, more than a million models are generated using the variation of the tuning parameters, 

the 3x repeated-cross validation using 10-fold, and the ten different data partition we initially 

created with ten different random seed numbers. These millions of models will be ranked using 

the respective values of the RMSE, MAE, and R2 in the training-set. The best-ranked model of 

each regression model will be selected and compared by (i) their prediction of the test-set and 

(ii) the descriptors they used the most for the prediction. 

The clustering methods, the thermodynamically based approach, and the knowledge-based 

methods have been used on multiple systems belonging to different chemical families. These 

systems and the associated results will be presented in the next chapters related to the 

application of the HG-DYNAusor platform. 
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V. C - DIMENSIONAL REDUCTION PROCEDURE: 

The dimensional reduction procedure has been applied for all the systems studied with the 

knowledge-based methods and for constructing the global model, applied apart for the guest 

and the host. The process will only show once for practical reasons as the principle is the same 

for all the models. 

V. C. 1 - PRE-PROCESSING: 

To analyze the physical-chemical space, all the variables are analyzed together using non-

supervised ML algorithms. The outcome of the PCA on the raw-dataset is shown in Figure 37: 

 
Figure 37: PCA of the Guest chemical space before any dimensional reduction described by a set of 

molecular descriptors generated with CORINA. In (A), the space formed by the combination of PC1 and 

PC2 explains respectively 38.3% and 17.2% of the variability. In (B), the space formed by the 

combination of PC1 and PC3 explains respectively 38.3% and 4.8% of the variability. In (C), the space 

formed by the combination of PC2 and PC3 explains respectively 17.2% and 4.8% of the variability. In 

(D), the scree-plot represents the variability of all the principal components of the analysis. The molecules 
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are coloured by the system there are supposed to interact with and, their size is a function of their binding 

free energy. 

In Figure 37, the initial dataset explains in the three first components 60.3% of the total 

variability of the dataset. This value is acceptable for a raw dataset since some variables bring 

only noise at this step (imagine, for example, a variable that would accurately describe 10% of 

the dataset and give opposite information to the remaining 90%). One of the first pre-process 

we can do is a dimensional reduction using a zero-variance or near-zero-variance (nzv) 

protocol: a variable that presents almost no variability in the dataset is a useless variable that 

is incapable of giving interesting information for the discrimination of one molecule between 

one other. In most cases, this may cause the model to crash or the fit to be unstable. Similarly, 

predictors may have only a handful of unique values that occur at very low frequencies. 

To identify these predictors, we are using the caret package from R. Two main metrics are used 

for the identification of the nzv-variables: 

- The frequency of the most prevalent (freqRatio) represent the value over the second 

most frequent value (called the “frequency ratio’’) 

- The percent of unique values represent the number of unique values divided by the 

total number of samples 

As an example, for our dataset, the application of the nzv-algorithms for the raw-data gives the 

following Table 10, where only the five first variables are shown: 

Table 10: Output of the Near-Zero-Variance (nzv) protocol on the dataset: 

Variables: freqRatio percentUnique zeroVar nzv 

NViolationsRo5 27.35 0.35 false true 

X2DACorr_Ident_9 20.82 6.50 false true 

X2DACorr_Ident_11 33.38 4.92 false true 

X2DACorr_PiEN_11 38.42 8.08 false true 

X2DACorr_LpEN_2 130.75 3.69 false true 

… … … … … 

 

In total, 30 descriptors were found to have non-zero variance at this step and were deleted from 

the dataset. The dataset presents then 170 numerical descriptors. Important to note that when 

you split the data set into a training set and a test set prior to prediction, the same protocol can 

be tested again to ensure that splitting the data into two groups has not resulted in new variables 
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with zero or near-zero variance. Another approach is to use dimensional reduction using 

correlated descriptors. The idea is that two highly correlated descriptors (99% or 95% 

depending on the dataset) will bring almost the same information to the models and thus should 

not be considered together. For our dataset, the correlated descriptors that are presenting a 

correlation up to 95% are deleted from the dataset, and at this step, the analysis of the chemical 

space of the model gives the following Figure 38, presenting at this step 142 descriptors: 

 
Figure 38: PCA of the Guest chemical space after a dimensional reduction using near-zero-variance and 

correlated approach described by a set of molecular descriptors generated with CORINA. In (A), the 

space formed by the combination of PC1 and PC2 explains respectively 39.5% and 17.0% of the 

variability. In (B), the space formed by the combination of PC1 and PC3 explains respectively 39.5% and 

4.7% of the variability. In (C), the space formed by the combination of PC2 and PC3 explains respectively 

17.0% and 4.7% of the variability. In (D), the scree-plot represents the variability of all the principal 

components of the analysis. The molecules are coloured by the system there are supposed to interact with, 

and their size is a function of their binding free energy. 
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At this point, there was little or no change in the explained variance: 61.2% compared to the 

previous 60.3%. It makes a lot of sense: at this point in the analysis, the deleted descriptors 

were uninformative descriptors that did not provide useful information about the variability of 

the data set, but that could disturb the prediction by the ML approach. At this step, we deleted 

the descriptors that are not important for the variability of the dataset using two different 

approaches. In contrast, now we will try to extract the descriptors that explained the most 

variability. For this, an unsupervised approach is used from a PCA result: a determined number 

of the most useful descriptors are extracted from each of the first three components to have a 

dataset that describes as much as possible the variability to improve the accuracy of the ML 

models. For this dataset, we extracted 90 descriptors (30 for each of the three first PCs), giving 

the following Figure 39. 
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V. C. 2 - ANALYSIS OF THE GUESTS 

 
Figure 39: PCA of the Guest chemical space using a reduced set of molecular descriptors generated with 

CORINA. In (A), the space formed by the combination of PC1 and PC2 explains respectively 41.7% and 

27% of the variability. In (B), the space formed by the combination of PC1 and PC3 explains respectively 

41.7% and 7.1% of the variability. In (C), the space formed by the combination of PC2 and PC3 explains 

respectively 41.7% and 27% of the variability. In (D), the scree-plot represents the variability of all the 

principal components of the analysis. The molecules are coloured by the system there are supposed to 

interact with, and their size is a function of their binding free energy. 
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The PCA of the guest shows that the three first components explain 72.8% of the variability. 

The dataset for this PCA is composed of 570 ~ molecules, described by a set of 90 molecular 

descriptors calculated with CORINA web-platform and for which a numerical binding free 

energy has been extracted from the literature. In the terminology of the PCA, the dimensions 

are synonym with the PC(X), with X representing the considered dimension: as an example, 

the first dimension (Dim1) and the first component (PC1) represent the same space. As the 

other dimensions show a very low percentage (Figure 39D), we consider the sampling to be 

sufficient. As you can see, the guest model shows one outlier in the model (in the top-right of 

(A), (B), and (C)). This molecule can eventually lead to some computational noise in the 

prediction because it is far away from the other molecules in all the dimensions of the space: 

this molecule that is interacting with the BDM11 host is sampling its own conformational 

space. It is interesting to highlight that as the molecule are coloured by the system, there are 

interacting with, and as we said, there are molecules that interact with two different systems, 

thus some molecules completely overlap. In these cases, only one system is visible due to the 

overlap of the colours. 
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V. C. 3 - ANALYSIS OF THE HOSTS 

 
Figure 40: PCA of the Host chemical space using a reduced set of molecular descriptors generated with 

CORINA. In (A), the space formed by the combination of PC1 and PC2 explains respectively 40.0% and 

31.1% of the variability. In (B), the space formed by the combination of PC1 and PC3 explains 

respectively 40.0% and 27.5% of the variability. In (C), the space formed by the combination of PC2 and 

PC3 explains respectively 31.1% and 27.5% of the variability. In (D), the scree-plot represents the 

variability of all the principal components of the analysis. The molecules are coloured by the system. 

The three first components of the PCA of the host represent almost all the variability: 98.6% 

(Figure 40). The dataset for this PCA is composed of 24 different hosts, described by a set of 

90 molecular descriptors calculated with CORINA web-platform and for which numerical 

binding free energies with a set of guests have been extracted from the literature. In that case, 

the hosts are sampling a relatively smaller space than the guest. It can be explained by the less 
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important diversity of the host systems compared to the guests. It is interesting to see that many 

hosts sample a similar conformational space, while others are quite far apart. However, it is 

very easy to differentiate between the different clusters because of the small number of 

samples. It is logical that the hosts belonging to the same chemical family’s sample structurally 

close conformational spaces. However, due to the fact that in our method of extracting 

numerical variables that best explain the variability of the sample, possible that in some cases, 

two structurally close hosts do not sample the same conformational space because they do not 

have the same physicochemical properties. Unlike the previous graphic, each host corresponds 

to a unique colour, presenting the same size.   

V. C. 4 - ANALYSIS OF THE HOST-GUEST MODEL 

In Figure 41, we can see a PCA of the host-guest system composed by the two previous 

analyses on respectively host and guest. The dataset for the Host-Guest system is composed of 

a concatenation of the previous descriptors of the guest and the host to form the final dataset 

composed of 570 features, described by 90 variables. These variables are decomposed into 60 

guest variables and 30 host variables. We wanted to weigh the analysis by giving more 

information about the guest than the host. The PCA only explains 62.7% of the variability after 

the three first PCs. Considering PC4, we are up to 70% of the variability, as we created a dataset 

with the host and the guest information inside, the values are acceptable for further analysis, 

with the idea that the inclusion of new systems will improve the quality of the dataset after 

several usages of the knowledge-based protocol. 
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Figure 41: PCA of the Host-Guest chemical space using a reduced set of molecular descriptors generated 

with CORINA. In (A), the space formed by the combination of PC1 and PC2 explains respectively 30.8% 

and 17.8% of the variability. In (B), the space formed by the combination of PC1 and PC3 explains 

respectively 30.8% and 14.1% of the variability. In (C), the space formed by the combination of PC2 and 

PC3 explains respectively 17.8% and 14.1% of the variability. In (D), the scree-plot represents the 

variability of all the principal components of the analysis. The molecules are coloured by the system there 

are supposed to interact with, and their size is a function of their binding free energy. 

An overview of the most useful variable and their respective contributions on each axis can be 

shown in the following Figure 42, Figure 43, and Figure 44. 

You can see in these figures that the three first dimensions of the PCA are not described by the 

same descriptors-type. For the Dim-1 (or PC1), It is a majority of 2D and 3D-electronegativity 

descriptors, mainly related to the σ atoms.  
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Figure 42: Top-contributions of variables to Dimension 1 

For the Dim-2 (Figure 43), It is a majority of 2D and 3D-electronegativity descriptors, mainly 

related to the Ö atoms. 

 
Figure 43: Top-contributions of variables to Dimension 2 
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For the Dim-3 (Figure 44), It is a majority of 2D and 3D-electronegativity descriptors, 

describing both total charges, Ö and, σ electrons atoms. 

 
Figure 44: Top-contributions of variables to Dimension 3. 
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VI - HG-DYNAUSOR PLATFORM: FUTURE DIRECTIONS 

VI. A - CLUSTERING METHODS 

The clustering method using a non-supervised ML approach is difficult to automatize for any 

arbitrary system. At present, this method depends on general molecular descriptors that are 

easy to generate but do not describe the configurational variability of the molecules or how 

they interact. In order to improve accuracy, we could use additional molecular descriptors that 

depend on and describe the structure of the considered host (specific angles, distances, 

torsional, or dihedrals). For that reason, the automation of the clustering protocol was not 

possible in the time frame of the thesis. All the studied system has been clusterised manually 

depending on the chemical specificity of each other. 

VI. B - THERMODYNAMIC BASED APPROACH 

The thermodynamic-based approach is limited by the complexity of calculating the numerical 

values of the enthalpic and entropic terms. We knew and encountered several problems linked 

to the solvation modes and the protonation states. 

We found that when the system is optimised at an SQM level, followed by a docking procedure, 

then the thermodynamic calculation on the resulting structure can lead to unrealistic results 

with a deformed structure. For that reason, sampling with explicit solvent is necessary, and the 

MD will be used as a sampling method for binding free energy prediction. We also encountered 

a problem concerning the thermodynamic prediction of hosts or guests that are multiple 

charged (positively or negatively), for which the binding free energy is mostly overestimated. 

This problem seems difficult to address with implicit solvent models. The use of a combined 

approach, where explicit solvent molecules are included in the first layers of solvation, should 

be investigated. 

VI. C - KNOWLEDGE-BASED APPROACH 

Within the limited timeframe we had during the thesis, we decided to use the BindingDB as a 

reference database for the ML protocol. But while the data coming from the SAMPL challenge 

are well standardized (the activity measurement is done in a very similar way by the same team 

for all the experiments), most of the activity data coming from the bindingDB originates in the 

scientific literature, and the experimental details are heterogeneous and often insufficiently 

described. There exist multiple limitations to the knowledge-based methods that are linked to 
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the methods and the data. As we are creating some logical function that learns from the 

molecular descriptors we generated with CORINA, but if the structure of the guest and the host 

used for the learning phase is completely different from the predicted ones, the prediction will 

be out of the scope of the model. Before any prediction, we should control that the space of the 

model overlaps with the space of the predicted molecules, thus avoiding making predictions 

when outside the scope of the model. Compared to other methods, the knowledge-based 

method is extremely fast. The moment the models are ready to be used, it takes only a few 

minutes to predict the binding free energy of a new guest inside a host. 

In the next chapters, some systems on which the platform have been used will be presented. 
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4 

APPLICATION OF THE HG-

DYNAUSOR PLATFORM 
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I - INVESTIGATED SYSTEMS: 

I. A - GIBB DEEP CAVITY CAVITAND (GDCC) 

The Gibbs cavitand is an octa-acid macrocycle that we studied in the context of our 

participation in the SAMPL7 and SAMPL8 challenges. These macrocycles present a highly 

hydrophobic cavity and two preferential positions for chemical variations: endo and exo. The 

variations around these positions formed several different macrocycles investigated in this 

chapter. The initial structure (Figure 45) has very low solubility in water.  

 
Figure 45: Presentation of the structure of the initial macrocycle146 

The solubility issues were solved by the addition of several carboxylic acids (Figure 46), 

leading to the formation of the first GDCC-macrocycle: the octa-acid (OA). In addition, this 

macrocycle has a hydrophobic edge around the entrance to its inner hydrophobic pocket.  

 
Figure 46: Presentation of the octa-acid host system: the exo position is not modified, but height 

carboxylic groups have been added to the structure: 4 at the end of the pendant chains and four at the 

external part of the endo position, linked to the hydrophobic rim146 

From that octa-acid host, several molecular changes led to the formation of other macrocycles 

that have been studied in the thesis along the SAMPL7 and SAMPL8 challenges: the exo-Octa-

Acid (exo-OA) with the carboxylic groups in the exo-position, the Tetra-endoMethyl Octa-
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Acid (TeMOA) with an addition of a methyl group in the endo-position, and the Tetra-

endoEthyl Octa-Acid (TeeTOA) with an addition of an ethyl group in the endo-position. These 

macrocycles are presented in the following Figure 47: 

 
Figure 47: Presentation of the Gibbs cavitand used in the thesis: From the left to the right: the OA, the 

exoOA, the TEMOA, and TEETOA 
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I. B - CUCURBITURIL CB[8] 

The cucubirt[n]uril (CB[n]) was investigated in the SAMPL8 challenge. The challenge focuses 

on the binding of CB[8] to nine guests, which are drugs of abuse (morphine, cocaine, 

hydromorphone…).  The macrocycle was named cucurbituril due to its resemblance to a 

pumpkin. In terms of structure, the cucurbit[n]uril consists of a glycoluril unit bound together 

by two methylene bridges for each of them. The numbers of glycoluril units can differ, leading 

to several different cucurbit[n]urils differing by their cavity size (Figure 48).  

 
Figure 48: Geometries of the cucurbit[n]urils family147 

The first member of this family was the CB[6] macrocycle (containing six units of glycoluril 

bound together with 12 methylene bridges). As the number of glycoluril units increases, the 

cavity size increases, allowing the new macrocycle to bind larger and larger guests inside their 

cavity. As the cavity size increase, the properties are also modified, especially the electrostatic 

potential, which becomes much more negative in the cavity from 8 units of glycoluril (Figure 

49). 
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Figure 49: Calculated Electrostatic potential for several cucurbit[n]uril: CB[5] (a), CB[6] (b), CB[7] (c) 

and CB[8] (d)147 

As shown, the glycoluril units' alignment results in a hydrophobic cavity with carbonyl-lined 

portals. The presence of the carbonyls makes the portal attractive for cation binding through 

the ion-dipole effect. Though the electrostatic potential is negative in all cases, the increase of 

cavity size increases the electrostatic potential. Unlike to rim, the inner part of the CB[n] family 

is remarkably hydrophobic and leads to a preferential encapsulation of hydrophobic 

compounds. From all the CB[n], the CB[7] is one of the most used cucurbiturils due to its 

capability of binding a diverse set of molecular structures. CB[8] is also well known and well 

used for biological application and drug encapsulation due to its large cavity size. CB[8] has 

been used for the SAMPL6 and SAMPL8 challenges.  
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An overview of the system is shown in Figure 50: 

 
Figure 50: Presentation of the CB[8] structure used in the SAMPL8 challenge 

The cavity volume of the CB[8] cavitand is around 480 Åi, which is almost two times larger 

than the CB[7], but its binding capabilities are in many ways similar to the others CB[n] 

macrocycles. In the literature, CB[8] is described to have very strong affinities for bulky 

amphiphilic positively charged guests, but some encapsulation of very large macrocyclic guests 

is also described.147 

Concerning the structural analysis of the CB[8] system, some NMR analysis suggests that the 

larger width of the cavity allows for a structural change compared to the other smaller CB[n] 

systems, and the macrocycle can present a U-shaped geometry that could allow some guests to 

be entirely encapsulated. While almost all the CB[n] macrocycles only allow only one guest 

inside the cavity, it appears that CB[8] system, due to its flexibility and larger cavity size, may 

bind two guests. 
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I. C - TRIMERTRIP 

For the SAMPL7 challenge, the Isaacs group contributed a new host-system derived from the 

Cucurbituril macrocycle with associated binding data148. This CB-like clip is codenamed 

TrimerTrip in the challenge. In general, CB[n] are composed of n glycoluril unit linked by 2n 

methylene bridges. In this case, the TrimerTrip system is an acyclic receptor featuring a central 

glycoluril oligomer that is capped by aromatic sidewalls. Two different trimertrips have been 

studied in the thesis: the one extracted from the SAMPL339 challenge and the one extracted 

from the SAMPL7 challenge (Figure 51): 

 
Figure 51: Presentation of the Trimertrip systems used in the SAMPL3 challenge (left) and in the 

SAMPL7 challenge (right) 

The Trimertrip used for the SAMPL3 challenge features a central glycoluril tetramer, with o-

xylylene sidewalls and carboxylate used to enhance water solubility. Due to their acyclic 

nature, these host systems are much more flexible than their non-cyclic counterparts. 
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I. D - CALIX[4]-PYRROLE 

A molecular structure derived from calix[4]pyrrole was provided by one of the partners of the 

NOAH project, the ICIQ (Institut Català d'Investigació Química) to be studied.  

Over the past few decades, calixpyrroles, particularly calix[4]-pyrroles, have become important 

members of supramolecular chemistry. The chemical structure of the calix[4]pyrrole is shown 

in Figure 52: 

 
Figure 52: (a) Representation of  the chemical structures of calix[4]pyrrole ; (b) schematic representation 

on how the calix[4]pyrrole assemble149  

The calix[4]pyrroles are synthetic non-planar, non-aromatic tetrapyrrolic macrocyclic 

receptors capable of binding an array of anions as well as neutral substrates through N–H 

hydrogen bonding. The fundamental structure of calix[4]pyrroles consists of four pyrrole rings 

and is divided into three major parts: The C-rim, N-rim, and meso-rim. 

These past decades, the calix[4]pyrroles were used in a very large variety of applications 

presented in the following Figure 53: 

 
Figure 53: An overview of the possible applications for Calix[4]pyrrole150 
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II - SAMPL CHALLENGES AS A VALIDATION STEP FOR 

THE PLATFORM 

II. A - THE SAMPL7 CHALLENGE 

II. A. 1 - SAMPLING PROCEDURE 

Considering the complexity of the conformational energy landscape of the complex and host 

molecule, we used multiple geometries of the unbound host system as starting points for 

minimization, thus increasing the probability of finding the absolute minimum. To do so, we 

extract approximately 15 structures from the classical molecular dynamics simulations to carry 

out a geometric optimization at a semi-empirical level, followed up by calculation of the 

hessian to confirm that the final energy is a true minimum (i.e., all vibrational frequencies are 

positive). The variation in free energy was as large as 10 kcal/mol for the different geometries, 

which confirmed the importance of conformational sampling. The overall lowest energy 

structure was defined as a reference for free energy calculation. Though the degrees of freedom 

of the guests are much reduced, we use a similar protocol for consistency.  

 
Figure 54: Protocol used to generate low-energy conformations of the apo host, the guest, and the host-

guest systems. Three methods have been tested to generate initial models of the host-guest complex: 

SaMD, MD-Docking, and Docking. MD with explicit aqueous solvation is used to sample the 

conformational space. Then, for representative conformations, water is deleted, and the geometry is 

minimized with the GFN2B basis set in GBSA implicit water solvation. 
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II. A. 2 - RETROSPECTIVE ANALYSIS OF TRIMERTRIP SYSTEM 

As a proof of concept for our methodology, we used the data from the trimertrip set in the 

SAMPL3 challenge. This host is similar but simpler than the one in SAMPL7. Docking with a 

large box (15 Å3) produced complexes with negative binding energy (scoring), but the guest 

only formed surface interactions with the host. This led us to test two additional docking 

conditions where the docking space is progressively reduced. The resulting docking geometries 

have positive scores, indicative of conformational clashes, but in this case, the guest inserts 

into the host cavity. Three to five different binding modes were selected for each docking 

protocol. Minimization using Chimera allowed the system to relax before minimization and 

free energy calculation with GFN2B-xTB. Interestingly, the lowest-energy binding mode 

originated from the most restrictive docking protocol. 

 
Figure 55: Results of the retrospective analysis of SAMPL3 Host-Guest complexes. Free energy 

predictions (blue bars) and experimental values (red bars) are in excellent agreement. 

As shown in Figure 55, the predicted binding free energies are in excellent agreement with the 

experiment (RMSE = 1.16 kcal/mol; MAE = 0.87 kcal/mol; Pearson’s correlation ® = 0.90; 

Spearman’s rank correlation (1) = 0.75, Kendall’s tau correlation = 0.62(τ)). In fact, in four out 

of the seven test cases, we obtain quantitative agreement. In one case, the error is below 1 

kcal/mol, and in the two remaining cases, the errors are 1.6 kcal/mol and 2.2 kcal/mol. This led 

us to believe that, given the correct binding mode, the GFN2B-xTB semiempirical method 

could provide QM-level results at a small fraction of the computational cost (minimization plus 

calculation of the vibrational frequencies takes one to two hours per geometry on a desktop 

computer). 

For that specific SAMPL3 dataset, retrospective analysis of the results shows very accurate 

results compared to the ones that have been published initially.  
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II. A. 3 - SAMPL7 TRIMER-TRIP BINDING MODE GENERATION 

As in the test systems above, host-guest interactions were predicted by molecular docking 

considering different docking volumes in order to obtain a variety of binding modes, including 

some where the guest is fully inserted into the host. In the most restrained volume (which forces 

the guest to be located inside the host but yields positive score values), a molecular mechanics 

(MM) minimization of the docking solution is performed with MOE and Chimera, thus 

removing any potential clash between host and guest. For some particular systems (G08 and 

G10), the MM minimization was deemed insufficient to attain a relaxed complex. In those 

cases, docking was followed by 200 ns of MD simulations. Even then, it failed to generate any 

binding mode where the guest is embedded into the cavity of the cyclic host. Further adding to 

our problems, the sulfonate groups tended to form unrealistic interactions after minimization 

with xTB. In some cases, the sulfonates were even inserted into the host pocket, which is largely 

hydrophobic, instead of remaining solvent-exposed, as expected for a negatively charged group 

(Figure 56). This indicated that the implicit solvation model in xTB underestimates the 

desolvation cost of ionic groups.  

Unlike what was observed with the trimer-trip host-guest systems of previous editions, we had 

to conclude that a better method was necessary to generate correct binding modes for the 

SAMPL7 test set. Our method should allow for host flexibility in order to allow guest 

embedding with reasonable geometries. On the other hand, it was clear that the implicit 

solvation model implemented in xTB was falling short for ionic systems, and explicit solvation 

would be necessary for the conformational sampling stage. Both requisites pointed to MD 

simulations as an optimal solution, which we proceeded to implement and test. 

 
Figure 56: Binding mode of guest molecule G06 generated with docking and xTB. A sulfonate group 

enters the host pocket during geometric optimization, revealing an inadequate balance of solvation terms. 
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For the linear guests G01, G02, and G05, SaMD successfully completed the inclusion process, 

which proceeded in two steps: (i) rapid formation of surface contact between host and guest, 

leading to stable interactions; and (ii) a small opening of the host system, enabling the entry of 

the guest into the host cavity and formation of a stable complex (Figure 57). The second step 

is the bottleneck in the process. It occurs in a simulation time of 50 ns to 500 ns for the G01 

compound, but for systems with longer alkene chains (more degrees of freedom) takes a much 

longer time. In G05, for instance, the simulation had to be extended to 1µs to observe a single 

association event (ca. 700ns). The application of the same methodology to the cyclic guest (i.e., 

G06, G07, G08, G09, G10, G11, G18, G19) failed to produce correct binding modes. While 

the compounds form stable surface interactions, they do not enter the host. This is in line with 

the above observation that host opening to admit the guest is the bottleneck in the association 

process. The bulkier nature of the cyclic guests implies that the host must (transitorily) adopt a 

wide-open conformation that is energetically unfavourable and cannot be sampled in the 

relatively short timescale of the MD simulations. To confirm this hypothesis, for the cyclic 

guest G07, we carried out an MD simulation starting from a fully open host system (generated 

by geometrical optimization in a vacuum). The guest rapidly proceeds to interact with the (now 

exposed) interior of the host, forming a stable but dynamic binding mode. After approximately 

100ns, the host folds, trapping the guest in its interior (Figure 57).  This result indicates that 

starting from metastable host conformations may be a general strategy to accelerate SaMD and 

generate valid host-guest geometries.  

Notably, the binding mode of the guests inside the host is very dynamic, with fast rotations and 

frequent sliding movements that are only limited by the resistance of the charged group of the 

guest to enter the hydrophobic core of the host. As expected, the ionic groups rarely form direct 

contacts. Instead, they preserve their solvation shells. Overall, these results suggest that SaMD 

is an optimal and feasible strategy not only to obtain a bound conformation of the host-guest 

complex but also to capture the rich conformational diversity of the bound state. Unfortunately, 

between the setting up and testing of this protocol and the computational cost of the MD 

simulations, it was impossible to complete all these calculations by the challenge deadline. 

Posterior analysis confirms that correct identification of the binding mode through SaMD 

improves the quality of the binding free energy predictions (see next section). 



 

Page 140 / 254 
 

 
Figure 57: Inclusion process for trimer-trip dost-guest complexes observed with SaMD. (I) Linear guest 

G02 (A) starts from a fully dissociated state; (B) after ~ 10ns, surface interaction is formed between host 

and guest; (C) eventually, the host widens the cavity, and the guest molecule slides across to form a 

complex; (D-E-F) the complex remains stable but explores a variety of conformations for the remaining 

of the simulation. (II) Cyclic guest G07 (A) forms an encounter complex very early (~1ns); (B) and 

remains in contact with the host for over 100ns, until the host clicks into the closed geometry; (C-D) the 

complex remains stable but explores a variety of conformations for the remaining of the simulation. 

II. A. 4 - SAMPL7 TRIMER-TRIP FREE ENERGY PREDICTION 

For each complex, we extract 5 to 10 different binding modes generated with the above-

described protocols. These geometries are then individually minimized at the GFN2B-xTB 

semi-empirical level, and only those yielding a true minimum (i.e., all vibrational frequencies 

are positive) are considered. The lowest energy complex is considered as the true minimum, 

except for a few cases where visual inspection identified issues with the corresponding 

geometry, always related to inadequate screening of charges by the implicit solvation method, 

such as those shown in Figure 56. Predictions for each system are shown in Table 11.  

I 

II 
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Figure 58: Comparison of experimental binding free energies with predicted values. (Top) correlation 

plot; the green-shaded area represents a threshold of +1/-1 kcal/mol from the experimental energy; the 

symbols indicate the nature of the guest and the method used for binding mode generation (triangle = 

docking for cyclic guest, circle = docking for linear guest, square = SaMD for linear guest, cross = SaMD 

for cyclic guest). (Bottom) histogram of binding free energy coloured by the method used for binding 

mode generation (black = docking for cyclic guest, green = docking for linear guest, blue = SaMD for 

Linear guest, purple = SaMD for cyclic guest). G18 and G19 guests are not shown or considered for 

statistical analysis because it was not possible to generate a plausible binding mode for them. 

For guests G18 and G19, we could not find a correct binding mode SaMD, and the docking 

results gave positive binding energy. As both protocols failed for these two cyclic guests 

(presumably due to their large volumes), we desisted from making predictions for them.  

We can see in Figure 58-A three different zones in the graphics: The first zone corresponds to 

the 5 Host-Guest systems that have been predicted well. Concerning these systems, G01, G02, 

and G07 are extracted from the SaMD protocol. At the same time, G08 and G10 are the two 

cyclic host from where interaction outside the cavity have been extracted from MD-docking. 

The second zone corresponds to the 5 Host-Guest systems, where our prediction was incorrect 

but still within the range from the experimental values (3 to 5 kcal/mol errors). These complex 

B 

A 
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(G03, G05, G15, G16, G17) are mainly linear, and the results originate from docking poses 

with the exception of G05, which originates from SaMD (result obtained after the submission 

deadline). The third zone corresponds to the 6 Host-Guest with large errors, including the G18 

and G19 (for which no negative binding energy has been found). Most of them are cyclic, and 

the errors can be attributed to our inability to find reasonable binding modes in the timeline of 

the challenge. 

In Figure 58-B, we show that for the complexes where SaMD delivers a correct binding mode, 

the binding free energy predictions are far superior to the results obtained from docking poses. 

In fact, most cases (G01, G02, G05, G07) are in quantitative agreement with the experiment 

(+/- 1kcal mol) and the overall performance statistics are excellent: for RMSE = 1.45 kcal/mol; 

MAE = 0.96 kcal/mol; Pearson’s correlation (r) = 0.86; Spearman’s rank correlation (1) = 0.94, 

Kendall’s rank correlation = 0.91(τ). Compared to SaMD, the results from docking 

underestimate the binding free energy, which suggests that lower-energy conformations of the 

Host-Guest complex can be sampled with MD but not with the MM protocols. 

II. A. 5 - KNOWLEDGE-BASED APPROACH 

For GDCC prediction, as there was an important amount of pre-existing data from previous 

challenges, we decided to try an orthogonal approach-based ML. The dataset includes 35 

compounds in total, belonging to three classes of host systems that are similar in structure and 

chemical composition: OA, TEMOA, and exoOA (Figure 47). The binding free energy values 

range between -3.73 kcal/mol and -8.38 kcal/mol. The used model is an NNET, using 90 

CORINA descriptors (60 describing the guest and 30 describing the host system). As expected, 

the predictions for the training set are very accurate, with RMSE = 0.92 kcal/mol and all the 

predicted values within a 1 kcal/mol range from the experimental values (Figure 59). For the 

test set, all the predicted values are close to the experimental one, with maximum and minimum 

errors of -1.49 kcal/mol and +0.22 kcal/mol, respectively. 

The GDCC-7 dataset to be predicted this year consisted of 8 guest compounds (four charged 

and four non-charged) binding to two related host systems. After the model has been optimized, 

it takes only 10 seconds to calculate the binding free energy of the eight guests in the two hosts. 

With RMSE and MAE values of 1.67 kcal/mol and 1.21 kcal/mol, respectively, the overall 

performance is rather satisfactory, especially by comparison with the thermodynamic-based 

approach. Worth noting that the four negative guests are not predicting well, which can be 

explained by the limits of the model imposed by the composition of the training set: since the 
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least favourable binding free energy value is -3.73 kcal/mol, the model cannot predict more 

positive values. Even then, the hierarchy between the guest values is respected (G4 < G3 < 

G2). There is no experimental value for G1, so it has not been considered for this analysis. If 

we apply the same analysis to every subgroup (based on the positive or negative charge and 

the host they are interacting with), we obtain an almost perfect hierarchical prediction. The 

only exception is the OA-G7 complex, which was predicted lower than OA-G6 due to the fact 

that OA-G7 has been underestimated (-5,67 kcal/mol instead of -6.98 kcal/mol) while OA-G6 

have been predicted very close to his experimental values (-5.92 for -5.83 experimental values). 

In fact, all systems, except for the four negative compounds interacting with exo-OA, are 

predicted within 1 kcal/mol of the experimental values (Figure 60). For the complexes 

involving the OA system, which features prominently in the training set, the predictions are 

better still, with MAE = 0.55 kcal/mol and RMSE = 0.85 kcal/mol. 

 
Figure 59: A performance of the training set including 27 different guests interacting with two different 

systems. (B) the test set includes eight guest molecules with free energy predicted using the training set. 
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Figure 60: Comparison of experimental binding free energies with predicted values. (Top) correlation 

plot; The green-shaded area represents a threshold of ±1 kcal/mol from the experimental energy; the 

symbols indicate the nature of the guest, and each prediction has a different colour (triangle = positively 

charged guest interacting with OA system, circle = negatively charged guest interacting with OA system, 

square = negatively charged guest interacting with the exo-OA system, cross = positively charged guest 

interacting with the exo-OA system). (Bottom) histogram of binding free energy with calculated (blue) 

and experimental values (red). The error bars reflect the RMSE of the nnet model on the training set 

(0.918 kcal/mol).  

II. A. 6 - CONCLUSION ON THE SAMPL7 CHALLENGE 

The participation in SAMPL7 allowed us to test two orthogonal approaches to calculate host-

guest binding free energies, identifying in each case strengths and limitations.  

The thermodynamic-based approach is absolutely general and can be used, in principle, on any 

host-guest system. The use of an advanced semiempirical basis set (GFN2B) to calculate 

energies and thermostatistical corrections offers increased performance relative to MM 

approaches with a moderate computational cost (1-2h on a single CPU) and eliminates the 
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dependency on small-molecule force-fields, which are often inaccurate. However, we have 

identified critical aspects that can lead to incorrect predictions. The first one is a critical 

dependency on the structure of the host-guest complex used to generate the prediction (the 

binding mode). For systems with significant host flexibility, rigid receptor docking can be 

inappropriate, and host conformational sampling is necessary. Direct observation of the host-

guest pair formation through molecular dynamics with explicit solvent is an optimal solution 

in terms of quality of the binding free energy predictions but can be unpractical due to the long 

simulations times, which increase with the number of degrees of freedom of the system. In the 

trimertrip case, we identified a slow transition between the closed and open conformation of 

the host as the bottleneck in the association process. For such cases, starting the SaMD 

simulations with open host conformations can yield excellent results at a fraction of the 

simulation cost. The second limitation of our approach is the implicit solvation method (GBSA) 

which can underestimate the desolvation cost of ionic species in aqueous solvation, leading to 

the formation of ionic pairs which contribution is overvalued. Other reports have observed a 

systematic bias with implicit solvation models. We do not observe such systematic bias, but 

the implicit solvation model remains one of the weaknesses of the approach. In any case, the 

explicit solvation in MD simulations is better suited to preserve the solvation shells around the 

solute’s ionic groups. Thus, the use of MD snapshots as input geometries in GFN2B-xTB 

calculations seems to provide better results than exhaustive conformational sampling with 

implicit solvation.  

The use of knowledge-based methods can be highly advantageous when there is sufficient pre-

existing data. Unlike protein-ligand complexes, where a large body of data exists, host-guest 

systems cannot benefit from massive training sets. Thus, we were particularly interested in 

examining the suitability of machine learning approaches, with a particular concern on the risk 

of overfitting. The results obtained on the GDCC system are really encouraging and motivate 

us to build a database of host-guest systems with their corresponding binding free energies and 

train both general and host-specific models.  

Overall, the participation in SAMPL7 has allowed us to design an automatic pipeline to 

compute binding free energies for any Host-Guest system. This automatic pipeline was the 

basis of the thesis, and the final version was presented in the previous chapter (HG-

DYNAusor). 
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II. A. 6. A - OVERVIEW OF THE RESULTS 

Table 11: Final results with experimental, calculated binding free energy and the error related. 

Challenge 

system 

Case name Experimental ΔGbind 

(kcal/mol) 

Predicted ΔGbind 

(kcal/mol) 

Error (kcal/mol) 

TRIMERTRIP G01 -6,10 -5,50 -0,60 
G02 -8,32 -8,30 -0,02 
G03 -10,05 -5,40 -4,65 
G05 -11,10 -8,30 -2,80 
G06 -9,60 -2,50 -7,10 
G07 -6,50 -6,10 -0,40 
G08 -9,45 -11,50 2,05 
G09 -7,57 -2,00 -5,57 
G10 -8,17 -8,40 0,23 
G11 -9,02 -1,30 -7,72 
G12 -8,29 -2,90 -5,39 
G15 -10,52 -6,70 -3,82 
G16 -11,50 -7,10 -4,40 
G17 -11,80 -6,40 -5,40 
G18 -10,55 0,00 -10,55 
G19 -11,70 0,00 -11,70 

GDCC OA-G1 -4,97 -4,95 -0,02 
OA-G2 -6,91 -7,79 0,88 
OA-G3 -8,10 -8,26 0,16 
OA-G4 -6,76 -7,33 0,57 
OA-G5 -4,73 -4,50 -0,23 
OA-G6 -4,97 -4,92 -0,05 
OA-G7 -6,07 -5,81 -0,26 
OA-G8 -8,25 -6,12 -2,13 

ExoOA-G1 0,00 -5,67 5,67 
ExoOA-G2 -2,20 -4,75 2,55 
ExoOA-G3 -3,37 -6,60 3,23 
ExoOA-G4 -3,61 -7,10 3,49 
ExoOA-G5 -5,57 -3,91 -1,66 
ExoOA-G6 -5,83 -5,92 0,09 
ExoOA-G7 -6,98 -5,67 -1,31 
ExoOA-G8 -7,67 -6,14 -1,53 
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II. A. 6. B - STATISTICAL ANALYSIS 

Table 12: Statistical analysis of SAMPL3 calculation, SAMPL7 TRIMERTRIP, and SAMPL7 GDCC 

prediction.  

 

MAE 

(kcal/mol) 

RMSE 

(kcal/mol) 

Pearson 

Correlation 

Spearman 

correlation 

(rho) 

Kendall 

correlation 

(tau) 

SAMPL3 

S3_completedataset (n=7) 0,87 1,16 0,90 0,75 0,62 

SAMPL7 TRIMERTRIP 

S7_complete dataset (n =14) 3,58 4,37 0,23 0,24 0,15 

S7_Linear (n =8) 3,39 3,90 0,38 0,42 0,25 

S7_cyclic (n =6) 3,85 4,92 0,05 0,09 0,07 

S7_confident (n =4) 0.96 1.45 0,86 0,94 0,91 

SAMPL7 GDCC 

S7_complete dataset (n=15) 1,21 1,67 0,41 0,44 0,34 

S7_OA (n=8) 0,54 0,85 0,80 0,85 0,76 

S7_exoOA (n=7) 1,98 2,27 -0,04 0,00 0,05 

S7_positive_guest (n=7) 1,56 2,08 0,74 0,89 0,81 

S7_negative_guest (n=8) 0,91 1,20 0,73 0,81 0,57 

S7_Positive_OA (n=4) 0,41 0,53 0,97 1,00 1,00 

S7_negative_OA (n=4) 0,67 1,08 0,90 1,00 1,00 

S7_positive_exoOA (n=3) 3,09 3,12 1,00 1,00 1,00 

S7_negative_exoOA (n=4) 1,15 1,31 0,68 0,80 0,67 
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II. B - SAMPL8: CB[8] DRUG ABUSE CHALLENGE 

II. B. 1 - PRESENTATION OF THE CHALLENGE 

 
Figure 61: Molecules used for the SAMPL challenges; in blue, the SAMPL6 dataset used for the 

retrospective analysis (in blue); in red, the SAMPL8 dataset for which the binding free energy has to be 

predicted. 

The CB8 "drugs of abuse" challenge focused on the binding of CB8 to seven guests, which are 

drugs of abuse, including morphine, hydromorphone, methamphetamine, cocaine, and others. 

Binding has been experimentally characterized and a provisional patent filed by the Isaacs 

group for potential biological application. As always with the SAMPL challenge, the prediction 

is blinded, and the users have a limited amount of time to provide a prediction. In the CB[8] 

SAMPL challenge, like in the previous SAMPL7, we have followed two different approaches: 

the thermodynamic based approach based on modules one to three of the HG-DYNAusor 

platform and the knowledge-based method based on module five of the said platform. 
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II. B. 2 - RETROSPECTIVE ANALYSIS 

As in the SAMPL7 challenge, we have used some pre-existing data as a test set for our 

methodology. It consists of 14 molecules (Figure 61) binding the CB[8] host, with their 

corresponding binding free energies. 

Compared to the SAMPL7 challenge, and inspired by it, the protocol evolves to become the 

actual protocol of the HG-DYNAusor platform: 

- 500ns to 1µs of simulation is done for the CB[8] host alone in the water. 

- Several MD simulations are launched in an attempt to observe spontaneous association 

(SaMD). Compared to the previous Trimertrip used in the SAMPL7 challenge, the 

CB[8] host does not display important intrinsic mobility, leading us to think that, in the 

course of the SaMD simulation, it will not open sufficiently to take up the ligands. 

- For each of the guests, the binding is obtained by docking protocol on the circular form 

of the CB[8] system. Then a simulation of 250ns of the complex is realized, and 

geometry is extracted every 2.5ns. In some cases, several docking solutions were 

comparable and could not be discriminated: in that specific cases, two or three MD 

simulations are launched from different starting points. 

 

The retrospective analysis (Figure 62) shows a very good agreement between the predicted 

binding free energy and the experimental values for most of the compounds. The binding mode 

is presented in Figure 63 to Figure 65. We can see three exceptions in the prediction for which 

the binding mode is coloured in yellow: G1, G2, and G11. G1 is underpredicted (with a very 

low binding free energy), while the G2 and G11 are overestimated. 

Taking a look at the overestimated structure, we do not find any perturbation in the binding 

mode, the compound G4 is very large, and all the charged nitrogen are facing the solvent, while 

the G11 is fitting well in the cavity and realize two hydrogen bonds on each of the nitrogen 

atoms. In both cases, the compounds present multiple ionic centres, suggesting a problem in 

the calculation of the thermodynamic properties due to the limitations of the continuous 

solvation model and a larger error in the balance between interaction energy and desolvation 

cost. Compound G1 is clearly underestimated, but in the predicted binding mode, it does not 

fully interact in the pocket and has an intramolecular hydrogen bond that could contribute to 

the wrong prediction. Considering the outcome of the G1 structure, we reasoned that the error 

in the prediction was essentially due to our inability to find the proper binding mode. It would 
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have been interesting to investigate if it was possible to find a more plausible binding mode by 

launching MD simulations from various starting. However, due to the timing of the challenge, 

this was not feasible. Except for these errors, we considered the proof of concept a success, 

particularly as the guests to be predicted were charged entities, which are more challenging for 

the solvation methods. 

 
Figure 62: Overview of the results of the retrospective analysis done on the CB[8] system with data 

extracted from the SAMPL6 challenge. In the (Top) correlation plot, the green-shaded area represents a 

threshold of +2/-2 kcal/mol from the experimental energy. In the Bottom: histogram of binding free 

energy. 
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Figure 63: Overview of the outcome of the thermodynamic-based approach for the retrospective analysis: 

in the upper part from left to right: complex G0, G1, and G2 and in the bottom part from left to right: 

G3, G4, and G5. The arrows represent the transformation between the docking outcome and the minimal 

energy structure extracted from MD (. In purple, the results with good agreement from experimental and 

in the yellow the results with a bad agreement. 
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Figure 64: Overview of the outcome of the thermodynamic-based approach for the retrospective analysis: 

in the upper part from left to right: complex G6, G7 and, G8 and in the bottom part from left to right: 

G9, G10 and, G11. The arrows represent the transformation between the docking outcome and the 

minimal energy structure extracted from MD. In purple, the results with good agreement from 

experimental, and in yellow, the results with a bad agreement. 
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Figure 65: Overview of the outcome of the thermodynamic-based approach for the retrospective analysis: 

complex G12. The arrows represent the transformation between the docking outcome and the minimal 

energy structure extracted from MD. 

II. B. 3 - THERMODYNAMIC BASED METHOD 

II. B. 3. A - BINDING MODES 

The CB[8] system presents mainly two different modes in a solvated environment (U-shaped 

and circular). We had a good agreement in the retrospective analysis with the circular 

geometry, and for this reason, it was selected as the conformation of choice for docking studies. 

Initial host-guest interactions were predicted by molecular docking, considering the same 

receptor structure for all the ligands. As the cavity of the CB[8] system is well defined, blind 

docking using a very large box leads to a binding mode without any distortion in the ligand, 

and the first scored solution is extracted for all the complexes. Even though no distortion was 

apparent, a molecular mechanics (MM) minimization of the docking solution was performed 

with Chimera, thus removing any potential clash between host and guest. 

For some particular systems (G1 and G7), two different docking solutions could be extracted 

with a similar score, in those cases, as it was impossible to discriminate between them, the two 

solutions were extracted and simulated. All the docking solutions were followed by a 250ns 

simulation, from which one geometry is extracted every 2.5ns for a total of 100 geometries for 

each of the complexes. These geometries are then individually minimized at the GFN2B-xTB 

semi-empirical level, and only those yielding a true minimum (i.e., all vibrational frequencies 
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are positive) are considered. Two different approaches are then considered: (i) the lowest 

energy complex is considered as the true minimum (this option was submitted to the SAMPL8 

CB[8] challenge), and (ii) a Boltzmann-weighted average is calculated for all the structures 

corresponding to true minima. The initial geometry and the optimized complex of the lowest 

energy configuration are shown in Figure 66 and Figure 67: 

 
Figure 66: Overview of the outcome of the thermodynamic based approach for the SAMPL8 CB[8] 

challenge: in the upper part from left to right: complex G1, G2, and G3 and in the bottom part from left 

to right: G4, G5, and G6. The purple arrows represent the transformation between the docking outcome 

and the extracted structure from MD. 
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Figure 67: Overview of the outcome of the thermodynamic based approach for the SAMPL8 CB[8] 

challenge: complex G7 
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I. A. 11. A MINIMAL ENERGY STRUCTURES 

The ranked solution using the minimal energy complex is presented in the following Figure 

68: 

 
Figure 68: Comparison of experimental binding free energies with predicted values. (Top) histogram of 

binding free energy coloured by the origin of the data: in red the experimental data and in blue the 

calculated values. (Bottom) correlation plot; the green-shaded area represents a threshold of +2/-2 

kcal/mol from the experimental energy. The statistical analysis is shown in the blue box: with MAE = 

3.83, RMSE = 4.67, and R2 = 0.03. 

Based on the accuracy of the prediction (Figure 68), the results can be separated into three 

groups:  

- (i) The first group represent the prediction with an excellent agreement with the 

experimental data (< 2 kcal mol) represented by the green shaded area. Concerning 

these systems, Ketamine (G5, -0.33 kcal/mol) is extracted from three different docking 

solutions, and Fentanyl (G2, -1.58 kcal/mol) is extracted from a single docking solution. 
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- (ii) The second group represent the incorrect prediction but are still in the range from 

the experimental values (~2 to 4 kcal/mol errors). These complexes: Morphine (G3, 

+3.61 kcal/mol), Hydromorphone (G4, +4.04 kcal/mol), are extracted from one docking 

pose, while Methamphetamine (G1, +2.3 kcal/mol) is extracted from three different 

docking solutions.  

 

- (iii) The third group represent the prediction with large errors (> 4 kcal/mol). For these 

complexes: Phenylcyclidine (G6, -6.07 kcal/mol) is extracted from three docking 

solutions, while Cocaine (G7, +8.86 kcal/mol) is extracted from a single docking pose. 

For those compounds, our errors can be attributed to our inability to find reasonable 

binding modes in the timeline of the challenge. 

Again, our results are mainly depending on the extracted binding mode. The binding mode of 

each of the ranked compounds (with the structure corresponding to the extracted minimum) is 

shown in Figure 66 and Figure 67. Additionally, for all of the overestimated structures (G3, 

G4, and G7), we found in our predictions binding free energy that corresponds to the 

experimental values, but it was not the best-scored energy, and as we wanted a fully automated 

application for the predictions, we followed the same protocol for all the predicted compound. 
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II. B. 3. B - BOLTZMANN AVERAGE 

The solution corresponding to the Boltzmann average is presented in Figure 69: 

 
Figure 69: Comparison of experimental binding free energies with predicted values. (Top) histogram of 

binding free energy coloured by the origin of the data: in red the experimental data and in orange the 

Boltzmann average of the calculated values. (Bottom) correlation plot: the green-shaded area represents a 

threshold of +2/-2 kcal/mol from the experimental energy. The statistical analysis is shown in the orange 

box: with MAE = 4.08, RMSE = 4.68, and R2 = 10-5. 

We can see in Figure 69 similar results as in the previous section. As we calculated a weighted 

average that gives more importance to the more negative results, in all the cases, the energy 

increases relative to those obtained using only the lowest-energy structure. We are closer for 

the predictions of morphine (G3, +1.66 kcal/mol) and hydromorphone (G4, +1.28 kcal/mol), 

but in comparison, Fentanyl (G2, -3.49 kcal/mol) and Ketamine (G5, -5.07 kcal/mol) for which 

the extracted minimal-energy corresponded to structure considered as a rare event in the 

simulations (only encountered few times) are not well predicted. For these compounds, the 

Boltzmann average approach underestimated the energy, while the prediction was good in the 

previous analysis. This result indicates that the set of structures obtained with our procedure 
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does not correspond to a physically meaningful conformational ensemble. In some instances, 

it may be able to correctly identify the true minima but does not provide a faithful 

representation of the free energy landscape. 

II. B. 4 - KNOWLEDGE-BASED METHOD 

II. B. 4. A - SCOPE OF THE MODELS 

II. B. 4. A. (I) - THE NEURAL NETWORKS (NNET) 

In order to define the best model possible in terms of performances, several tuning parameters 

are tested: (i) the number of hidden units, (ii) the number of hidden layers, and (iii) the weight 

decay.  

 
Figure 70: Performances of the NNET using a combination of hidden units and Weight decay to find the 

best performances for the model. 

Theoretically speaking, the more hidden levels, the better and more the model will be able to 

capture nonlinear relationships in the data. But in practice, with more levels, the number of 

parameters increases, and finally, the best model corresponds to a combination of the specific 

values of weight decay and the hidden unit, corresponding to the lowest RMSE. In our case, 
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the results show that the optimum number of hidden units is six, and the decay parameter is 1.8 

(Figure 70). 

A list of the relative importance of the variables used by the NNET for the prediction can be 

visualized in the following Figure 71: 

 
Figure 71: Most useful variable of the chosen NNET for the prediction of the training set for the nnet 

function from the caret package 

For the NNET, the model uses both variables describing the guest and variables describing the 

host, and some of the most important variables are known to be correlated with the binding 

free energy (hydrogen bonds donor or acceptor). All measures of importance are scaled to have 

a maximum value of 100. The global performance of the training set and the test set of the 

NNET model can be visualized in the following Figure 72: 
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Figure 72:(Top) training-set prediction of the NNET; (Bottom) Testset prediction of the NNET. The 

points are coloured by the binding free energy, while the size is a function of the error of prediction (the 

smaller the points are and the smaller is the error). 

The NNET shows very impressive performances: in the training set, some guest presents a 

more important error while we reach the most negative values of the binding free energy. It 

could be explained by the distribution of the score inside the model. As we show in the 

presentation of the machine learning model (chapter 03), the relative number of very negative 

binding free energy is low compared to the one presenting medium-range values. Explaining 

why the model may have some troubles predicting the compounds with binding free energy 

below -10kcal/mol. While for the others, they are predicted with an error that could be 

considered as important (+ 4kcal/mol), but in most of the cases, they belong to the most 

negative prediction for the model, suggesting that the NNET is capable of identifying the most 

negative compounds. The main problem here is there is no way to discriminate the well-

predicted compound from the underpredicted compound based on the prediction of the machine 
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learning model. The only solution is to be cautious when the predicted values are outside the 

range of the training set (i.e.-9 kcal/mol). 

II. B. 4. A. (II) - RANDOM FOREST (RF) 

In a similar way, as we have done for the previous NNET model, we tried to improve the tunes 

parameters for the RF model as well. In order to define the best model possible in terms of 

performances (results & computational time), several tuning parameters are tested: (i) the 

number trees (ntree), (ii) the number of tested variables at each division (mtry). In our case, the 

results show that the optimum number of trees is 1000, and the mtry value is 10 (Figure 73). 

 
Figure 73: Performances of the RF using a combination of a number of trees (ntree) and a number of 

tested variables (mtry) to find the best performances for the model. 
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Figure 74: Most useful variables of the chosen RF for the prediction of the training set for the rf function 

from the caret package 

Unlike the previous case, this time, almost all the most useful variables are from the host.  In 

fact, out of the top 30 variables, only 6 (and not even the most important ones) describe the 

guest molecule. This was unexpected because, in theory, the host variables represent only 25% 

of the total number of variables. The variable importance algorithm for the RF is computed on 

the out-of-bag data for each tree, and then the same is computed after permuting a variable. 

The differences are then averaged and normalized by the standard error. 

The global performance of the training set and the test-set of the RF model (using the rf function 

from caret) can be visualized in the following Figure 75. 
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Figure 75: (Top) training-set prediction of the RF. (Bottom) Test-set prediction of the RF. The points are 

coloured by the binding free energy, while the size is a function of the error of prediction (the smaller the 

points are and the smaller is the error). 

Compared to the NNET prediction, the prediction on the training set is impressive but shows 

some overtraining, depending on the features selections or the way the model is split into test-

set and training-set. Still, we saw the same problem as stated before concerning the prediction 

of the most negative compound. 
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II. B. 4. A. (III) - POLYNOMIAL SVM 

For Polynomial SVM, three tuning parameters are investigated: (i) the cost penalty (Cost), (ii) 

sigma value (polynomial degree), and (iii) the C value (scale). 

 
Figure 76: Performances of the SVM using a combination of internal parameters (C, sigma, and the cost) 

to find the best performances for the model. 

The analysis of the training-set / test set (Figure 77) shows a more approximate prediction for 

both sets, indicating that the SVM algorithm performs worse than the other two algorithms.  In 

that case, we found a similar problem regarding the prediction of very negative values, but this 

time, we have a verticalization of the prediction, obtaining bad results when the prediction 

approaches negative values, regardless of the molecular descriptors in use. On the lower end, 

the model is converging to a minimum value of ~ -9 kcal/mol both in the training and the test 

set. 
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Figure 77: (Top) training-set prediction of the polynomial SVM. (Bottom) Test-set prediction of the SVM. 

The points are coloured by the binding free energy, while the size is a function of the error of prediction 

(the smaller the points are and the smaller is the error). 

II. B. 4. A. (IV) -  K-NEAREST NEIGHBOURS (KNN) 

The last and final machine learning model we tried for the prediction of the binding free energy 

is the simplest one. Only one tune value is investigated for the improvement of the prediction: 

the number of neighbours. The optimal number of neighbours is four (Figure 78). 
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Figure 78: Performances of the Knn function using different neighbours number to find the best 

performances for the model. 

The visualization of the training-set / test-set of the Knn model (Figure 79) shows similar 

results as the SVM model concerning the prediction of the top-scored compound with one 

difference: while the overall prediction on the training set is in good agreement with the 

experimental data (RMSE = 1.05 kcal/mol), the test-set presents a larger error than the training 

set (RMSE = 1.46 kcal/mol) associated with a very bad prediction of the top-scored guests, for 

which the error can be up to 7 kcal/mol.  
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Figure 79: (Top) Training-set prediction of the Knn. (Bottom) Test-set prediction of the Knn. The points 

are coloured by the binding free energy, while the size is a function of the error of prediction (the smaller 

the points are and the smaller is the error). 

The statistical analysis for the best machine learning models is presented in Table 13 and Table 

14 and helps selecting the model that will be used for the prediction. The predictions for the 

test set are particularly relevant at this point. 

Table 13: Statistical analysis of the Training-set for the best model of each of the machine learning 

algorithms 

TrainRMSE TrainRsquared TrainMAE Method 

1.07 0.77 0.74 NNET 
0.95 0.80 0.64 RF 
1.59 0.57 1.02 SVM 
1.05 0.77 0.73 Knn 
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Table 14: Statistical analysis of the Test-set for the best model of each of the machine learning algorithms 

RMSE Rsquare MAE Method 

1.05 0.74 0.64 NNET 
0.94 0.79 0.58 RF 
1.46 0.52 0.94 SVM 
1.46 0.52 0.94 Knn 

 

Concerning the prediction with the SVM, this model represents the worst agreement with the 

experimental data looking at the training set. The values of the training set and the test set are 

similar, suggesting that the overtraining of the model is controlled. On the contrary, the Knn 

model presents a clear overtraining with a much lower RMSE and MAE in the training set 

compared to the test set, explaining the difference in terms of prediction for the negative values. 

The two best models, the RF and the NNET are comparable with a very slight advantage of the 

rf model (with -0.09 and -0.06 respectively for the MAE and the RMSE of the test-set). But 

from the above-described analysis of the variables, the NNET function uses more variables 

dedicated to the guests than the hosts while the situation is reversed for the rf function. 

Considering the nature of the challenge, we reasoned that having more information about the 

guests should be beneficial, as it would help differentiate better different guests binding to the 

same host.  For this reason, and as the difference in performance between the RF and the NNET 

functions was slight, we decided to use the NNET for the prediction of the SAMPL8-CB[8] 

dataset. 
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II. B. 5 - RESULTS: 

II. B. 5. A - APPLICABILITY DOMAIN 

 

Figure 80: Visualization of the chemical space of the predicted set compared to the test set and the 

training set. If the new host-guest system descriptors overlap with the chemical space of the model, we 

can consider they are sampling a relatively similar space and fulfil the requirements for the prediction 

using our machine learning method. 

In order to verify if we are in the applicability domain of the machine learning model, we need 

to visualize the physicochemical space formed by the combination of the generated molecular 
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descriptors in a way to verify that the sampled space is similar between the model (split in 

training-set and test-set in Figure 80) and the molecules that have to be predicted. This figure 

is separated into three different parts corresponding for each of them to a specific part of the 

chemical space. Together, the three dimensions represent 63% of the variability of the dataset 

(30.6% for PC1, 18.09% for PC2, and 14.28% for PC3). Components with lower percentage 

variance (<10%) were visualized until 80% of the variability could be captured but are not 

shown for clarity. As the CB[8] dataset is composed of seven guests, there are seven red points 

that are represented in their space for each combination of PCs (on the left) and highlighted in 

the same space for visualization (on the right). As shown, the red points (representing the 

SAMPL8-CB[8] guests) overlap with the other samples in all the dimensions of the space, 

leading us to think that they are within the scope of the model. While this does not guarantee 

the quality of the prediction, the opposite is true (i.e. being outside the scope of the model 

guarantees unrealistic predictions). For that reason, the verification of the chemical space of 

the predictors is a minimal requirement. This procedure was done for all the molecules, even 

if only presented once.  
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II. B. 5. B - PERFORMANCES OF THE ML MODELS ON THE SAMPL8 

CHALLENGE 
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Figure 81: Comparison of experimental binding free energies and predicted values. Histograms of 

binding free energy coloured by the machine learning model used: in red the experimental data, and in 

blue the nnet prediction, in dark red the SVM prediction, in black the RF prediction, and in purple the 

Knn prediction. All of the histograms are associated with a correlation plot: the green-shaded area 

represents a threshold of +2/-2 kcal/mol from the experimental energy. The statistical analysis of the 

prediction compared to the experimental value is shown in the respective coloured box. 
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The prediction was run in the four different machine learning models analyzed in the previous 

part, but only the NNET was selected for submission considering the SAMPL8 challenge. All 

the machine learning models present a better overall performance than the thermodynamic-

based method, and the NNET was the best performing one. The machine learning methods, 

compared to the thermodynamic-based methods, are underestimating most of the guest binding 

free energy. That was already discussed in the validation part, but considering the low amount 

of very negative binding free energy data (< -10 kcal/mol), it is not surprising that the model 

converged to [-9 – -10] kcal/mol and could not predict a -14.8 kcal/mol. Furthermore, most of 

the predicted guests were in the range where the prediction was uncertain. 

Like in the thermodynamic based method, based on the accuracy of the prediction (Figure 

81A), the results can be separated into three groups:  

- (i) The first group represent the prediction with an excellent agreement with the 

experimental data (< 2 kcal mol) represented by the green shaded area. Two guests have 

been predicted with an excellent agreement: Methamphetamine (G1, +0.82 kcal/mol) and 

Fentanyl (G2, +0.48 kcal/mol). 

 

- (ii) The second group represent the incorrect prediction but are still in the range from the 

experimental values (~2 to 4 kcal/mol errors). Four host-guest complexes have been 

predicted in the range of the experimental values, and from these four host-guest 

complexes: three of them were underestimated: Morphine (G3, -2.59 kcal/mol), 

Hydromorphone (G4, -2.54 kcal/mol), and Ketamine (G5, -3.36 kcal/mol), while Cocaine 

(G7 +2.63 kcal/mol) was overestimated. For almost all of them, the error is below 3 

kcal/mol. 

 

- (iii) The third group represent the prediction with large errors (> 4 kcal/mol). With the 

NNET, only one guest was presenting a bad prediction: the Phenylcyclidine (G6, -5.14 

kcal/mol) presents an important underestimation. As explained, this can be rationalized on 

the basis the only one compound in the training set had a value of -14kcal/mol. 
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II. B. 5. C - PERFORMANCE OF THE CB[8] MODEL 

 
Figure 82: PCA of the Host-Guest chemical space using a reduced set of molecular descriptors generated 

with CORINA. In (A), the space formed by the combination of PC1 and PC2 explains respectively 30.8% 

and 17.8% of the variability. In (B), the space formed by the combination of PC1 and PC3 explains 

respectively 30.8% and 14.1% of the variability. In (C), the space formed by the combination of PC2 and 

PC3 explains respectively 17.8% and 14.1% of the variability. In (D), the scree-plot represents the 

variability of all the principal components of the analysis. The molecules are coloured by the system there 

are supposed to interact with and, their size is a function of their binding free energy.  

The CB[8] machine learning model differs from the global approach by the training dataset. 

For this one, data corresponding to the CB[8] model were extracted from the global dataset, 

and an independent model was constructed using the same methodology. The CB[8] dataset is 

composed of 52 binding free energy of guest molecules interacting with the CB[8] host, 34 

came from the BindingDB with the code “BDBM36284”, and 14 came from the SAMPL6 

challenge.  For the CB[8] model, the host-descriptors are not required since the model is trained 

and expected to predict binding data on the same host. However, this is a local model, only 
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suitable to predict compounds interacting with the same host. Although, in theory, this 

approach is expected to generate more accurate results for a host for which data is available in 

the literature, but the amount of data can be a limiting factor in prediction, as we saw in the 

previous challenge (SAMPL7). 

 
Figure 83: Comparison of experimental binding free energies with predicted values. (Top) histogram of 

binding free energy coloured by the origin of the data: in red the experimental data and in green the 

predicted binding free energy using nnet machine learning on the CB[8] dataset. (Bottom) correlation 

plot: the green-shaded area represents a threshold of +2/-2 kcal/mol from the experimental energy. The 

statistical analysis is shown in the green box: with MAE = 3.11, RMSE = 3.54, and R2 = 0.15. 

Overall, the CB8 model performs worst than the global model. This can be explained by the 

difficulty of the model to predict very active compounds. The range of the experimental values 

in the model was [-4.77 -13.5], but only a few compounds present energy below -10 kcal/mol. 

Concerning the predictions, it is interesting to note that despite the globally worse prediction 

(considering RMSE, MAE values) of the CB8 model, the two molecules Methamphetamine 

(G1) and Fentanyl (G2) were also correctly predicted.  Compared to the global model, we find 

a more important underestimation of the group composed of Morphine (G3), Hydromorphone 

(G4), Ketamine(G5), and Phenylcyclidine (G6), but in this subgroup, these are ranked 
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correctly. Cocaine (G7), which was overestimated in the two previous approaches, is correctly 

predicted here (-1.31).  

And finally, the prediction can be separated into two groups:  

- (i) the first group is composed of the three well-predicted compounds: 

Methamphetamine (G1, +0.83 kcal/mol), Fentanyl (G2, -0.95 kcal/mol), and Cocaine 

(G7, -1.31 kcal/mol).  

 

- (ii) for the second group, despite the fact that the ranking between these compounds in 

the subgroup is correct, it is composed of four guests, all predicted with large error (> 

~ 4 kcal/mol): Morphine (G3, -4.48 kcal/mol), Hydromorphone (G4, -4.4 kcal/mol), 

Ketamine (G5, -3.84 kcal/mol), and Phenylcyclidine (G6, -5.98 kcal/mol). 

II. C - SAMPL8 GDCC CHALLENGE 

II. C. 1 - METHODS USED 

The SAMPL8-GDCC challenge is a challenge that uses several Gibbs cavitand with a dataset 

of five guests for which the binding free energy must be predicted in association with two 

different hosts: the TEMOA host and the TEETOA host (Figure 47). 

We studied the Gibbs cavitand during the SAMPL7 challenge, obtaining good results with the 

first approach of our global machine learning model. In addition, we had some difficulties with 

the thermodynamic approach concerning this family of host-guest complexes. The complexity 

of the modelling of the cavitand using the GFN2B-xTB may be due to the charges of the host 

system (-8), as we encounter problems with charged entities in the retrospective analysis of the 

SAMPL6 challenge concerning the CB[8] host (Figure 62). For these reasons, and because at 

the moment of the project, in relation to the timeframe of the challenge, it was not feasible to 

realize all the calculations needed for the thermodynamic methods, we decided to make a 

submission applying only the global machine learning approach. 

In a similar way to the SAMPL7 challenge, the TEETOA is shown for the first time in the 

challenge, and there is no pre-existing data in the literature for this specific system. But it 

belongs to the family of Gibbs cavitand, for which we have lots of data. Considering their 

similar scaffold, we made the assumption that our Host-Guest machine learning model will 

understand the chemical specificity of these host-guest complexes and will be able to 

discriminate the TEETOA system from the TEMOA system.  
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For the prediction, the dataset for the global machine learning approach has been expanded, 

and the results from the previous SAMPL7 and SAMPL8-CB[8] were added. The dataset is 

now composed of ~600 features with 27 different host systems. As we already explained, when 

new molecules are added to the dataset, all the feature selection processes have to be redone. 

II. C. 2 - RESULTS 

The outcome of the machine learning results compared to the experimental value is presented 

in Figure 84: 

 
Figure 84: Comparison of experimental binding free energies with predicted values. (Upper) Histogram 

of binding free energy coloured by the system: in red the experimental data, in purple the prediction on 

the TEMOA system, in blue the prediction of the TEETOA system. (Bottom) All of the histograms are 

associated with a correlation plot: the green-shaded area represents a threshold of +2/-2 kcal/mol from 

the experimental energy. The statistical analysis of the prediction compared to the experimental value is 

shown in the respective colored box: in purple the prediction concerning the TEOMA system (MAE =1.27, 

RMSE =1.64, R2 = 0.001), in blue the prediction concerning the TEETOA system (MAE =2.74, RMSE 

=2.83, R2 = 0.003), and in black the global prediction (MAE =1.92, RMSE =2.25, R2 = 0.54) 

Unlike the two previous cases, the range of the model included the experimental values. 

Concerning the prediction, there is a difference between the two systems: for the TEMOA 



 

Page 179 / 254 
 

system for which some data are available, 4 of the 5 molecules are predicted with less than 2 

kcal/mol error. While for the TEETOA system, only one molecule is predicted with less than 

2kcal/mol of error. The global model also differentiates between the TEMOA and TEETOA 

systems: We can see in Figure 84 that the TEMOA system is in general underestimated while 

the TEETOA system is overestimated, meaning the ML model is treating both systems 

differently.  

The prediction can be separated into groups: 

- (i) The first group represent the prediction with an excellent agreement with the 

experimental data (< 2 kcal mol) represented by the green shaded area. Four guests have 

been predicted with an excellent agreement: TEMOA-G1 (-0.75 kcal/mol), TEMOA-G3 

(+0.03 kcal/mol), TEMOA-G4 (-1.06 kcal/mol), TEMOA-G5 (-1.34 kcal/mol) 

 

- The second group represent the incorrect prediction but are still in the range from the 

experimental values (~2 to 4 kcal/mol errors). Five host-guest complexes have been 

predicted in the range of the experimental values: TEETOA-G1 (+2.74 kcal/mol), 

TEETOA-G2 (+1.72 kcal/mol), TEETOA-G4 (+2.8 kcal/mol), TEMOA-G2 (-3.18 

kcal/mol) and TEETOA-G5 (+3.72 kcal/mol). 

In conclusion, for the SAMPL8-GDCC prediction, we were able to use the global machine 

learning approach to predict 4/9 molecules with an excellent agreement with experimental data 

while 5/9 molecules are predicted with larger errors, but perhaps still useful. Additionally, none 

of them was predicted with a large error (> 4 kcal/mol). 
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III - SOLVENT EXCHANGE ANALYSIS IN 

CALIX[4]PYRROL CAPSULE: 

III. A - PRESENTATION OF THE HOST SYSTEM 

For this analysis, two host complexes with solvents were provided by one of the partners of the 

NOAH project: the ICIQ (Institut Català d'Investigació Química). They are derivate from 

calix[4]pyrrole, and the structure are presented in Figure 85: 

 
Figure 85: Presentation of the initial 3D structure that was used for solvent exchange analysis: (Left) the 

molecule in complex with two molecules of acetonitrile; (Right) the molecule in complex with two 

molecules of chloroform. 

The capsules were synthesized from two calix[4]pyrrole joined by four dynamic covalent 

bonds (i.e., imines). The idea was to study the behaviour of these molecular cages under 

different stimuli in order to determine whether:  

- In chloroform, if the capsule is likely to contain two molecules inside its cavity, and 

investigate the inclusion process. 

- In a chloroform/acetonitrile (9/1) mixture, analyze the competition between the 

solvent molecules, and determine which chloroform or acetonitrile is more likely to 

be present in the host cavity. Particular attention was paid to the possible interactions 

of acetonitrile with the NH of pyrroles inside the cavity. 

 

In order to simulate the cage in two different solvated environments, the system is prepared 

following the HG-DYNAusor platform using modules one and two. As there is no guest to be 

considered the modules three and four are ignored. The simulations on the optimized structure 

are done at two different levels: classical molecular dynamic simulations (i) in explicit 

chloroform solvation, (ii) in a mixture of chloroform/acetonitrile (9/1) and using semi-

empirical molecular dynamic simulations: (iii) in implicit chloroform solvation starting from 

the initial configuration with two chloroform inside the cavity, and (iv) in explicit solvation 
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considering a mixture of chloroform/acetonitrile (9/1) in an implicit chloroform environment. 

The results of the simulations are presented in the next part. 

III. B - SIMULATIONS OF THE HOSTS: 

III. B. 1 - CLASSICAL MOLECULAR DYNAMIC SIMULATIONS 

 
Figure 86: An overview of the molecular dynamics of the system in the explicit chloroform (CHCl3) 

model. The graphics are separated into three parts: (i) in the left, we have the equilibrated system 

representing the first frame of the dynamic, (ii) in the middle, after a few ns of simulations, the first 

exchange between two molecules of solvents inside the cavity of the host appears, and (iii) after 150ns 

another chloroform molecule enter in the cavity. 

As shown in Figure 86, the simulations of the host starting without any solvent molecules inside 

present right after the equilibration of one chloroform molecule inside the cavity. The 

chloroform molecules present a free rotation inside the cavity during the simulations, and we 

expect the rotation to have an impact on the exchanges processes.  

III. B. 2 - SIMULATION IN CHLOROFORM/ACETONITRILE (9/1) MIXTURE  

 
Figure 87: An overview of the molecular dynamics of the system in explicit chloroform (CHCl3) / 

Acetonitrile (ACN) model. The graphics are separated into five parts: from left to right: (i) we have the 

equilibrated system representing the first frame of the dynamic, (ii) after 2ns of simulations, the second 

molecule of chloroform enter the cavity, (iii) multiple exchanges remain between the chloroforms 

molecule, (iv) after ~70ns of simulation, a molecule of acetonitrile is replacing one molecule of chloroform. 

At this moment, the exchange stopped until the second molecule of chloroform gets replaced after ~130ns 

(v). 
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For the simulations using a mixture of chloroform/acetonitrile (Figure 87), as in the previous 

simulations, the system presents a chloroform molecule inside the cavity after the equilibration 

phase. It was not the case after the minimizations. The initial results are equivalent to the one 

presented in the previous figure (Figure 86), but in this case, after 70ns of simulations, an 

acetonitrile molecule is replacing one molecule of chloroform. At this moment, the Acetonitrile 

in the cavity orienting itself for interacting with the four nitrogen of the calix[4]pyrrole unit 

and stabilizing the ensemble: at this moment, there is no more replacement of the chloroform 

molecule inside the cavity. The chloroform is less mobile in the cavity. At 200ns of simulation, 

a replacement occurs, and the last chloroform remaining in the cavity is exchanged with another 

acetonitrile from the solvated environment. At this moment, the capsule is stabilized around 

that two acetonitriles that both perform hydrogen interactions with the N-rim of the 

calix[4]pyrrole. 

III. B. 3 - SEMI-EMPIRICAL MOLECULAR DYNAMIC: 

In the previous simulations, we studied the dynamic process of the inclusion/release of the 

solvent’s molecules in the capsule’s cavity. From what we saw, the chloroform is susceptible 

to be replaced while the acetonitrile remains stable in the cavity during the time frame of the 

simulation. Two different simulations have been launched at SQM level in order to study with 

better accuracy the equilibrium between the solvent’s molecules and the host.  

In the first case, we studied the capsule with two molecules of chloroform inside the cavity in 

order to show if, at any moment of the simulations, one of the chloroforms molecules is getting 

spontaneously out of the cavity. For that, the simulation is launched starting from an initial 

configuration with two chloroform molecules in the cavity of the capsule. The simulation was 

launched for a total of 2ns in implicit chloroform solvation. The results of the simulated capsule 

are presented in Figure 88: 

 
Figure 88: An overview of the semi-empirical molecular dynamics of the system in implicit chloroform 

starting from a configuration with two chloroforms explicitly defined inside the cavity. 
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We can see that the structure remains stable during all the simulations processes. There is a 

free rotation of each chloroform’s molecules inside the cavity, but unlike to the other 

simulations done at the classical level, the capsule is not presenting any “open conformation”. 

The square formed by the distance of each nitrogen at the middle of the cavity remains mostly 

stable during simulation. It looks like the distance is led by the orientation of the hydrogen of 

the N-rim ring from the calix[4]pyrrol unit: when the pyrrole hydrogens are making contacts 

with the solvents molecules (Figure 88A, B and D), the distance is almost the same in all the 

part of the square while the distance is higher in the Figure 88C when only half of the hydrogens 

of the N-rim are positioned for making contact. A zoom of the structures B and D, highlighting 

this process, is presented in Figure 89. 

 
Figure 89: Zoom of the N-N distances of the capsules 

Considering the outcome of this semi-empirical simulation, we tried to make another 

simulation, this time considering a mixture of explicitly defined solvent molecules in an 

implicit chloroform environment. The explicit solvation at the semi-empirical level consists of 

the addition around the cavity of 36 molecules of chloroforms and four molecules of 

acetonitrile respecting the experimental proportion of 9/1. These molecules are confined in the 

simulation in a little sphere, which keeps the molecules from escaping too far away from the 

cavity. For that, a logfermi potential is used through the xTB software. The outcome of the 

simulation is presented in the following Figure 90: 
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Figure 90: An overview of the semi-empirical molecular dynamics of the system in implicit chloroform 

starting from a configuration with an empty cavity and a mixture of chloroform and acetonitrile 

molecules explicitly defined around the cavity. 

Unlike to the previous simulations, the empty-capsule adopts an open conformation associated 

with an antisymmetric orientation of the hydrogens of the pyrroles. Multiple times, in the early 

process, the chloroforms molecules half enter the cavity leading to an important opening of the 

capsule. After 0.75ns of simulation, this “half-entering” process occurs while an acetonitrile 

molecule is close to the cavity occurring the entry of the acetonitrile after 0.03 ns. At the 

moment the acetonitrile molecule enters the capsule,  positioned face to face with the pyrrole’s 

hydrogens, leading to multiple hydrogen bonds interactions. The acetonitrile is stabilizing the 

capsule, and we find similar values in the square formed by the nitrogens distances (see Figure 

89) compared to the closed-conformation of the previous simulation (the semi-empiric one) 

but also from the end of the classical simulation with the two acetonitrile molecules inside the 

cavity (Figure 87). In the timeframe of the thesis, we do not extend the simulations, but we can 

expect chloroform molecules to be able to enter the cavity, and as we saw it multiple times, the 

chloroform molecule is rotating all the time in the cavity while the acetonitrile remains 

stabilized by the hydrogen bonds he made with the calix[4]pyrrole unit.  

In conclusion, using MD simulations, we were able to analyse the behaviour of a 

calix[4]pyrrole cage under different stimuli (i.e. the use of different solvents). And we have put 

forward a hypothesis that will be investigated and compared to the experimental conditions in 

the ICIQ. 

A novel Zn(II)-a porphyrin-acridinium receptor will be computationally explored in the next 

chapter, followed by synthesis and characterisation. 
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5 

COMPUTATIONAL ANALYSIS, 

SYNTHESIS, AND 

CHARACTERISATION OF 

NOVEL Zn(II)-PORPHYRIN-

ACRIDINIUM RECEPTORS 
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I - Zn(II) BISPORPHYRIN-ACRIDINIUM SCAFFOLD 

I. A - PORPHYRIN RECEPTOR 

Porphyrins are an important class of molecules present in many life processes. Chemically, 

porphyrins are highly coloured cyclic aromatic molecules formed by four modified pyrrole 

units held together by four sp2 hybridised carbon bridges, called meso carbons. Porphyrins are 

well-studied units in supramolecular chemistry, they are easily functionalised by metalation, 

and thus a wide variety of metal ions can be incorporated into the porphyrin ring. In this thesis, 

only the metallated porphyrin with a Zn(II) cation has been considered.  

The physicochemical properties of porphyrins can also be modified by functionalisation of the 

meso and β-pyrrolic positions. Both free base and metallated porphyrins show a characteristic 

intense band (the Soret band) with a maximum between 380 and 420 nm in their UV-vis 

spectrum. This band corresponds to a transition from the ground state to the second excited 

singlet state. For porphyrins, up to four additional bands between 480 and 700 nm (called Q 

bands), corresponding to the transitions between the ground state and the first excited singlet 

state, can be observed. These bands (Q bands and Soret band) are generally used for as an 

additional characterisation of porphyrin complexes.130 A general overview of the application 

of the porphyrinoids system is presented in Figure 91. 

 
Figure 91: Overview of the application of porphyrinoids, whose physical-chemical output depend on the 

applied stimuli. The porphyrin core is also defined and described by the metal-centre and the main 

functionalisation sites (meso and β-positions)151  
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I. B - ALLOSTERISM 

I. B. 1 - PRINCIPLE 

Molecular systems presenting a cavity are particularly involved in the supramolecular 

recognition processes through non-covalent interactions, leading to the formation of 

supramolecular host-guest complexes. For these supramolecular systems capable of molecular 

recognition, allosterism offers the capabilities of controlling the interactions between the host 

and the guests. Allosterism can be defined as the ability of a receptor to change its conformation 

due to the first interaction with an effector (a guest molecule), resulting in a modification of its 

structural and physical properties, which modifies its ability to bind a second guest molecule 

at a different binding site. Add a reference These conformational changes can be cooperative 

(activation) when binding the effector enhances the binding affinity for the second guest or 

antagonistic (inhibition) when binding the effector decreases the binding affinity for the second 

guest. Additionally, the effector and the guest can be homotropic (the same chemical species) 

or heterotropic (different chemical species). Allosterism is a mechanism described mainly for 

proteins, an adapted illustration of this mechanism is shown in Figure 92. 

 
Figure 92: Illustration of the general principle of allosteric control adapted for host-guest systems. Left: 

allosteric inhibition. Right: allosteric activation  
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The first artificial allosteric system was reported in 1979 by the J. Rebek Jr group152 as a 

macrocyclic polyether composed of a 2,2’-bipyridine ligand with an ether crown (Figure 93).  

 
Figure 93: One of the first allosteric systems described in 1979152 

This system can change its geometry upon chelation of metal in the bipyridine site, becoming 

coplanar. More precisely, the binding of certain cations (Na+, K+, Li+) in the ether-crown cavity 

is affected by the chelation of a metal (Pd2+, W0) in the bipyridine site in a deuterated 

chloroform solvated environment. This coplanarity leads to a significant decrease in the 

capacity of the host to accept a cationic guest. And thus, the formation of the host-guest 

complex is not favoured. The system presents heterotropic allosteric inhibition illustrated by 

the diminution of the binding constant (Ka) of the Na+ cation while the W(CO)6 molecule binds 

the bipyridine site (from 107.5 to 101.4 L.mol-1 in CDCl3) 

I. B. 2 - ALLOSTERIC RECEPTOR PRESENTING A PORPHYRIN SCAFFOLD 

In some cases, porphyrin-receptors are also capable of doing allosterism: one of the relevant 

systems was described in 2009 by the group of W.-D. Jang (Figure 94). This system is a 

molecular tweezer composed of two different recognition motifs: (i) two Zn(II) metallated 

porphyrins capable of interacting with a 1,4-diazabicyclo[2.2.2]octane (DABCO) acting as a 

ditopic ligand and (ii) a 2,2'-bisindole acting as a spacer and capable of interacting with anionic 

molecules such as chloride. In the absence of guests, the indole bonds rotate freely, and the 

receptor alternates between the open and closed forms. However, the addition of a ditopic 

ligand (DABCO) coordinating the two Zn(II)-porphyrins leads to the stabilisation of the 

receptor and immobilising the porphyrins in a cofacial orientation. This new geometry of the 

receptor leads to a cis orientation of the bisindole unit, favouring the interaction of the receptor 

with anions chlorides. This change is associated with a significant improvement of the binding 

constants of (i) the chloride anions in the presence of DABCO (from 4.93 × 10{ to 7.10 × 10¡ 

in THF solvated environment) and (ii) the association constant of the DABCO is also improved 

by the presence of chloride anions (from 2.02 × 10¡ to 2.48 × 10D in THF solvated 

environment). In that case, the bisporphyrin molecular tweezer shows an important heterotropic 
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allosteric effect where both the DABCO and the chloride anion play the roles of the effector 

for each other. 

 
Figure 94: Allosteric receptor presenting Zn(II)porphyrin scaffold153 

I. B. 3 - PREVIOUSLY SYNTHESISED PORPHYRINS-RECEPTOR WITH ALLOSTERIC 

PROPERTIES IN THE HOSTING INSTITUTION 

This specific topic has been studied these past years by one of the hosting institutions of this 

thesis: the LSAMM laboratory partner of the NOAH project. In the following Figure 95, a 

three-dimensional receptor reported by the group is represented154: 

 
Figure 95: Zn(II)-porphyrin receptor presenting allosteric control designed at LSAMM154 

This receptor is composed of two Zn(II)-porphyrin bonded with four different flexible covalent 

spacers each incorporating two triazole units. The initial state of the cage (Figure 95-left) has 

a closed conformation resulting from an intramolecular interaction between its porphyrins. The 

cavity of this system is not accessible to a ditopic ligand such as pyrazine or π-acceptor guest 

such as Naphthalenediimide (NDI). The triazole groups in the periphery of the receptor can 

coordinate Ag(I) ions (acting as the effectors) that induce the opening of the cavity (Figure 95-

right). In its open form, the cage can accommodate any of the previously mentioned ditopic 

ligands. The association constant of these guests has been determined in dichloromethane using 
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respectively UV-visible titration (for pyrazine) and 1H NMR (NDI) and are equal to 10¡.¡C 
L.mol-1 (Pyrazine) and 95 L.mol-1 (NDI). 
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II - PRESENTATION OF THE Zn(II)-PORPHYRIN 

RECEPTOR 

II. A - GENERAL STRUCTURE 

As part of my PhD project, we simulated receptor scaffolds with the general structure depicted 

in Figure 96. This receptor, designed by Amy Edo-Osagie, one of the E.S.R. of the NOAH 

project in the LSAMM group, presents two different binding cavities and is susceptible to 

acting as an allosteric receptor. The general structure consists of four different units: (i) the 

Zn(II)-porphyrin, (ii) a 9-phenyl-acridinium unit at one of the meso-position, (iii) the presence 

of solubilising groups at the remaining meso-positions, and (iv) a flexible alkene chain linking 

both acridiniums units together to form the expected tweezer.  

 
Figure 96: (A) Chemical structure (top) and schematic representation (bottom) of the tweezer in the 

unbound state. (B) Chemical structure (top) and schematic representation (bottom) of the DABCO-

coordinated receptor, presenting an accessible binding cavity between the two acridinium units. 

The receptor is susceptible to presenting several states: in its open conformation, the receptor 

is highly flexible and able to bind a ditopic ligand to coordinate the two Zn(II)-porphyrin 

(Figure 96A). In a previous example (Figure 94), we saw that DABCO is a good ditopic ligand 

for these systems, and when the DABCO is coordinating the Zn(II)-porphyrin, the receptor is 

stabilised in a closed conformation where both acridiniums are at a distance of 7Å, forming a 

binding cavity susceptible of accepting polyaromatic guests through π-π interactions (Figure 
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96B). To improve the solubility of the receptor in organic solvents, 1,3-di-tert-butylbenzene 

groups were used. 

The 9-phenyl-acridiniums are an interesting motif since they are known to have a multi-

responsive nature: chemiochromic, photochromic, and redox switching.155,156 Acridinium 

presents interesting photochromic properties (Figure 97), leading to the reversible 

transformation into acridane within the influence of irradiation in a polar solvent. Acridinium 

also has the ability to bind electron-rich polyaromatic guests via π-π interactions132, allowing 

for the release of substrates: indeed, switching the acridinium to acridane enables to control the 

catch an release of potential guests.  These features remain novelties within the field of artificial 

allosteric systems.131,157–159 

 
Figure 97: The multi-responsive properties of the 9-phenyl-acridinium moiety 

Several alkene chain lengths were investigated. The initial idea was to use an eight-carbon 

chain that would correspond to the Zn-Zn distance when coordinated with DABCO (~7Å). 

Unfortunately, due to synthetic feasibility, the receptor was synthesised using a C18-carbon 

spacer with three 1,3-di-tert-butylbenzene as solubilising groups for organic solvents. Coupling 

the phenyl-acridinium groups with the porphyrins core, a new family of receptors can be 

accessed. Finally, using both the porphyrin and the multi-responsive acridinium properties, two 

different receptors were synthesised and characterised in the LSAMM labs by Amy Edo-

Osagie (Figure 98). 
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Figure 98: Synthesised receptors using a C18 carbon spacer: (A) a Zn(II)-porphyrin-acridinium receptor 

with two ditopic ligands and their respective association constant (DABCO, Ka1) and (Bipyridine, Ka2); 

(B) a Zn(II)-porphyrin-acridane receptor with a ditopic ligand and its respective association constant 

(Bipyridine, Ka3) 

These two receptors differ by the presence of the acridinium or the acridane unit binding the 

spacer, using the multi-responsive properties of the acridinium. With the binding of the ditopic 

ligands, three host-guest complexes are formed: DABCO with the Zn(II)-porphyrin-acridinium 

complex (Figure 98A) and the 4,4’-bipyridine to both the Zn(II)-porphyrin-acridinium and 

Zn(II)-porphyrin-acridane complexes (Figure 98A and Figure 98B). 

As there is no crystallographic data of these hosts systems, computational analysis was 

performed to (i) get information about the behaviour of the receptor with and without ditopic 

ligands and (ii) measure the binding free energy of the ditopic ligands. 
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III - GENERATION OF PARAMETERS FOR Zn(II)-

PORPHYRIN RECEPTOR 

To study the receptors and the various complexes formed by the receptors in association with 

the ditopic ligands, we used classical molecular dynamics for binding free energy prediction 

and to analyse the behaviour of the receptor in a solvated environment. 

This process was done in several steps, all connected between them using the procedure 

presented in chapter 3 of the thesis. First, the parameters for the host system, including the 

metal, are generated using the two first modules of the HG-DYNAusor platform. At this step, 

the receptor is optimised at a semi-empirical level using dichloromethane implicit solvation, 

and the parameters of the metal centre are generated from that optimised structure. The receptor 

is then charged using the previously explained MPD-RESP charge procedure, and the bonded 

model is explicitly solvated in dichloromethane. As the ditopic ligand binds the metal atoms, 

we are in a specific case where the complex has to be manually formed prior to the optimisation 

and parametrisation of the metal centre using the MBCPY.py module of the HG-DYNAusor 

platform (see Chapter 3). Thus, the complexes are formed manually by positioning the nitrogen 

atoms of the ditopic ligand at an optimal distance (<2.8Å) from the zinc atoms, followed by a 

complex optimisation at a semi-empirical level. 

Five molecular dynamic simulations were launched corresponding to the different systems 

considered (Figure 98): (i) The Zn(II)-acridinium-DABCO complex, (ii) the Zn(II)-acridinium-

bipyridine complex, (iii) the Zn(II)-acridinium host without ditopic ligand, (iv) the Zn(II)-

acridane-Bipyridine complex and (v) the Zn(II)-acridane host without ditopic ligand. 2.500 

geometries representing 250 nanoseconds of the simulation were then extracted for analysis. 

These geometries are considered for conformational analysis. In contrast, for the binding free 

energy prediction, due to the computational cost of calculating the thermodynamic properties, 

only one geometry is extracted every 2.5 ns for a total of 100 structures for which the binding 

free energy was predicted. 
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IV - COMPUTATIONAL ANALYSIS OF DITOPIC LIGAND 

BINDING 

IV. A - CONFORMATIONAL ANALYSIS OF Zn(II)-PORPHYRIN 

RECEPTORS 

Analysis of the MD simulations was based on the atomic RMSD relative to the initial 

conformation and the Rg. The Rg of the object can be calculated as the root-mean-square 

distance between each point in the object and its centre of mass.160 The scatterplot representing 

the geometries described by RMSD and Rg are shown in Figure 99-A. In this graphic, the two 

receptors without ditopic-ligand (in orange and light-blue respectively in Figure 99-A) deviates 

more than the others and logically sample a larger space than the systems with ditopic ligand. 

It could be easily explained since, without ditopic ligands, the receptors are exploring extended 

geometries. The three other systems (in pink, blue and green in the Figure 99-A) represent 

receptors with a ditopic ligand and sample a relatively constrained space in the graphic. To 

identify representative geometries, we performed a Knn clustering analysis in each independent 

MD simulation. Four clusters are created for each of the systems (see technical details below). 

The centroid of the most representative cluster is shown in Figure 99 B-F. For the systems 

without ditopic ligand (Figure 99B and C), the representative structures are respectively present 

a very-open (in green) or semi-open conformation (in red), while for the systems with the 

ditopic ligand (in blue), the dynamic of the system is mainly related to the alkene chain and the 

mobility of the porphyrin cores around the axis formed by the ditopic ligand. 
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Figure 99: Clustering analysis of the porphyrinoids receptors; (A) scatterplot representing the geometries 

described by RMSD and radius-of-gyration ; kmeans clustering of (B) Apo-acridinium (orange) receptor 

; (C) Apo-acridane (light-blue) receptor  ; (D) Bipyridine-acridinium (blue) receptor ; (E) Bipyridine-

acridane (green) receptor ; and (F) DABCO-acridinium (pink) receptor 

Various metrics of the Knn clustering are displayed in Table 15 and Table 16. 

Table 15: Performance of the Knn clustering 

 DBI pSF SSR/SST 

Apo-acridinium 1.90 431.86 0.34 

Apo-acridane 1.87 388.16 0.31 

Bipyridine-acridinium 1.99 570.36 0.40 

Bipyridine-acridane 1.49 1358.11 0.62 

DABCO-acridinium 2.80 196.41 0.19 
 

In Table 15: the Davies-Bouldin Index (DBI) and pseudo-F statistic (pSF) values are metrics 

of clustering quality; low values of D.B.I. and high values of pSF indicate better results. DBI 

measures the sum over all clusters of the dispersion within the cluster versus the separation 
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between clusters; the smaller the DBI, the better. The pSF is another measure of clustering 

quality, intended to capture the “tightness” of clusters and is essentially a ratio of the average 

sum of squares between groups to the average sum of squares within the group. High values 

are best. The R-squared (SSR/SST) value represents the percentage of variance explained by 

the data. The overall performance of the Knn clustering (Table 11) is correct, even if for most 

systems the explained variance can be considered low. This can be explained by the high 

dynamics of the system and the rapid alternation of the different conformations extracted by 

Knn clustering, and thus the predominance of transient states and the absence of a stabilised 

structure over time. The exception is the bipyridine-acridane system, for which the open 

conformation (in green) corresponds to a stable conformation over time. 

Table 16: Composition of the clusters of the kmeans clustering 

Cluster    Frames      Frac   AvgDist     Stdev Centroid AvgCDist 

Apo-acridinium 

0 849 0.340 8.388 1.773 129 6.306 

1 721 0.288 7.862 1.672 1573 6.843 

2 581 0.232 7.273 1.514 1991 9.031 

3 349 0.140 7.788 2.004 68 9.140 

Apo-acridane 

0 936 0.374 7.621 1.796 595 6.838 

1 645 0.258 7.940 1.974 1226 6.786 

2 514 0.206 7.957 1.780 1421 6.630 

3 405 0.162 8.112 1.789 1656 6.588 

Bipyridine-acridinium 

0 1027 0.411 3.123 0.449 1952 2.988 

1 874 0.350 3.121 0.431 776 3.017 

2 339 0.136 3.355 0.568 2468 4.203 

3 260 0.104 3.197 0.525 1158 4.442 

Bipyridine-acridane 

0 900 0.360 3.317 0.595 1154 6.185 

1 809 0.324 3.543 0.625 983 4.553 

2 499 0.200 3.677 0.730 30 4.546 

3 292 0.117 3.752 0.850 1281 6.654 

DABCO-acridinium 

0 943 0.377 2.614 0.290 660 1.508 

1 692 0.277 2.730 0.366 1879 1.659 

2 557 0.223 2.645 0.318 257 1.493 

3 308 0.123 3.075 0.475 1759 1.773 
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Table 16 contains all the practical information about Knn clustering. Taking the first line as an 

example, we can say that the most populated cluster (#0) is composed of 849 frames which 

represent 34% of the processed frames. The average distance between the points in the cluster 

is 8.4I  1.8Å, frame 129 represent the centroid structure which has the lowest cumulative 

distance to every other point and the average distance of the cluster #0 to every other cluster is 6.3Å. Comparing the systems with each other, we can highlight the fact that the systems 

without ditopic ligand have a much larger variation (~8Å) between the clusters than the other 

systems (~3Å). This is logical considering that, without the ditopic ligand, the system explores 

a much broader conformational space. 

The result of the Knn-clustering are presented in Figure 100 to Figure 104. Concerning the 

clustering of the apo-acridinium receptor (Figure 100), as the structure of the centroid is similar 

for clusters 2 and 3 (they symmetry-related), the two clusters were manually merged to 

correspond to the open conformation of the receptor (in green representing then 52.1% of the 

total processed frames, becoming the most representative structure).  

 
Figure 100: Knn clustering of the apo-acridinium receptor, coloured by clusters: (In green) the open-

conformation, (In blue) the semi-open conformation, and (In red) the closed-conformation 
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The two remaining clusters can be defined as the closed conformation of the receptor (in red), 

representing a 14% of the population, and the semi-open conformation (in blue) corresponding 

to a transitional structure between the extended and closed states, which represents 34% of the 

total processed frames.  

Concerning the clustering of the apo-acridane receptor, four clusters were generated and named 

based on the respective geometry of the centroid structure (Figure 101). This time, as every 

centroid presented a different structure, none of them were merged. The most populated cluster 

corresponds to the closed conformation (in red, 37.4%), which corresponds to the geometries 

not accessible for binding a ditopic ligand, with a perpendicular orientation of the porphyrins 

between each other. The second one (in green, 25.8%) represents the open conformation. Even 

if the two porphyrins are not facing each-others in a conformation close to the binding 

conformation, both of them were accessible, while the structure was stabilised by hydrogen 

bonding between the two hydroxyl groups of the acridane core.   

 
Figure 101: Knn clustering of the apo-acridane receptor, coloured by clusters: (In green) the open-

conformation, (In blue) the semi-open conformation, in yellow the semi-closed conformation and (In red) 

the closed-conformation 
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The last two clusters are closed in terms of structure and can be defined as transitional states 

between the open and the closed conformation. They represent 20.6% (in blue) and 16.2% (in 

yellow) of the total frames of the dynamics, respectively. They were named semi-closed and 

semi-open due to the relative orientation of the porphyrin’s cores. 

For the clustering of the bipyridine receptor (Figure 102 and Figure 103), due to the 

rigidification of the porphyrin backbone related to the bipyridine binding at the so-called 

ditopic binding site, the main deviations in the geometry are related to the flexibility of the 

alkene chain and the induced rotation of the porphyrin core. For that reason, in all the cases, 

the four defined clusters were named in relation to the cluster order. Concerning the clustering 

of the bipyridine-acridinium receptor (Figure 102), the two most populated clusters (in blue 

and green) represent respectively 41.1% and 35% of the total processed frames. In these 

clusters, the receptor was in a conformation where the binding site formed between the two 

acridinium was open and accessible, suggesting a favourable orientation of the acridinium for 

the binding of guests that can perform π-π stacking interactions. 

 
Figure 102: Knn clustering of the Bipyridine-acridinium receptor, coloured by clusters: from the most 

populated cluster to the less populated cluster: (In blue) the cluster 1, (In green) the cluster 2, (In red) the 

cluster 3 and (In purple) the cluster 4 
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In the two less populated clusters in red and purple representing respectively 13.6% and 10.4% 

of the total processed frames, the receptor is in a conformation where the binding-site formed 

between the two acridiniums is not accessible, linked to the flexibility of the alkene chain and 

the orientation of the porphyrins cores: in both cases, we can observe a 45° rotation of the 

porphyrins, which leads to inaccessibility of the binding site formed between the acridiniums. 

For the clustering of the bipyridine-acridane receptor (Figure 103), it was very difficult to 

extract a trend from the clustering, and the four centroids represent structures that diverge in 

the orientation of the acridanes and the alkene chain. Although in some cases, the cavity formed 

between the two acridanes appears to be accessible (in red), the structural modification 

(between the acridinium and the acridane) makes ligand binding difficult due to the loss of the 

capabilities of making π-π interactions. 

 
Figure 103: Knn clustering of the Bipyridine-acridane receptor, coloured by clusters: from the most 

populated cluster to the less populated cluster: (In blue) the cluster 1, (In green) the cluster 2, (In red) the 

cluster 3 and (In purple) the cluster 4 
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The DABCO-acridinium (Figure 104) is distinct, and even if the dynamic of the system is also 

mediated by the alkene chain and the porphyrins rotations, the short Zn-Zn distance imposed 

by DABCO lead to some distortion of the receptor. Unlike to the bipyridine-acridinium (Figure 

102), the porphyrins cannot have an orientation that allows alignment on either side of the 

acridinium to form an accessible binding site due to the presence of a large steric clash between 

the 1,3-di-tert-butylbenzene groups that are located on the meso positions of the porphyrins. 

 
Figure 104: Knn clustering of the DABCO-acridinium receptor, coloured by clusters: from the most 

populated cluster to the less populated cluster: (In blue) the cluster 1, (In green) the cluster 2, (In red) the 

cluster 3 and (In purple) the cluster 4 

Binding of the ditopic ligands DABCO and bipyridine to their respective systems was 

computed using a thermodynamic-based approach and experimentally measured by Amy Edo-

Osagie in the LSAMM labs.   
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IV. B - BINDING FREE ENERGY PREDICTION OF DITOPIC LIGANDS 

The computational prediction of numerical binding free energy is a very challenging problem. 

In our protocol, the molecular dynamics simulations are used as conformational sampling in 

explicit CH2Cl2 solvation. The semi-empirical method GFN2B-xTB is used to solve the 

thermodynamic properties (both the enthalpic and entropic terms are considered) in implicit 

solvation. We used dichloromethane as a solvent to be as close as possible to the experimental 

conditions in both cases. An overview of the results is presented in Figure 105:  

 
Figure 105: Binding free energy prediction of Zn(II)-porphyrin receptor considering three different 

receptors: (Left) the Zn(II)-porphyrin-acridane with bipirydine as a ligand ; (Middle) The Zn(II)-

porphyrin-acridinium with bipyridine as a ligand ; (Right) The Zn(II)-porphyrin-acridinium with 

DABCO as a ligand 

Predictions for both bipyridine systems are very accurate. We are close to the experimental 

binding free energy. with minimal errors (+0.19 kcal/mol for the bipyridine-acridane and -0.11 

kcal/mol for bipyridine-acridinium). The binding free energy of the ditopic ligands using the 

minimal energy calculation gives better results than the Boltzmann-average ones. The limits of 

the Boltzmann average were already mentioned in the previous chapter. Probably the set of 

structures obtained with our procedure does not correspond to a physically meaningful 

conformational ensemble. In some instances, it may identify the true minima correctly but does 

not provide a faithful representation of the free energy landscape. 



 

Page 204 / 254 
 

In the case of the DABCO-acridinium, the predicted energy is far from the experimental value. 

As in our protocol, the apo-structure (without ditopic ligand) is the same for the DABCO-

acridinium and the bipyridine acridinium, and as we are good in the predictions of the 

bipyridine systems, we can assume the problem came from the complex with DABCO. Two 

explanations can be given: 

- (i) The molecular dynamics simulations failed to find the binding conformation. 

 

- (ii) Considering the size of the 1,3-di-tert-butylbenzene group and associated with the 

fact that with the DABCO coordinating the two Zn(II) metal centres, there is an 

important steric clash between the 1,3-di-tert-butylbenzene groups forcing the receptor 

to operate a rotation to avoid a face-to-face orientation of these groups. Considering the 

steric clash, the enthalpic cost of the deformation may be overestimated by the semi-

empirical method, leading to an underestimated binding free energy. 

In conclusion, we were able to cluster the different systems and calculate the binding free 

energy of the bipyridine systems with excellent accuracy. Next, we want to investigate a new 

type of receptor, where the 1,3-di-tert-butylbenzene groups are replaced by smaller (less 

sterically hindered) groups, to avoid deformation of the porphyrin ring and allow the face-to-

face orientation of the acridinium cores, thus creating a suitable binding site for polyaromatic 

guest between two acridiniums. This new receptor will be synthesised in the LSAMM group, 

and computational analysis will be done to extract from databases a set of interesting guests 

able to bind the receptor in the presence of the ditopic ligand pre-organising the complex, 

comparing computational prediction with experimental measurement.   
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V - SYNTHESIS AND CHARACTERISATION OF A NEW 

Zn(II)-PORPHYRIN ACRIDINIUM RECEPTOR 

V. A - GENERALITY 

On the previous tweezer, we observed that the 1,3-di-tert-butylbenzene groups present a large 

steric hindrance, leading to a deformation of the porphyrin core to reduce the clashes. These 

constraints on the structure were measured previously with (i) the molecular dynamics of the 

DABCO-tweezer where the deformation was able to be shown and (ii) when we measured the 

binding free energy of the DABCO with the Zn(II)-porphyrin-acridinium. For those reasons, 

we decided to reduce the steric hindrance by replacing the 1,3-di-tert-butylbenzene from the 

previous system with less sterically hindered groups. 

The new-tweezer .7 ⋅ .456080 was designed based on the previously presented structure with 

two zinc porphyrins connected to phenyl acridinium and a long alkene chain of 18 carbons 

connecting the bis(acridinium-porphyrin) units to ensure enough flexibility to the system for 

its preorganisation as a receptor upon coordination ditopic guest. The introduction of six 4-

methoxybenzene groups was considered on the porphyrin moieties to decrease the steric 

clashes of the 1,3-di-tert-butylbenzene and conserved sufficient solubility. A general figure of 

the scaffold is presented in Figure 106. 

 
Figure 106: (A) Chemical structure of the tweezer; (B) Receptor formed by the DABCO coordinating the 

two Zn(II), forming an available binding cavity between the two acridiniums allowing the binding of 

polyaromatic guest interacting with π-π interactions. 
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We aim for the complex to bind aromatic guests such as perylene by π-π stacking with the 

acridiniums while avoiding the steric shown with 1,3-di-tert-butylbenzene groups. 

V. B - SYNTHESIS AND CHARACTERISATION 

V. B. 1 - CHEMICAL PATHWAY 

 
Figure 107: Retrosynthesis study of the porphyrin-acridinium conjugate:7 ⋅ .45608 

The synthesis of the Zn(II)-porphyrin-acridinium tweezer using an 18 carbon spacer was 

inspired by Fukuzumi and coworkers161 and was performed in four synthetic steps (Figure 107). 

A convergent approach is used for the formation of 7 ⋅ .45608. Compound J ⋅ 456 is formed 

after two synthetic steps starting from a commercially available compound. The synthon 3⋅456 is then used for the formation of an asymmetric porphyrin (2 ⋅ 4560.  

V. B. 2 - DESIGN AND SYNTHESIS 

The synthesis started from commercially available 4-bromobenzaldehyde (Figure 108). The 

aldehyde functional group was first protected in the presence of 1.1 equivalent of pinacol in 

toluene using a dean-stark allowing to shift of the equilibrium in favour of the formation of 

protected 4-bromobenzaldehyde by extraction of the water formed from the reaction medium. 

The resulting acetal (2) was obtained with 90% yield after purification by column 

chromatography.162 
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Figure 108: Synthesis of the 2-(4-bromophenyl)-4,4,5,5-tetramethyl-1,3-dioxolane (2)  

 The resulting 2-(4-bromophenyl)-4,4,5,5-tetramethyl-1,3-dioxolane (2) (Figure 109) was 

reacted with 1 equivalent of nBuLi in THF at −78°C, followed by the addition of 1 equivalent 

of dec-9-en-1-yl-acridin-9(10H)-one. The dec-9-en-1-yl-acridin-9(10H)-one (2) was obtained 

in a single step from commercially available 9(10H)-acridone in 70% yield. After acidification 

of the reaction mixture using HCl (37 wt%), the newly formed 10-allyl-9-(4-

formylphenyl)acridin-10-ium chloride (3·Cl) was converted to the corresponding 

hexafluorophosphate salt .J ⋅ 4560 by anionic metathesis and isolated in 68% yield.  

 
Figure 109: Synthesis of the 10-allyl-9-(4-formylphenyl)acridin-10-ium .J ⋅ 4560  

The key intermediate J ⋅ 456, was then reacted under Lindsey conditions163 (Figure 110) in 

the presence of four equivalents of pyrrole, three equivalents of 4-methoxybenzaldehyde, and 

six equivalents of trifluoroacetic acid (TFA) in CH2Cl2. After aromatisation of the 

porphyrinogen using three equivalents of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone 

(D.D.Q.), the reaction was followed by the metalation of the free base porphyrins using one 

equivalent of Zn(OAc)2·2H2O. After the purification, the porphyrin-acridinium conjugate .2 ⋅4560 was isolated with 11% yield.   
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Figure 110: Chemical synthesis of the porphyrin-acridinium conjugate: 2 ⋅ 456 

Finally, the bis(acridinium-porphyrin) tweezer (7 ⋅ .45608) was formed from two molecules 

of .2 ⋅ 4560 under olefin metathesis conditions (Figure 111) using Grubbs I catalyst (10 

mol%)164 The targeted .7 ⋅ .456080 tweezer was obtained after purification as a purple-red 

crystalline solid in 21% yield. 

 
Figure 111: Synthesis of the porphyrin-acridinium conjugate:7 ⋅ .45608 

Full characterisation of the bis(acridinium-porphyrin) tweezer .7 ⋅ .456080 was performed by 

NMR and U.V./Vis spectroscopies. At this stage of the thesis, the obtained .7 ⋅ .456080 was 

not isolated as a pure compound (~5-10% of impurities), but the overall purity seems 

acceptable to at least make the proof of concept for the binding of (i) a ditopic guest inside the 

Zn(II) binding-cavity and (ii) a polyaromatic system that will bind the acridinium binding 

cavity. 

Nitrogenous ligands are known to bind Zn(II)-porphyrins.130 Thanks to the flexibility of the 

linker, the two remote Zn(II) porphyrins of the tweezer can adopt a face-to-face arrangement 

upon binding a ditopic ligand such as DABCO. The DABCO was chosen for practical reasons 

as it fits the cavity of the previously studied system (Figure 98). 

To do so, the obtained .7 ⋅ .456080 was reacted with a solution of DABCO, leading to the 

formation of the .7 ⋅ .45608�9:;<=0 presented Figure 112. 
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Figure 112: Chemical synthesis of the porphyrin-acridinium conjugate in complex with DABCO: [7 ⋅.45608�9:;<=] 

To the previously formed 7 ⋅ .45608�9:;<=, a solution of perylene was added. After 

manually stirring the mixture, the formation of the porphyrin-acridinium conjugate in complex 

with DABCO and Perylene [7 ⋅ .45608 �9:;<= ] ⊃ 4(ABC('( was observed (Figure 113). 

 
Figure 113: Chemical synthesis of the porphyrin-acridinium conjugate in complex with DABCO and 

Perylene: [7 ⋅ .45608�9:;<=] ⊃ 4(ABC('( 
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V. C - CHARACTERISATION 

V. C. 1 - CHARACTERISATION OF 7 ⋅ .45608 

V. C. 1. A - NMR ANALYSIS OF THE .2 ⋅ 4560 AND THE .7 ⋅ .456080 

 
Figure 114: Stacked 1H NMR spectra of a) 4∙(456)2 (CDCl3, 298K, 500MHz),   b) 1∙(456)2 (CD2Cl2, 298 K, 

500MHz)  

The porphyrin-acridinium conjugate .7 ⋅ .456080 was analysed by 1H NMR in Figure 114, we 

can see the important changes in the spectra of the 7 ⋅ 456, with the dimerization, the pics 

corresponding to the protons of the alkene chain disappeared, associated with a shift of the 

NCH2 pic (∆δ(HNCH2) = −0.3 ppm). As we mentioned before, the 1H NMR attested to the 

formation of the 7 ⋅ .45608 porphyrin acridinium conjugate. The U.V./Visible spectrum of the 

molecule will be presented in the next section. 

V. C. 1. B - UV/VISIBLE SPECTRUM OF .7 ⋅ .456080 

The formation of the named 7 ⋅ .45608 porphyrin acridinium conjugate was also confirmed 

using U.V./visible spectroscopy. The spectrum (Figure 115) shows the corresponding Soret 

band at 427nm and the two Q-bands at 554 nm and 598 nm, respectively, which are 

characteristic of the formation of metalled porphyrins (without metals, we would have four Q-
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bands). In addition, we can see a band at 364 nm representing the π-π* transition centred on the 

acridinium fragment.132
 

 
Figure 115: UV/Visible spectrum (CH2Cl2, 298 K, l = 1cm, c = 4.37.10-6 M) of the tweezer .7 ⋅ .456080 

Even if the 7 ⋅ .45608 was not isolated as a pure compound (~5-10% of impurities), and 

correlated with the computational analysis coming in the next section, we decided to make a 

proof of concept of the ability for the porphyrin acridinium to bind to a ditopic ligand and 

polyaromatic molecules. As everything depends on our capacity to synthesise the given 

product, we wanted to try before investing time in the purification process and scale up to 

obtain sufficient amount of the product. 
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V. C. 2 - NMR ANALYSIS OF THE .7 ⋅ .45608�9:;<=0 

In order to confirm the capability of 7 ⋅ .45608 to complex DABCO and form a macrocyclic 

receptor, one equivalent of DABCO was added to a solution of 7 ⋅ .45608 in CD2Cl2, and a 
1H-NMR recorded (Figure 116). 

 
Figure 116: Stacked 1H NMR spectra (CDCl3, 298 K, 500MHz) of a) 7 ⋅ .45608  b) 7 ⋅ .45608�9:;<= 

Even an excess of DABCO can be shown, a notable change in the spectrum can be evidenced 

with the addition of DABCO, with upfield shifts of the pyrrolic protons (∆δ(Py1-2) = ∆δ(Py3-4) 

= −0.25 ppm, upfield shifts of the smaller magnitude of the acridinium peaks (∆δ(H1/8) = 

∆δ(H2/7) = ∆δ(H3/6) = ∆δ(H4/5) = −0.1 ppm), and upfield shift of the NCH2 (∆δ(NCH2 = 

−0.15ppm). This NMR evidenced binding of the DABCO by the porphyrin and the formation 

of the macrocyclic receptor 7 ⋅ .45608�9:;<=.   
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V. C. 3 - NMR ANALYSIS OF .[7 ⋅ .45608�9:;<=] ⊃ 4(ABC('(0 

 
Figure 117: Stacked 1H NMR spectra (CDCl3, 298 K, 500MHz) of a) 7 ⋅ .45608 b) 7 ⋅ .45608�9:;<= 

and c) [7 ⋅ .45608�9:;<=] ⊃ 4(ABC('( 

With the previous analysis suggesting confirmation of the binding of the DABCO, the ability 

to bind polyaromatic guests in an allosteric manner was studied by 1H-NMR. For that, one 

equivalent of perylene is added to the previous 7 ⋅ .45608�9:;<= in CD2Cl2 (Figure 117). 

The acridinium peaks present a slight shift, suggesting a possible binding of the perylene inside 

the binding cavity. (∆δ(Py1-2) = ∆δ(Py=3-4) = −0.2 ppm, (∆δ(H1/8) = ∆δ(H2/7) = ∆δ(H3/6) = 

∆δ(H4/5) = −0.08 ppm). Additionally, sub-peaks can be shown representing a possible pre-

existing excess of DABCO or 7 ⋅ .45608 due to the difficulties of measuring precisely one 

equivalent of each product in the previous steps. This suggests a possible increase in the 

electronic shielding of the acridinium protons upon the addition of pyrene, consistent with an 

acridinium-pyrene Ö-Ö interaction. 

Along with the synthesis process, a computational exploration was initiated to identify possible 

binders for the new receptor. 
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VI - IDENTIFICATION OF POTENTIAL BINDERS FOR THE 

NEW Zn(II)-PORPHYRIN ACRIDINIUM: A FUTURE 

PERSPECTIVE 

VI. A - PROTOCOL 

VI. A. 1 - PHARMACOPHORIC SEARCH AND VIRTUAL SCREENING 

Virtual screening is a computational technique used in drug discovery to search libraries of 

small molecules to identify structures most likely to bind to a drug target, in our case, the 

Zn(II)-porphyrin-acridinium receptor. Historically, virtual screening improves hit rates and 

reduces costs by generating small, highly enriched subsets of compound libraries that could be 

physically screened. Pharmacophore search is an established and effective strategy for virtual 

screening.165 Our thesis uses two different databases and molecular docking to rank molecules 

that will be analysed through the HG-DYNAusor platform. 

A pharmacophore describes the structural arrangement of essential interaction features. 

Common pharmacophore features include several steric and electronic features describing the 

molecular interactions (hydrophobic, hydrogen bonds, charged, …). A pharmacophore query 

is defined by the spatial arrangement of features and a search radius around each feature. The 

pharmacophore of a molecule describes the essential characteristic describing the 

interactions.166 

VI. A. 2 - DATABASES 

VI. A. 2. A - DRUG BANK 

The latest release of the DrugBank dataset (released 2021-01-03) contains 14575 drug entries. 

These drugs are separated into the following groups: 2700 approved small molecule drugs, 

1496 approved biologics (proteins, peptides, vaccines, and allergenics), 132 nutraceuticals, and 

over 6652 experimental (discovery-phase) drugs.167–171 

VI. A. 2. B - T3DB 

The Toxin and Toxin Target Database (T3DB) or, is a unique bioinformatics resource that 

combines toxin data with comprehensive toxin target information. The database currently 

contains 3,678 toxins described by 41,602 synonyms, including pollutants, pesticides, some 

drugs, and food toxins, for which the toxicity record can be shown. This information has been 
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extracted from over 18,143 sources, including other databases, government documents, books, 

and scientific literature.172,173 

VI. B - BEHAVIOUR OF NEW Zn(II)-PORPHYRIN ACRIDINIUM HOST 

For the Zn(II)-porphyrin-acridinium with para-anisyl solubilising groups, three different 

molecular dynamics are launched from three different starting points. As we did before, a set 

of molecular descriptors describing the deviation (RMSD), the Rg and the SASA of the 

receptor are calculated. In addition, other descriptors related to the geometry of the receptors 

in more detail are added to the analysis. These descriptors are separated into three types: 

distance descriptors, angles descriptors, and dihedrals angles descriptors, which represent the 

dynamics of the alkene chain and the acridinium. In total, 33 additional descriptors are added. 

As the dataset contains much more information than in previous times, the variability is more 

diluted in the different PCs. Before the analysis, a dimensional reduction process is done, and 

a set of 12 variables with largest contributions are selected for further analysis. 

The results can be shown in Figure 118: ~80% of the variability is explained by the four first 

PCs. Concerning the “MD2” and the “MD3” respectively coloured in green and red in the 

graphic, they sample a very similar conformational space. “MD1” presents some variation: 

although the largest part of the dynamics overlaps with the two others, some geometries are 

only sampled by this system, which likely represents a particular conformation associated with 

a rare event. Some specific geometries are highlighted in the bottom part of Figure 118. In blue, 

the rare conformation highlighted with *1 in the graphic represents a conformation of the 

receptor where the alkene chain enters the cavity, generating steric hindrance and preventing 

the binding of a potential guest.  

Most of the geometries present an accessible binding cavity where the receptor is in an open 

configuration allowing binding within the cavity between the two acridiniums (*2 in blue and 

*1 and *2 in orange in Figure 118). This shape is predominant in all simulations, so the points 

are mostly located in the same area and overlapping. For MD3 (green), two specific geometries 

can be extracted: the first one (green *1) shows the closed conformation of the receptor with 

the two acridiniums interacting with each other.  In contrast, the second represents the very 

open conformation, where the two acridiniums have rotated by 90° and are no longer facing 

each other. The alkene chain seems to be flexible enough to allow this conformational change 

in the structure. 
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From the observations of molecular dynamics, the predominant open conformation can take 

several orientations over time. From what we have seen in the simulations, the open 

conformation can be considered as an equilibrium point from which the geometry is likely to 

diverge to another conformation (closed, semi-closed, rotated...). We expect that the geometry 

with the alkene chain entering the cavity will have a lower absolute energy than the 

configuration presenting a binding cavity between the two acridiniums, which is generally the 

one used to bind a guest. 

 
Figure 118: PCA of Zn(II)-porphyrin receptors chemical space described by a set of molecular 

descriptors derived from the simulations. The space formed by the combination of PC1, PC2, PC3, and 

PC4 explaining respectively, ~80% of the variability. Each point represents a geometry, and the point is 

coloured by the simulations: MD1 (blue), MD2 (red), MD3 (green). (upper part): the combination of each 

P.C.s (bottom part): an overview of some specific geometry. 
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VI. C - VIRTUAL SCREENING 

VI. C. 1 - PHARMACOPHORIC SEARCH 

 
Figure 119: An overview of the results of the first pharmacophoric search 

The pharmacophoric search is done with MOE174 software using the constructed 3D databases. 

Four different pharmacophores are investigated (upper part of the Figure 119). Only the 

distance between the nitrogen and the donor or acceptor character is considered for each of 

them. The drug bank is used, and the different filters are applied. An overview of some results 

is shown in the Figure 119. The idea is to select molecules that would coordinate the two zinc 

molecules coming from the porphyrins. Unfortunately, most of the extracted molecules present 

steric groups near the nitrogen that are likely to reduce the affinity of this ditopic guest to the 

Zn(II), making their use complicated in this context. In conclusion, it would be necessary to 

generate more detailed filters to avoid the steric clashes. 

VI. C. 2 - FILTERING 

The number of molecules to be analysed was reduced using a filtering procedure. This filtering 

procedure can be summarised as follows: 

1) The potential guests that contain metals are removed from the databases. 

2) Mono-anionic and mono-cationic species are removed from the databases. 

3) The molecules presenting a counter-ion are removed from the databases. 

4) Peptides are removed from the databases. 
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5) The Solvent Accessible Surface Area (SASA) were measured for all remaining 

molecules. A threshold was applied from the SASA measurement, and all the guests 

that may not fit into the cavity were removed. 

6) Molecules that present errors during 3D constructions were removed from the 

databases. 

 

Using the filtering approach, both databases are reduced, and finally, the DrugBank is reduced 

to 5881 molecules and the T3DB to 1943 molecules. 

VI. C. 3 - DOCKING RESULTS 

In Table 17 and Table 18, the ten best results of the docking procedure are presented with the 

associated score. Each database has been considered separately, and the docking is realised 

once for each of them in receptor extracted from the previous MDs and presenting an open 

binding cavity. The docking box is sufficiently large to allow any type of external or internal 

interaction. On the top twenty results, all molecules are inside the binding cavity. 

The ten best molecules extracted from the T3DB database are mainly pollutants. All of them 

can be classified as polycyclic aromatic hydrocarbons (PAH), susceptible to interact with a 

good affinity with the molecular tweezer using π-π interactions. Considering the score of the 

T3DB compounds, they are globally high, suggesting that these molecules are good binders for 

the receptor. Concerning the DrugBank, only the best result is a PAH molecule, but most of 

the ranked molecules can interact with the receptor via π-π interactions.  Very interesting to 

highlight that from the ten best molecules, four of them present a steroid scaffold (Figure 120). 

That could suggest an interesting particularity of the receptor to bind this kind of molecules.  

 
Figure 120: Representation of the steroid scaffold 

One of the main limitations of the docking process is the initial geometry of the receptor. Unlike 

the guest molecules, the host cannot be considered fully flexible in the docking algorithm. The 

initial structure was extracted from the previous simulation of molecular dynamics, and its 



 

Page 219 / 254 
 

internal energy was not considered, but could be important to improve the results175. However, 

considering the low amount of time for running the docking, it is still possible to consider 

running an ensemble docking based on several different geometries presenting low energy. 

Generally speaking, the docking results are consistent with the literature and the best ligands 

extracted are almost all molecules capable of π-π interactions with the receptor. Binding can 

be studied on these ten molecules by molecular dynamics following the protocol described in 

Chapter 3 concerning using the HG-DYNAusor platform. In conclusion, the top-five molecules 

of each database will be extracted, and the binding free energy will be measured for these ten 

molecules. 

VI. C. 3. A - T3DB 

Table 17: An overview of the results of the docking on the T3DB after the filtering procedure 
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VI. C. 3. B - DRUG-BANK 

Table 18: An overview of the results of the docking on the T3DB after the filtering procedure 

 
 

VI. D - PERSPECTIVE 

At the time of writing, this part is still in progress. As we already explained, the first try of the 

binding of 7 ⋅ .45608 with DABCO and perylene shows sufficiently interesting results to 

investigate other possible binders. In parallel to the scale-up for the obtention of 7 ⋅ .45608 

with sufficient purity, the computational studies have been launched.  

We aim to: 

1) Extract several low-energy conformations of the 7 ⋅ .45608 -DABCO system from 

the clustering analysis done on the three molecular dynamics simulations. If the 

extracted conformations are very different, the docking procedure can be repeated. 

2) Perform MD simulations of the docking top-scoring molecules and predict the 

binding free energy for each of them using the HG-DYNAusor platform. Select the 

best ones for experimental testing. 

3) Re-synthesise 7 ⋅ .45608, investing time in the synthetic and purification process to 

obtain the tweezer with sufficient purity. 

4) Experimentally determine the binding affinities of the selected ligands  7 ⋅ .45608. 
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I - SYNTHESIS OF 2-(4-BROMOPHENYL)-4,4,5,5-

TETRAMETHYL-1,3-DIOXOLANE 

 
Figure 121: Chemical synthesis of the 2-(4-bromophenyl)-4,4,5,5-tetramethyl-1,3-dioxolane 

To a solution of 4-bromobenzaldehyde (2.004 g, 10.83 mmol, 1 eq.) and tetramethylethylene 

glycol (1.42 g, 12.01 mmol, 1.11 eq.) in toluene (100 mL), para-tosylic acid (0.55 g) was added. 

After Dean-Stark extraction for ~3 hours, the reaction mixture was washed with a saturated 

aqueous solution of Na2CO3 (2 × 100mL), and the aqueous layer was extracted using ethyl 

acetate (2 × 100 mL).  

The organic layers were combined and dried (MgSO4). After evaporation of the solvents, the 

crude product was purified by column chromatography (SiO2, petroleum ether/EtOAc, 5% 

then 7%). Three different fractions have been extracted and submitted to the NMR. Due to the 

purity of the three fractions, they are merged in Ch2Cl2 and evaporated. The desired product 

was obtained as colourless crystals in 90% yield (2.762 g). 

 

1H NMR (500 MHz, CDCl3, 298 K) δ (ppm) = 7.52 – 7.45 (m, 2H, HAA’), 7.39 – 7.33 (m, 2H, HBB’), 

5.93 (s, 1H, O2CH), 1.31 (s, 6H, CH3), 1.24 (s, 6H, CH3). 

13C NMR (126 MHz, CDCl3, 298 K) δ (ppm) = 139.1(CCBB’), 131.5(CAA’), 128.1(CBB’), 122.7(CCAA’), 

99.3(O2CH), 83.0((CH3)2C), 24.4(CH3), 22.3(CH3). 
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II - SYNTHESIS OF 10-(BUT-EN-1-YL)ACRIDIN-9(10H)-ONE 

 
Figure 122: Chemical synthesis of the 10-(but-en-1-yl)acridin-9(10H)-one 

To a solution of 9(10H)-Acridone (780 mg, 4 mmol, 1.0 eq.) in anhydrous DMF (40 mL), was 

added NaH 60 wt. % dispersion in mineral oil (240 mg, 6 mmol, 1.5 eq.) at 0°C. The solution 

was stirred for 30 minutes before adding 1-(10)Bromohex-1-ene (1.20 mL, 6 mmol, 1.5 eq.). 

The mixture was then heated to 60°C overnight. After the addition of H2O (500 mL), the 

aqueous layer was extracted using Et2O (3 × 100 mL). After evaporation of the solvents, the 

resulting oil was precipitated from H2O (100 mL). After filtration, the crude product was 

purified by column chromatography (SiO2, CH2Cl2/acetone, 100:0 to 99:1). The desired 

product 2 was obtained as a pale-yellow solid in 70% yield (783 mg). 

1H NMR (500 MHz, CDCl3, 298 K) δ (ppm) =  8.60 (dd, J = 8.0, 1.8 Hz, 2H, H1/8), 7.74 (ddd, J = 8.7, 

7.0, 1.8 Hz, 2H, H3/6), 7.51 (d, J = 8.7 Hz, 2H, H4/5), 7.30 (ddd, J = 7.9, 7.0, 0.9 Hz, 2H, H2/7), 5.82 (ddt, J = 17.0, 

10.2, 6.7 Hz, 1H, H2C=CH), 5.01 (dq, J = 17.0, 2.2 Hz, 1H, (trans)HHC=CH), 4.95 (ddt, J = 10.2, 2.2, 1.3 Hz, 

1H, (cis)HHC=CH), 4.38 – 4.31 (m, 2H, NCH2), 2.06 (tdd, J = 6.7, 5.3, 1.3 Hz, 2H, γ-CH2), 2.00 – 1.90 (m, 2H, 

α-CH2), 1.58 – 1.52 (m, 2H, β-CH2), 1.50 – 1.42 (m, 2H, δ-CH2), 1.41 – 1.30 (m, 4H, (χ&φ)-CH2). 

13C NMR (126 MHz, CDCl3, 298 K) δ (ppm) = 178.2 (CO), 141.9 (C4/5C), 139.2 (H2C=C), 134.0 (C3/6), 

128.2 (C1/8), 122.6 (C1/8C), 121.4 (C2/7), 114.7 (C4/5), 114.4 (H2C=C), 46.4 (NCH2), 33.9 (γ-CH2), 29.6 (χ-CH2), 

29.5 (δ-CH2), 29.2 (ε-CH2), 29.0 (φ-CH2), 27.3 (α-CH2), 27.1 (β-CH2). 
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III - SYNTHESIS OF THE 10-ALLYL-9-(4-

FORMYLPHENYL)ACRIDIN-10-IUM 

 
Figure 123: Chemical synthesis of the synthesis of the 10-allyl-9-(4-formylphenyl)acridin-10-ium  .J ⋅ 4560 

To a solution of 2-(4-bromophenyl)-4,4,5,5-tetramethyl-1,3-dioxolane (2) (770 mg, 2.70 

mmol, 1.2 eq.) in anhydrous THF (30 mL), was added a 2.5M solution of nBuLi in hexanes 

(0.9 mL, 2.25 mmol, 1.0 eq.) at ‒78°C. After 1 hours, 10-(dec-9-en-1-yl)acridin-9(10H)-one 

(2) (750 mg, 2.25 mmol) was added. The resulting mixture was allowed to room temperature 

overnight. A 37 wt.% aqueous solution of HCl (30 mL) was added, and after 30 min, the 

acidified solution was poured slowly into an aqueous solution of KPF6 (6g, 150 mL). The 

resulting oil was extracted with CH2Cl2 (3 × 100 mL), and the combined organic layers were 

washed with H2O (2 × 100 mL). After evaporation of the solvents, the crude product was 

precipitated using ACN / diethyl ether mixture, giving the desired product J ⋅ 456 was 

obtained as a yellow solid in 62% yield. 

1H NMR (500 MHz, CDCl3, 298 K) δ (ppm) = 10.25 (s, 1H, CHO), 8.48 (d, J = 9.3 Hz, 2H, H4/5), 8.42 

(ddd, J = 9.3, 6.6, 1.5 Hz, 2H, H3/6), 8.27 – 8.22 (m, 2H, Hbb), 7.98 (dd, J = 8.7, 1.5 Hz, 2H, H1/8), 7.87 (ddd, J = 

8.7, 6.6, 1.0 Hz, 2H, H2/7), 7.73 – 7.67 (m, 2H, Haa), 5.84 (ddt, J = 17.0, 10.2, 6.7 Hz, 1H, H2C=CH), 5.38 – 5.31 

(m, 2H, NCH2), 5.01 (dq, J = 17.0, 1.7 Hz, 1H, (trans)HHC=CH), 4.93 (ddt, J = 10.2, 2.3, 1.2 Hz, 1H, 

(cis)HHC=CH), 2.33 – 2.22 (m, 2H, α-CH2), 2.11 – 2.03 (m, 2H, γ-CH2), 1.78 (p, J = 7.6 Hz, 2H, β-CH2), 1.57 – 

1.49 (m, 2H, χ-CH2), 1.46 – 1.35 (m, 6H, (δ - φ)-CH2). 

13C NMR (126 MHz, CDCl3, 298 K) δ (ppm) = 191.7 (CHO), 160.6 (CaaCC), 141.0 (C4/5C), 140.0 (C3/6), 

139.6 (CaaC), 138.9 (H2C=CH), 138.0 (CCHO), 131.0 (Cbb), 130.8 (C1/8), 130.3 (Caa), 128.7 (C2/7), 126.3 (C1/8C), 

118.2 (C4/5), 114.3 (H2C=CH), 51.7 (NCH2), 34.1 (γ-CH2), 29.7 (δ-CH2), 29.6 (χ-CH2), 29.3 (φ-CH2), 29.3 (ε-

CH2), 29.2 (α-CH2), 27.1 (β-CH2).  

31P NMR (121 MHz, CD2Cl2, 298 K) δ (ppm) = -144.78 (sept, J = 711.0 Hz). 

19F NMR (282 MHz, CD2Cl2, 298 K) δ (ppm) = -73.58 (d, J = 710.9 Hz).  
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IV - SYNTHESIS OF PORPHYRIN-ACRIDINIUM 

CONJUGATE (2 ⋅ 456) 

 
Figure 124: Chemical synthesis of the porphyrin-acridinium conjugate (2 ⋅ 456) 

To a solution of 10-(dec-9-en-1-yl)-9-(4-formylphenyl)acridin-10-ium (4) (1 g, 1.76 mmol, 1.0 

eq.), pyrrole (0.489 mL, 7.04 mmol, 4 eq.), and 4-methoxybenzaldehyde (6.642 mL, 5.28 

mmol, 3 eq.) in degassed CH2Cl2 (450 mL), was added TFA (0.866 mL, 3 mmol, 6 eq.). After 

three hours of stirring in the dark, DDQ (1.2 g, 5.28 mmol, 3 eq.) was added. The reaction 

mixture was stirred at room temperature for an additional hour, and the solution was neutralised 

using triethylamine (12 mL). After evaporating the solvents, the resultant solid was dissolved 

in CH2Cl2 and filtered through a plug of SiO2. After evaporation of the solvents, a solution of 

Zn(OAc)2·2H2O (386 mg, 1.76 mmol, 1 eq.) in CH3OH (330 mL) was then added. The mixture 

was heated to reflux for one hour with completion of the reaction assessed via UV-Vis. After 

evaporating the solvents, the crude product was purified by column chromatography (SiO2, 

CHCl3/ACN, 100:0 to 95:5) followed by precipitation from ACN/Petroleum ether (1:10) and 

finally recrystallised in toluene. The desired product 2 ⋅ 456 was obtained as a dark-blue solid 

in 11% yield (234 mg). 

1H NMR (500 MHz, CDCl3, 298 K) δ (ppm) = 9.13 (d, J = 4.6 Hz, 2H, , Hpy1), 9.10 (d, J = 4.6 Hz, 2H, , HPy2), 

9.04 (s, 4H, Py3-4), 8.61 (t, J = 8.8 Hz, 4H, Hbb-1/8), 8.55 – 8.48 (m, 4H, H3/6-4/5), 8.18 (t, J = 9.1 Hz, 6H, Hm-m’), 

8.04 (dd, J = 8.6, 6.6 Hz, 6H, Hp-p’ ), 7.93 (d, J = 7.9 Hz, 2H, H2/7), 7.37 – 7.31 (m, 6H, Haa), 5.87 (ddt, J = 16.9, 

10.2, 6.7 Hz, 1H, H2C=CH), 5.51 (t, J = 8.7 Hz, 2H, NCΗ2), 5.09 – 4.95 (m, 2H, (HHC=CH), 4.14 (s, 6H, OCH3), 

2.54 – 2.25 (m, 2H, , α- γCH2), 2.16 – 1.99 (m, 2H, , α- γCH2), 1.93 – 1.75 (m, 2H, α- γCH2), 1.47 – 1.43 (m, 

10H, , α- γCH2) 

13C NMR (126 MHz, CD2Cl2, 298 K) δ (ppm) = 207.13 (s, COMe), 140.69 (s, C9), 139.21(s, Cq-OMe), 139.08 (s, Cq-

porph), 130.70 (s, Cq-porph), 128.02 (s, Cq-porph), 118.06, 114.22, 77.23(s, Cq-OMe), 76.97(s, Cq-Ac
+), 76.72(s, C4/5 & 3/6), 

55.51 (s, CN-CH2), 33.71(s, Caliphatic), 30.90(s, Caliphatic),  29.65(s, Caliphatic),  29.30(s, Caliphatic),  29.26(s, Caliphatic),  

29.07(s, Caliphatic),  28.96(s, Caliphatic),  28.80(s, Caliphatic),  26.70(s, Caliphatic),  25.37(s, Caliphatic),  22.65(s, Caliphatic). 
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31P NMR (203 MHz, CD2Cl2, 298 K) δ (ppm) = -137.49 – -151.17 (sept, J = 712.0 Hz), 

19F NMR (471 MHz, CD2Cl2, 298 K) δ (ppm) = -74.59 (d, J = 712.0 Hz).  

HRMS (ESI-TOF): for C70H60N5O3Zn, m/zcalc = 1082.3988, m/zfound = 1082.3982 (100%, [M]+). 
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V - SYNTHESIS OF 7 ⋅ .45608 

 
Figure 125: Chemical synthesis of the porphyrin-acridinium tweezer (7 ⋅ .45608) 

To a solution of Zn(II)porphyrin 2 ⋅ 456 (50 mg, 1eq.) in degassed anhydrous CH2Cl2 (4mL), 

was added Grubbs (I) catalyst (3.6 mg, 10 mol%). After 48 hours in the dark, the solution was 

washed with brine (10 mL) and H2O (3 × 10 mL). After evaporating the solvents, the crude 

product was purified by column chromatography (SiO2, CHCl3/CH3CN, 98:2 to 97:3) followed 

by crystallisation from acetonitrile/petroleum ether (1:3). The desired product 7 ⋅ .45608 was 

obtained as a purple crystalline solid in 25% yield.  

1H NMR (500 MHz, CD2Cl2, 298 K) δ (ppm) = 9.13 (d, 3J = 4.6 Hz, 4H, Hpy1), 9.09 (d, 3J = 4.6 Hz, 4H, HPy2), 

8.99 (s, 8H, Py3-4), 8.57 (d, 3J = 7.7 Hz, 4H, Hb), 8.47 (d, 3J = 8.3 Hz, 4H, H1/8), 8.39 – 8.36 (m, 8H, H3/6-4/5), 8.11 

(d, 3J = 8.5 Hz, 12H, Hm-m’), 7.95 (ddd, J = 8.6, 5.1, 2.3 Hz, 4H, H2/7), 7.81 (d, J = 7.7 Hz, 4H, Haa), 7.34 – 7.16 

(m, 12H, Ho1-o2, 5.48 (t, 4J = 3.6 Hz, 2H, Hol), 5.19 – 5.17 (m, 4H, NCH2), 4.02 (s, 6H, OCH3), 4.01 (s, 12H, 

OCH3), 2.28-2.23 (m, 4H, CH2), 1.81 – 1.75 (m, 4H, CH2), 1.58 – 1.55 (m, 4H, CH2), 1.47 – 1.42 (m, 20H, CH2). 

13C{1H} NMR (126 MHz, CD2Cl2, 298 K) δ (ppm) = 206.89 (s, COMe), 162.48 (s, C9), 159.80 (s, Cq-OMe), 151.18(s, 

Cq-porph), 151.02(s, Cq-porph), 150.91(s, Cq-porph), 149.99 (s), 146.03 (s, Cq-Ac
+), 140.96 (s), 139.81(s, C4/5, 3/6), 135.88 

(s), 135.85 (s), 135.38 (s), 135.17 (s, Cb), 132.75 (s, Cpy2), 132.56 (s, Cpy3/4),, 132.44 (s, C12/13),, 132.26 (s, Cpy1), 

131.67 (s), 131.39 (s, C1/8), 130.82(s, COl), 128.77 (s, Caa), 128.51 (s, C2/7), 126.70 (s), 121.87 (s), 121.52 (s, Cq-

OMe), 119.00 (s, Cq-Ac
+), 118.02 (s, C4/5 & 3/6), 112.51 (s), 55.92 (s, CN-CH2), 32.94 (s, Caliphatic), 30.94 (s, Caliphatic), 

30.09 (s, Caliphatic), 29.99 (s, Caliphatic), 29.79 (s, Caliphatic), 29.62 (s, Caliphatic), 29.37 (s, Caliphatic), 29.25 (s, Caliphatic), 

27.17 (s, Caliphatic). 

31P NMR (121 MHz, CD2Cl2, 298 K) δ (ppm) = -133.85 – -154.92 (sept, , J = 711.0 Hz). 

19F NMR (282 MHz, CD2Cl2, 298 K) δ (ppm) = -73.31 (d, J = 712.0 Hz). 

HRMS (ESI-TOF): for C138H116N10O6Zn2, m/zcalc = 1068.3830, m/zfound = 1068.3825 (100%, [M]2+). 

UV-Vis (CH2Cl2, 298 K) λmax (nm) (ε (L mol−1 cm−1) = 364 (4980), 427 (78600), 554 (3200), 598 (1300),  
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VI - SYNTHESIS OF 7 ⋅ .45608�9:;<= 

 
Figure 126: Synthesis of 7 ⋅ .45608�9:;<= 

To a solution of 7 ⋅ .45608 (2 mg, 0.87 µmol) in CD2Cl2 (2 mL) was added a solution of 1,4-

diazabicyclo[2.2.2]octane (DABCO) (1 eq) in CD2Cl2 (0.1 mL). The mixture was manually 

stirred, and formation of the 7 ⋅ .45608�9:;<= complex assessed via 1H NMR spectroscopy. 
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VII - SYNTHESIS OF [7 ⋅ .45608�9:;<=] ⊃ 4(ABC('( 

 
Figure 127: Synthesis of [7 ⋅ .45608�9:;<=] ⊃ 4(ABC('( 

To a solution of 7 ⋅ .45608�9:;<= (0.87 µmol) in CD2Cl2 (2 mL) was added a solution of 

perylene (1eq, 0.87 µmol) in CD2Cl2 (0.1 mL). The mixture was manually stirred, and the 

formation of the [7 ⋅ .45608�9:;<=] ⊃ 4(ABC('( complex assessed via 1H NMR 

spectroscopy. 
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Résumé 

Ces dernières années, la chimie supramoléculaire a connu un énorme essor. Les processus 
supramoléculaires et, en particulier, les interactions hôte-invité sont étudiées pour la variété des 
applications possibles (des processus industriels au domaine médical). Actuellement, les découvertes 
dans le domaine de la chimie supramoléculaire hôte-invité sont entravées par la complexité de la 
caractérisation thermodynamique et cinétique des processus d'inclusion/libération, ce qui rend difficile 
la génération de prédictions utiles pour l'encapsulation moléculaire.  

Dans ce contexte, ce projet de thèse s'est concentré sur le développement d'une plateforme de calcul 
pour la prédiction de l'énergie libre de Gibbs de complexes hôte-invité en utilisant deux approches 
différentes : la première basée sur la prédiction des paramètres thermodynamiques et la seconde 
basée sur les connaissances. L'objectif est non seulement d'améliorer les connaissances globales 
dans le domaine de la chimie supramoléculaire, mais également de fournir de nouvelles opportunités 
et applications pour les conteneurs existants de manière à aider au développement de ces derniers. 

Mots-clés : Prédiction d’énergie libre de Gibbs, Méthode quantique semi-empirique, Méthode 
d’apprentissage automatique, plateforme automatisée 

 

 

Abstract 

Supramolecular chemistry has experienced enormous growth in recent years. Supramolecular 
processes and, in particular, host-guest interactions are studied for the variety of their potential 
applications (from industrial processes to medical field application). At the moment, breakthrough 
discoveries in molecular host-guest chemistry are hampered by the complexity of the thermodynamic 
and kinetic characterization of the inclusion/release processes, which make it difficult to generate 
useful predictions about molecular encapsulation.  

In this context, this thesis project focused on the development of a computational platform for binding 
free energy prediction of host-guest complexes using both thermodynamic-based and knowledge-
based approaches. The aim is not only to improve the overall knowledge in the field of supramolecular 
chemistry but also to provide new opportunities and applications for existing containers and provide 
direction in their rational development. 

Key-words: Binding free energy prediction, semi-empirical quantum mechanics, Machine learning, 
automated platform  

 

 


