Thèse soutenue

Systèmes linéaires sur les variétés symplétiques holomorphes irréductibles

FR  |  
EN
Auteur / Autrice : Simone Novario
Direction : Samuel BoissièreLambertus Nicolaas Maria van Geemen
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 17/12/2021
Etablissement(s) : Poitiers en cotutelle avec Università degli studi (Milan, Italie)
Ecole(s) doctorale(s) : École doctorale Sciences et Ingénierie des Systèmes, Mathématiques, Informatique (Limoges ; 2018-2022)
Partenaire(s) de recherche : Laboratoire : Laboratoire de mathématiques et applications - LMA (Poitiers) - Laboratoire de Mathématiques et Applications / LMA-Poitiers
faculte : Université de Poitiers. UFR des sciences fondamentales et appliquées
Jury : Président / Présidente : Alessandra Sarti
Examinateurs / Examinatrices : Samuel Boissière, Lambertus Nicolaas Maria van Geemen, Arvid Perego, Alice Garbagnati, Paola Frediani
Rapporteur / Rapporteuse : Klaus Hulek, Gianluca Pacienza

Résumé

FR  |  
EN

Dans cette thèse, nous étudions certains systèmes linéaires complets associés aux diviseurs des schémas de Hilbert de 2 points sur dedes surfaces K3 projectives complexes avec groupe de Picard de rang 1, et les fonctions rationnelles induites. Ces variétés sont appelées carrés de Hilbert sur des surfaces K3 génériques, et sont un exemple de variété symplectique holomorphe irréductible (variété IHS).Dans la première partie de la thèse, en utilisant la théorie des réseaux, les opérateurs de Nakajima et le modèle de Lehn–Sorger, nous donnons une base pour le sous-espace vectoriel de l’anneau de cohomologie singulière à coefficients rationnels engendré par les classes de Hodge rationnels de type (2, 2) sur le carré de Hilbert de toute surface K3 projective.Nous exploitons ensuite un théorème de Qin et Wang ainsi qu’un résultat de Ellingsrud, Göttsche et Lehn pour obtenir une base du réseau des classes de Hodge intégraux de type (2, 2) sur le carré de Hilbert d’une surface K3 projective quelconque. Dans la deuxième partie de la thèse, nous étudions le problème suivant : si X est le carré de Hilbert d’une surface K3 générique tel que X admet un diviseur ample D avec qX(D) = 2, où qX est la forme quadratique de Beauville– Bogomolov–Fujiki, on veut décrire géométriquement la fonction rationnelle induite par le système linéaire complet |D|.Le résultat principal de la thèse montre qu’une telle X, sauf dans le cas du carré de Hilbert d’une surface quartique générique de P3, est une double sextique EPW, c’est-à-dire le revêtement double d’une sextique EPW, une hypersurface normale de P5, ramifié sur son lieu singulier. En plus la fonction rationnelle induite par |D| est exactement ce revêtement double. Les outils principaux pour obtenir ce résultat sont la description des classes de Hodge intégraux de type (2, 2) de la première partie de la thèse et l’existence d’une involution anti-symplectique sur de telles variétés par un théorème de Boissière, Cattaneo, Nieper-Wißkirchen et Sarti.