Thèse soutenue

Modélisation de la mortalité par cause de décès
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Samuel Piveteau
Direction : Christian Yann RobertJulien Trufin
Type : Thèse de doctorat
Discipline(s) : Sciences de gestion
Date : Soutenance le 12/07/2021
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale Sciences économiques et gestion (Lyon)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Claude Bernard (Lyon ; 1971-....)
Laboratoire : Laboratoire de Sciences Actuarielle et Financière
Jury : Président / Présidente : Frédéric Planchet
Examinateurs / Examinatrices : Christian Yann Robert, Julien Trufin, Andrew J. G. Cairns, Ana María Debón Aucejo, Séverine Arnold, Malene Kallestrup-Lamb
Rapporteurs / Rapporteuses : Andrew J. G. Cairns, Ana María Debón Aucejo

Résumé

FR  |  
EN

Cette thèse traite de la modélisation de la mortalité par cause de décès. Nous proposons d'aborder ce sujet sous trois angles : l'extrapolation de la mortalité par cause aux âges avancés, le regroupement des causes de décès et la prévision de la mortalité par cause. La première partie traite de l'extrapolation de la mortalité par cause aux âges avancés, qui est un sujet important en raison de l'incertitude des données aux âges avancés. L'objectif est d'extrapoler les forces de mortalité par cause aux âges avancés tout en maintenant la cohérence avec les méthodes habituelles d'extrapolation toutes causes confondues. Nous proposons une méthode top-down que nous adaptons à la mortalité par cause distribuée comme une variable de Poisson. La vraisemblance du modèle est divisée en deux parties, représentant respectivement la mortalité toutes causes confondues et la contribution des causes de décès. L'extrapolation de la mortalité aux âges élevés est obtenue en deux étapes. La première étape consiste à extrapoler la mortalité toutes causes aux âges avancés en utilisant les techniques standards de fermeture des tables de mortalité. La deuxième partie de l'algorithme consiste à extrapoler les contributions des causes de décès à la mortalité globale en utilisant une approche multinomiale P-splines. En recombinant les extrapolations des forces de mortalité aux âges élevés et des contributions des causes à la mortalité globale, nous obtenons l’extrapolation de la mortalité par cause. Dans la deuxième partie, nous proposons un algorithme pour diviser une base de mortalité en plusieurs groupes de telle sorte que l'ajustement obtenu en utilisant un modèle de Lee-Carter sur chaque groupe soit optimal. Le cadre est le suivant : nous disposons de séries temporelles de forces de mortalité calculées pour un ensemble de caractéristiques tels l'âge, la cause de décès ou le pays. Afin d'obtenir un meilleur ajustement et une estimation plus précise de la dynamique de l'ensemble des séries, il peut être utile de diviser la base de données en plusieurs groupes, sur chacun desquels un modèle de Lee-Carter est calibré. Nous proposons un algorithme dérivé des K-centroïdes et adapté au modèle LC que nous appelons le K-LC. A partir d'un algorithme apparemment complexe, nous montrons que la méthode est équivalente à un algorithme de K-centroïdes pour une fonction de distance spécifique. Deux applications sont proposées pour illustrer l'algorithme. La première traite de la division par sexe dans la prévision de la mortalité et la seconde aborde la question du regroupement des séries de mortalité par cause de décès. La troisième partie traite de la projection des taux bruts de mortalité par cause. Nous avons proposé un modèle pour traiter trois problèmes fondamentaux qui se posent lors de la projection de la mortalité par cause : les changements de tendances, le problème de la dépendance temporelle des causes de décès et la présence de biais dans les prévisions de mortalité. Nous introduisons un modèle espace-état de Poisson permettant de contourner ces problèmes au moyen d’une dynamique particulière. Cette dynamique nous permet de saisir la structure de dépendance temporelle entre les variations des causes de décès et d'inclure le potentiel de changement de tendance. La calibration du modèle est réalisée par l'algorithme Espérance-Maximisation. Nous adaptons cette méthode au modèle de Poisson de la mortalité, et montrons que pour certains paramètres, l'estimation peut être obtenue par formule fermée. Une application à la population féminine américaine entre 1979 et 2012 est proposée. Nous détaillons les structures de dépendance obtenues et mesurons leur impact sur la dépendance entre les causes de décès à l'aide de simulations. Nous faisons ensuite des prédictions sur les années 2012 à 2017, que nous comparons à celles d'un modèle LC standard appliqué à chaque cause séparément.