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Abstract

This thesis is mainly devoted to the modeling and multi-scale analysis of bidomain and trido-
main electro-cardiology systems. Cardiac electro-physiology describes and models the chemical
and electrical phenomena that occur in cardiac tissue.

At the microscopic level, cardiac tissue is very complex and it is therefore very difficult to un-
derstand and predict its behavior at the macroscopic (observable) scale. Thus, to each (bidomain
or tridomain) system we associate a microscopic model (of elliptic type), coupled to a nonlinear
ODE system and another macroscopic one (of reaction-diffusion type).

Based on Ohm’s law of electrical conduction and conservation of electrical charge, we obtain
the microscopic model that gives a detailed description of the electrical activity in the cells re-
sponsible for cardiac contraction. Then, using homogenization techniques, we obtain the macro-
scopic model which, in turn, allows us to describe the propagation of electrical waves in the
entire heart.

This thesis is composed of two main parts. First, we give a formal and rigorous mathemati-
cal justification of the periodic homogenization process that leads to the macroscopic bidomain
model. The formal method is a kind of asymptotic development at three scales that we apply to
our meso- and microscopic bidomain model. Moreover, the rigorous method is based on unfold-
ing operators which not only derive the homogenized equation but also prove the convergence of
the solution sequence of the microscopic bidomain problem to the solution of the macroscopic
problem. Because of nonlinear terms, the boundary unfolding operator and a Kolmogorov type
argument for the phenomenological ionic models are used. Then, we work on the mathematical
analysis of a new model that describes the electrical activity of cardiac cells in the presence of
junctions. This model is the "tridomain" model. We show the existence and uniqueness of the
weak solution of the tridomain microscopic model using the Faedo-Galerkin constructive tech-
nique and a compactness argument in L2. Finally, while using the two previous homogenization
methods, we develop the macroscopic tridomain model which corresponds to an approximation
of our microscopic model.

Keywords: Bidomain, Tridomain, Homogenization, Three-scale asymptotic analysis, Peri-
odic unfolding method, Gap junctions, Electro-cardiology.
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Résumé

Cette thèse est principalement consacrée à la modélisation et à l’analyse multi-échelle de
systèmes d’électrocardiologie bidomaine et tridomaine. L’électrophysiologie cardiaque décrit et
modélise les phénomènes chimiques et électriques qui se produisent dans le tissu cardiaque.

Au niveau microscopique, le tissu cardiaque est très complexe et il est donc très difficile de
comprendre et de prévoir son comportement à l’échelle macroscopique (observable). Ainsi, à
chaque système (bidomaine ou tridomaine) on associe un modèle microscopique (de type ellip-
tique), couplé à un système d’EDO non-linéaire et un autre macroscopique (de type réaction-
diffusion).

En se basant sur la loi de la conduction électrique d’Ohm et la conservation de la charge
électrique, on obtient le modèle microscopique qui donne une description détaillée de l’activité
électrique dans les cellules responsables de la contraction cardiaque. Ensuite, en utilisant des
techniques d’homogénéisation, on obtient le modèle macroscopique qui, à son tour, permet de
décrire la propagation des ondes électriques dans le cœur entier.

Cette thèse est composée en deux grandes parties. D’abord, on donne une justification math-
ématique formelle et rigoureuse du processus d’homogénéisation périodique qui conduit au
modèle macroscopique bidomaine. La méthode formelle est un développement asymptotique
à trois échelles appliqué au modèle bidomaine méso- et microscopique. En outre, la justification
mathématique rigoureuse est basée sur des opérateurs d’éclatement qui non seulement dérivent
l’équation homogénéisée mais aussi prouvent la convergence de la suite de solutions du prob-
lème bidomaine microscopique vers la solution du problème macroscopique. Pour traiter les
modèles ioniques non linéaires, l’opérateur d’éclatement sur la surface et un argument de type
Kolmogorov sont utilisés pour assurer la compacité. Ensuite, on travaille sur l’analyse mathéma-
tique d’un nouveau modèle décrivant l’activité électrique des cellules cardiaques en présence de
jonctions communicantes est proposé. Il s’agit notamment du modèle "tridomaine". On montre
l’existence et l’unicité de la solution faible du modèle microscopique tridomaine en utilisant la
méthode constructive de Faedo-Galerkin. Finalement, l’obtention du modèle tridomaine macro-
scopique (homogénéisé) est justifiée d’une part par la méthode de développement asymptotique
et d’autre part par l’analyse de convergence du modèle microscopique en s’appuyant sur la méth-
ode d’éclatement périodique.

Mots clés :Bidomaine, Tridomaine, Homogénéisation, Analyse asymptotique à trois échelles,
Méthode d’éclatement périodique, Gap junctions, Électro-cardiologie.
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Introduction

Context of the thesis

The heart study started since more than two millennia back. This organ, about the size of its
owner’s clenched fist, contracts rhythmically to circulate blood throughout the body, while other
organs like the brain and lungs, were thought to exist to cool the blood. Until this day the heart
keeps the position of one of the most important and the most studied organs in the human body.
Especially, cardiovascular disease (CVD) leading to heart attack, is the top cause of death in
the worldwide as announced by the "World Health Organization" in 2019. Additionally, an esti-
mated 8.9 million people died from CVDs in 2019, representing 16% of all global deaths. Most
cardiovascular diseases can be prevented by addressing behavioral risk factors such as tobacco
use, unhealthy diet and obesity, physical inactivity, and harmful use of alcohol using population-
wide strategies. While the doctors are looking into the causes and correlations between CVDs
and diet, physical activity and a lifestyle, we are on the quest to provide them with new and in-
novative techniques that can help them establish diagnostics (non-invasive, adapted specifically
to patients, in real-time, ...) and plan the corresponding therapies (operations, treatments, ...).

The goal of this thesis is to develop powerful mathematical tools to improve the modeling of
electrochemical phenomena occurring in the human heart.

Synopsis of the thesis

This thesis is mainly devoted to the modeling and multi-scale analysis of bidomain and trido-
main electro-cardiology systems. Such cardiac models describes the chemical and electrical phe-
nomena that occur in cardiac tissue. The thesis is structured in the following fashion:

Chapter 1

Chapter 1 has several parts. The first one is a brief review of the basic anatomy and func-
tionality of the heart at the macroscopic and microscopic levels. The heart is a muscular organ,
which is composed of two main pumps (see Figure 1): the left and right heart separated by a
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muscular wall (the septum). Each pump contains an atrium and a ventricle.

Figure 1 – Electrical conduction system of the heart: 1-Sinoatrial node, 2-Atrioventricular node, 3-Bundle of
His, 4-Left bundle branch, 5-Left posterior fascicle, 6-Left anterior fascicle, 7-Left ventricle, 8-Ventricular septum,
9-Right ventricle, 10-Right bundle branch.
https://commons.wikimedia.org/w/index.php?curid=1734607

On the macroscopic level, the contraction of heart muscle is initiated by electrical impulses
known as action potentials (AP). A propagation of the AP in the whole heart generates the
rhythmical heart beat that follows the following schematic path (see Figure 1):

• initiation in the sinoatrial node (SA node),

• propagation in the atria,

• passing through the atrioventricular node (AV node),

• diverging and conducting through the left and right His bundle to the respective Purkinje
fibers on each side of the heart,

• propagation in the ventricles.

On the microscopic level, the cardiac muscle cells or cardiomyocytes are the contracting
cells that allow the heart to pump. These cells are surrounded by a lipid cell membrane called
sarcolemma, which separates the intracellular part of the cells (the cytoplasm) from the extracel-
lular environment (the fluid outside the cells). Typically, the sarcolemma connects the basement
membrane which surrounds all connective tissues and allows the penetration of inorganic ions
(sodium, potassium, calcium,...) and proteins. As shown in Figure 2, the cytoplasm contains :

12
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Figure 2 – Cardiac muscle at microscopic level.
https://en.wikipedia.org/wiki/Cardiac_muscle#/media/File:1020_Cardiac_
Muscle.jpg

• one or more nuclei,

• Mitochondria store and supply the energy essential to the cell. They contain their own
A.D.N,

• the endoplasmic reticulum play an important role in cellular metabolism, in protein syn-
thesis and in calcium regulation,

• in addition to various organelles, allowing the cell to perform its functions.

Cardiomyocytes are attached to each other at plasma membrane junctions: the intercalated discs.
At these junctions, we find :

• Gap junctions are essential for chemical and electrical coupling of neighboring cells,

• Desmosomes prevent cells from separating during muscle contraction.

Moreover, we are interested at cellular scale in the action potential which corresponds to the
evolution in time of the transmembrane potential, that is the difference between the extracellular
and intracellular potentials in the cell. A typical action potential for a ventricular muscle cell is
divided in to five phases as outlined below, and depicted in Figure 3:

Phase 4 (resting potential) The value of the transmembrane potential in the resting state is around
−90 mV in the human heart, which is closest to the reversal potential of potassium. It is
polarized, excitable and responsive to stimuli.
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Figure 3 – Action potential of a ventricular muscle cell.
https://www.researchgate.net/figure/Myocardial-action-potential-Shown-is-the-action-potential-of-a-ventricular-muscle-cell_
fig3_40022512

Phase 0 (depolarization) A small super-threshold electrical stimulus causes a deviation from the
resting potential, and causes rapid opening of sodium (Na+) channels. This permits a large
influx of Na+ ions, which depolarizes the cell.

Phase 1 (early repolarization) The inactivation of Na+ channels, combined with the opening of
the potassium (K+) channel causing K+ ions to flow out of the sarcolemma, begins the
repolarization of the cell.

Phase 2 (plateau) The opening of L-type slow calcium (Ca2+) channels (influx of Ca2+ ions) bal-
ances with the efflux of K+ ions, which slows down the repolarization process and gives
rise to a plateau phase at around 0 mV.

Phase 3 (repolarization) The closure of L-type Ca2+ channels disturbs the potential balance from
the plateau phase, and creates a net outward current of the membrane which results in a
drop in transmembrane potential. The K+ channels close after the transmembrane poten-
tial is restored to resting state.

Knowing that the cardiac tissue contains a large number of cardiac cells, we find that these
cells contain different organelles (mitochondria, ...) and are connected to neighboring cells by
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gap junctions. Such discrete modeling would be mathematically very challenging and numeri-
cally extremely expensive. Thus, the last part of this chapter aims to answer the following ques-
tion

Mathematically, how will we present the geometry of cardiac tissue via
the microscopic and macroscopic scales?

In view of their complex structure, two different simplified geometries of cardiac tissue are
presented using the literature:

(G.1) Three-scale geometry of cardiac tissue due to the presence of a large number of mi-
tochondria.
We assume that the cardiac tissue Ω is open bounded set in Rd with a Lipschitz bound-
ary ∂Ω. Following the standard approach of the homogenization theory, their structure is
featured by two parameters `mes and `mic characterizing, respectively, the mesoscopic and
microscopic length of a cell in meso- or microscopic domain. Under the two-level scaling,
the characteristic lengths `mes and `mic are related to a given macroscopic length L (of the
cardiac fibers), such that the two scaling parameters are introduced by ε = `mes

L
and δ = `mic

L

with `mic << `mes.

Figure 4 – (A) Periodic heterogeneous domain Ω, (B) Reference cell Y at ε-structural level and (B) Reference
cell Z at δ-structural level.
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• At mesoscale, the domain Ω is composed of two open connected regions, called
intracellular Ωε,δ

i and extracellular Ωε
e medium. These two regions are separated by

the surface membrane Γε = ∂Ωε,δ
i ∩ ∂Ωε

e assuming that the membrane is regular.

Let Y :=
d∏

n=1
]0, `mes

n [ be the mesoscopic reference cell, which is divided into two
parts: intracellular Yi and extracellular Ye, separated by a common boundary Γy =
∂Yi ∩ ∂Ye.

At ε-structural level, the intracellular and extracellular domains are ε-dilations of
reference lattice Yj for j = i, e extended periodically and defined by: for k ∈ Zd

Y k
j,ε := T kε + εYj = {εξ : ξ ∈ k` + Yj},

and their common boundary

Γkε := T kε + εΓy = {εξ : ξ ∈ k` + Γy},

with T kε := εk` and k` := (k1`
mes
1 , . . . , kd`

mes
d ).

Hence, the intracellular and extracellular domains at mesoscale can be simply ob-
tained by taking the intersection of Ω with Y k

j,ε for j = i, e (see Figure 4)

Ωε
i = Ω ∩

⋃
k∈Zd

Y k
i,ε, Ωε

e = Ω ∩
⋃
k∈Zd

Y k
e,ε, Γε = Ω ∩

⋃
k∈Zd

Γkε .

Similarly,
Γε = Ω ∩

⋃
k∈Zd

Γkε .

• At microscale, the cytoplasm contains far more mitochondria described as "the pow-
erhouse of the myocardium" surrounded by another membrane Γδ. Similarly, we only
assume that the intracellular medium Ωε,δ

i can also be viewed as a periodic perforated
domain.

Let Z :=
d∏

n=1
]0, `mic

n [ be the microscopic reference cell, which is divided into two
parts: mitochondria part Zm and the complementary part Zc := Z \ Zm, separated
by a common boundary Γz = ∂Zm ∩ ∂Zc.

At δ-structural level, we can write the intracellular domain at microscale Ωε,δ
i as
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follows: for k′ ∈ Zd

Ωε,δ
i = Ω ∩

⋃
k∈Zd

Y k
i,ε ∩

⋃
k′∈Zd

Zk′

c,δ


where Zk′

c,δ is defined by:

Zk′

c,δ := T k
′

δ + δZc = {δζ : ζ ∈ k′`′ + Zc}.

Similarly,
Γδ = Ω ∩

⋃
k′∈Zd

Γk′δ ,

where Γk′δ := T k
′

δ + δΓz = {δζ : ζ ∈ k′`′ + Γz}.

(G.2) Two-scale geometry of cardiac tissue where the gap junctions are considered as con-
nection between cardiomyocytes.
We consider that the cardiac tissue Ω ⊂ Rd is bounded open set with a Lipschitz boundary
∂Ω. Their structure is featured by `mic characterizing the microscopic length of a cell.
Under the one-level scaling, the characteristic length `mic is related to a given macroscopic
length L (of the cardiac fibers), such that the scaling parameter introduced by ε = `mic

L
.

Physiologically, the cardiac cells are connected by many gap junctions. Therefore, geo-
metrically, the domain Ω consists of two intracellular media Ωk

i,ε for k = 1, 2, that are
connected by gap junctions Γ1,2

ε = ∂Ω1
i,ε ∩ ∂Ω2

i,ε and extracellular medium Ωe,ε. Each in-
tracellular medium Ωk

i,ε and the extracellular one are separated by the surface membrane
Γkε = ∂Ωk

i,ε ∩ ∂Ωe,ε, with k = 1, 2, while the exterior boundary is denoted by ∂extΩ (see
Figure 5).
The domain Ω is a periodic medium, i.e. it is divided into the small cells identical to
each other. These small cells are identical up to a translation and rescaling by ε to the
microscopic reference cell Y. Furthermore, this reference cell is decomposed into three
disjoint connected parts: two intracellular parts Y k

i for k = 1, 2, that are connected by gap
junction Γ1,2 = ∂Y 1

i ∩ ∂Y 2
i and extracellular part Ye. Each intracellular parts Y k

i and the
extracellular one are separated by a common membrane Γk = ∂Y k

i ∩ ∂Ye for k = 1, 2.
The intracellular and extracellular domains are respectively ε-dilations of reference lattice
Y k
i for k = 1, 2 and Ye extended periodically and defined by: for h ∈ Zd

Y k
i,ε,h := T hε + εY k

i = {εξ : ξ ∈ h` + Y k
i }, Ye,ε,h := T hε + εYe = {εξ : ξ ∈ h` + Ye},

17



Introduction

Figure 5 – (Left) Periodic heterogeneous domain Ω. (Right) Unit cell Y at ε-structural level.

and their corresponding boundaries

Γkε := T kε + εΓy = {εξ : ξ ∈ k` + Γy},

with h` := (h1`
mic
1 , . . . , hd`

mic
d ) and Γ := Γ1,Γ2,Γ1,2.

Hence, the intracellular and extracellular domains at microscale can be described as the
intersection of Ω with Y k

i,ε,h for k = 1, 2, and Ye,ε,h, respectively (see Figure 5)

Ωk
i,ε = Ω ∩

⋃
h∈Zd

Y k
i,ε,h, Ωe,ε = Ω ∩

⋃
h∈Zd

Ye,ε,h.

Similarly, the corresponding boundaries are represented by

Γkε = Ω ∩
⋃
h∈Zd

Γkε,h and Γ1,2
ε = Ω ∩

⋃
h∈Zd

Γ1,2
ε,h.

Many questions still remain in terms of modeling the electrical properties of the biological
tissues and especially on the cardiac tissue. There are two modeling scales in cardiac electro-
physiology: (a) the microscopic model aims at producing a detailed description of the origin of
the electric wave in the cells and (b) the macroscopic one describes the propagation of the elec-
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trical wave in the heart. A homogenization procedure derives the macroscopic (homogenized)
model, which is an approximation of the microscopic bidomain one and consists of equations
formulated on the macroscopic scale.

We also are interested to present two mathematical model in cardiac electro-physiology:

• Microscopic and Macroscopic Bidomain Model.

• Microscopic and Macroscopic Tridomain Model.

The bidomain model is one of the most popular mathematical model in cardiac electrophysi-
ology. It is based upon the assumption that the cardiac muscle is segmented into the intra- and
extracellular domains and connected by the membrane (cf (G.1)), hence its name. While the
tridomain model describes the electrical phenomena of myocytes cells in the presence of gap
junctions. Comparing to the bidomain model, the cardiomycytes are not only electrically cou-
pled by the cell membrane which are resistively connected to the extracellular space but are also
connected to each other by many gap junctions (cf (G.2)). The tridomain model thus allows for a
more detailed analysis of the properties of cardiac conduction than the classical bidomain model.
Then, we present a detailed description of the bidomain and tridomain model at the microscopic
and macroscopic level based on the literature. Furthermore, we illustrate with examples of both
phenomenological and physiological ionic models in order to complete the microscopic models.
In addition, we give a short explanation about the monodomain and eikonal models which are
simplifications of the macroscopic bidomain model.

Chapter 2

Chapter 2 is mainly devoted to the modeling and multi-scale analysis of "bidomain" elec-
trocardiology system coupled with the FitzHugh-Nagumo ionic model. The structure of cardiac
tissue studied in this chapter, is characterized at three different scales defined in (G.1). We first
perform a scaling of the microscopic bidomain equations given in Chapter 1. These equations
therefore involve two small scaling parameters ε and δ which are respectively the ratio between
the microscopic and mesoscopic scales and the macroscopic scale. The microscopic bidomain
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model is represented in the following form (see [Ben+19]):

−∇ ·
(
Mε,δ
i ∇u

ε,δ
i

)
= 0 in Ωε,δ

i,T := (0, T )× Ωε,δ
i , (1a)

−∇ · (Mε
e∇uεe) = 0 in Ωε

e,T := (0, T )× Ωε
e, (1b)

ε (∂tvε + Iion(vε, wε)− Iapp,ε) = Im on Γε,T := (0, T )× Γε, (1c)

−Mε,δ
i ∇u

ε,δ
i · ni = Mε

e∇uεe · ne = Im on Γε,T , (1d)

∂twε −H(vε, wε) = 0 on Γε,T , (1e)

Mε,δ
i ∇u

ε,δ
i · nz = 0 on Γδ,T := (0, T )× Γδ. (1f)

Note that each equation corresponds to the following sense: (1a) Intra quasi-stationary con-
duction, (1b) Extra quasi-stationary conduction, (1c) Reaction surface condition, (1d) Meso-
continuity equation, (1e) Dynamic coupling, (1f) Micro-boundary condition.

Thus, the electrical properties of the cardiac tissue are described by the intracellular uε,δi and
extracellular uεe potentials respectively with the associated conductivities Mε,δ

i and Mε
e. Their

difference, vε :=
(
uε,δi − uεe

)
|Γε is the transmembrane potential which satisfies the dynamic

equation (1e) on Γε involving the gating variable wε.

The system (1) is completed with no-flux boundary conditions:

(
Mε,δ
i ∇u

ε,δ
i

)
· n = (Mε

e∇uεe) · n = 0 on (0, T )× ∂extΩ, (2)

where n is the outward unit normal to the exterior boundary of Ω, ni = −ne to Γε and nz to
Γδ. We also appropriate the initial Cauchy conditions for transmembrane potential vε and gating
variable wε as follows:

vε(0, x) = v0,ε(x) and wε(0, x) = w0,ε(x). (3)

Keeping in min the three-scale configuration of cardiac tissue (cf (G.1)), the assumptions
about the system are given by:

(A.1) The conductivity of the tissue is represented by continuous tensorsMε,δ
i (x) := Mi (x, x/ε, x/εδ)

and Mε
e(x) := Me (x, x/ε) satisfying the following elliptic and periodicity conditions:

there exist constants α, β ∈ R, such that 0 < α < β and for all λ ∈ Rd :
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Mjλ · λ ≥ α |λ|2 ,

|Mjλ| ≤ β |λ| , for j = i, e,

Mi y- and z-periodic, Me y-periodic.

(A.2) The ionic current Iion(v, w) can be decomposed into I1,ion(v) : R → R and I2,ion(w) :
R → R, where Iion(v, w) = I1,ion(v) + I2,ion(w). Furthermore, I1,ion is considered as a
C1 function, I2,ion andH : R2 → R are linear functions. Also, we assume that there exists
r ∈ (2,+∞) and constants α1, α2, α3, α4, α5, C > 0 and β1, β2 > 0 such that:

1
α1
|v|r−1 ≤ |I1,ion(v)| ≤ α1

(
|v|r−1 + 1

)
, |I2,ion(w)| ≤ α2(|w|+ 1),

|H(v, w)| ≤ α3(|v|+ |w|+ 1), and I2,ion(w)v − α4H(v, w)w ≥ α5 |w|2 ,

Ĩ1,ion : z 7→ I1,ion(z) + β1z + β2 is strictly increasing with lim
z→0

Ĩ1,ion(z)/z = 0,

∀z1, z2 ∈ R,
(
Ĩ1,ion(z1)− Ĩ1,ion(z2)

)
(z1 − z2) ≥ 1

C
(1 + |z1|+ |z2|)r−2 |z1 − z2|2 .

(A.3) There exists a constant C > 0 independent of ε such that the source term Iapp,ε satisfies
the following estimation: ∥∥∥ε1/2Iapp,ε

∥∥∥
L2(Γε,T )

≤ C.

(A.4) The initial conditions v0,ε and w0,ε satisfy the following estimation:

∥∥∥ε1/rv0,ε

∥∥∥
Lr(Γε)

+
∥∥∥ε1/2v0,ε

∥∥∥
L2(Γε)

+
∥∥∥ε1/2w0,ε

∥∥∥
L2(Γε)

≤ C,

for some constant C independent of ε.Moreover, v0,ε and w0,ε are assumed to be traces of
uniformly bounded sequences in C1(Ω).

(A.5) We end by imposing the following normalization condition:
∫

Ωεe
uεe(t, x)dx = 0, for a.e. t ∈ (0, T ).

It is important to notice that the microscopic model is unusable for the whole heart. At the
macroscopic scale, the heart appears as a continuous material with a fiber-based structure. At
this scale, the intracellular and extracellular media are indistinguishable and we consider that the

21



Introduction

cardiac volume is "Ω ≡ Ωε,δ
i ≡ Ωε

e". Thus, this chapter aims to address the following question,

How to connect information from the micro-scale to the macro-scale
(e.g. via cell boundary, micro-macro conditions, ...) and how to derive
the macroscopic behavior of cardiac tissues taking into account their
complex structure?

The homogenization procedure has helped to answer this question to link the microscopic and
macroscopic behaviors and leads to the equations of themacroscopic bidomainmodel presented
in the following theorem:

Theorem 0.1 (Macroscopic Bidomain Model). Assume that the conditions (A.1)-(A.5) hold. A
sequence of solutions

(
(uε,δi )ε,δ, (ue,ε)ε, (wε)ε

)
of the microscopic bidomain model (1)-(3) con-

verges (as ε, δ → 0) to a weak solution (ui, ue, w) with v = ui − ue, ui, ue ∈ L2(0, T ;H1(Ω)),
v ∈ L2(0, T ;H1(Ω))∩Lr(ΩT ), ∂tv ∈ L2(0, T ; (H1(Ω))′)∩Lr/(r−1)(ΩT ) andw ∈ C(0, T ;L2(Ω)),
of the following reaction-diffusion system:

µm∂tv +∇ ·
(
M̃e∇ue

)
+ µmIion(v, w) = µmIapp in ΩT ,

µm∂tv −∇ ·
(˜̃Mi∇ui

)
+ µmIion(v, w) = µmIapp in ΩT ,

∂tw −H(v, w) = 0 on ΩT ,

(4)

completed with no-flux boundary conditions on ui, ue on ∂extΩ :

(
M̃e∇ue

)
· n =

(˜̃Mi∇ui
)
· n = 0 on ΣT := (0, T )× ∂extΩ,

and initial conditions for the transmembrane potential v and the gating variable w :

v(0, x) = v0(x) and w(0, x) = w0(x), (5)

where µm = |Γy| / |Y | is the ration between the surface membrane and the volume of the ref-
erence cell. Moreover, n is the outward unit normal to the exterior boundary of Ω. Herein, the
first-level homogenized conductivity matrices M̃j =

(
m̃pq

j

)
1≤p,q≤d

for j = i, e and the second-

level one ˜̃Mi =
(˜̃mpq

i

)
1≤p,q≤d

are respectively defined by:

m̃pq
e := 1

|Y |

d∑
k=1

∫
Ye

(
mpq
e + mpk

e

∂χqe
∂yk

)
dy, m̃pq

i := 1
|Z|

d∑
`=1

∫
Z

(
mpq
i + mp`

i

∂θqi
∂z`

)
dz, (6a)
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˜̃mpq

i := 1
|Y |

d∑
k=1

∫
Yi

(
m̃pk

i

∂χqi
∂yk

(y) + m̃pq
i

)
dy

= 1
|Y |

1
|Z|

d∑
k,`=1

∫
Yi

∫
Z

[(
mpk
i + mp`

i

∂θki
∂z`

)
∂χqi
∂yk

(y) +
(

mpq
i + mp`

i

∂θqi
∂z`

)]
dzdy.

(6b)

Herein, the components χqe of χe and χ
q
i of χi are respectively the corrector functions, solutions

of the ε-cell problems:


−∇y · (Me∇yχ

q
e) = ∇y · (Meeq) in Ye,

χqe y-periodic,

Me∇yχ
q
e · ne = −(Meeq) · ne on Γy,

(7a)


−∇y ·

(
M̃i∇yχ

q
i

)
= ∇y ·

(
M̃ieq

)
in Yi,

χqi y-periodic,

M̃i∇yχ
q
i · ni = −

(
M̃ieq

)
· ni on Γy,

(7b)

and the component θqi of θi is the corrector function, solution of the δ-cell problem:
∇z · (Mi∇zθ

q
i ) = ∇z · (Mieq) in Z,

θqi y- and z-periodic,

Mi∇zθ
q
i · nz = −(Mieq) · nz on Γz,

(8)

for eq, q = 1, . . . , d, the standard canonical basis in Rd.

Here, we propose two different homogenization methods that leads from the microscopic
model (1) to the macroscopic bidomain model (4):

• Three-scale asymptotic expansion method.

• Three-scale unfolding method.

The first one is based on a power series expansion to formally obtain this macroscopic model.
First, we use the two-scale asymptotic expansion to homogenize the extracellular problem. Next,
we apply a new three-scale asymptotic expansion in the intracellular problem to obtain its ho-
mogenized equation at two levels. The first level upscaling of the intracellular structure yields
the mesoscopic equation and the second one leads to the intracellular homogenized equation.
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Finally, we obtain the macroscopic bidomain model independent on ε and δ describing the elec-
trical behavior of the whole heart.

The second one is based on unfolding operators which not only derive the homogenized
equations but also prove the convergence and rigorously justify the mathematical writing of the
preceding formal method. Moreover, due to the nonlinear ionic terms on the membrane, we use
the boundary unfolding operator and a Kolmogorov-type compactness argument.

Chapter 3

In Chapter 3, we are interested in "tridomain" system that is used for modeling the electrical
activity of the heart in the presence of gap junctions. It is based upon the assumption that the
cardiac tissue consists of two intracellular media that are connected by gap junctions and one
extracellular medium (cf (G.2)), hence its name. Each intracellular medium and the extracellular
one are separated by a cellular membrane (the sarcolemma). First, we formulate the tridomain
equations at cellular level that are satisfied by the intracellular uki,ε for k = 1, 2 and extracellular
ue,ε potentials respectively with the associated conductivities Mε

i and Mε
e. More precisely, we

consider the following microscopic tridomain model:

−∇ ·
(
Mε
i∇uki,ε

)
= 0 in Ωk

i,ε,T := (0, T )× Ωk
i,ε, (9a)

−∇ · (Mε
e∇ue,ε) = 0 in Ωe,ε,T := (0, T )× Ωe,ε, (9b)

uki,ε − ue,ε = vkε on Γkε,T := (0, T )× Γkε , (9c)

−Mε
i∇uki,ε · nki = Mε

e∇ue,ε · ne = Ikm on Γkε,T , (9d)

ε
(
∂tv

k
ε + Iion

(
vkε , w

k
ε

)
− Ikapp,ε

)
= Ikm on Γkε,T , (9e)

∂tw
k
ε −H

(
vkε , w

k
ε

)
= 0 on Γkε,T , (9f)

u1
i,ε − u2

i,ε = sε on Γ1,2
ε,T := (0, T )× Γ1,2

ε , (9g)

−Mε
i∇u1

i,ε · n1
i = Mε

i∇u2
i,ε · n2

i = I1,2 on Γ1,2
ε,T , (9h)

ε (∂tsε + Igap (sε)) = I1,2 on Γ1,2
ε,T , (9i)

with k = 1, 2 and each equation corresponds to the following sense: (9a) Intra quasi-stationary
conduction, (9b) Extra quasi-stationary conduction, (9c) Transmembrane potential, (9d) Conti-
nuity equation at cell membrane, (9e) Reaction condition at the corresponding cell membrane,
(9f) Dynamic coupling, (9g) Gap junction potential, (9h) Continuity equation at gap junction,
(9e) Reaction condition at gap junction.
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The system (9) is completed with no-flux boundary conditions on ∂extΩ:

(
Mε
i∇uki,ε

)
· n = (Mε

e∇ue,ε) · n = 0 on (0, T )× ∂extΩ, (10)

where k = 1, 2 and n is the outward unit normal to the exterior boundary of Ω. Also, we impose
initial conditions on transmembrane potential vkε , gap junction potential sε and gating variable
wkε as follows:

vkε (0, x) = vk0,ε(x), wkε (0, x) = wk0,ε(x) a.e. on Γkε,T ,

and sε(0, x) = s0,ε(x) a.e. on Γ1,2
ε,T ,

(11)

with k = 1, 2.
Keeping in mind the two-scale geometry of cardiac tissue (cf (G.2)), the assumptions about

the system are given by:

(A.1) The conductivity matrices are represented by continuous tensors Mε
j(x) := Mj

(
x, x

ε

)
for

j = i, e, satisfying the following elliptic and periodicity conditions: there exist constants
α, β ∈ R, such that 0 < α < β and for all λ ∈ Rd :

Mjλ · λ ≥ α |λ|2 ,

|Mjλ| ≤ β |λ| ,

Mj y-periodic, for j = i, e.

(A.2) The ionic current Iion(vk, wk) at each cell membraneΓk can be decomposed into Ia,ion
(
vk
)

and Ikb,ion
(
wk
)
, where Iion

(
vk, wk

)
= Ia,ion

(
vk
)

+ Ib,ion
(
wk
)
with k = 1, 2. Further-

more, the nonlinear function Ia,ion : R → R is considered as a C1 function and the func-
tions Ib,ion : R→ R andH : R2 → R are considered as linear functions. Also, we assume
that there exists r ∈ (2,+∞) and constants α1, α2, α3, α4, α5, C > 0 and β1 > 0, β2 ≥ 0
such that:

1
α1
|v|r−1 ≤ |Ia,ion (v)| ≤ α1

(
|v|r−1 + 1

)
, |Ib,ion (w)| ≤ α2(|w|+ 1),

|H(v, w)| ≤ α3(|v|+ |w|+ 1), and Ib,ion (w) v − α4H(v, w)w ≥ α5 |w|2 ,

Ĩa,ion : v 7→ Ia,ion(v) + β1v + β2 is strictly increasing with lim
v→0

Ĩa,ion(v)/v = 0,

∀v, v′ ∈ R,
(
Ĩa,ion(v)− Ĩa,ion(v′)

)
(v − v′) ≥ 1

C
(1 + |v|+ |v′|)r−2 |v − v′|2 ,

with (v, w) :=
(
vk, wk

)
for k = 1, 2.
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(A.3) There exists a constant C independent of ε such that the source term Ikapp,ε satisfies the
following estimation for k = 1, 2:

∥∥∥ε1/2Ikapp,ε
∥∥∥
L2(Γkε,T )

≤ C.

(A.4) The initial condition vk0,ε, s0,ε and wk0,ε satisfy the following estimation:

∑
k=1,2

∥∥∥ε1/rvk0,ε
∥∥∥
Lr(Γkε )

+
∥∥∥ε1/2s0,ε

∥∥∥
L2(Γ1,2

ε )
+
∑
k=1,2

∥∥∥ε1/2wk0,ε
∥∥∥
L2(Γkε )

≤ C,

for some constant C independent of ε. Moreover, vk0,ε, s0,ε and wk0,ε are assumed to be
traces of uniformly bounded sequences in C1(Ω) with k = 1, 2.

(A.5) We end by imposing the following normalization condition:
∫

Ωe,ε
ue,ε(t, x)dx = 0, for a.e. t ∈ (0, T ).

Then, we prove the existence and uniqueness of weak solutions of the problem (9) in the
following sense

Definition 0.1 (Weak formulation of microscopic system). A weak solution to problem (9)-(11)
is a collection (u1

i,ε, u
2
i,ε, ue,ε, w

1
ε , w

2
ε) of functions satisfying the following conditions:

(A) (Algebraic relation).

vkε := (uki,ε − ue,ε)|Γkε,T a.e. on Γkε,T , for k = 1, 2,

sε := (u1
i,ε − u2

i,ε)|Γ1,2
ε,T

a.e. on Γ1,2
ε,T .

(B) (Regularity).

uki,ε ∈ L2
(
0, T ;H1

(
Ωk
i,ε

))
, uεe ∈ L2

(
0, T ;H1(Ωe,ε)

)
,∫

Ωe,ε
ue,ε(t, x) dx = 0, for a.e. t ∈ (0, T ),

vkε ∈ L2
(
0, T ;H1/2

(
Γkε
))
∩ Lr

(
Γkε,T

)
,

sε ∈ L2
(
Γ1,2
ε,T

)
, wkε ∈ L2(Γkε,T ), k = 1, 2,

∂tv
k
ε , ∂tw

k
ε ∈ L2(Γkε,T ) for k = 1, 2, ∂tsε ∈ L2(Γ1,2

ε,T ).
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(C) (Initial conditions).

vkε (0, x) = vk0,ε(x), wkε (0, x) = wk0,ε(x) a.e. on Γkε,T ,

and sε(0, x) = s0,ε(x) a.e. on Γ1,2
ε,T ,

(D) (Variational equations).

∑
k=1,2

∫∫
Γkε,T

ε∂tv
k
εψ

k
i dσxdt+

∫∫
Γ1,2
ε,T

ε∂tsεΨ dσxdt+
∑
k=1,2

∫
Ωki,ε,T

Mε
i∇uki,ε · ∇ϕki dxdt

+
∑
k=1,2

∫∫
Γkε,T

εIion
(
vkε , w

k
ε

)
ψki dσxdt+

∫∫
Γ1,2
ε,T

εIgap(sε)Ψ dσxdt

=
∑
k=1,2

∫∫
Γkε,T

εIkapp,εψki dσxdt

(12)

∑
k=1,2

∫∫
Γkε,T

ε∂tv
k
εψ

k
e dσxdt−

∫
Ωe,ε,T

Mε
e∇ue,ε · ∇ϕe dxdt

+
∑
k=1,2

∫∫
Γkε,T

εIion
(
vkε , w

k
ε

)
ψke dσxdt =

∑
k=1,2

∫∫
Γkε,T

εIkapp,εψke dσxdt
(13)

∫∫
Γkε,T

∂tw
k
εe
k dσxdt =

∫∫
Γkε,T

H
(
vkε , w

k
ε

)
ek dσxdt (14)

for all ϕki ∈ L2
(
0, T ;H1

(
Ωk
i,ε

))
, ϕe ∈ L2 (0, T ;H1(Ωe,ε)) with

• ψk = ψki − ψke :=
(
ϕki − ϕe

)
|Γkε,T ∈ L

2
(
0, T ;H1/2

(
Γkε
))
∩ Lr

(
Γkε,T

)
for k = 1, 2,

• Ψ = Ψ1
i −Ψ2

i := (ϕ1
i − ϕ2

i ) |Γ1,2
ε,T
∈ L2(Γ1,2

ε,T ),

• ek ∈ L2(Γkε,T ) for k = 1, 2.

We also state the first theorem proved in this chapter

Theorem 0.2 (Microscopic Tridomain Model). Assume that the conditions (A.1)-(A.5) hold.
Then, the microscopic tridomain problem (9)-(11) possesses a unique weak solution in the sense
of Definition 0.1 for every fixed ε > 0.

Notice that the proof of Theorem 0.2 is constructive, based on the Faedo-Galerkin technique
on approximate systems followed by compactness in L2. Thus, this chapter aims to address the
following question,
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How to link information from the micro-scale to the macro-scale (e.g.
via cell boundary, micro-macro conditions, ...) and how to derive the
macroscopic behavior of cardiomyocytes that are connected by many
gap junctions?

The homogenization procedure has helped to answer this question to connect the microscopic
and macroscopic behaviors and leads to the equations of the macroscopic tridomain model
presented in the following theorem:

Theorem 0.3 (Macroscopic TridomainModel). A sequence of solutions
(
u1
i,ε, u

2
i,ε, ue,ε, w

1
ε , w

2
ε

)
of the microscopic tridomain model (9)-(11) (obtained in Theorem 0.2) converges as ε → 0 to
a weak solution

(
u1
i , u

2
i , ue, w

1, w2
)
such that uki , ue ∈ L2(0, T ;H1(Ω)), vk = uki − ue ∈

L2(0, T ;H1(Ω)) ∩ Lr(Ω), s = u1
i − u2

i ∈ L2(0, T ;H1(Ω)), ∂tvk ∈ L2(0, T ; (H1(Ω))′) ∩
Lr/(r−1)(ΩT ), wk ∈ C(0, T ;L2(Ω)) and ∂ts ∈ L2(ΩT ) satisfy the following reaction-diffusion
system:

∑
k=1,2

µk∂tv
k +∇ ·

(
M̃e∇ue

)
+
∑
k=1,2

µkIion(vk, wk) =
∑
k=1,2

µkIkapp in ΩT ,

µ1∂tv
1 + µg∂ts−∇ ·

(
M̃i∇u1

i

)
+ µ1Iion(v1, w1) + µgIgap(s) = µ1I1

app in ΩT ,

µ2∂tv
2 − µg∂ts−∇ ·

(
M̃i∇u2

i

)
+ µ2Iion(v2, w2)− µgIgap(s) = µ2I2

app in ΩT ,

∂tw
k −H(vk, wk) = 0 on ΩT ,

(15)

completed with no-flux boundary conditions on ui, ue on ∂extΩ :

(
M̃e∇ue

)
· n =

(
M̃i∇uki

)
· n = 0 on ΣT := (0, T )× ∂extΩ,

and initial conditions for the transmembrane potential vk, the gap potential s and the gating
variable wk :

vk(0, x) = vk0(x), s(0, x) = s0(x) and wk(0, x) = wk0(x),

where µk =
∣∣∣Γk∣∣∣ / |Y | , k = 1, 2, (resp. µg = |Γ1,2| / |Y |) is the ratio between the surface

membrane (resp. the gap junction) and the volume of the reference cell. Furthermore,n represent
the outward unit normal to the boundary of Ω. Herein, the homogenized conductivity matrices
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M̃j =
(
m̃pq

j

)
1≤p,q≤d

for j = i, e are respectively defined by:

m̃pq
i := 1

|Y |

d∑
`=1

∫
Y ki

(
mpq
i + mp`

i

∂χqi
∂y`

)
dy, (16a)

m̃pq
e := 1

|Y |

d∑
`=1

∫
Ye

(
mpq
e + mp`

e

∂χqe
∂y`

)
dy, (16b)

where the components χqj of χj for j = i, e are respectively the corrector functions, solutions of
the ε-cell problems:


−∇y · (Me∇yχ

q
e) = ∇y · (Meeq) in Ye,

χqe y-periodic,

Me∇yχ
q
e · ne = −(Meeq) · ne on Γk, k = 1, 2

(17a)



−∇y · (Mi∇yχ
q
i ) = ∇y · (Mieq) in Y k

i ,

χqi y-periodic,

Mi∇yχ
q
i · nki = −(Mieq) · nki on Γk, k = 1, 2

Mi∇yχ
q
i · nki = −(Mieq) · nki on Γ1,2,

(17b)

for eq, q = 1, . . . , d, the standard canonical basis in Rd.

The proof of Theorem 0.3 is proved using two different homogenization methods:

• two-scale asymptotic expansion.

• Unfolding homogenization method.

As explained before, the first method is a formal and intuitive method based on a two-scale
asymptotic expansion method. While, the second one based on unfolding operators which not
only derive the homogenized equation but also prove the convergence and rigorously justify
the mathematical writing of the preceding formal method. Furthermore, the uniqueness of the
solutions to the macroscopic model can be proved similar as that of the microscopic model with a
small change. This implies that all the convergence results remain valid for the whole sequence.
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1
Cardiac Electro-physiological Models

Beforewe dive into details about themathematicalmodeling of the cardiac electro-physiology,
let us give a motivation to study the heart into details. This chapter is organized as follows. In
Section 1.1, we briefly review the basic physiology and the functionality of the heart. In Sec-
tion 1.2, we present the macro- and microscopic description of the cardiac bioelectrical activity.
In Section 1.3, we specify the multi-scale representation of the heart tissue we have in mind.
Finally, Section 1.4 contains the mathematical models of the cardiac tissue.

1.1 Heart anatomy and electrocardiology

The heart is a hollow muscle whose role is to pump blood to the body’s organ through blood
vessels. It is located near the center of the thoracic cavity between the right and left lungs. It
is a muscular organ can be viewed as double pump consisting of four chambers: upper left and
right atria, separated by the inter-atrial septum and lower left and right ventricles, separated by
the inter-ventricular septum. Atria and ventricles are separated by the atrioventricular valves,
which contains the tricuspid valve in the right heart and the mitral valve in the left heart. The
right ventricle is connected to the pulmonary artery via the pulmonary valve and the left one is
connected to the aorta via the aortic valve, see Figure 1.1 for a schematic view and [Kat10] for
more details.

The left ventricular wall is about three times thicker than the right one, while the atrial walls
are considerably thinner. The right heart receives blood low in oxygen from the systemic circu-
lation, which enters the right atrium from the superior and inferior vena cava and passes to the
right ventricle. From here it is functioned as a pump driving blood through the pulmonary cir-
culation, to the lungs where it receives oxygen and gives off carbon dioxide. Oxygenated blood
then returns to the left atrium, passes through the left ventricle and the left heart functions as
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Chapter 1 – Cardiac Electro-physiological Models

another pump driving this oxygenated blood through the systemic circulation, to every other part
of the body. This is why the left ventricle is larger and more powerful than the right, as it has to
pump blood over greater distances. This is also why left ventricular pressure is higher than right
ventricular pressure.

Figure 1.1 – Schematic diagram of the heart anatomy.
https://thoracickey.com/cardiac-anatomy-and-electrophysiology/

1.2 Physiological background

In order to pump the blood, the atria and the ventricles contract at each cardiac cycle. An
electrical signal is at the origin of the contraction. Indeed, at each cardiac beat, an electrical
signal crosses the heart and depolarizes the cardiac cells thus triggering their contraction.

1.2.1 Macroscopic description

The heart is essentially a muscle that contracts and pumps blood. Its four cavities are sur-
rounded by a cardiac tissue (myocardium) that is organized into muscle fibers (see Figure 1.2).
These fibers consists of specialized muscle cells called "cardiac myocytes".

At the heart scale, the contraction of cardiomyocytes is initiated by electrical signals, known
as action potentials, which are described by the following schematic path (see Figure 1.3):
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1.2. Physiological background

Figure 1.2 – Spiral arrangement of muscle cells.
http://ressources.unisciel.fr/physiologie/co/4a_1.html

1. These impulses start at the sinoatrial (SA) node, from a small group of myocytes called
the "pacemaker" cells located on the top of the right atrium. Hence they constitute the
cardiac conduction system and control the electrical activity of the entire heart in normal
conditions. The pacemaker cells of SA node fire spontaneously, generating action poten-
tials that propagates throughout the right atrium and through Bachmann’s bundle to the
left atrium in order to stimulate the muscle contraction of both atria.

2. The signal travels to the atrioventricular (AV) node located between the atria and the ven-
tricles where the inter-atrial septum and inter-ventricular septum meet. In the AV node,
impulses are slowed down for a very short period.

3. After passing through the AV node, the electrical signal then continue down the conduc-
tion pathway via a common bundle (bundle of His) into the ventricles. The bundle of His
divides into right and left bundle branches and these branches are also subdivided into a
complex network of Purkinje fibers, causing the right and left ventricles to contract. Each
contraction of the ventricles represents one heartbeat.

1.2.2 Microscopic description

Cardiomyocytes, or myocardiocytes, are different from the other two main types of muscle
cells, skeletal and smooth muscles in a number of ways. Unlike other muscle cells in the body,
cardiomyocytes are highly resistant to fatigue and therefore always contracting and relaxing to
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Figure 1.3 – Propagation of cardiac action potential and relative action profile for each part of the heart.
http://www.brainkart.com/article/Cardiac-Action-Potentials_26936/

ensure proper circulation of blood around the body. However, in comparisonwith skeletal muscle
cells, cardiomyocytes are narrower and much shorter, being about 50-150 µm long and 10-20
µm in diameter.

They are enclosed by a lipid cell membrane called the sarcolemma, are connected by junc-
tions known as intercalated discs, and contain one or more nuclei, mitochondria in addition to
various organelles filling the cytoplasm (the contents of the cardiomyocytes) whose functions
are respectively described below:

The sarcolemma. The cell membrane consists of a phospholipid bilayer which provides
protection for a cardiomyocyte. It acts as a semi-permeable barrier between the cytoplasm (the
intracellular compartment) and the the fluid outside these cells (the extracellular compartment).
It has two primary functions: it keeps toxic substances out of the cell; and contains channels,
pumps and exchangers that allow the flow of specific ions (sodium Na+, potassium K+ and cal-
cium Ca2+) and some proteins, that maintains concentration differences of these ions involved in
the action potential. The difference of concentrations across the sarcolemma creates a transmem-
brane potential v, which is the difference in potential between the intracellular and extracellular
media. Hence, the cell membrane is modeled as a resistor-capacitor circuit (RC circuit) which
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1.2. Physiological background

is defined by using the current conservation law:

Cm
dv

dt
+ Iion = Iapp, (1.1)

where Cm is the membrane capacitance, Iion and Iapp are respectively the ionic and applied
currents across the cell membrane. The structure of the total ionic current will be described
by the specific ionic membrane model adopted. These circuit models have been formulated in
Subsection 1.4.3 with several descriptions of ion channels.

Intercalated disks. They are part of the sarcolemma and contain two important structures
in cardiac muscle contraction: gap junctions and desmosomes. Gap junctions allows the move-
ment of not only inorganic ions but also organic ions such as sugars, amino acids and nucleotides
between two adjacent cells. It provide the pathways for intracellular current flow, enabling co-
ordinated action potential propagation. So, the difference of chemical through the gap junction
produces a gap potential s, which is the difference in potential between these two intracellular
media. So, the gap junction is also modeled as RC circuit which is given by:

Cgap
ds

dt
= −Igap, (1.2)

where Cgap represents the capacity per unit area of the intercalated disc and Igap represents the
corresponding resistive current.

Unlike gap junctions, desmosomes serve to anchor ends of cardiac muscle fibers together.
This prevents the cells of the cardiac muscles from pulling apart during contraction. Desmo-
somes are able to withstand mechanical stress which allows them to hold cells together.

Figure 1.4 – Representation of the cardiomyocyte structure.
http://www.cardio-research.com/cardiomyocytes
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Mitochondria. They play numerous roles in the body, including energy production, reactive
oxygen species generation and signal transduction. Cardiac tissue contains far more mitochon-
dria than any other type of muscles because the constantly-beating heart works harder than any
other organ in the body. By comparison, the heart tissue has about 5,000 mitochondria per cell
while the tissue of the biceps muscle has about 200 mitochondria per cell. Mitochondria play
numerous roles in the body, including energy production, reactive oxygen species generation and
signal transduction. Hence, they are often described as the "energy powerhouses" of cardiomy-
ocytes.

Figure 1.5 – Phases of the ventricular action potential.
http://www.pathophys.org/physiology-of-cardiac-conduction-and-contractility/

At the cellular scale, we are interested in the action potential which corresponds to the evolu-
tion in time of the transmembrane potential, that is the difference between the extracellular and
intracellular potentials, in the cell. The action potential can pass through the entire heart within
220 ms after initiation in the SA node. The ventricular action potential in typical cardiomyocytes
is composed of five phases (0-4), beginning and ending with phase 4 (see Figure 1.5):

Phase 4 (resting potential)

• The resting potential in a cardiomyocyte is −90 mV due to a constant outward leak
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of K+ through inward rectifier channels.

• Na+ and Ca+2 channels are closed at resting potential.

Phase 0 (depolarization)

• An action potential triggered in a neighboring cardiomyocyte causes the transmem-
brane potential to rise above −90 mV.

• Fast Na+ channels start to open one by one and Na+ leaks into the cell, further raising
the transmembrane potential.

• The large Na+ current rapidly depolarizes the transmembrane potential to 0 mV and
slightly above 0 mV for a transient period of time called the overshoot; fast Na+

channels close.

• L-type ("long-opening") Ca2+ channels open when the transmembrane potential is
greater than −40 mV and cause a small but steady influx of Ca2+ down its concen-
tration gradient.

Phase 1 (early repolarization)

• Transmembrane potential is now slightly positive.

• Some K+ channels open briefly and an outward flow of K+ returns the TMP to ap-
proximately 0 mV.

Phase 2 (plateau)

• L-type Ca2+ channels are still open and there is a small, constant inward current of
Ca2+. This becomes significant in the excitation-contraction coupling process.

• K+ leaks out down its concentration gradient through delayed rectifier K+ channels.

• These two counter-currents are electrically balanced, and the transmembrane poten-
tial is maintained at a plateau just below 0 mV throughout phase 2.

Phase 3 (repolarization)

• Ca2+ channels are gradually inactivated.

• Persistent outflow of K+, now exceeding Ca2+ inflow, brings transmembrane poten-
tial back towards resting potential of −90 mV to prepare the cell for a new cycle of
depolarization.

• Normal ionic concentration gradients are restored by returning Na+ and Ca2+ ions
to the extracellular environment, and K+ ions to the cell interior.
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It may be noted that the cardiac action potential is different from the surface electrocardiogram
(ECG) which represent the sum total of all electrical activity of the heart as recorded from the
body surface (see Figure 1.4). We refer the reader to [Rus89] for more details about the cardio-
vascular system.

1.3 Multi-scale representation of cardiac tissue

Myocytes volume and shape can be complex and variable, according to the tissue region,
species, developmental stage and disease processes. Here, we consider two simplified micro-
structure models that can be handled successfully: (i) Three-scale geometry of cardiac tissue,
and (ii) Two-scale geometry of cardiac tissue with gap junction connections. Case (i) concerned
the meso- and microscopic structure so that the heart tissue could be seen as a periodic double
arrangement of unit cells. While in case (ii), we describe the cardiac tissue on a microscopic
scale only as a periodic domain in the presence of connections (gap junctions) between the
cardiomyocytes.

1.3.1 Three-scale geometry of cardiac tissue

The cardiac tissueΩ ⊂ Rd is considered as a heterogeneous periodic domain with a Lipschitz
boundary ∂Ω. The structure of the tissue is periodic at meso- and microscopic scales related to
two small parameters ε and δ, respectively, see Figure 1.6.

Following the standard approach of the homogenization theory, this structure is featured by
two parameters `mes and `mic characterizing, respectively, the mesoscopic andmicroscopic length
of a cell in meso- or microscopic domain. Under the two-level scaling, the characteristic lengths
`mes and `mic are related to a given macroscopic length L (of the cardiac fibers), such that the two
scaling parameters ε and δ are introduced by:

ε = `mes

L
and δ = `mic

L
with `mic << `mes.

The mesoscopic scale. The domain Ω is composed of two ohmic volumes, called intracellular
Ωε,δ
i and extracellular Ωε

e medium (for more details see [PSF05]). Geometrically, we find that
Ωε,δ
i and Ωε

e are two open connected regions such that:

Ω = Ωε,δ

i ∪ Ωε

e, with Ωε,δ
i ∩ Ωε

e = ∅.
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1.3. Multi-scale representation of cardiac tissue

Figure 1.6 – (A) Periodic heterogeneous domain Ω, (B) Unit cell Y at ε-structural level and (B) Unit cell Z at
δ-structural level.

These two regions are separated by the surface membrane Γε which is expressed by:

Γε = ∂Ωε,δ
i ∩ ∂Ωε

e,

assuming that the membrane is regular. We can observe that the domain Ωε,δ
i as a perforated

domain obtained from Ω by removing the holes which correspond to the extracellular domain
Ωε
e.

At this ε-structural level, we can divide Ω intoNε small elementary cells Yε =
d∏

n=1
]0, ε `mes

n [,
with `mes

1 , . . . , `mes
d are positive numbers. These small cells are all equal, thanks to a translation

and scaling by ε, to the same unit cell of periodicity called the reference cell Y =
d∏

n=1
]0, `mes

n [.
Next, we denote by T kε a translation of εk with k = (k1, . . . , kd) ∈ Zd. Note that if the cell
considered Y k

ε is located at the kième
n position according to the direction n of space considered,

we can write:
Y k
ε := T kε + εY = {εξ : ξ ∈ k` + Y },

with k` := (k1`
mes
1 , . . . , kd`

mes
d ).

Therefore, for each macroscopic variable x that belongs toΩ,we define the corresponding meso-
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scopic variable y ≈ x

ε
that belongs to Y with a translation. Indeed, we have:

x ∈ Ω⇒ ∃k ∈ Zd such that x ∈ Y k
ε ⇒ x = ε(k` + y)⇒ y = x

ε
− k` ∈ Y.

Since, we will study in the extracellular medium Ωε
e the behavior of the functions u(x, y)

which are y-periodic, so by periodicity we have u
(
x,
x

ε
− k`

)
= u

(
x,
x

ε

)
. By notation, we

say that y = x

ε
belongs to Y.

We are assuming that the cells are periodically organized as a regular network of intercon-
nected cylinders at the mesoscale. The mesoscopic unit cell Y is also divided into two parts:
intracellular Yi and extracellular Ye. These two parts are separated by a common boundary Γy.
So, we have:

Y = Yi ∪ Ye ∪ Γy, Γy = ∂Yi ∩ ∂Ye.

In a similar way, we can write the corresponding common periodic boundary as follows:

Γkε := T kε + εΓy = {εξ : ξ ∈ k` + Γy},

with T kε denote the same previous translation.

In summary, the intracellular and extracellular medium at mesoscale can be described as the
intersection of the cardiac tissue Ω with the cell Y k

j,ε for j = i, e :

Ωε
i = Ω ∩

⋃
k∈Zd

Y k
i,ε, Ωε

e = Ω ∩
⋃
k∈Zd

Y k
e,ε, Γε = Ω ∩

⋃
k∈Zd

Γkε ,

with each cell defined by Y k
j,ε = T kε + εYj for j = i, e.

Themicroscopic scale. The cytoplasm contains far more mitochondria described as "the pow-
erhouse of the myocardium" surrounded by another membrane Γδ. Then, we only assume that
the intracellular medium Ωε,δ

i can also be viewed as a periodic perforated domain.

At this δ-structural level, we can divide this medium with the same strategy into small el-

ementary cells Zδ =
d∏

n=1
]0, δ `mic

n [, with `mic
1 , . . . , `mic

d are positive numbers. Using a similar

translation (noted by T k′δ ), we return to the same unit cell noted by Z =
d∏

n=1
]0, `mic

n [. Note that

if the cell considered Zk′
δ is located at the k′ième

n position according to the direction n of space
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considered, we can write:

Zk′

δ := T k
′

δ + δZ = {δζ : ζ ∈ k′`′ + Z},

with k′`′ := (k′1`mic
1 , . . . , k′d`

mic
d ).

Therefore, for each macroscopic variable x that belongs to Ω, we also define the corresponding
microscopic variable z ≈ y

δ
≈ x

εδ
that belongs to Z with a translation T k′δ .

The microscopic reference cell Z splits into two parts: mitochondria part Zm and the com-
plementary part Zc := Z \ Zm. These two parts are separated by a common boundary Γz. So,
we have:

Z = Zm ∪ Zc ∪ Γz, Γz = ∂Zm.

By definition, we have ∂Zc = ∂extZ ∪ Γz.
More precisely, we can write the intracellular meso- and microscopic domainΩε,δ

i as follows:

Ωε,δ
i = Ω ∩

⋃
k∈Zd

Y k
i,ε ∩

⋃
k′∈Zd

Zk′

c,δ


with Zk′

c,δ is defined by:

Zk′

c,δ := T k
′

δ + δZc = {δζ : ζ ∈ k′`′ + Zc}.

In the intracellular medium Ωε,δ
i ,we will study the behavior of the functions u(x, y, z) which are

z-periodic, so by periodicity we have u
(
x, y,

x

εδ
− k`

δ
− k′`′

)
= u

(
x, y,

x

εδ

)
. By notation, we

say that z = x

εδ
belongs to Z.

The microscopic unit cellZ considered as a reference perforated periodicity cell. Further, we
denote by Γz the interface between the reference cellZ and the mitochondrion. By definition, we
have ∂Z = ∂extZ ∪ Γz. Similarly, we describe the common boundary at microscale as follows:

Γδ = Ω ∩
⋃

k′∈Zd
Γk′δ ,

where Γk′δ given by:
Γk′δ := T k

′

δ + δΓz = {δζ : ζ ∈ k′`′ + Γz},

with T k′δ denote the same previous translation. Some other examples of periodic heart tissue
approximations are studied at two scales e.g. in [HY09; PSF05; Ben+19] where themitochondria
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are ignored.

1.3.2 Two-scale geometry of cardiac tissue with gap junction connections

The cardiac tissue Ω ⊂ Rd (d ≥ 3) is considered as a heterogeneous periodic domain with
a Lipschitz boundary ∂Ω. The structure of the tissue is periodic at microscopic scale related to
small parameter ε, see Figure 1.7.

Figure 1.7 – (Left) Periodic heterogeneous domain Ω. (Right) Unit cell Y at ε-structural level.

Following the standard approach of the homogenization theory, this structure is featured by
`mic characterizing themicroscopic length of a cell. Under the one-level scaling, the characteristic
length `mic is related to a given macroscopic length L (of the cardiac fibers), such that the scaling
parameter ε introduced by:

ε = `mic

L
.

Physiologically, the cardiac cells are connected by many gap junctions. Therefore, geomet-
rically, the domain Ω consists of two intracellular media Ωk

i,ε for k = 1, 2, that are connected by
gap junctions Γ1,2

ε = ∂Ω1
i,ε ∩ ∂Ω2

i,ε and extracellular medium Ωe,ε (for more details see [Tve+17;
Jæg+19]). Each intracellular medium Ωk

i,ε and the extracellular one Ωe,ε are separated by the

44



1.3. Multi-scale representation of cardiac tissue

surface membrane Γkε (the sarcolemma) which is expressed by:

Γkε = ∂Ωk
i,ε ∩ ∂Ωe,ε, with k = 1, 2,

while the remaining (exterior) boundary is denoted by ∂extΩ.We can observe that the intracellular
domains as a perforated domain obtained from Ω by removing the holes which correspond to
the extracellular domain Ωe,ε.

We can divide Ω into Nε small elementary cells Yε =
d∏

n=1
]0, ε `mic

n [, with `mic
1 , . . . , `mic

d are
positive numbers. These small cells are all equal, thanks to a translation and scaling by ε, to the

same unit cell of periodicity called the reference cell Y =
d∏

n=1
]0, `mic

n [. So, the ε-dilation of the
reference cell Y is defined as the following shifted set Yε,h :

Yε,h := T hε + εY = {εξ : ξ ∈ h` + Y }, (1.3)

whereT hε represents the translation of εhwithh = (h1, . . . , hd) ∈ Zd andh` := (h1`
mic
1 , . . . , hd`

mic
d ).

Therefore, for each macroscopic variable x that belongs to Ω, we define the corresponding mi-
croscopic variable y ≈ x

ε
that belongs to Y with a translation. Indeed, we have:

x ∈ Ω⇒ ∃h ∈ Zd such that x ∈ Y h
ε ⇒ x = ε(h` + y)⇒ y = x

ε
− h` ∈ Y.

Since, we will study the behavior of the functions u(x, y) which are y-periodic, so by peri-
odicity we have u

(
x,
x

ε
− h`

)
= u

(
x,
x

ε

)
. By notation, we say that y = x

ε
belongs to Y.

We are assuming that the cells are periodically organized as a regular network of intercon-
nected cylinders at the microscale. The microscopic unit cell Y is also divided into three disjoint
connected parts: two intracellular parts Y k

i for k = 1, 2, that are connected by an intercalated
disc (gap junction) Γ1,2 and extracellular part Ye. Each intracellular parts Y k

i and the extracellular
one are separated by a common boundary Γk for k = 1, 2. So, we have:

Y := Y
1
i ∪ Y

2
i ∪ Y e, Γk := ∂Y k

i ∩ ∂Ye, Γ1,2 := ∂Y 1
i ∩ ∂Y 2

i ,

with k = 1, 2. In a similar way, we can write the corresponding common periodic boundary as
follows:

Γε,h = T hε + εΓ = {εξ : ξ ∈ h` + Γ}, (1.4)

with T hε denote the same previous translation, Γε,h := Γkε,h,Γ
1,2
ε,h and Γ := Γk,Γ1,2 for k = 1, 2.
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In summary, the intracellular and extracellular media can be described as follows:

Ωk
i,ε = Ω ∩

⋃
h∈Zd

Y k
i,ε,h, Ωe,ε = Ω ∩

⋃
h∈Zd

Ye,ε,h,

Γkε = Ω ∩
⋃
h∈Zd

Γkε,h and Γ1,2
ε = Ω ∩

⋃
h∈Zd

Γ1,2
ε,h,

where Y k
i,ε,h, Ye,ε,h and Γkε ,Γ1,2

ε are respectively defined as (1.3)-(1.4) for k = 1, 2.
Both sets Ωk

i,ε, k = 1, 2 and Ωe,ε are assumed to be connected Lipschitz domains so that a
Poincaré-Wirtinger inequality is satisfied in both domains. The boundaries Γk, k = 1, 2 and Γ1,2

are smooth manifolds such that Γkε , k = 1, 2 and Γ1,2
ε are smooth and connected. Note however

that it is impossible to have both Ωk
i,ε, k = 1, 2 and Ωe,ε connected in a two-dimensional picture.

1.4 Mathematical Models of Cardiac Tissue

Cardiac electro-physiology models describes the electrical phenomena taking place in the
heart tissue. In this chapter, we present two different models in cardiac electro-physiology. The
microscopic model gives a detailed description of the electrical activity in the cells responsible
for the heart contraction. While the macroscopic model is deduced from the microscopic one,
using homogenization techniques, describes the propagation of this electrical wave in the heart.
This kind of models appears in a multitude of real-world applications and are therefore of great
importance mainly because they are able to connect the information from the micro-scale to the
macro-scale (e.g. via the boundary of the cell, micro-macro conditions, ...). They are usually
obtained in the homogenization limit as the scale of the inhomogeneity goes to zero. These
models provide a way to represent a continuous distribution of cells within a global reference
geometry.

One of the most commonly used approach for simulating cardiac activation is the so-called
"bidomainmodel" because it includes an explicit representation of intra- and extracellular spaces.
It was first proposed by Schmitt [Sch69] who formulated a macroscopic description of the car-
diac tissue from two inter-penetrating domains which are the intracellular and extracellular do-
mains at the microscopic scale, representing respectively the space inside the cardiac cells and
the region between them. The first mathematical formulation of this model was constructed by
Tung [Tun78] and it has been used in numerous studies [FS02; PSF05; CFPS12], [HY09] and
others. This variant leads to two quasi-static whose unknowns are intra- and extracellular elec-
tric potentials coupled with non linear ordinary differential equations called ionic models at
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the membrane. They represent the transmembrane currents and other cellular ionic processes.
Here, our bidomain model are studied at three different (macro-meso-micro) scales while others
bidomain problems are treated only at micro-macro scales. Then, homogenization procedure al-
lows for the deduction of the macroscopic behaviors from the microscopic ones and leads to the
equations of the macroscopic bidomain model. Furthermore, we introduce other simplification
of the macroscopic bidomain model for the electrical propagation in myocardial tissue, known
as "monodomain" and "eikonal" models, where the bidomain model can be rewritten as a sin-
gle parabolic reaction-diffusion equation for the transmembrane potential (still coupled with the
same ODE systemmodeling cell membrane). The macroscopic bidomain model is quite popular
for its physiological foundation and relevance whereas themonodomain and eikonal models are a
heuristic approximation of the previous one, lacking this physiological foundation but providing
computational facilities.

Another model describes the electrical activity of myocytes cells in the presence of gap
junctions, known as "tridomain" model (see [Tve+17; Jæg+19] for more details). Comparing to
the bidomain model, the cells are not only electrically coupled by the cell membrane which are
resistively connected to the extracellular space but are also connected to each other by many
gap junctions. The tridomain model thus allows for a more detailed analysis of the properties of
cardiac conduction than the classical bidomain andmonodomainmodels. From themathematical
viewpoint, the microscopic tridomain model consists of three quasi-static equations, two for the
electrical potential in the intracellular medium and one for the extracellular medium, coupled
through a dynamic boundary equation at each cell membrane (the sarcolemma). Departing from
this microscopic tridomain model, we apply the homogenization theory (see in the next chapter)
to derive the macroscopic one.

We first consider the microscopic bidomain and tridomain models, respectively, in Section
1.4.1 and 1.4.2, coupled with various ionic membrane models. The first model is described at
three scales by considering the presence of mitochondria in the cells while the second one de-
scribed at two scales only taking into account that the cardiac cells are connected to each other by
gap junctions. Having as departure point a microscopic model, we want to derive in the following
chapters, bymeans of homogenization techniques, the correspondingmacroscopic, monodomain
and eikonal models of reaction-diffusion type used in electro-cardiology to simulate spreading
of excitation potential waves in the myocardium, see Section 1.5 for more details. In the sequel,
the space-time set (0, T )×O is denoted by OT in order to simplify the notation.

47



Chapter 1 – Cardiac Electro-physiological Models

1.4.1 The Meso-Microscopic Bidomain Model

The meso-microscopic bidomain equations modeling the propagation of cardiac action po-
tentials at the cellular level. Note that the cardiac tissue at meso-scale can be viewed as composed
by two ohmic volumes: the intracellular space Ωi (inside the cells) and the extracellular space
Ωe (outside) separated by the active membrane Γy (see Subsection 1.3.1).

Thus, the membrane Γy is pierced by proteins whose role is to ensure ionic transport between
the two media (intracellular and extracellular) through this membrane. So, this transport creates
an electric current.

So by using Ohm’s law, the intracellular and extracellular electrical potentials uj : Ωj,T 7→ R
are related to the current volume densities Jj : Ωj,T 7→ Rd for j = i, e :

Jj = Mj∇uj, in Ωj,T := (0, T )× Ωj,

with Mj represent the corresponding conductivities of the tissue (given in mS/cm2).
In addition, the transmembrane potential v is known as the potential at the membrane Γy which
is defined as follows:

v = (ui − ue)|Γy : (0, T )× Γy 7→ R.

Moreover, we assume the intracellular and extracellular spaces are source-free and thus the
intracellular and extracellular potentials ui and ue are solutions to the elliptic equations:

− divJj = 0, in Ωj,T . (1.5)

According to the current conservation law, the surface current density Im is now introduced:

Im = −Ji · ni = Je · ne, on ΓyT := (0, T )× Γy, (1.6)

with ni denotes the unit exterior normal to the boundary Γy from intracellular to extracellular
space and ne = −ni.

The membrane has both a capacitive property schematized by a capacitor and a resistive
property schematized by a resistor (see Figure 1.8). On the one hand, the capacitive property de-
pends on the formation of the membrane which can be represented by a capacitor of capacitance
Cm (the capacity per unit area of the membrane is given in µF/cm2). We recall that the quantity
of the charge of a capacitor is q = Cmv. Then, the capacitive current Ic is the amount of charge
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Figure 1.8 – Electrical circuit model of the cellular membrane.
https://www.researchgate.net/figure/Electrical-circuit-model-of-the-cell-membrane_
fig1_281167544

that flows per unit of time:
Ic = ∂tq = Cm∂tv.

On the other hand, the resistive property depends on the ionic transport between the intracellular
and extracellular media. Then, the resistive current Ir is defined by the ionic current Iion mea-
sured from the intracellular to the extracellular medium which depends on the transmembrane
potential v and the gating variable w : Γy 7→ R. Since the electric current can be blocked by the
membrane or can be pass through the membrane with ionic current Ir − Iapp. So, the charge
conservation states that the total transmembrane current Im (see [CFPS12]) is given as follows:

Im = Ic + Ir − Iapp on ΓyT ,

where Iapp is the applied current per unit area of the membrane surface (given in µA/cm2).
Consequently, the transmembrane potential v satisfies the following dynamic condition on Γy

involving the gating variable w:

Im = Cm∂tv + Iion(v, w)− Iapp on ΓyT ,

∂tw −H(v, w) = 0 on ΓyT .
(1.7)

Herein, the functions H and Iion correspond to the ionic model of membrane dynamics.All
surface current densities Im and Iion are given in µA/cm2. Moreover, time is given in ms and

49

https://www.researchgate.net/figure/Electrical-circuit-model-of-the-cell-membrane_fig1_281167544
https://www.researchgate.net/figure/Electrical-circuit-model-of-the-cell-membrane_fig1_281167544
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length is given in cm.

In addition, the cytoplasm at micro-scale contain far more mitochondria described as "the
powerhouse of the myocardium". So, we assume that the no-flux boundary condition at the in-
terface Γz of mitochondria is given by:

Mi∇ui · nz = 0 on ΓzT := (0, T )× Γz, (1.8)

with nz denotes the unit exterior normal to the boundary Γz.

1.4.2 The Microscopic Tridomain Model

The basic tridomain equations modeling the propagation of cardiac action potentials at cellu-
lar level in the presence of gap junctions which can be formulated as follows. First, we know that
the structure of the cardiac tissue can be viewed as composed by two intracellular spaces Ωk

i for
k = 1, 2, that are connected by gap junction Γ1,2 and the extracellular space Ωe. The membrane
Γk is defined by the intersection between each intracellular domain Ωk

i and the extracellular one
with k = 1, 2 (see Subsection 1.3.2).

Thus, the cellular membrane acts as a barrier to the free flow of ions between the two media
(intracellular and extracellular) and maintains concentration differences of these ions. So, this
transport creates an electric current.
Using Ohm’s law, the intracellular electrical potentials uki and extracellular one ue are respec-
tively related to the current volume densities Jki and Je for k = 1, 2 :

Jki = Mi∇uki , in Ωk
i,T := (0, T )× Ωk

i , (1.9a)

Je = Me∇ue, in Ωe,T := (0, T )× Ωe, (1.9b)

whereMj represents the corresponding conductivities of the tissue for j = i, e (given inmS/cm2).
In addition, the concentration gradients produce a potential difference across the membrane Γk,
the transmembrane potential vk which is defined as follows:

vk = (uki − ue)|Γk : (0, T )× Γk 7→ R for k = 1, 2.

Moreover, we assume the intracellular and extracellular spaces are source-free and thus the
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intracellular and extracellular potentials are solutions to the elliptic equations:

− divJki = 0, in Ωk
i,T , (1.10a)

− divJe = 0, in Ωe,T , (1.10b)

with k = 1, 2.

According to the current conservation law, the surface current density Ikm is now introduced:

Ikm = −Jki · nki = Je · ne, on ΓkT := (0, T )× Γk, (1.11)

with nki denotes is the (outward) normal pointing out from Ωk
i,ε for k = 1, 2 and ne is the normal

pointing out from Ωe,ε.

Since the cell membrane separates charges that accumulate at its intra- and extracellular
surfaces, it can be viewed as a capacitor. The capacitance Cm (given in µF/cm2) is defined as
the ratio between the charge qk across the capacitor and the voltage potential drop vk necessary
to hold the charge

Cm = qk

vk
, for k = 1, 2.

Then, the capacitive current Ikc for k = 1, 2 is the amount of charge that flows per unit of time:

Ikc = ∂tq
k = Cm∂tv

k.

On the other hand, the resistive property depends on the ionic transport between the intracel-
lular and extracellular media. Then, the resistive current Ir is defined by the ionic current Ikion
measured from the intracellular to the extracellular medium which depends on the transmem-
brane potential vk and the gating variable wk : Γk 7→ R with k = 1, 2. Moreover, the total
transmembrane current Ikm (see [CFPS12]) is given by:

Ikm = Ikc + Ikr − Ikapp on ΓkT ,

with Ikapp is the applied current of the membrane surface for k = 1, 2 (given in µA/cm2).
Consequently, due to the dynamics of the ionic fluxes through the cell membrane, its electrical
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potential vk satisfies the following dynamic condition on Γk involving the gating variable wk:

Ikm = Cm∂tv
k + Iion

(
vk, wk

)
− Ikapp on ΓkT , (1.12a)

∂tw
k −H

(
vk, wk

)
= 0 on ΓkT . (1.12b)

Furthermore, the functions H and Iion correspond to the ionic model of membrane dynamics.
All surface current densities Ikm for k = 1, 2 and Iion are given in µA/cm2. Moreover, time is
given in ms and length is given in cm.

In addition, we represent the gap junction between intra-neighboring cells by a passivemodel.
This model includes several state variables in addition to the gap junction potential s which is
defined as follows:

s = (u1
i − u2

i )|Γ1,2 : (0, T )× Γ1,2 7→ R.

The ionic current I1,2 through the gap junction Γ1,2 defined by:

I1,2 = −J1
i · n1

i = J2
i · n2

i , on Γ1,2
T := (0, T )× Γ1,2. (1.13)

Similarly, the ionic current I1,2 at a gap junction Γ1,2 represents the sum of the capacitive and re-
sistive currents. Consequently, regarding the dynamic structure of the gap junction, its electrical
potential s satisfies the following dynamic condition on Γ1,2 :

I1,2 = C1,2∂ts+ Igap (s) on Γ1,2
T , (1.14)

where C1,2 represents the capacity per unit area of the intercalated disc and Igap represents
the corresponding resistive current. In general, the value of C1,2 is set to Cm/2 because the
intercalated disc is assumed to be a membrane of thickness twice as large as the cell membrane,
and the specific capacitance of a capacitor Cm formed by two parallel plates separated by an
insulator may be assumed to be inversely proportional to the thickness of the insulator [Jæg+19].

1.4.3 Ionic Models

In order to complete the microscopic models, it is necessary to include the basic electri-
cal circuit model of the cellular membrane, where the transmembrane current, modeled as the
sum of the capacitive and ionic currents through the membrane, must balance the given applied
current. We look to modeling the membrane ion transport of three different ions: the sodium
Na+, the potassium K+ and the calcium Ca2+. These ionic models are then described by us-
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ing ion channel gating models, allowing us to build cardiac action potential models. We start
with the physiological models, in particular the celebrated Hodgkin-Huxley (H-H) model and
briefly review some of the historical ventricular models based on the H-H formalism, such as
the Beeler-Reuter, Luo-Rudy I and II models. Phenomenological models, such as the minimal
FitzHugh-Nagumo model are also presented.

Physiological models

Hodgkin-Huxley Model. The first mathematical model that describes the action potential
waveform was proposed by Hodgkin and Huxley [HH52] and was developed specifically for
nerve fibers. The celebrated Hodgkin-Huxley (H-H) model consists of the following system,
coupling the circuit model with the equations of channel gating for three recovery variables
m,h, n 

Cm∂tv + Iion(v,m, h, n) = Iapp
dm

dt
= m∞(v)−m

τm(v)
dh

dt
= h∞(v)− h

τh(v)
dn

dt
= n∞(v)− n

τn(v)

(1.15)

where the ionic current Iion is sum of sodium, potassium and leakage currents

Iion = INa + IK + IL.

Each of these currents has a linear current-voltage structure, with three equal activation and
one inactivation independent subunits for the sodium channel

INa = GNam
3h(v − vNa),

four equal activation independent subunits for the potassium channel

IK = GKn
4(v − vK),

and no units for the leakage current

IL = GL(v − vL).
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Here, G` and v` are the maximal conductances and the Nernst potentials of each channel type,
respectively for ` := Na,K,L. Furthermore, the coefficients of the recovery variables equations
are given by for w := m,h, n

w∞ = αw
αw + βw

(1.16)

with

αm = 0.1(25− v)
exp[0.1(25− v)]− 1 , βm = 4 exp

(−v
18

)
,

αh = 0.07 exp
(−v

20

)
, βh = 1

exp[0.1(30− v)] + 1 ,

αn = 0.01(10− v)
exp[0.1(10− v)]− 1 , βn = 0.125 exp

(−v
80

)
.

Beeler-Reuter Model

In 1977, the Beeler-Reuter model was proposed the first ventricular membrane model of
mammalian cardiac myocytes (see [BR77]) based on Hodgkin-Huxley formalism. The ionic
current Iion is given by the sum of four currents (see Figure 1.9)

Iion = INa + Is + IK1 + Ix1.

The so-called fast inward sodium current INa is the main current responsible for the depolar-
ization of cardiac cells, while the other currents determine the configuration of the plateau and
re-polarization phases. The slow inward current Is, carried by calcium ions (Ca2+), influences the
duration of the action potential. Furthermore, the time-dependent and time-independent outward
potassium currents Ix1 and IK1 are instead responsible for the re-polarization phase.

Herein, the sodium current INa is expressed by

INa =
(
GNam

3hj +GNaC

)
(v − ENa) ,

whereGNa is the maximal sodium conductance (0.04mS/mm2),GNaC is the constant background
sodium conductance (3 · 10−5 mS/mm2) and ENa is the sodium equilibrium potential (50 mV).
In addition to the activation gate m and the inactivation gate h of the Hodgkin-Huxley model,
Beeler-Reuter added a slow inactivation gate j. All these recovery variables follow the dynamic
equation defined by:

∂tw = H(v, w) = α(v)(1− w)− β(v)w, (1.17)
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Figure 1.9 – The current flows across the cell membrane captured in the Beeler-Reuter model.

where w := m,h, j and α, β > 0.

The slow inward current Is is controlled by an activation gate d and inactivation gate f, both
following the dynamic equation (1.17). This current is given by

Is = Gsdf (v − Es) ,

whereGs is the maximal channel conductance (9 ·10−4 mS/mm2) andEs is the reversal potential
depends on the intracellular calcium concentration [Ca2+]i, precisely

Es = −82.3− 13.0287 log
(
0.001[Ca2+]i

)
. (1.18)

The time-dependent outward potassium current Ix1 is controlled, as in the Hodgkin-Huxley
model, by a single gating variable x1 satisfying (1.17). The expression of this current is

Ix1 = 8 · 10−3x1

(
exp[0.04(77 + v)]− 1

exp[0.04(35 + v)]

)
.
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Finally, the magnitude of the time-independent outward potassium current IK1 is given by

IK1 = 0.0035
(

4 exp[0.04(85 + v)]− 1
exp[0.08(53 + v)] + exp[0.04(53 + v)]

)

+ 0.0035
(

0.2(23 + v)
1− exp[−0.04(23 + v)]

)
.

Luo Rudy Model (LRI and LRII)

In 1991, Luo and Rudy [LR91] developed the Beeler-Reuter model of a mammalian ventric-
ular muscle cell including additional potassium currents. The ionic current Iion is given by the
sum of six currents

Iion = INa + Is + IK + IK1 + IKp + Ib,

two inwards (INa, Is) and four outwards IK, IK1, IKp, Ib. The first three currents depend on six
gating variables and one ion (intracellular calcium) concentration, while the last three are time-
independent currents. For more details, we refer the reader to [LR91].

In 1994, Luo and Rudy [LR94a; LR94b] developed a new model for the mammalian ven-
tricular action potential based mostly on the guinea pig ventricular cell. This second approach
consists of producing "phenomenological" models which takes into account both the intracellu-
lar mechanisms of calcium regulation and the effect of the three buffers: the troponin (directly
linked to muscle contraction), the calmodulin, and the sarcoplasmic reticulum (see Figure 1.10).
In this case, the ionic current Iion is expressed by the sum of eleven currents

Iion = INa + ICa(L) + IK + IK1 + IKp + INaCa + INaK + InsCa + IpCa + IbCa + IbNa.

Phenomenological models

Other non-physiological ionic models have been introduced as approximations of ion current
models. These models are unrealistic in that they cannot be interpreted in terms of biological
quantities. These unknowns of these reduced models are a normalized transmembrane potential
and a gating variable following the general kinetics where we neglect the applied current


dv

dt
= Iion(v, w)

dw

dt
= H(v, w)

(1.19)
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Figure 1.10 – The current flows across the cell membrane captured in the Luo-Rudy model.

• FitzHugh-Nagumo model [Fit61]:

Iion(v, w) = −kv(v − α)(v − 1)− w, H(v, w) = β(v − γw);

• Roger-McCulloch model [RM94]:

Iion(v, w) = −kv(v − α)(v − 1)− vw, H(v, w) = β(v − γw);

• Aliev-Panfilov model [AP96]:

Iion(v, w) = −kv(v − α)(v − 1)− vw, H(v, w) = β (γv (v − 1− a) + w) ;

• Mitchell-Schaeffer model [MS03]:

Iion(v, w) = −−w
τin

v2(v − 1)− v

τout
, H(v, w) =


1− w
τopen

if v ≤ vgate,

−w
τclose

if v > vgate.
;
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Here, 0 < α < 1, k, β, Γ, τin, τout, τopen, τclose, 0 < vgate < 1 are given constants.

1.5 The Macroscopic (Homogenized) Models

The macroscopic bidomain and tridomain representations of the cardiac tissue has been de-
rived respectively in Chapter 2 and 3 using two different homogenization techniques. Moreover,
we also present in this part two simplifications of the macroscopic bidomain model: the mon-
odomain and eikonal models. These heuristic approximations should be preferred to the bido-
main model to simulate patterns of excitation in the cardiac tissue taking advantage of its lightest
implementation and computational cost.

1.5.1 The Macroscopic Bidomain Model

At macroscopic level, the heart domain (denoted by Ω) coincides with the intracellular and
extracellular ones, which are inter-penetrating and superimposed connected at each point by
the cardiac cellular membrane. The macroscopic bidomain model describes the current flow
through the myocardium in a volume averaged approach which is called the homogenized bido-
main model (Reaction-Diffusion system):

µm∂tv +∇ · (Me∇ue) + µmIion(v, w) = µmIapp in ΩT := (0, T )× Ω, (1.20a)

µm∂tv −∇ · (Mi∇ui) + µmIion(v, w) = µmIapp in ΩT , (1.20b)

∂tw −H(v, w) = 0 on ΩT , (1.20c)

completed with no-flux boundary conditions on ui, ue on ∂extΩ :

(Me∇ue) · n = (Mi∇ui) · n = 0 on ΣT := (0, T )× ∂extΩ, (1.21)

and initial conditions for the transmembrane potential v and the gating variable w :

v(0, x) = v0(x) and w(0, x) = w0(x), (1.22)

where µm = |Γy| / |Y | is the ration between the surface membrane and the volume of the ref-
erence cell. Moreover, n is the outward unit normal to the exterior boundary of Ω. Herein, we
introduce the homogenized conductivity matrices Mj related to the macroscopic arrangement
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of the cardiac myocytes in the fiber structure which are described by:

Mj = σ`jd` ⊗ d` + σtjdt ⊗ dt + σnj dn ⊗ dn, for j = i, e,

where σkj = σkj (x), k ∈ {`, t, n}, are the intra- and extracellular conductivity coefficients mea-
sured along the longitudinal, transversal and normal to the fiber x ∈ Ω.

Another formulation of the macroscopic bidomain equations is given by:

µm∂tv +∇ · (Me∇ue) + µmIion(v, w) = µmIapp in ΩT , (1.23a)

−∇ · ((Mi + Me)∇ue) = ∇ · (Mi∇v) in ΩT , (1.23b)

∂tw −H(v, w) = 0 on ΩT , (1.23c)

The two formulations (1.20)-(1.23) are equivalent. The second one can be obtained from the
first one by replacing ui by v+ue in (1.20a) and subtracting the resulting equation from (1.20b).

The Monodomain Model

In order to reduce the (theoretical and numerical) difficulties of the macroscopic bidomain
model which are in the equation (1.23a) the differential operator ∇ · (Me∇ue) is not given
explicitly from v but only implicitly by the elliptic problem (1.23b). In the particular case where
the intra- and extra-cellular media have the same anisotropy ratio, i.e. if there exits a constant
λ > 0 such that

∀x ∈ Ω : Mi(x) = λMe(x),

this difficulty can be overcome and the bidomain model (1.20) can be rewritten as only one
equation depending on v as follows:

µm∂tv −
1

λ+ 1∇ · (Mi∇v) + µmIion(v, w) = µmIapp in ΩT , (1.24)

This simplification of the bidomain model is called the "linear anisotropic monodomain
model". This reduced formulation is adapted to the case where the heart is assumed to be elec-
trically isolated. Consequently, on the boundary of the heart, one can impose the following ho-
mogeneous Neumann boundary condition:

(Mi∇v) · n = 0 on ΣT := (0, T )× ∂extΩ. (1.25)
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We shall present another interesting approximation of the macroscopic bidomain model (see
[FPT05a; FPT05b]) without assuming that the two tensors are proportional and we will always
call it "monodomainmodel". This approximation consists of a single parabolic reaction-diffusion
equation for the transmembrane potential v coupled with the same gating system:

µm∂tv +∇ · (M∇v) + µmIion(v, w) = µmIapp in ΩT , (1.26a)

∂tw −H(v, w) = 0 on ΩT , (1.26b)

M∇v · n = 0 on ΣT , (1.26c)

with the conductivity tensor M = Me (Mi + Me)−1 Mi.

From the knowledge of the distribution of v(t, x) the extracellular potential distribution ue
is derived by solving the elliptic boundary value problem

−∇ · ((Mi + Me)∇ue) = ∇ · (Mi∇v) in ΩT , (1.27a)

− (Mi + Me)∇ue · n = Mi∇v · n on ΣT . (1.27b)

Observe that the first equation in (1.26) uniquely determines v, while the potential ue is
defined only up to an additive time-dependent constant related to the reference potential, chosen
to be the average extracellular potential in the cardiac volume by imposing the normalization
condition

∫
Ω uedx = 0.

Furthermore, we remark that the macroscopic bidomain model are described by a system
of a parabolic equation coupled with an elliptic equation, but in the monodomain model the
evolution equation is fully uncoupled with the elliptic one in the case of an insulated domain.

The Eikonal Model

Another route to avoid high computational costs is based on a heuristic approximation of the
macroscopic bidomain model, known as "eikonal models," to describe the propagation of action
potential wavefronts in the myocardium. With these models the simulation of the activation
sequence in large volumes of cardiac tissue has become computationally practical but at the price
of a loss of fine details concerning the thin layer where the upstroke of the action potential occurs.
These numerical simulations are based on laws describing the macroscopic kinetic mechanism
of the spreading of the excitation wavefronts, and do not require a fine spatial and temporal
resolution.
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The authors in [Kee91] proposed this model in order to study the effects of fiber orientation
on propagation in the myocardial wall within the framework of the monodomain model. Fur-
thermore, we find in [FGT90; FGR90; FG93] a more general version of this analysis within the
framework of the bidomain model.

1.5.2 The Macroscopic Tridomain Model

At the macroscopic scale, the heart appears as a continuous material and the intracellular
and extracellular media are indistinguishable. The macroscopic tridomain model attempts to
describe the averaged electric potentials and current flows inside and outside the cardiac cells
which is represented by the following Reaction-Diffusion system:

∑
k=1,2

µk∂tv
k +∇ · (Me∇ue) +

∑
k=1,2

µkIion(vk, wk) =
∑
k=1,2

µkIkapp in ΩT ,

µ1∂tv
1 + µg∂ts−∇ ·

(
Mi∇u1

i

)
+ µ1Iion(v1, w1) + µgIgap(s) = µ1I1

app in ΩT ,

µ2∂tv
2 − µg∂ts−∇ ·

(
Mi∇u2

i

)
+ µ2Iion(v2, w2)− µgIgap(s) = µ2I2

app in ΩT ,

∂tw
k −H(vk, wk) = 0 on ΩT ,

(1.28)
completed with no-flux boundary conditions on ui, ue on ∂extΩ :

(Me∇ue) · n =
(
Mi∇uki

)
· n = 0 on ΣT := (0, T )× ∂extΩ, (1.29)

and initial conditions for the transmembrane potential vk, the gap potential s and the gating
variable wk :

vk(0, x) = vk0(x), s(0, x) = s0(x) and wk(0, x) = wk0(x), (1.30)

where µk =
∣∣∣Γk∣∣∣ / |Y | , k = 1, 2, (resp. µg = |Γ1,2| / |Y |) is the ratio between the surface mem-

brane (resp. the gap junction) and the volume of the reference cell. As before, the conductivity
tensors Mj can be expressed by:

Mj = σ`jd` ⊗ d` + σtjdt ⊗ dt + σnj dn ⊗ dn, for j = i, e, (1.31)

where σkj = σkj (x), k ∈ {`, t, n}, are the intra- and extracellular conductivity coefficients mea-
sured along the longitudinal, transversal and normal to the fiber x ∈ Ω.
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2
Three-scale Homogenization Method
Applied To Meso-Microscopic Bidomain
Model

In this chapter, our attention is initially directed at the organization of cardiac muscle cells
within the heart. The structure of cardiac tissue studied in this chapter is characterized at three
different scales (see Figure 2.1). At mesoscopic scale, the cardiac tissue is divided into two me-
dia: one contains the contents of the cardiomyocytes, in particular the "cytoplasm" which is
called the "intracellular" medium, and the other is called extracellular and consists of the fluid
outside the cardiomyocytes cells. These two media are separated by a cellular membrane (the
sarcolemma) allowing the penetration of proteins, some of which play a passive role and others
play an active role powered by cellular metabolism. At microscopic scale, the cytoplasm com-
prises several organelles such as mitochondria. Mitochondria are often described as the "energy
powerhouses" of cardiomyocytes and are surrounded by another membrane. In our study, we
consider only that the intracellular medium can be viewed as a periodic structure composed
of other connected cells. While at the macroscopic scale, this domain is well considered as a
single domain (homogeneous). It should be noted that there is a difference between the chemi-
cal composition of the cytoplasm and that of the extracellular medium. This difference plays a
very important role in cardiac activity. In particular, the concentration of anions (negative ions)
in cardiomyocytes is higher than in the external environment. This difference of concentrations
creates a transmembrane potential, which is the difference in potential between these two media.
The model that describes the electrical activity of the heart, is called by "Bidomain model".

We start in this chapter from the meso-microscopic bidomain model given in Subsection
1.4.1, resolving the three-scale geometry of the domain, which consists of two quasi-static ap-
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Figure 2.1 – Representation of the cardiomyocyte structure.
http://www.cardio-research.com/cardiomyocytes

proximation of elliptic equations, one for the electrical potential in the intracellular medium
and one for the extracellular medium, coupled through a dynamical boundary equation at the
interface of the two regions (the sarcolemma). Then we upscale our meso-microscopic model
using two small scaling parameters ε and δ whose are respectively the ratio of the microscopic
and mesoscopic scales from the macroscopic scale. Our goal in this chapter is to derive the
macroscopic (homogenized) bidomain model from the meso-microscopic one via two different
homogenization methods: the asymptotic expansion and unfolding methods. This macroscopic
model of the cardiac tissue is an approximation of the microscopic bidomain one and consists
of a system of reaction-diffusion equations with homogenized coefficients, approximating the
microscopic solution on the two connected components of the domain.

In general, the homogenization theory is the analysis of macroscopic behavior as for instance
of biological tissues by taking into account their complex microscopic structure. For an introduc-
tion to this theory, we cite [HP92], [CD99],[Tar09] and [BP12]. Applications of this technique
can also be found in modeling solids, fluids, solid-fluid interation, porous media, composite ma-
terials, cells and cancer invasion. This technique also has an interest in the field of numerical
analysis where various new computational techniques (finite difference, finite elements and fi-
nite volumemethods) have been developed, we cite for instance [AE03],[BBH07]. Several meth-
ods are related to this theory. Classically, homogenization has been done by the multiple-scale
method which was first introduced by A. Benssousan and al. [BLP11] and by Sanchez-Palencia
[HP92] for linear and periodic operators. It is well adapted to the periodic structure and permits
to obtain an explicit form of the homogenized model based on asymptotic expansion [OSY09].
There are now different mathematical homogenization methods: the Γ-convergence method in-
troduced by De Giorgi [DG75], theG-convergence method introduced by Spagnolo [Spa76] and
theH-convergence method introduced by L. Tartar [MT18] for non-periodic case. The two-scale
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convergence method was introduced by G. Nugesteng [Ngu89] and developped by G. Allaire and
al. [All92]. In addition, G. Allaire and M. Briane [AB96], Trucu and al. [TCMC12] was intro-
duced a further generalization of the previous method via a three-scale convergence approach
for distinct problems. After that the first results in stochastic homogenization method are due
to S. Kozlov [Koz79] and Papanicolaou and Varadhan [Pap79], essentially using compensated
compactness. Based on the previous work, A. Gloria and F. Otto [GO11; GO12] recently give
an optimal error estimate in stochastic homogenization of discrete elliptic equations. Recently,
the periodic unfolding method was introduced by D. Cioranescu, A. Damlamian and G. Griso
in [CDG02] for the study of classical periodic homogenization in the case of fixed domains and
adapted to homogenization in domains with holes by D. Cioranescu and al. [CDZ06; Cio+12].
The unfolding reiterated homogenization method was studied first by N. Meunier and J. Van
Schaftingen [MVS05] for nonlinear partial differential equations with oscillating coefficients
and multiscales. The unfolding method is essentially based on two operators: the first represents
the unfolding operator and the second operator consists to separate the microscopic and macro-
scopic scales. The idea of the unfolding operator was introduced firstly in [ADH90] under the
name "dilation" operator. The name "unfolding operator" was then introduced in [CDG02] and
deeply studied in [CDZ06; CDG08; Cio+12]. The interest of this method comes from the fact
that we use standard weak or strong convergences in Lp spaces. On the other hand, the unfolding
operator maps functions defined on oscillating domains into functions defined on fixed domains.
Hence, the proof of homogenization results be comes quite simple.

Now, we mention some different homogenization methods that are applied to the micro-
scopic bidomain model to obtain the macroscopic bidomain model. C. Henriquez and W. Ying
applied the two-scale asymptoptic method to formally obtain this macroscopic model presented
in [HY09]. Furthermore, M. Pennachio, G. Savaré and P. Franzone used the tools of the Γ-
convergence method to obtain a rigorous mathematical form of this homogenized macroscopic
model which presented in [PSF05]. The authors in [CI18; GK19] used the theory of two-scale
convergence to derive the homogenized bidomain model where the cardiac domain was assumed
to be cube in R3. Recently, the authors in [Ben+19] proved the existence and uniqueness of so-
lution of the microscopic bidomain model based on Faedo-Galerkin method. Further, they used
the unfolding homogenization method at two scales to show that the solution of the microscopic
biodmain model converges to the solution of the macroscopic one.

However, in biological systems, it is very often the case that processes over three (or more)
distinct scales. Obviously, by higher-order correctors and upscaling techniques, the microscale
and mesoscale informations of electrical activity behaviors inside the cardiac tissue can be
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caught more effectively. In addition, the previous two-scale methods can be utilized to analyze
the effective coefficients from smallest scale to largest scale step by step, but cannot be directly
used to derive the homogenized model from the microscopic bidomain problem at three-scales.
Then, our models can serve as tool for biophysicists to analyze the complexmechanisms involved
in the cardiac tissue, justifying in a rigorous manner some biological points of view concerning
such process.

In this chapter, the homogenization method is done at two levels on the intracellular medium.
The first level homogenization of the microscopic intracellular structure yields the mesoscopic
model describing the electrical properties in its cells. The second level homogenization is per-
formed to obtain the intracellular homogenized equation. Together with the extracellular homog-
enized one, is called the macroscopic bidomain model. Moreover, the intracellular and extracel-
lular media are identical at the macroscopic scale and the cardiac tissue is considered as single
domain to be the superposition of these two media.

This chapter is organized as follows: In Section 2.1, we give a precise description of the
geometry of cardiac tissue and introduce the meso-microscopic bidomain model in the non-
dimensional form featured by two parameters, ε and δ, characterizing the meso- and microscopic
scales. Furthermore, some assumptions used for homogenization and the existence of a unique
weak solution for the microscopic problem are stated and a priori estimates for the microscopic
solutions are derived. Section 2.2 contains the main result obtained by the previous homoge-
nization methods. In Section 2.3, we apply three-scale asymptotic homogenization procedure
for extracellular and intracellular problems. Section 2.4 is devoted to unfolding homogenization
procedure. In Subsection 2.4.1, we recall the notion of the unfolding operator and the conver-
gence results used for unfolding homogenization. The three-scale unfolding method applied in
the intracellular problem is explained in Subsection 2.4.2. In Subsection 2.4.3, the homogenized
equation for the extracellular problem is obtained at two scales only using the standard unfolding
method. Finally, in Subsection in 2.4.4, the macroscopic bidomain model is recuperated from
the limit equations obtained in Subsection 2.4.2 and 2.4.3 and the cell problems are decoupled.

2.1 Geometry. Meso-Microscopic Bidomain Model

This section contains a brief discussion of the geometry of cardiac tissue and presents the
meso-microscopic bidomain equations posed in the heart.
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2.1.1 Three-scale representation of cardiac tissue

We refer the reader to Subsection 1.3.1 where the concept of meso- and micro-structure has
been introduced, also see Figure 2.2.

Figure 2.2 – (A) Periodic heterogeneous domain Ω, (B) Unit cell Y at ε-structural level and (C) Unit cell Z at
δ-structural level.

2.1.2 Meso-Microscopic Bidomain Model

Before applying homogenization method, we introduce the basic equations of the meso-
microscopic bidomain model given in Subsection 1.4.1 without using meso- and micro-scaling
parameters denoted respectively by ε and δ. In the next section, a non-dimensionalization proce-
dure, based on these scaling parameters, turns out to be an essential ingredient of the asymptotic
analysis.

2.1.3 Non-dimensionalization procedure

In this part, we want to formulate the model equations given in Subsection 1.4.1 in dimen-
sionless form in the hope of better understanding the meaning of meso-micro-macro scales. In
the non-dimensionalization procedure, ε and δ will appear in these equations due to the scaling
of the involved quantities.

Cardiac tissues have a number of important inhomogeneities, particularly those related to
intercellular communications. The dimensionless analysis done correctly makes the problem
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simpler and clearer. In the literature, few works in that direction have been carried out, although
we can cite [CFPS12; HY09; RB13] for the nondimensionalization procedure of the ionic current
and [RC11; Whi20] for the non-dimensional analysis in the context of bidomain equations. So,
this analysis follows three steps.

First, we can define the dimensionless scale parameter:

ε :=
√
`mes

Rmλ
,

where Rm denotes the surface specific resistivity of the membrane Γy and λ := λi +λe, with λj
represents the average eigenvalues of the corresponding conductivity Mj for j = i, e, over the
cells’ arrangement. Now, we perform the following scaling of the space and time variables :

x̂ = x

L
, t̂ = t

τ
,

with the macroscopic units of length L = `mes/ε = `mic/δ and the time constant τ associated
with charging the membrane by the transmembrane current is given by:

τ = RmCm,

where Rm is the surface specific resistivity of the membrane Γy.
We take x̂ to be the variable at the macroscale (slow variable),

y := x̂

ε
and z := x̂

εδ

to be respectively the mesoscopic and microscopic space variable (fast variables) in the corre-
sponding unit cell.

Secondly, we scale all electrical potentials uj, v, currents and the gating variable w :

v = ∆vv̂, uj = ∆vûj and w = ∆wŵe

where ∆v and ∆w are convenient units to measure electric potentials and gating variable, re-
spectively, for j = i, e. By the chain rule, we obtain:

LCm
τ

∂t̂v̂ + L

∆v (Iion − Iapp) = −Mi∇x̂ûi · ni = Me∇x̂ûe · ne.
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Recalling that τ = RmCm and normalizing the conductivities Mj for j = i, e using

M̂j = 1
λ

Mj,

we get
L

Rmλ
∂t̂v̂ + L

∆vλ (Iion − Iapp) = −M̂i∇x̂ûi · ni = M̂e∇x̂ûe · ne.

Regarding the ionic functions Iion, H, and the applied current Iapp,we nondimensionalize them
by using the following scales

Îion(v̂, ŵ) = Rm

∆v Îion(v̂, ŵ), Îapp = Rm

∆v Iapp and Ĥ(v̂, ŵ) = τ

∆wH(v, w).

Consequently, we have

L

Rmλ

(
∂t̂v̂ + Îion(v̂, ŵ)− Îapp

)
= −M̂i∇x̂ûi · ni = M̂e∇x̂ûe · ne.

Remark 2.1. Recalling that the dimensionless parameter ε, given by ε :=
√
`mes

Rmλ
, is the ratio

between the mesoscopic cell length `mes and the macroscopic length L, i.e. ε = `mes/L and
solving for ε, we obtain

ε = L

Rmλ
.

Finally, we can convert the above microscopic bidomain system (1.5)-(1.8) to the following
non-dimensional form:

−∇x̂ ·
(
M̂ε,δ
i ∇x̂û

ε,δ
i

)
= 0 in Ωε,δ

i,T := (0, T )× Ωε,δ
i , (2.1a)

−∇x̂ ·
(
M̂ε
e∇x̂û

ε
e

)
= 0 in Ωε

e,T := (0, T )× Ωε
e, (2.1b)

ûε,δi − ûεe = v̂ε on Γε,T := (0, T )× Γε, (2.1c)

ε
(
∂t̂v̂ε + Îion(v̂ε, ŵε)− Îapp,ε

)
= Îm on Γε,T , (2.1d)

−M̂ε,δ
i ∇x̂û

ε,δ
i · ni = M̂ε

e∇x̂û
ε
e · ne = Îm on Γε,T , (2.1e)

∂t̂ŵε − Ĥ(v̂ε, ŵε) = 0 on Γε,T , (2.1f)

M̂ε,δ
i ∇x̂û

ε,δ
i · nz = 0 on Γδ,T , (2.1g)

with each equation correspond to the following sense: (2.1a) Intra quasi-stationary conduc-
tion, (2.1b) Extra quasi-stationary conduction, (2.1c) Transmembrane potential, (2.1d) Reac-
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tion onface condition, (2.1e) Meso-continuity equation, (2.1f) Dynamic coupling, (2.1g) Micro-
continuity equation.

For convenience, the superscript ·̂ of the dimensionless variables is omitted. Note that the
bidomain equations are invariant with respect to the scaling parameters ε and δ. Then, we define
the rescaled electrical potential as follows:

uε,δi (t, x) := ui

(
t, x,

x

ε
,
x

εδ

)
, uεe(t, x) := ue

(
t, x,

x

ε

)
.

Analogously, we obtain the rescaled transmembrane potential vε = (uε,δi − uεe)|Γε,T and gating
variable wε. In general, the functions vε and wε does not depend on δ, we omit the index δ when
non confusion arises. Next, we define also the following rescaled conductivity matrices:

Mε,δ
i (x) := Mi

(
x,
x

ε
,
x

εδ

)
and Mε

e(x) := Me

(
x,
x

ε

)
. (2.2)

We complete system (2.1) with no-flux boundary conditions:

(
Mε,δ
i ∇u

ε,δ
i

)
· n = (Mε

e∇uεe) · n = 0 on (0, T )× ∂extΩ,

where n is the outward unit normal to the exterior boundary of Ω. We impose initial conditions
on the transmembrane potential and the gating variable:

vε(0, x) = v0,ε(x) and wε(0, x) = w0,ε(x) a.e. on Γε. (2.3)

2.1.4 Assumptions on the Data

Keeping in mind the three-scale configuration of cardiac tissue (cf Subsection 1.3.1), we list
some assumptions on the conductivity matrices, the ionic functions, the source term and the
initial data:
Assumptions on the conductivity matrices. The rescaled intracellular and extracellular con-
ductivity tensors Mε,δ

i (x) := Mi (x, x/ε, x/εδ) and Mε
e(x) := Me (x, x/ε) satisfying the elliptic

and periodicity conditions: there exist constants α, β ∈ R, such that 0 < α < β and for all
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λ ∈ Rd :

Mjλ · λ ≥ α |λ|2 , (2.4a)

|Mjλ| ≤ β |λ| , for j = i, e, (2.4b)

Mi y- and z-periodic, Me y-periodic. (2.4c)

Assumptions on the ionic functions. The ionic current Iion(v, w) can be decomposed into
I1,ion(v) : R→ R and I2,ion(w);R→ R, where Iion(v, w) = I1,ion(v) + I2,ion(w). Furthermore,
I1,ion is considered as a C1 function, I2,ion and H : R2 → R are linear functions. Also, we
assume that there exists r ∈ (2,+∞) and constants α1, α2, α3, α4, α5, C > 0 and β1, β2 > 0
such that:

1
α1
|v|r−1 ≤ |I1,ion(v)| ≤ α1

(
|v|r−1 + 1

)
, |I2,ion(w)| ≤ α2(|w|+ 1), (2.5a)

|H(v, w)| ≤ α3(|v|+ |w|+ 1), and I2,ion(w)v − α4H(v, w)w ≥ α5 |w|2 , (2.5b)

Ĩ1,ion : z 7→ I1,ion(z) + β1z + β2 is strictly increasing with lim
z→0

Ĩ1,ion(z)/z = 0, (2.5c)

∀z1, z2 ∈ R,
(
Ĩ1,ion(z1)− Ĩ1,ion(z2)

)
(z1 − z2) ≥ 1

C
(1 + |z1|+ |z2|)r−2 |z1 − z2|2 . (2.5d)

Remark 2.2. One can easily show that I1,ion(0) = −β2, I′1,ion(0) = −β1 and I1,ion(z) ≥ −β1

for all z ∈ R.

Remark 2.3. Physiological and phenomenological models to these functions are available in
Section 1.4.3. Here, we take the Fitzhugh-Nagumo model [Fit61; NAY62] which is defined as
follows

H(v, w) = av − bw, (2.6a)

Iion(v, w) = (λv(1− v)(v − θ)) + (−λw) := I1,ion(v) + I2,ion(w) (2.6b)

where a, b, λ, θ are given parameters with a, b ≥ 0, λ < 0 and 0 < θ < 1.

Assumptions on the source term. There exists a constant C > 0 independent of ε such that the
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source term Iapp,ε satisfies the following estimation:

∥∥∥ε1/2Iapp,ε
∥∥∥
L2(Γε,T )

≤ C, (2.7)

where Γε,T := (0, T )× Γε. Furthermore, Iapp denote the weak limit of the sequence.
Assumptions on the initial data. The initial conditions v0,ε and w0,ε satisfy the following esti-
mation: ∥∥∥ε1/rv0,ε

∥∥∥
Lr(Γε)

+
∥∥∥ε1/2v0,ε

∥∥∥
L2(Γε)

+
∥∥∥ε1/2w0,ε

∥∥∥
L2(Γε)

≤ C, (2.8)

for some constant C independent of ε.Moreover, v0,ε and w0,ε are assumed to be traces of uni-
formly bounded sequences in C1(Ω).

Clearly, the equations in (2.1) are invariant under the simultaneous change of uε,δi and uεe into
uε,δi + k; uεe + k, for any k ∈ R. Hence, we may impose the following normalization condition:

∫
Ωεe
uεe(t, x)dx = 0 for a.e. t ∈ (0, T ). (2.9)

Then, the weak formulation of the microscopic bidomain model can be written as follows.

Definition 2.1 (Weak formulation). Aweak solution of problem (2.1)-(2.3) is a four tuple (uε,δi , uεe, wε)
such that uε,δi ∈ L2

(
0, T ;H1

(
Ωε,δ
i

))
, uεe ∈ L2 (0, T ;H1(Ωε

e)) , vε = (uε,δi − uεe)|Γε,T ∈
L2(0, T ;H1/2(Γε)) ∩Lr(Γε,T ), r ∈ (2,+∞), wε ∈ L2(Γε,T ), ∂tvε ∈ L2(0, T ;H−1/2(Γε))
+Lr/(r−1)(Γε,T ), ∂twε ∈ L2(Γε,T ) and satisfying the following weak formulation for a.e. t ∈
(0, T ) :

∫∫
Γε,T

ε∂tvεϕ dσxdt+
∫∫

Ωε,δi,T
Mε,δ
i (x)∇uε,δi · ∇ϕi dxdt+

∫∫
Ωεe,T

Mε
e(x)∇uεe · ∇ϕe dxdt

+
∫∫

Γε,T
εIion(vε, wε)ϕ dσxdt =

∫∫
Γε,T

εIapp,εϕ dσxdt,
(2.10)

∫∫
Γε,T

∂twεφ dσxdt−
∫∫

Γε,T
H(vε, wε)φ dσxdt = 0, (2.11)

for allϕi ∈ L2
(
0, T ;H1

(
Ωε,δ
i

))
, ϕe ∈ L2 (0, T ;H1 (Ωε

e))withϕ = (ϕi − ϕe) |Γε,T ∈L2
(
0, T ;H1/2(Γε)

)
∩Lr(Γε,T ) and φ ∈ L2(Γε,T ). Moreover, the weak formulation makes sense in view of the fol-
lowing initial conditions:

vε(0, x) = v0,ε(x) and wε(0, x) = w0,ε(x) a.e. on Γε. (2.12)
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2.2. Main results

The existence of the weak solution is given in the following theorem where the proof can be
found in [Ben+19] where the mesoscopic domain is ignored .

Theorem 2.1 (Microscopic BidomainModel). Assume that the conditions (2.2)-(2.9) hold. Then
the microscopic bidomain problem (2.1)-(2.3) possesses a unique weak solution in the sense of
Definition 2.1 for every fixed ε, δ > 0. Moreover, there exists a constant C > 0 not depending
on ε and δ such that:

∥∥∥√εvε∥∥∥
L∞(0,T ;L2(Γε))

+
∥∥∥√εwε∥∥∥

L∞(0,T ;L2(Γε))
≤ C, (2.13)

∥∥∥uε,δi ∥∥∥L2(0,T ;H1(Ωε,δi )) ≤ C, ‖uεe‖L2(0,T ;H1(Ωεe)) ≤ C, (2.14)

∥∥∥ε1/rvε
∥∥∥
Lr(Γε,T )

≤ C and
∥∥∥ε(r−1)/r I1,ion(vε)

∥∥∥
Lr/(r−1)(Γε,T )

≤ C. (2.15)

Furthermore, if vε,0 ∈ H1/2(Γε)∩Lr(Γε), there exists a constant C > 0 not depending on ε and
δ such that: ∥∥∥√ε∂tvε∥∥∥

L2(Γε,T )
+
∥∥∥√ε∂twε∥∥∥

L2(Γε,T )
≤ C. (2.16)

The existence and uniqueness of weak solutions for the microscopic bidomain problem (2.1)
for every fixed ε, δ > 0 is standard, e.g., by using the Faedo-Galerkin method based on a priori
estimates (2.13)-(2.16). We notice that we get the same energy estimates as in [Ben+19], this
comes from the consideration of homogeneous Neumann type conditions on the microscopic
scale.

2.2 Main results

In this section, we highlight the main results obtained in our first work. Based on three-scale
asymptotic expansion in Subsection 2.3 and unfolding homogenization method in Subsection
2.4, we can pass to the limit in the microscopic equations and derive the following macroscopic
problem:

Theorem 2.2 (Macroscopic BidomainModel). A sequence of solutions
(

(uε,δi )ε,δ, (ue,ε)ε, (wε)ε
)

of themicroscopic bidomainmodel (2.1)-(2.3) (obtained in Theorem 2.1) converges (as ε, δ → 0)
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to a weak solution (ui, ue, w) with ui, ue ∈ L2(0, T ;H1(Ω)), v = ui − ue ∈ L2(0, T ;H1(Ω)) ∩
Lr(ΩT ), ∂tv ∈ L2(0, T ;H−1(Ω)) + Lr/(r−1)(ΩT ) and w ∈ C(0, T ;L2(Ω)), of the macroscopic
problem (Reaction-Diffusion system)

µm∂tv +∇ ·
(
M̃e∇ue

)
+ µmIion(v, w) = µmIapp in ΩT ,

µm∂tv −∇ ·
(˜̃Mi∇ui

)
+ µmIion(v, w) = µmIapp in ΩT ,

∂tw −H(v, w) = 0 on ΩT ,

(2.17)

completed with no-flux boundary conditions on ui, ue on ∂extΩ :

(
M̃e∇ue

)
· n =

(˜̃Mi∇ui
)
· n = 0 on ΣT := (0, T )× ∂extΩ, (2.18)

and initial conditions for the transmembrane potential v and the gating variable w :

v(0, x) = v0(x) and w(0, x) = w0(x) a.e. on Ω, (2.19)

where v0, w0 ∈ L2(Ω). Here, µm = |Γy| / |Y | is the ration between the surface membrane and
the volume of the reference cell. Moreover, n is the outward unit normal to the exterior boundary
of Ω. Herein, the first-level homogenized conductivity matrices M̃j =

(
m̃pq

j

)
1≤p,q≤d

for j = i, e

and the second-level one ˜̃Mi =
(˜̃mpq

i

)
1≤p,q≤d

are respectively defined by:

m̃pq
e := 1

|Y |

d∑
k=1

∫
Ye

(
mpq
e + mpk

e

∂χqe
∂yk

)
dy, m̃pq

i := 1
|Z|

d∑
`=1

∫
Z

(
mpq
i + mp`

i

∂θqi
∂z`

)
dz,

(2.20a)

˜̃mpq

i := 1
|Y |

d∑
k=1

∫
Yi

(
m̃pk

i

∂χqi
∂yk

(y) + m̃pq
i

)
dy

= 1
|Y |

1
|Z|

d∑
k,`=1

∫
Yi

∫
Z

[(
mpk
i + mp`

i

∂θki
∂z`

)
∂χqi
∂yk

(y) +
(

mpq
i + mp`

i

∂θqi
∂z`

)]
dzdy.

(2.20b)

Herein, the components χqe of χe and χ
q
i of χi are respectively the corrector functions, solutions
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of the ε-cell problems:


−∇y · (Me∇yχ

q
e) = ∇y · (Meeq) in Ye,

χqe y-periodic,

Me∇yχ
q
e · ne = −(Meeq) · ne on Γy,

(2.21a)


−∇y ·

(
M̃i∇yχ

q
i

)
= ∇y ·

(
M̃ieq

)
in Yi,

χqi y-periodic,

M̃i∇yχ
q
i · ni = −

(
M̃ieq

)
· ni on Γy,

(2.21b)

and the component θqi of θi is the corrector function, solution of the δ-cell problem:
∇z · (Mi∇zθ

q
i ) = ∇z · (Mieq) in Z,

θqi y- and z-periodic,

Mi∇zθ
q
i · nz = −(Mieq) · nz on Γz,

(2.22)

for eq, q = 1, . . . , d, the standard canonical basis in Rd.

Theorem 2.2 is proved using two different methods: the first one given in Section 2.3 and
the other one in Section 2.4. The uniqueness of the solutions to the macroscopic model can be
proved by standard methods. This implies that all the convergence results remain valid for the
whole sequence. It is easy to verify that the macroscopic conductivity tensors of the intracellular˜̃Mi and extracellular M̃e spaces are symmetric and positive definite.

2.3 Three-scale Asymptotic Homogenization Method

In this section, we will introduce a homogenization method based on asymptotic expansion
usingmulti-scale variables (i.e. slow and fast variables). The aim is to show how to obtain amath-
ematical writing of the macroscopic model from the microscopic model. This method, among
others, is a formal and intuitive method for predicting the mathematical writing of a homoge-
nized solution that can eventually approach the solution of the initial problem (2.1).

For that, we start to treat the problem in the extracellular medium then we will solve the other
one in the intracellular medium using this method.
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2.3.1 Extracellular problem

The authors in [HY09] have applied and developed the two-scale asymptotic expansion
method established by Benssousan and Papanicolaou [BLP11] on the bidomain model (for the
case of Laplace equations) defined at two scales to obtain the homogenized model. In our ap-
proach, we investigate the same two-scale technique used in [HY09] for the extracellular prob-
lem. Whereas for the intracellular domain, we develop a new three-scale approach applied to the
intracellular problem to handle with the two structural levels of this domain (see Figure 2.2). We
recall the following initial extracellular problem:

Aεuεe = 0 in Ωε
e,T ,

Mε
e∇uεe · ne = ε (∂tvε + Iion(vε, wε)− Iapp,ε) = Im on Γε,T ,

(2.23)

with Aε = −∇ · (Mε
e∇) , where the extracellular conductivity matrices Mε

e defined by:

Mε
e(x) = Me

(
x

ε

)
, a.e. on Rd,

satisfying the following elliptic and periodic conditions given by (2.4).

The two-scale asymptotic expansion is assumed for the electrical potential uεe as follows:

uεe(t, x) := ue

(
t, x,

x

ε

)
= ue,0

(
t, x,

x

ε

)
+ εue,1

(
t, x,

x

ε

)
+ ε2ue,2

(
t, x,

x

ε

)
+ · · · (2.24)

with each uj(·, y) is y-periodic function dependent on time t ∈ (0, T ), slow (macroscopic) vari-
able x and the fast (mesoscopic) variable y. The slow and fast variables correspond respectively
to the global and local structure of the field. Similarly, the applied current Iapp,ε has the same
two-scale asymptotic expansion.
So, the derivation with respect to x is defined as:

∂uεe
∂xq

(t, x) = ∂ue
∂xq

(
t, x,

x

ε

)
+ 1
ε

∂ue
∂yq

(
t, x,

x

ε

)
.

Consequently, the full operator Aε in the initial problem (2.23) is represented as:

Aεuεe(t, x) = [(ε−2Ayy + ε−1Axy + ε0Axx)ue]
(
t, x,

x

ε

)
(2.25)
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with each operator is defined by:

Ayy = −
d∑

p,q=1

∂

∂yp

(
mpq
e (y) ∂

∂yq

)
,

Axy = −
d∑

p,q=1

∂

∂yp

(
mpq
e (y) ∂

∂xq

)
−

d∑
p,q=1

∂

∂xp

(
mpq
e (y) ∂

∂yq

)
,

Axx = −
d∑

p,q=1

∂

∂xp

(
mpq
e (y) ∂

∂xq

)
.

Indeed, we have :

Aεuεe(t, x) = − [∇ · (Mε
e∇uεe)] (t, x)

= −
 d∑
p,q=1

∂

∂xp

(
mpq
e (y)

(
∂ue
∂xq

+ 1
ε

∂ue
∂yq

))(t, x, x
ε

)

− 1
ε

 d∑
p,q=1

∂

∂yp

(
mpq
e (y)

(
∂ue
∂xq

+ 1
ε

∂ue
∂yq

))(x, x
ε

)

= ε−2

− d∑
p,q=1

∂

∂yp

(
mpq
e (y)∂ue

∂yq

)(t, x, x
ε

)

+ ε−1

− d∑
p,q=1

∂

∂yp

(
mpq
e (y)∂ue

∂xq

)
−

d∑
p,q=1

∂

∂xp

(
mpq
e (y)∂ue

∂yq

)(t, x, x
ε

)

+ ε0

− d∑
p,q=1

∂

∂xp

(
mpq
e (y)∂ue

∂xq

)(t, x, x
ε

)

= [(ε−2Ayy + ε−1Axy + ε0Axx)ue]
(
t, x,

x

ε

)
.

Now, we substitute the asymptotic expansion (2.24) of uεe in the developed operator (2.25)
to obtain

Aεuεe(x) = [ε−2Ayyue,0 + ε−1Ayyue,1 + ε0Ayyue,2 + · · · ]
(
t, x,

x

ε

)
+ [ε−1Axyue,0 + ε0Axyue,1 + · · · ]

(
t, x,

x

ε

)
+ [ε0Axxue,0 + · · · ]

(
t, x,

x

ε

)
= [ε−2Ayyue,0 + ε−1 (Ayyue,1 +Axyue,0)

+ ε0 (Ayyue,2 +Axyue,1 +Axxue,0)]
(
t, x,

x

ε

)
+ · · · .
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Similarly, we substitute the asymptotic expansion (2.24) of uεe into the boundary condition
equation (2.23) on Γy. Consequently, by equating the powers-like terms of ε` to zero (` =
−2,−1, 0), we have to solve the following system of equations for the functions ue,k(t, x, y), k =
0, 1, 2 :


Ayyue,0 = 0 in Ye,

ue,0 y-periodic,

Me∇yue,0 · ne = 0 on Γy,

(2.26)


Ayyue,1 = −Axyue,0 in Ye,

ue,1 y-periodic,

(Me∇yue,1 + Me∇xue,0) · ne = 0 on Γy,

(2.27)


Ayyue,2 = −Axyue,1 −Axxue,0 in Ye,

ue,2 y-periodic,

(Me∇yue,2 + Me∇xue,1) · ne = ∂tv0 + Iion(v0, w0)− Iapp,0 on Γy,

(2.28)

The authors in [BLP11]-[CD99] have successively solved the three systems into Dirrichlet
boundary conditions (2.26)-(2.28). Herein, the functions ue,0, ue,1 and ue,2 in the asymptotic
expansion (2.24) for the extracellular potential uεe satisfy the Neumann boundary value problems
(2.26)-(2.28) in the local portion Ye of a unit cell Y (see [FS02; HY09] for the case of Laplace
equations).
The resolution is described as follows:

• First step We begin with the first boundary value problem (2.26) whose variational formulation:


Find u̇e,0 ∈ Wper(Ye) such that

ȧYe(u̇e,0, v̇) =
∫
∂Ye

(Me∇yue,0 · ne)v dσy, ∀v̇ ∈ Wper(Ye),
(2.29)

with ȧYe(u̇, v̇) is given by:

ȧYe(u̇, v̇) =
∫
Ye

Me∇yu∇yvdy, ∀u ∈ u̇, ∀v ∈ v̇, ∀u̇, ∀v̇ ∈ Wper(Ye) (2.30)

andWper(Ye) is given by Definition A.4.
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We want to clarify the right-hand side of the variational formulation (2.29). By the defi-
nition of ∂Ye := (∂extY ∩ ∂Ye) ∪ Γy, we use Proposition A.1 and the y-periodicity of Mi

by taking account the boundary condition on Γy to say that :
∫
∂Ye

(Me∇yue,0 · ne)v dσy

=
∫
∂extY ∩∂Ye

(Me∇yue,0 · ne)v dσy +
∫

Γy
(Me∇yue,0 · ne)v dσy = 0.

Using Theorem A.2, we can prove the existence and uniqueness of the solution u̇e,0. Then,
problem (2.26) has a unique solution ue,0 independent of y, so we deduce that:

ue,0(t, x, y) = ue,0(t, x).

In the next section, we show that ui,0 does not depend on y (by the same strategy). Since
v0 = (ui,0 − ue,0))|Γy then we also deduce that v0 and w0 not depend on the mesoscopic
variable y.

Remark 2.4. In the asymptotic expansion (2.24), each element ue,k is a priori an oscillat-
ing function, since it depends on the fast variable x/ε. Actually, ue,0 depends only on the
slow (macroscopic) variable x, so it does not oscillate "rapidly" with x/ε. This is why we
now expect ue,0 to be the "solution homogenized". It remains to find if there is an equation
on Ω satisfied by ue,0, in which case we would have found "homogenized equation" too.

• Second step We now turn to the second boundary value problem (2.27). Since ue,0 is independent of
y, this equation can be rewritten as:

Ayyue,1 =
d∑

p,q=1

∂mpq
e

∂yp

∂ue,0
∂xq

in Ye,

ue,1 y-periodic,

(Me∇ue,1 + Me∇ue,0) · ne = 0 on Γy,

(2.31)

Its variational formulation is:Find u̇e,1 ∈ Wper(Ye) such that

ȧYe(u̇e,1, v̇) = (F1, v̇)(Wper(Ye))′,Wper(Ye) ∀v̇ ∈ Wper(Ye),
(2.32)
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with ȧYe is given by (2.30) and F1 is defined by:

(F1, v̇)(Wper(Ye))′,Wper(Ye) =
d∑

p,q=1

∂ue,0
∂xq

∫
Ye

mpq
e (y) ∂v

∂yp
dy, ∀v ∈ v̇, ∀v̇ ∈ Wper(Ye).

(2.33)
Using Theorem A.2, we obtain that the second system (2.31)-(2.33) has a unique weak
solution u̇e,1 ∈ Wper(Ye) (defined by [BLP11] and [OSY09]). Thus, the linearity of terms
in the right hand side of equation (2.31) suggests to look for u̇e,1 under the following form:

u̇e,1(t, x, y) =
d∑
q=1
χ̇qe(y)∂u̇e,0

∂xq
(t, x) inWper(Ye), (2.34)

with the corrector function χ̇qe satisfies the following ε-cell problem:

Ayyχ̇qe =

d∑
p=1

∂mpq
e

∂yp
in Ye,

χ̇qe y-periodic,

Me∇yχ̇
q
e · ne = −(Meeq) · ne on Γy,

(2.35)

for eq, q = 1, . . . , d, the standard canonical basis in Rd. Moreover, we can choose a rep-
resentative element χqe of the class χ̇qe satisfying the following variational formulation:


Find χqe ∈ W#(Ye) such that

aYe(χqe, v) = (F, v)(W#(Ye))′,W#(Ye), ∀v ∈ W#(Ye),

(2.36)

with aYe is given by (2.30) and F is defined by:

(F, v)(W#(Ye))′,W#(Ye) =
d∑
p=1

∫
Ye

mpq
e (y) ∂v

∂yp
dy,

where the spaceW#(Ye) is given by the expression (A.3). Since F belongs to (W#(Ye))′

then the condition of Theorem A.2 is imposed in order to guarantee existence and unique-
ness of the solution.
Thus, by the form of u̇e,1 given by (2.34), the solution ue,1 of the second system (2.27) can
be represented by the following ansatz:

ue,1(t, x, y) = χe(y) · ∇xue,0(t, x) + ũe,1(t, x) with ue,1 ∈ u̇e,1, (2.37)
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where ũe,1 is a constant with respect to y (i.e ũe,1 ∈ 0̇ inWper(Y )).

• Last step We now pass to the last boundary value problem (2.28). Taking into account the form of
ue,0 and ue,1, we obtain

−Axyue,1 −Axxue,0

=
d∑

p,q=1

∂

∂yp

(
mpq
e (y)∂ue,1

∂xq

)
+

d∑
p,q=1

∂

∂xp

(
mpq
e (y)

(
∂ue,1
∂yq

+ ∂ue,0
∂xq

))
.

Consequently, this system (2.28) have the following variational formulation:
Find u̇e,2 ∈ Wper(Ye) such that

ȧYe(u̇e,2, v̇) = (F2, v̇)(Wper(Ye))′,Wper(Ye) ∀v̇ ∈ Wper(Ye),
(2.38)

with ȧYe is given by (2.30) and F2 is defined by:

(F2, v̇)(Wper(Ye))′,Wper(Ye)

=
∫

Γy
(Me∇yue,2 + Me∇xue,1) · ne v dσy −

d∑
p,q=1

∫
Ye

mpq
e (y)∂ue,1

∂xq

∂v

∂yp
dy

+
d∑

p,q=1

∫
Ye

∂

∂xp

(
mpq
e (y)

(
∂ue,1
∂yq

+ ∂ue,0
∂xq

))
vdy, ∀v ∈ v̇, ∀v̇ ∈ Wper(y).

(2.39)

The problem (2.38)-(2.39) is well-posed according to Theorem A.2 under the compatibil-
ity condition:

(F2, 1)(Wper(Ye))′,Wper(Ye) = 0.

which equivalent to:

−
d∑

p,q=1

∫
Ye

∂

∂xp

(
mpq
e (y)

(
∂ue,1
∂yq

+ ∂ue,0
∂xq

))
dy = |Γy| (∂tv0 + Iion(v0, w0)− Iapp) .

In addition, we replace ue,1 by its form (2.37) in the above condition to obtain:

−
d∑

p,q=1

∫
Ye

∂

∂xp

(
mpq
e (y)

(
d∑

k=1

∂χke
∂yq

∂ue,0
∂xk

+ ∂ue,0
∂xq

))
dy

= |Γy| (∂tv0 + Iion(v0, w0)− Iapp) .
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By expanding the sum and permuting the index, we obtain

−
d∑

p,q=1

d∑
k=1

∫
Ye

∂

∂xp

(
mpq
e (y)∂χ

k
e

∂yq

∂ue,0
∂xk

)
dy −

d∑
p,k=1

∫
Ye

∂

∂xp

(
mpk
e (y)∂ue,0

∂xk

)
dy

= |Γy| (∂tv0 + Iion(v0, w0)− Iapp)

which equivalent to find ue,0 satisfying the following problem:

−
d∑

p,k=1

 1
|Y |

d∑
q=1

∫
Ye

(
mpk
e (y) + mpq

e (y)∂χ
k
e

∂yq

)
dy

 ∂2ue,0
∂xp∂xk

= |Γ
y|
|Y |

(∂tv0 + Iion(v0, w0)− Iapp) ,

where Iapp(t, x) = 1
|Γy|

∫
Γy
Iapp,0(·, y) dσy.

Consequently, we see that’s exactly the homogenized equation satisfied by ue,0 of the extracel-
lular problem can be rewritten as:

Bxxue,0 = µm (∂tv0 + Iion(v0, w0)− Iapp) on ΩT , (2.40)

where µm = |Γy| / |Y | . Herein, the homogenized operator Bxx is defined by :

Bxx = −∇x ·
(
M̃e∇x

)
= −

d∑
p,k=1

∂

∂xp

(
m̃pq

e

∂

∂xk

)
(2.41)

with the coefficients of the homogenized conductivity matrices M̃e =
(
m̃pk

e

)
1≤p,k≤d

defined by:

m̃pk
e := 1

|Y |

d∑
q=1

∫
Ye

(
mpk
e + mpq

e

∂χke
∂yq

)
dy. (2.42)

2.3.2 Intracellular problem

Using the two-scale asymptotic expansionmethod, the extracellular problem is treated on two
scales. Our derivation bidomain model is based on a new three-scale approach. We apply three-
scale asymptotic expansion in the intracellular problem to obtain its homogenized equation.
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Recall that uε,δi the solution of the following initial intracellular problem:

Aε,δuε,δi = 0 in Ωε,δ
i,T ,

−Mε,δ
i ∇u

ε,δ
i · ni = ε (∂tvε + Iion(vε, wε)− Iapp,ε) = Im on Γε,T ,

−Mε,δ
i ∇u

ε,δ
i · nz = 0 on Γδ,T ,

(2.43)

with Aε,δ = −∇ ·
(
Mε,δ
i ∇

)
, where the intracellular conductivity matrices Mε,δ

i defined by:

Mε,δ
i (x) = Mi

(
x

ε
,
x

εδ

)
,

satisfying the following elliptic and periodicity conditions given by (2.4).

In the intracellular problem, we consider three different scales: the slow variable x describes
the macroscopic one, the fast variables

x

ε
describes the mesoscopic one while

x

εδ
describes the

microscopic one.

To proceed with multi-scale formulation of the microscopic bidomain problem, a three-scale
asymptotic expansion is assumed for the intracellular potential uε,δi as follows:

uε,δi (t, x) := ui

(
t, x,

x

ε
,
x

εδ

)
= ui,0

(
t, x,

x

ε
,
x

εδ

)
+ εui,1

(
t, x,

x

ε
,
x

εδ

)
+ εδui,2

(
t, x,

x

ε
,
x

εδ

)
+ ε2ui,3

(
t, x,

x

ε
,
x

εδ

)
+ ε2δui,4

(
t, x,

x

ε
,
x

εδ

)
+ ε2δ2 ui,5

(
t, x,

x

ε
,
x

εδ

)
+ · · ·

(2.44)
with each ui,q(·, y, z) is y- and z-periodic function dependent on time t ∈ (0, T ), themacroscopic
variable x, the mesoscopic variable y, and the microscopic variable z.
Next, we use the chain rule to derive with respect to x

∂uε,δi
∂xq

(t, x) =
[
∂ui
∂xq

+ 1
ε

∂ui
∂yq

+ 1
εδ

∂ui
∂zq

] (
t, x,

x

ε
,
x

εδ

)
.

Remark 2.5. The authors in [RT+18] used the iterated three-scale homogenization methods to
study macroscopic performance of hierarchical composites in the context of mechanics where
the microscale and mesoscale are very well-separated, i.e.

uε,δ(x, y, z) = u0(x, y, z) +
∞∑
k=1

εkuk(x, y, z) +
∞∑
k=1

δku′k(x, y, z),

83



Chapter 2 – Three-scale Homogenization Method Applied To Meso-Microscopic Bidomain Model

with y = x/ε and z = x/δ (δ << ε). The approach proposed in the present work is exploited
the effective properties of cardiac tissue with multiple small-scale configurations. We note that
our present technique recovers the classical reiterated homogenization [BLP11] where δ = ε.

Consequently, we can write the full operator Aε,δ in the initial problem (2.43) as follows:

Aε,δuε,δi (t, x) = −
[
∇ ·

(
Mε,δ
i ∇u

ε,δ
i

)]
(t, x)

= −
 d∑
p,q=1

∂

∂xp

(
mpq
i (y, z)

(
∂ui
∂xq

+ 1
ε

∂ui
∂yq

+ 1
εδ

∂ui
∂zq

))(t, x, x
ε
,
x

εδ

)

− 1
ε

 d∑
p,q=1

∂

∂yp

(
mpq
i (y, z)

(
∂ui
∂xq

+ 1
ε

∂ui
∂yq

+ 1
εδ

∂ui
∂zq

))(t, x, x
ε
,
x

εδ

)

− 1
εδ

 d∑
p,q=1

∂

∂zp

(
mpq
i (y, z)

(
∂ui
∂xq

+ 1
ε

∂ui
∂yq

+ 1
εδ

∂ui
∂zq

))(t, x, x
ε
,
x

εδ

)
= [(ε−2δ−2Azz + ε−2δ−1Ayz + ε−1δ−1Axz

+ ε−2Ayy + ε−1Axy + ε0δ0Axx)ui]
(
t, x,

x

ε
,
x

εδ

)

(2.45)

with each operator is defined by:
Ass = −

d∑
p,q=1

∂

∂sp

(
mpq
i (y, z) ∂

∂sq

)
,

Ash = −
d∑

p,q=1

∂

∂sp

(
mpq
i (y, z) ∂

∂hq

)
−

d∑
p,q=1

∂

∂hq

(
mpq
i (y, z) ∂

∂sp

)
if s 6= h,

for s, h := x, y, z.

Indeed, we have:

Aε,δuε,δi (t, x) = −
[
∇ ·

(
Mε,δ
i ∇u

ε,δ
i

)]
(t, x)

= −
 d∑
p,q=1

∂

∂xp

(
mpq
i (y, z)

(
∂ui
∂xq

+ 1
ε

∂ui
∂yq

+ 1
εδ

∂ui
∂zq

))(t, x, x
ε
,
x

εδ

)

− 1
ε

 d∑
p,q=1

∂

∂yp

(
mpq
i (y, z)

(
∂ui
∂xq

+ 1
ε

∂ui
∂yq

+ 1
εδ

∂ui
∂zq

))(t, x, x
ε
,
x

εδ

)

− 1
εδ

 d∑
p,q=1

∂

∂zp

(
mpq
i (y, z)

(
∂ui
∂xq

+ 1
ε

∂ui
∂yq

+ 1
εδ

∂ui
∂zq

))(t, x, x
ε
,
x

εδ

)
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= ε−2δ−2

− d∑
p,q=1

∂

∂zp

(
mpq
i (y, z)∂ui

∂zq

)(t, x, x
ε
,
x

εδ

)

+ ε−2δ−1

− d∑
p,q=1

∂

∂yp

(
mpq
i (y, z)∂ui

∂zq

)
−

d∑
p,q=1

∂

∂zp

(
mpq
i (y, z)∂ui

∂yq

)(t, x, x
ε
,
x

εδ

)

+ ε−1δ−1

− d∑
p,q=1

∂

∂xp

(
mpq
i (y, z)∂ui

∂zq

)
−

d∑
p,q=1

∂

∂xp

(
mpq
i (y, z)∂ui

∂zq

)(t, x, x
ε
,
x

εδ

)

+ ε−2

− d∑
p,q=1

∂

∂yp

(
mpq
i (y, z)∂ui

∂yq

)(t, x, x
ε
,
x

εδ

)

+ ε−1

− d∑
p,q=1

∂

∂xp

(
mpq
i (y, z)∂ui

∂yq

)
−

d∑
p,q=1

∂

∂yp

(
mpq
i (y, z)∂ui

∂xq

)(t, x, x
ε
,
x

εδ

)

+ ε0δ0

− d∑
p,q=1

∂

∂xp

(
mpq
i (y, z)∂ui

∂xq

)(t, x, x
ε
,
x

εδ

)
= [(ε−2δ−2Azz + ε−2δ−1Ayz + ε−1δ−1Axz

+ ε−2Ayy + ε−1Axy + ε0δ0Axx)ui]
(
t, x,

x

ε
,
x

εδ

)
.

Now, we substitute the asymptotic expansion (2.44) of uε,δi into the operator developed (2.45) to
obtain :

Aε,δuε,δ(t, x)

= [ε−2δ−2Azzui,0 + ε−2δ−1Ayzui,0 + ε−2Ayyui,0 + ε−1δ−2Azzui,1 + δ−2Azzui,3
+ ε−1δ−1 (Azzui,2 +Ayzui,1 +Axzui,0) + δ−1 (Azzui,4 +Ayzui,3 +Axzui,1)

+ ε−1 (Ayzui,2 +Ayyui,1 +Axzui,0)

+ ε0δ0 (Azzui,5 +Ayzui,4 +Ayyui,3 +Axzui,2 +Axyui,1 +Axxui,0)]
(
t, x,

x

ε
,
x

εδ

)
+ · · · .

Similarly, we have the boundary condition:

Mε,δ
i ∇u

ε,δ
i · n =

[
Mε,δ
i ∇xui + ε−1Mε,δ

i ∇yui + ε−1δ−1Mε,δ
i ∇zui

]
· n, (2.46)

for n := ni, nz.

Thus, we also substitute the asymptotic expansion (2.44) of uε,δi into the boundary condition
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equation (2.43) on Γy and on Γz :

Mε,δ
i ∇u

ε,δ
i · n = [ε0δ0(Mi∇xui,0) · n+ ε(Mi∇xui,1) · n+ εδ(Mi∇xui,2) · n+ · · · ]

(
t, x,

x

ε
,
x

εδ

)
+ [ε−1(Mi∇yui,0) · n+ ε0δ0(Mi∇yui,1) · n+ δ(Mi∇yui,2) · n

+ ε(Mi∇yui,3) · n+ εδ(Mi∇yui,4) · n+ · · · ]
(
t, x,

x

ε
,
x

εδ

)
+ [ε−1δ−1(Mi∇zui,0) · n+ δ−1(Mi∇zui,1) · n+ ε0δ0(Mi∇zui,2) · n

+ εδ−1(Mi∇zui,3) · n+ ε(Mi∇zui,4) · n+ εδ(Mi∇zui,5) · n+ · · · ]
(
t, x,

x

ε
,
x

εδ

)
= [ε−1δ−1(Mi∇zui,0) · n+ ε−1(Mi∇yui,0) · n+ δ−1(Mi∇zui,1) · n

+ ε0δ0 (Mi∇zui,2 + Mi∇yui,1 + Mi∇xui,0) · n+ ε−1δ−1 (Mi∇zui,3) · n

+ ε (Mi∇zui,4 + Mi∇yui,3 + Mi∇xui,1) · n+ δ(Mi∇yui,2) · n

+ εδ (Mi∇zui,5 + Mi∇yui,4 + Mi∇xui,2) · n]
(
t, x,

x

ε
,
x

εδ

)
+ · · · .

where n represents the outward unit normal on Γy or on Γz (n := ni, nz). Consequently, by
equating the terms of the powers coefficients ε`δm for the elliptic equations and of the powers
coefficients ε`+1δm+1 for the boundary conditions (`,m = −2,−1, 0), we obtain the following
systems: 

Azzui,0 = 0 in Zc,

ui,0 z-periodic,

Mi∇zui,0 · nz = 0 on Γz,

(2.47)


Ayyui,0 = 0 in Yi,

ui,0 y-periodic,

Mi∇yui,0 · ni = 0 on Γy,

(2.48)



Ayzui,0 = 0 in Zc,

ui,0 y- and z-periodic,

Mi∇yui,0 · ni = 0 on Γy,

Mi∇zui,0 · nz = 0 on Γz,

(2.49)
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Azzui,1 = 0 in Zc,

ui,1 z-periodic,

Mi∇zui,1 · nz = 0 on Γz,

(2.50)


Azzui,2 = −Ayzui,1 −Axzui,0 in Zc,

ui,2 z-periodic,

(Mi∇zui,2 + Mi∇yui,1 + Mi∇xui,0) · nz = 0 on Γz,

(2.51)


Azzui,3 = 0 in Zc,

ui,3 z-periodic,

(Mi∇zui,3) · nz = 0 on Γz,

(2.52)



Azzui,4 = −Ayzui,3 −Axzui,1 in Zc,

ui,4 y- and z-periodic,

(Mi∇zui,4 + Mi∇yui,3 + Mi∇xui,1) · ni = − (∂tv0 + Iion(v0, w0)− Iapp) on Γy,

(Mi∇zui,4 + Mi∇yui,3 + Mi∇xui,1) · nz = 0 on Γz,
(2.53)



Ayzui,2 = −Ayyui,1 −Axyui,0 in Zc,

ui,2 y- and z-periodic,

(Mi∇zui,2 + Mi∇yui,1 + Mi∇xui,0) · ni = 0 on Γy,

Mi∇yui,2 · nz = 0 on Γz,

(2.54)


Azzui,5 = −Ayzui,4 −Ayyui,3 −Axzui,2 −Axyui,1 −Axxui,0 in Zc,

ui,5 z-periodic,

(Mi∇zui,5 + Mi∇yui,4 + Mi∇xui,2) · nz = 0 on Γz.

(2.55)

These systems (2.47)-(2.55) have a particular structure in the sense that their unknowns will
be found iteratively.

We will solve these nine problems (2.47)-(2.55) successively to determine the homogenized
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problem (based on the work [CD99] and [BLP11]). The resolution is described as follows:

• Step 1 We begin with the first problem (2.47) whose the following variational formulation:


Find u̇i,0 ∈ Wper(Zc) such that

ȧZc(u̇i,0, v̇) =
∫
∂Zc

(Mi∇zui,0 · nz) v dσ(z), ∀v̇ ∈ Wper(Zc),
(2.56)

with ȧZc given by:

ȧZc(u̇, v̇) =
∫
Zc

Mi∇zu∇zv dz, ∀u ∈ u̇, ∀v ∈ v̇, ∀u̇, ∀v̇ ∈ Wper(Zc) (2.57)

and
Wper(Zc) = H1

per(Zc)/R

is given by Definition A.4. Similarly, we want to clarify the right hand side of the varia-
tional formulation (2.56). By the definition of ∂Zc := ∂extZ ∪ Γz, we use Proposition A.1
and the z-periodicity of Mi by taking account the boundary condition on Γz to say that :

∫
∂Zc

(Mi∇zui,0 · nz) v dσ(z)

=
∫
∂extZ

(Mi∇zui,0 · nz) v dσ +
∫

Γz
(Mi∇zui,0 · nz) v dσ = 0.

Using Theorem A.2, we obtain the existence and the uniqueness of solution u̇i,0 to the
problem (2.56). In addition, we have:

‖u̇i,0‖Wper(Zc) = 0.

So, ui,0 is independent of the microscopic variable z. Thus, we deduce that:

ui,0(t, x, y, z) = ui,0(t, x, y), ∀ui,0 ∈ u̇i,0.

• Step 2 We now solve the second boundary value problem (2.48) that is defined in Yi. Its varia-
tional formulation is:

Find u̇i,0 ∈ Wper(Yi) such that

ȧYi(u̇i,0, v̇) =
∫
∂Yi

Mi∇yui,0 · ni v dσ(y) ∀v̇ ∈ Wper(Yi),

(2.58)
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with ȧYi given by:

ȧYi(u̇, v̇) =
∫
Yi

Mi∇yu∇yvdy, ∀u ∈ u̇, ∀v ∈ v̇, ∀u̇, ∀v̇ ∈ Wper(Yi) (2.59)

andWper(Yi) given by Definition A.4.

Similarly, we want to clarify first the right hand side in the variational formulation (2.58).
By the definition of ∂Yi := (∂extY ∩ ∂Yi) ∪ Γy, wwe use Proposition A.1 and the y-
periodicity of Mi by taking account the boundary condition on Γy to say that:

∫
∂Yi

Mi∇yui,0 · ni(y)v dσ(y)

=
∫
∂extY ∩∂Yi

Mi∇yui,0 · ni(y)v dσ(y) +
∫

Γy
Mi∇yui,0 · ni(y) dσ(y) = 0.

Therefore, we can apply Theorem A.2 to prove the existence and uniqueness of solution
u̇i,0. In addition, we have:

‖u̇i,0‖Wper(Yi) = 0.

Thus, we deduce that ui,0 is also independent of the mesoscopic variable y. Consequently,
the third boundary value problem (2.49) is satisfied automatically.
Next, we solve the fourth problem (2.50) by the same process of the first step. So, we
deduce that ui,1 is independent of z. Finally, we have:

ui,0(t, x, y, z) = ui,0(t, x) and ui,1(t, x, y, z) = ui,1(t, x, y).

Remark 2.6. Since ui,0 is independent of y and z then it does not oscillate "rapidly".
This is why now expect ui,0 to be the "homogenized solution". To find the homogenized
equation, it is sufficient to find an equation in Ω satisfied by ui,0 independent on y and z.

• Step 3 We solve the fifth problem (2.51). Taking into account the form of ui,0 and ui,1, system
(2.51) can be rewritten as:

Azzui,2 =
d∑

p,q=1

∂mpq
i

∂zp

(
∂ui,1
∂yq

+ ∂ui,0
∂xq

)
in Zc,

ui,2 z-periodic,

(Mi∇zui,2 + Mi∇yui,1 + Mi∇xui,0) · nz = 0 on Γz,

(2.60)
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Its variational formulation is:Find u̇i,2 ∈ Wper(Zc) such that

ȧZc(u̇i,2, v̇) = (F2, v̇)(Wper(Zc))′,Wper(Zc) ∀v̇ ∈ Wper(Zc),
(2.61)

with ȧZc given by (2.57) and F2 defined by:

(F2, v̇)(Wper(Zc))′,Wper(Zc) = −
d∑

p,q=1

(
∂ui,1
∂yq

+ ∂ui,0
∂xq

)∫
Zc

mpq
i (t, y, z) ∂v

∂zp
dz, (2.62)

for all v ∈ v̇ and v̇ ∈ Wper(Zc).

Note that F2 belongs to (Wper(Zc))′. Then, Theorem A.2 gives a unique solution u̇i,2 ∈
Wper(Zc) of the problem (2.60)-(2.62).
Thus, the linearity of terms in the right of equation (2.60) suggests to look for u̇i,2 under
the following form:

u̇i,2 = θ̇i(z) · (∇yu̇i,1 +∇xu̇i,0) inWper(Zc), (2.63)

with the corrector function θ̇qi (i.e the components of the function θ̇i) satisfies the δ-cell
problem: 

Azz θ̇qi =
d∑
p=1

∂mpq
i

∂zp
(y, z) in Zc,

θ̇qi y- and z-periodic,

Mi∇z θ̇
q
i · nz = −(Mieq) · nz on Γz,

(2.64)

for eq, q = 1, . . . , d, the standard canonical basis in Rd. Moreover, we can choose a rep-
resentative element θqi of the class θ̇

q
i which satisfy the following variational formulation:



Find θqi ∈ W#(Zc) such that

aZc(θ
q
i , v) = −

d∑
p=1

∫
Zc

mpq
i (t, y, z) ∂v

∂zp
dz, ∀v ∈ W#(Zc),

(2.65)

withW#(Zc) given by the expression (2.91). The condition of Theorem A.2 is imposed to
guarantee the existence and uniqueness of the solution of the problem (2.64)-(2.65). Thus,
by the form u̇i,2 given by the expression (2.63), the solution ui,2 can be represented by the
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following ansatz:

ui,2(t, x, y, z) = θi(z) · (∇yui,1(t, x, y) +∇xui,0(t, x)) + ũi,2(t, x, y) with ui,2 ∈ u̇i,2,
(2.66)

and ũi,2 is a constant with respect to z (i.e ũi,2 ∈ 0̇ inW#(Zc)).

Next, we pass to the sixth problem (2.52) by the same strategy of the first step. We obtain
that ui,3 is independent of z and we have:

ui,3(t, x, y, z) = ui,3(t, x, y).

• Step 4 We now solve the seventh boundary value problem (2.53). Taking into account the form
of ui,3 and ui,1, we can rewrite this problem as follows:


Azzui,4 =

d∑
p,q=1

∂mpq
i

∂zp

(
∂ui,3
∂yq

+ ∂ui,1
∂xq

)
in Zc,

ui,4 y- and z-periodic,

(Mi∇zui,4 + Mi∇yui,3 + Mi∇xui,1) · nz = 0 on Γz.

(2.67)

Its variational formulation is:Find u̇i,4 ∈ Wper(Zc) such that

ȧZc(u̇i,4, v̇) = (F4, v̇)(Wper(Zc))′,Wper(Zc) ∀v̇ ∈ Wper(Zc),
(2.68)

with ȧZc given by (2.57) and F4 defined by:

(F4, v̇)(Wper(Zc))′,Wper(Zc) = −
d∑

p,q=1

(
∂ui,3
∂yq

+ ∂ui,1
∂xq

)∫
Zc

mpq
i (t, y, z) ∂v

∂zp
dz, (2.69)

for all v ∈ v̇ and v̇ ∈ Wper(Zc).
The problem (2.67)-(2.69) is well-posed according to Theorem A.2 under the compatibil-
ity condition:

(F4, 1)(Wper(Zc))′,Wper(Zc) = 0.

This implies that problem (2.53) has a unique periodic solution up to a constant. Thus, the
linearity of terms in the right hand side of equation (2.67) suggests to look for ui,4 under
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the following form:

ui,4(t, x, y, z) = θi(z) · (∇yui,3(t, x, y) +∇xui,1(x)) + ũi,4(t, x, y) with ui,4 ∈ u̇i,4,
(2.70)

where ũi,4 is a constant with respect to z and θi satisfies problem (2.64).

• Step 5 We consider the eighth problem (2.54):


Ayzui,2 = −Ayyui,1 −Axyui,0 in Zc,

ui,2 z-periodic,

(Mi∇zui,2 + Mi∇yui,1 + Mi∇xui,0) · ni = 0 on Γy,

Mi∇yui,2 · nz = 0 on Γz.

Taking into account the form of ui,0 and ui,1, we can rewrite the first equation as follows:

Ayzui,2 =
d∑

p,q=1

∂

∂yp

(
mpq
i (y, z)∂ui,1

∂yq

)
+

d∑
p,q=1

∂mpq
i

∂yp
(y, z)∂ui,0

∂xq
.

To find the explicit form of ui,1, we will follow the following steps: First, we integrate over
Zc the above equation as follows:

−
d∑

p,q=1

∫
Zc

∂

∂yp

(
mpq
i (y, z)∂ui,2

∂zq

)
dz −

d∑
p,q=1

∫
Zc

∂

∂zp

(
mpq
i (y, z)∂ui,2

∂yq

)
dz

=
d∑

p,q=1

∫
Zc

∂

∂yp

(
mpq
i (y, z)∂ui,1

∂yq

)
+

d∑
p,q=1

∫
Zc

∂mpq
i

∂yp
(y, z)∂ui,0

∂xq
dz.

(2.71)

We denote by Ei with i = 1, . . . , 4 the terms of the previous equation which is rewritten
as follows (to respect the order):

E1 + E2 = E3 + E4.

Next, we use the divergence formula for the second termE2 together with Proposition A.1
and the boundary condition on Γz to obtain:

E2 = −
∫
∂Zc

Mi∇yui,2 · nz dσ(z)

= −
∫
∂extZ

Mi∇yui,2 · nz dσ(z)−
∫

Γz
Mi∇yui,2 · nz dσ(z) = 0.
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Now, we replace ui,2 by its expression (2.66) in the first term E1 to obtain the following:

E1 = −
d∑

p,q=1

∫
Zc

∂

∂yp

(
mpq
i (y, z)

(
d∑

k=1

∂θki
∂zq

(
∂ui,1
∂yk

+ ∂ui,0
∂xk

)))
dz.

By permuting the index in the right hand side of the equation (2.71), we obtain:

E3 =
d∑

p,k=1

∫
Zc

∂

∂yp

(
mpk
i (y, z)∂ui,1

∂yk

)
,

E4 =
d∑

p,k=1

∫
Zc

∂mpk
i

∂yp
(y, z)∂ui,0

∂xk
dz.

Finally, we obtain an equation for the mesoscopic scale (independent of z) satisfied by
ui,1 :

−
d∑

p,k=1

∂

∂yp

 1
|Z|

d∑
q=1

[∫
Zc

(
mpk
i + mpq

i

∂θki
∂zq

)
dz

]
∂ui,1
∂yk


=

d∑
p,k=1

∂

∂yp

 1
|Z|

d∑
q=1

[∫
Zc

(
mpk
i + mpq

i

∂θki
∂zq

)
dz

] ∂ui,0
∂xk

.

Similarly, we replace ui,2 by its form (2.66) in the boundary condition on Γy then we inte-
grate over Zc to obtain another condition satisfied by ui,1. Then, we obtain a mesoscopic
problem defined on the unit cell portion Yi and satisfied by ui,1 as follows:

Byyui,1 =
d∑

p,k=1

∂m̃pk
i

∂yp

∂ui,0
∂xk

in Yi,

(
M̃i∇yui,1 + M̃i∇xui,0

)
· ni = 0 on Γy,

(2.72)

with the operator Byy (homogenized operator with respect to z) defined by:

Byy = −
d∑

p,k=1

∂

∂yp

(
m̃pk

i (y) ∂

∂yk

)
, (2.73)

where with the coefficients of the (homogenized with respect to z) conductivity matrices
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M̃i = (m̃pk
i )1≤p,k≤d defined by:

m̃pk
i (y) = 1

|Z|

d∑
q=1

∫
Zc

(
mpk
i + mpq

i

∂θki
∂zq

)
dz, ∀p, k = 1, . . . , d. (2.74)

Note that the y-periodicity of function m̃pk
i comes from the fact that the coefficients of

conductivity matrix Mi and of the function θi are y-periodic.

Remark 2.7. The operator Byy has the same properties of the homogenized operator
(2.41) for the extracellular problem. At this point, we deduce that this method is used to
homogenize the problem with respect to z and then with respect to y. We remark also that
allows to obtain the effective properties at δ-structural level and which become the input
values in order to find the effective behavior of the cardiac tissue.

Now, we prove the existence and uniqueness of solution of the problem (2.72) defined in
Yi. Consider the variational formulation of problem (2.72):

Find u̇i,1 ∈ Wper(Yi) such that

ḃYi(u̇i,1, v̇) = (F1, v̇)(Wper(Yi))′,Wper(Yi) ∀v̇ ∈ Wper(Yi),
(2.75)

with ḃY given by:

ḃYi(u̇, v̇) =
∫
Yi

M̃i∇yu∇yvdy, ∀u ∈ u̇, ∀v ∈ v̇, ∀u̇, ∀v̇ ∈ Wper(Yi) (2.76)

and F1 defined by:

(F1, v̇)(Wper(Yi))′,Wper(Yi) = −
d∑

p,k=1

∂ui,0
∂xk

∫
Yi

m̃pk
i (y) ∂v

∂yp
dy, ∀v ∈ v̇, ∀v̇ ∈ Wper(Yi).

(2.77)
The linear form F1 belongs to (Wper(Yi))′. Thus, there exists a unique solution u̇i,1 ∈
Wper(Yi) of problem (2.75)-(2.77).
Finally, the linearity of terms in the right of the equation (2.72) suggests to look for u̇i,2
under the following form:

u̇i,1 = χ̇(y) · ∇xu̇i,0 inWper(Yi), (2.78)

with each element of the corrector function χ̇i =
(
χ̇ki
)
k=1,...,d

satisfies the following ε-cell
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problem: 
Byyχ̇ki =

d∑
p=1

∂m̃pk
i

∂yp
in Yi,

M̃i∇yχ̇
k
i · ni = −

(
M̃iek

)
· ni on Γy,

(2.79)

for ek, k = 1, . . . , d, the standard canonical basis in Rd.Moreover, we can choose a repre-
sentative element χki of the class χ̇ki which satisfy the following variational formulation:



Find χki ∈ W#(Yi) such that

ḃYi(χki , v̇) = −
d∑
p=1

∫
Yi

m̃pk
i (y) ∂w

∂yp
dy, ∀w ∈ W#(Yi),

(2.80)

with ḃYi given by (2.76). Thus, we prove the existence and uniqueness of the solution χki
of the problem (2.79) using Theorem A.2.
So, by the form of u̇i,1 given by (2.78), the solution ui,1 of the problem (2.72) can be
represented by the following ansatz:

ui,1(t, x, y) = χi(y) · ∇xui,0(t, x) + ũi,1(t, x) avec ui,1 ∈ u̇i,1, (2.81)

where ũi,1 is a constant with respect to y, (i.e ũi,1 ∈ 0̇ inWper(Yi)).

• Last step Our interest is the last boundary value problem (2.55). We have

−Ayzui,4 −Ayyui,3 −Axzui,2 −Axyui,1 −Axxui,0

=
d∑

p,q=1

∂

∂yp

(
mpq
i (y, z)

(
∂ui,4
∂zq

+ ∂ui,3
∂yq

+ ∂ui,1
∂xq

))

+
d∑

p,q=1

∂

∂zp

(
mpq
i (y, z)

(
∂ui,4
∂yq

+ ∂ui,2
∂xq

))

+
d∑

p,q=1

∂

∂xp

(
mpq
i (y, z)

(
∂ui,2
∂zq

+ ∂ui,1
∂yq

+ ∂ui,0
∂xq

))
.

Note that, the variational formulation of system (2.55) can be written as follows:
Find u̇i,5 ∈ Wper(Zc) such that

ȧZc(u̇i,5, v̇) = (F5, v̇)(Wper(Zc))′,Wper(Zc) ∀v̇ ∈ Wper(Zc),
(2.82)
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with ȧZc given by (2.57) and F5 defined by

(F5, v̇)(Wper(Zc))′,Wper(Zc)

=
∫

Γz
[(Mi∇zui,5 + Mi∇yui,4 + Mi∇xui,2) · nz] v dσ(z)

+
d∑

p,q=1

∫
Zc

∂

∂yp

(
mpq
i (y, z)

(
∂ui,4
∂zq

+ ∂ui,3
∂yq

+ ∂ui,0
∂xq

))
vdz

−
d∑

p,q=1

∫
Zc

mpq
i (y, z)

(
∂ui,4
∂yq

+ ∂ui,2
∂xq

)
∂v

∂zp
dz

+
d∑

p,q=1

∫
Zc

∂

∂xp

(
mpq
i (y, z)

(
∂ui,2
∂zq

+ ∂ui,1
∂yq

+ ∂ui,0
∂xq

))
vdz, ∀v ∈ v̇, ∀v̇ ∈ Wper(Zc).

(2.83)
The aim is to find the homogenized equation inΩ. Firstly, we will homogenize the problem
(2.55) with respect to z. Next, we homogenize the last one with respect to y using the
explicit forms of previous solutions. Finally, we obtain the corresponding homogenized
model.

Firstly, the problem (2.82)-(2.83) defined in Zc is well-posed if and only if F5 belongs to
(Wper(Zc))′, i.e,

(F5, 1)(Wper(Zc))′,Wper(Zc) = 0

which equivalent to:

− 1
|Z|

d∑
p,q=1

∫
Zc

∂

∂yp

(
mpq
i (y, z)

(
∂ui,4
∂zq

+ ∂ui,3
∂yq

+ ∂ui,1
∂xq

))
dz

= 1
|Z|

d∑
p,q=1

∫
Zc

∂

∂xp

(
mpq
i (y, z)

(
∂ui,2
∂zq

+ ∂ui,1
∂yq

+ ∂ui,0
∂xq

))
dz.

In addition, we replace ui,4 by its expression (2.70) into the above condition and into the
boundary condition equation on Γy satisfied by ui,4. Then, we obtain that ui,3 satisfies the
following problem defined in Yi


Byyui,3 = −Bxyui,1 − Bxxui,0 in Yi,

(
M̃i∇yui,3 + M̃i∇xui,1

)
· ni = − (∂tv0 + Iion(v0, w0)− Iapp) on Γy,

(2.84)

with Bxy := −∇x ·
(
M̃i∇y

)
−∇y ·

(
M̃i∇x

)
.
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Consequently, system (2.84) have the following variational formulation:
Find ui,3 ∈ Wper(Yi) such that

ḃYi(ui,3, ẇ) = (F3, ẇ)(Wper(Yi))′,Wper(Yi) ∀ẇ ∈ Wper(Yi),
(2.85)

with ḃYi given by (2.76) and F3 defined by:

(F3, ẇ)(Wper(Yi))′,Wper(Yi)

=
∫

Γy

(
M̃i∇yui,3 + M̃i∇xui,1

)
· niw dσ(y)−

d∑
p,k=1

∫
Yi

m̃pk
i

∂ui,1
∂xk

∂w

∂yp
dy

+
d∑

p,k=1

∫
Yi

∂

∂xp

(
m̃pk

i

(
∂ui,1
∂yk

+ ∂ui,0
∂xk

))
wdy,

(2.86)

for all w ∈ ẇ, ẇ ∈ Wper(Yi).

Observe that problem (2.84)-(2.86) is well-posed if and only if F3 belongs to (WperY ))′,
which means

(F3, 1)(Wper(Yi))′,Wper(Yi) = 0

which gives:

−
d∑

p,k=1

∫
Yi

∂

∂xp

(
m̃pk

i

(
∂ui,1
∂yk

+ ∂ui,0
∂xk

))
dy = − |Γy| (∂tv0 + Iion(v0, w0)− Iapp) .

Next, we replace ui,1 by its form (2.81) in the above condition. Then, we obtain:

−
d∑

p,k=1

∫
Yi

∂

∂xp

m̃pk
i

 d∑
q=1

∂χqi
∂yk

(y)∂ui,0
∂xq

+ ∂ui,0
∂xk

 dy
= − |Γy| (∂tv0 + Iion(v0, w0)− Iapp)

By expanding the sum and permuting the index, we obtain

−
d∑

p,q=1

∫
Yi

∂

∂xp

[(
d∑

k=1
m̃pk

i

∂χqi
∂yk

(y) + m̃pq
i

)
∂ui,0
∂xq

]
dy

= − |Γy| (∂tv0 + Iion(v0, w0)− Iapp) .

97



Chapter 2 – Three-scale Homogenization Method Applied To Meso-Microscopic Bidomain Model

Then, the function ui,0 satisfies the following problem:

−
d∑

p,q=1

[
1
|Y |

d∑
k=1

∫
Yi

(
m̃pk

i

∂χqi
∂yk

(y) + m̃pq
i

)
dy

]
∂2ui,0
∂xp∂xq

= −|Γ
y|
|Y |

(∂tv0 + Iion(v0, w0)− Iapp)

Finally, we deduce the homogenized equation satisfied by ui,0 for the intracellular problem:

Bxxui,0 = −µm (∂tv0 + Iion(v0, w0)− Iapp) on ΩT , (2.87)

where µm = |Γy| / |Y |. Here, the homogenized operator Bxx (with respect to y and z) is defined
by:

Bxx = −∇x ·
(˜̃Mi∇x

)
= −

d∑
p,q=1

∂

∂xp

(˜̃mpq

i

∂

∂xq

)

with the coefficients of the homogenized conductivity matrix ˜̃Mi =
(˜̃mpq

i

)
1≤p,q≤d

defined by:

˜̃mpq

i := 1
|Y |

d∑
k=1

∫
Yi

(
m̃pk

i

∂χqi
∂yk

(y) + m̃pq
i

)
dy

= 1
|Y |

1
|Z|

d∑
k,`=1

∫
Yi

∫
Zc

[(
mpk
i + mp`

i

∂θki
∂z`

)
∂χqi
∂yk

(y) +
(

mpq
i + mp`

i

∂θqi
∂z`

)]
dzdy

(2.88)

with the coefficients of the conductivity matrix M̃i =
(
m̃pk

i

)
1≤p,k≤d

defined by (2.74).

Remark 2.8. The authors in [HY09] treated the initial problem with the coefficients mpq
j de-

pending only on the variable y for j = i, e. Using the same two-scale technique, we found three
systems to solve and then obtained its homogenized model with respect to y which is well defined
in Section 2.3.1. But in the intracellular problem, the coefficients mpq

i depend on two variables
y and z. Using a new three-scale expansion method, we obtain nine systems to solve in order
to find the homogenized model (2.87) of the initial problem (2.43). Obtaining this homogenized
problem is described in six steps. First, the first five steps help to find the explicit forms of the
associated solutions. Second, the last step describes the two-level homogenization whose the co-
efficients ˜̃mpq

i of the homogenized conductivity matrix ˜̃Mi are integrated with respect to z and
then with respect to y. Finally, we obtain the homogenized model defined on Ω.
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2.4 Three-scale Unfolding Homogenization Method

In this section, we will introduce a rigorous homogenization method based on the unfolding
operator for extra- and intracellular domains and on the boundary unfolding operator defined
in Subsection 2.4.1. The aim is to show how to obtain the macroscopic model from the meso-
microscopic bidomain model. First, the weak formulation of the meso-microscopic problem is
written by another one, called "unfolded" formulation in Subsection 2.4.2 and 2.4.3, based on
unfolding operators. Then, we can pass to the limit as ε → 0 in the unfolded formulation using
some a priori estimates and compactness argument to obtain finally the macroscopic bidomain
model (see Subsection 2.4.4).

2.4.1 Unfolding operator and some basic properties

In this part, we give the definitions for the concepts of unfolding operator defined on the
domain ΩT := (0, T ) × Ω and on the membrane ΓyT := (0, T ) × Γy. Further, we recall some
properties and results related to these concepts used in our paper. For the reader’s convenience,
we recall the notion of the unfolding operator. The following results can be found in [CDZ07;
CDG18].

In order to define an unfolding operator, we first introduce the following sets inRd (see Figure
2.3)

• Ξε = {k ∈ Zd, ε(k` + Y ) ⊂ Ω}, where k` := (k1`
mes
1 , . . . , kd`

mes
d ),

• Ξδ = {k′ ∈ Zd, δ(k′`′ + Z) ⊂ Ω}, where k′`′ = (k′1`mic
1 , . . . , k′d`

mic
d ),

• Ω̂ε = interior { ⋃
ξ∈Ξε

ε(ξ + Y )},

• Ω̂ε
j = interior { ⋃

ξ∈Ξε
ε(ξ + Yj)}, j = i, e,

• Ω̂ε,δ
i = interior { ⋃

ξ∈Ξε
ε(ξ + Yi

δ)}, Yi
δ = interior { ⋃

ζ∈Ξδ
δ(ζ + Z)},

• Γ̂ε = {y ∈ Γy : y ∈ Ω̂ε},

• Λε = Ω \ Ω̂ε,
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• Ω̂ε
T = (0, T )× Ω̂ε,

• Ω̂ε,δ
i,T = (0, T )× Ω̂ε,δ

i , Ω̂ε
e,T = (0, T )× Ω̂ε

e,

• Λε
T = (0, T )× Λε.

Figure 2.3 – The sets Ω̂ε,δi , Ω̂εe, Λε,δi and Λεe.

For allw ∈ Rd, let [w]Y be the unique integer combination of the periods such thatw−[w]Y ∈
Y. We may write w = [w]Y + {w}Y for all w ∈ Rd, so that for all ε > 0, we get the unique
decomposition:

x = ε
([
x

ε

]
Y

+
{
x

ε

}
Y

)
, for all x ∈ Rd.

Based on this decomposition, we define the unfolding operator in extra- and intracellular
domains. Note that the meso-microscopic bidomain model contains a dynamical boundary sys-
tem at the interface of these two regions. We need also to define the unfolding operator on the
boundary Γε, which has been developed in [CDZ06; Cio+12]. To do that, we suppose that Γy

has a Lipschitz boundary.

Definition 2.2 (Domain and boundary unfolding operator).
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1. For any function φ Lebesgue-measurable onΩε
i,T := (0, T )×Ωε

i (the intracellular medium
at mesoscale), the unfolding operator T iε is defined as follows:

T iε (φ)(t, x, y) =


φ
(
t, ε

[
x

ε

]
Y

+ εy
)

a.e. for (t, x, y) ∈ Ω̂ε
T × Yi,

0 a.e. for (t, x, y) ∈ Λε
T × Yi,

(2.89)

where [·] denotes the Gauβ-bracket. Similarly, we define the unfolding operator T eε on the
domain Ωε

e,T := (0, T )× Ωε
e. We readily have that:

∀x ∈ Rd, T iε (φ)
(
t, x,

{
x

ε

}
Y

)
= φ(t, x).

2. For any function ϕ Lebesgue-measurable on Γε,T := (0, T )×Γε, the boundary unfolding
operator T bε is defined as follows:

T bε (ϕ)(t, x, y) =


ϕ
(
t, ε

[
x

ε

]
Y

+ εy
)

a.e. for (t, x, y) ∈ Ω̂ε
T × Γy,

0 a.e. for (t, x, y) ∈ Λε
T × Γy.

(2.90)

The following results summarizes some basic properties of the unfolding operator and we
refer the reader to [CDZ06; Cio+12] for more details.

Proposition 2.1 (Some properties of the unfolding operator).

1. The operators T jε : Lp
(
Ωε
j,T

)
−→ Lp(ΩT × Yj) and T bε : Lp(Γε,T ) −→ Lp(ΩT ×Γy) are

linear and continuous for p ∈ [1,+∞) and j = i, e.

2. For every u, u′ ∈ Lp
(
Ωε
j,T

)
and v, w ∈ Lp (Γε,T ) it holds that

T jε (uu′) = T jε (u)T jε (u′) and T bε (vw) = T bε (v)T bε (w),

with p ∈ (1,+∞) and j = i, e.

3. For every u ∈ L1
(
Ωε
j,T

)
, the following integration formula holds for j = i, e

1
|Y |

∫∫
Ω×Yj

T jε (u)(t, x, y) dxdy =
∫∫

Ω̂εj,T
u(t, x) dx =

∫
Ωεj
u(t, x) dx−

∫
Λεj
u(t, x) dx.
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4. For every u ∈ Lp
(
Ωε
j,T

)
, p ∈ [1,+∞), we have for j = i, e

∥∥∥T jε (u)
∥∥∥
Lp(Ω×Yj)

= |Y |1/p
∥∥∥∥u1Ω̂εj

∥∥∥∥
Lp(Ωεj)

≤ |Y |1/p ‖u‖Lp(Ωεj) .

5. For every v ∈ L1(Γε,T ), we have the following integration formula:

1
ε |Y |

∫∫
Ω×Γy

T bε (v)(t, x, y) dxdσy =
∫

Γ̂ε
v(t, x) dσx.

6. For every v ∈ Lp(Γε,T ) with p ∈ (1,+∞), one has:
∥∥∥T bε (v)

∥∥∥
Lp(Ω×Γy)

= ε1/p |Y |1/p ‖v‖
Lp(Γ̂ε) ≤ ε1/p |Y |1/p ‖v‖Lp(Γε) .

7. For u ∈ Lp
(
0, T ;W 1,p

(
Ωε
j

))
, with p ∈ [1,+∞), it holds that

∇yT jε (u)(t, x, y) = εT jε (∇xu)(t, x, y)

with j = i, e.

8. Let φε ∈ Lp (0, T ;W 1,p (Ω)) with p ∈ [1,+∞) and j = i, e. If φε → φ strongly in
Lp (0, T ;W 1,p (Ω)) as ε tends to zero. Then, one has

T jε (φε) −→
ε→0

φ strongly in Lp(ΩT × Yj),

T bε (φε) −→
ε→0

φ|Γy strongly in Lp(ΩT × Γy).

9. For every ϕ ∈ D(ΩT × Γy) and ψ ∈ W 1,1(0, T ;L1(Γε)), the following integration by
parts holds:

∫ T

0

∫∫
Ω×Γy

T bε (∂tψ)T bε (ϕ) dxdσydt = −
∫ T

0

∫∫
Ω×Γy

T bε (ψ)T bε (∂tϕ) dxdσydt.

Remark 2.9. Note that the last property (which is not listed in [CDZ06; Cio+12]) is a direct
consequence of the integration by parts formula and the integration formula in property (5) of
Proposition 2.1.

Remark 2.10. If uj ∈ Lp
(
0, T ;W 1,p(Ωε

j)
)
for p ∈ (1,+∞), T bε (uj) is the trace on Γy of T jε (uj)
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with j = i, e. In particular, by the standard trace theorem in Yj, there is a constant C such that

∥∥∥T bε (uj)
∥∥∥p
Lp(ΩT×Γy)

≤ C
(∥∥∥T jε (uj)

∥∥∥p
Lp(ΩT×Yj)

+
∥∥∥∇yT jε (uj)

∥∥∥p
Lp(ΩT×Yj)

)
.

From the properties of T jε (·) in Proposition 2.1, it follows that

∥∥∥T bε (uj)
∥∥∥p
Lp(ΩT×Γy)

≤ C
(
‖uj‖pLp(Ωεj,T ) + εp ‖∇uj‖pLp(Ωεj,T )

)
.

This inequality can be found as Remark 4.2 in [Cio+12].

Remark 2.11. Fix j ∈ {i, e}. Suppose thatuεj ∈ L2
(
0, T ;H1

(
Ωε
j

))
satisfies

∥∥∥uεj∥∥∥Lp(0,T ;H1(Ωεj))
≤

C. Let
gεj := uεj|Γε ∈ L2(Γε,T ),

be the trace of uεj on Γε. Then, there exists uj ∈ L2 (0, T ;H1(Ω)) (cf. Theorem 2.3) such that,
up to a subsequence, the following hold when ε→ 0 :

T bε (gεj ) ⇀ uj weakly in L2 (ΩT × Γy) .

We can prove this remark by following Remark 2.13-(a).

In the sequel, we will defineW 1,p
# the periodic Sobolev space as follows

Definition 2.3. Let O be a reference cell and p ∈ [1,+∞). Then, we define

W 1,p
# (O) = {u ∈ W 1,p(O) such that u periodic withMO(u) = 0}, (2.91)

whereMO(u) = 1
|O|

∫
O
u dy. Its duality bracket is defined by:

F (u) = (F, u)(W 1,p
# (O))′,W 1,p

# (O) = (F, u)(W 1,p(O))′,W 1,p(O), ∀u ∈ W 1,p
# (O).

Furthermore, by the Poincaré-Wirtinger’s inequality, the Banach spaceW 1,p
# has the following

norm:
‖u‖W 1,p

# (O) = ‖∇u‖Lp(O) ,∀u ∈ W
1,p
# (O).

Notation: We denoteW 1,2
# (O) by H1

#(O) for p = 2.

Now we state two important results which are needed to get the convergence for the corre-
sponding unfolding operator, see for e.g Proposition 2.8 and Theorem 3.12 in [Cio+12].
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Theorem 2.3. Let p ∈ (1,+∞) and j = i, e.

1. Suppose that uεj ∈ Lp
(
0, T ;W 1,p

(
Ωε
j

))
satisfies

∥∥∥uεj∥∥∥Lp(0,T ;W 1,p(Ωεj))
≤ C.

Then, there exists uj ∈ Lp (0, T ;W 1,p(Ω)) and ûj ∈ Lp
(
0, T ;Lp

(
Ω,W 1,p

# (Yi)
))
, such

that, up to a subsequence, the following hold when ε→ 0 :

T jε (uεj) ⇀ uj weakly in Lp
(
0, T ;Lp

(
Ω,W 1,p(Yj)

))
,

T jε (∇uεj) ⇀ ∇uj +∇yûj weakly in Lp(ΩT × Yj),

with the spaceW 1,p
# defined by (2.91).

2. Suppose that vε ∈ Lp(Γε,T ) satisfies

ε1/p ‖vε‖Lp(Γε,T ) ≤ C.

Then, there exist v ∈ Lp (ΩT × Γy) such that, up to a subsequence, the following convergence
hold when ε→ 0 :

T bε (vε) ⇀ v weakly in Lp (ΩT × Γy) .

Composition of unfolding operators

In the intracellular problem, since the electrical potential uε,δi depends on the mesoscopic
variable y and the microscopic one z so we will define a composition of two unfolding operators.
In this section, we compose unfolding operators with the following convention:
Any unfolding operator acts on the two last variables of a function. Herein, wewill state the result
for a composition of two unfolding operators (see [MVS05]). Let Y and Z be two reference cells
(see Figure 2.2). For ε, δ > 0, with δ ≤ ε, the unfolding operators T iε and Tδ are respectively
associated to Yi and Zc. The unfolding operator Tδ is defined on Ωε

T × Yi as follows:

Tδ(ψ)(t, x, y, z) =


ψ
(
t, x, δ

[
y

δ

]
Z

+ δz
)

a.e. for (t, x, y, z) ∈ Ω̂ε
T × Yi × Zc,

0 a.e. for (t, x, y, z) ∈ Λε
T × Yi × Zc,

(2.92)
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for any function ψ Lebesgue-measurable on (0, T )× Ωε,δ
i × Yi.

First, we define the composition of the unfolding operators associated to Yi andZc as follows:

Tδ
(
T iε (φ)

)
(t, x, y, z) =


φ
(
t, ε

[
x

ε

]
Y

+ εδ
[
y

δ

]
Z

+ εδz
)

a.e. for (t, x, y, z) ∈ Ω̂ε
T × Yi × Zc,

0 a.e. for (t, x, y, z) ∈ Λε
T × Yi × Zc,

(2.93)
for any function φ Lebesgue-measurable on (0, T )× Ωε,δ

i .

We see immediately that for all x ∈ Ω and for any φ Lebesgue-measurable on (0, T )×Ωε,δ
i ,

we have:

Tδ
(
T iε (φ)

)t, x,{xε
}
Y
,


{
x

ε

}
δ


Z

 = φ(t, x).

Next, we also have some properties for this composition of unfolding operators (see [MVS05]
for more details).

Proposition 2.2. For p ∈ [1,+∞), the operator Tδ (T iε (·)) is linear and continuous from
Lp
(
Ωε,δ
i,T

)
to Lp(ΩT × Yi × Z). Moreover, the following formula holds:

1. For every u, u′ ∈ Lp
(
Ωε,δ
i,T

)
, it holds that Tδ (T iε (uu′)) = Tδ (T iε (u)) Tδ (T iε (u′)) with

p ∈ (1,+∞).

2. For every φ ∈ L1
(
Ωε,δ
i,T

)
, the following integration formula holds

1
|Y |

1
|Z|

∫∫∫
Ω×Yi×Zc

Tδ
(
T iε (φ)

)
(t, x, y, z) dxdydz =

∫
Ω̂ε,δi

φ(t, x) dx

3. For every u ∈ Lp
(
Ωε,δ
i,T

)
, we have

∥∥∥Tδ (T iε (u)
)∥∥∥

Lp(Ω×Yi×Zc)
= |Y |1/p |Z|1/p

∥∥∥∥u1Ω̂ε,δi

∥∥∥∥
Lp(Ωε,δi )

≤ |Y |1/p |Z|1/p ‖u‖Lp(Ωε,δi ) .

4. For u ∈ Lp
(
0, T ;W 1,p

(
Ωε,δ
i

))
with p ∈ [1,+∞), it holds that

∇zTδ
(
T iε (u)

)
= δTδ

(
∇yT iε (u)

)
= εδTδ

(
T iε (∇xu)

)
.
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5. Letϕε,δ ∈ Lp (ΩT )with p ∈ [1,+∞). Ifϕε,δ −→
ε→0

ϕ strongly inLp (ΩT ) , then Tδ
(
T iε (ϕε,δ)

)
−→
ε→0

ϕ strongly in Lp(ΩT × Yi × Zc).

Finally, we end by stating the main convergence result which proved as Theorem 4.1 and
Theorem 6.1 in [MVS05] (see also Theorem 5.17 in [Cio+12]):

Theorem 2.4. Let {uε,δi } be sequence in Lp
(
0, T ;W 1,p

(
Ωε,δ
i

))
for p ∈ (1,+∞), satisfies

∥∥∥uε,δi ∥∥∥Lp(0,T ;W 1,p(Ωε,δi )) ≤ C.

Then, there exist ui ∈ Lp (0, T ;W 1,p(Ω)) , ûi ∈ Lp
(
0, T ;Lp

(
Ω,W 1,p

# (Yi)
))

and
ũi ∈ Lp

(
0, T ;Lp

(
Ω× Yi,W 1,p

# (Zc)
))
, such that, up to a subsequence, the following conver-

gences hold as ε goes to zero:

1. Tδ
(
T iε (uε,δi )

)
⇀ ui weakly in Lp (0, T ;Lp (Ω× Yi × Zc)) ,

2. Tδ
(
T iε (∇uε,δi )

)
⇀ ∇ui +∇yûi +∇zũi weakly in Lp(ΩT × Yi × Zc),

with the spaceW 1,p
# is given by the expression (2.91).

2.4.2 Intracellular problem

Our derivation bidomain model is based on a new three-scale approach. We apply the com-
position of unfolding operator Tδ(T iε (·)) in the intracellular problem to obtain its homogenized
equation. Recall that uε,δi the solution of the following initial intracellular problem:

−∇ · (Mε,δ
i ∇u

ε,δ
i ) = 0 in Ωε,δ

i,T ,

−Mε,δ
i ∇u

ε,δ
i · ni = ε (∂tvε + Iion(vε, wε)− Iapp,ε) = Im on Γε,T ,

∂twε −H(vε, wε) = 0 on Γε,T ,

−Mε,δ
i ∇u

ε,δ
i · nz = 0 on Γδ,T ,

(2.94)

where the intracellular conductivity matrices Mε,δ
i = (mpq

i )1≤p,q≤d defined by:

Mε,δ
i (x) = Mi

(
x

ε
,
x

εδ

)
, a.e. on Rd,

satisfying the elliptic and periodic conditions (2.4).
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The problem (2.94) satisfies the weak formulation (2.10). Since Iion(vε, wε) = I1,ion(vε) +
I2,ion(wε), we can rewrite the formulation (2.10) as follows:

∫∫
Γε,T

ε∂tvεϕi dσxdt+
∫∫

Ωε,δi,T
Mε,δ
i ∇u

ε,δ
i · ∇ϕi dxdt

+
∫∫

Γε,T
εI1,ion(vε)ϕi dσxdt+

∫∫
Γε,T

εI2,ion(wε)ϕi dσxdt

=
∫∫

Γε,T
εIapp,εϕi dσxdt.

(2.95)

We denote by Ei with i = 1, . . . , 5 the terms of the previous equation which is rewritten as
follows (to respect the order):

E1 + E2 + E3 + E4 = E5.

"Unfolded" formulation of the intracellular problem

The unfolding operator is used below to unfold the oscillating functions such that they are
expressed in terms of global and local variables describing positions at the upper and lower
heterogeneity scales, respectively. Using the properties of the unfolding operator, we rewrite the
weak formulation (2.95) in the "unfolded" form.
Using the property (5) of Proposition 2.1, then the first term is rewritten as follows:

E1 =
∫∫

Γ̂ε,T
ε∂tvεϕi dσxdt+

∫∫
Γε,T∩ΛεT

ε∂tvεϕi dσxdt

= 1
|Y |

∫∫∫
ΩT×Γy

T bε (∂tvε)T bε (ϕi) dxdσydt+
∫∫

Γε,T∩ΛεT
ε∂tvεϕi dσxdt

:= J1 +R1.

Similarly, we rewrite the second term using the property (2) of Proposition 2.2:

E2 = 1
|Y |

1
|Z|

∫∫∫∫
ΩT×Yi×Zc

Tδ(T iε (Mε,δ
i ))Tδ(T iε (∇uε,δi ))Tδ(T iε (∇ϕi)) dxdydzdt

+
∫∫

Λε,δi,T
Mε,δ
i ∇u

ε,δ
i · ∇ϕi dxdt

:= J2 +R2

Due to the form of Ik,ion, we use the properties (2) and (5) of Proposition 2.1 to obtain
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T bε (Ik,ion(·)) = Ik,ion
(
T bε (·)

)
for k = 1, 2 and we arrive to:

E3 = 1
|Y |

∫∫∫
ΩT×Γy

T bε (I1,ion(vε)) T bε (ϕi) dxdσydt+
∫∫

Γε,T∩ΛεT
εI1,ion(vε)ϕi dσxdt

= 1
|Y |

∫∫∫
ΩT×Γy

I1,ion
(
T bε (vε)

)
T bε (ϕi) dxdσydt+

∫∫
Γε,T∩ΛεT

εI1,ion(vε)ϕi dσxdt

:= J3 +R3

E4 = 1
|Y |

∫∫∫
ΩT×Γy

T bε (I2,ion(wε))T bε (ϕi) dxdσydt+
∫∫

Γε,T∩ΛεT
εI2,ion(wε)ϕi dσxdt

= 1
|Y |

∫∫∫
ΩT×Γy

I2,ion
(
T bε (wε)

)
T bε (ϕi) dxdσydt+

∫∫
Γε,T∩ΛεT

εI2,ion(wε)ϕi dσxdt

:= J4 +R4

E5 = 1
|Y |

∫∫∫
ΩT×Γy

T bε (Iapp,ε)T bε (ϕi) dxdσydt+
∫∫

Γε,T∩ΛεT
εIapp,εϕi dσxdt

:= J5 +R5

Collecting the previous estimates, we readily obtain from (2.95) the following "unfolded"
formulation:

1
|Y |

∫∫∫
ΩT×Γy

T bε (∂tvε)T bε (ϕi) dxdσydt

+ 1
|Y |

1
|Z|

∫∫∫∫
ΩT×Yi×Zc

Tδ(T iε (Mε,δ
i ))Tδ(T iε (∇uε,δi ))Tδ(T iε (∇ϕi)) dxdydzdt

+ 1
|Y |

∫∫∫
ΩT×Γy

I1,ion
(
T bε (vε)

)
T bε (ϕi) dxdσydt

+ 1
|Y |

∫∫∫
ΩT×Γy

I2,ion
(
T bε (wε)

)
T bε (ϕi) dxdσydt

= 1
|Y |

∫∫∫
ΩT×Γy

T bε (Iapp,ε)T bε (ϕi) dxdσydt+R5 −R4 −R3 −R2 −R1

(2.96)
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Similarly, the "unfolded" formulation of (2.11) is given by:

1
|Y |

∫∫∫
ΩT×Γy

T bε (∂twε)T bε (φ) dxdσydt

− 1
|Y |

∫∫∫
ΩT×Γy

H(T bε (vε), T bε (wε))T bε (φ) dxdσydt

= −ε
∫∫

Γε,T∩ΛεT
∂twεφ dσxdt+ ε

∫∫
Γε,T∩ΛεT

H(vε, wε)φ dσxdt

:= R6 +R7

(2.97)

The intracellular homogenized model has been derived using the unfolding homogenization
method at two-levels. The first level homogenization concerns the asymptotic analysis δ → 0
related to the electrical activity behavior in the micro-porous structure situated in Ωε,δ

i . At the
second level homogenization, the asymptotic analysis ε → 0 is related to the electrical activity
behavior in the mesoscopic structure situated in Ωε,δ

i . Since δ ≤ ε, we pass to the limit directly
in the unfolded formulation when ε→ 0.

Convergence of the "Unfolded" formulation

In this part, we establish the passage to the limit in (2.96)-(2.97). First, we prove that:

R1, · · · , R7 −→
ε→0

0,

by making use of estimates (2.13)-(2.16). So, we prove that R2 → 0 when ε→ 0 and the proof
for the other terms is similar. First, by Cauchy-Schwarz inequality, one has

R2 =
∫∫

Λε,δi,T
Mε,δ
i (x)∇uε,δi · ∇ϕi dxdt ≤

∥∥∥Mε,δ
i ∇u

ε,δ
i

∥∥∥
L2(Ωε,δi,T )

(∫∫
Λε,δi,T
|∇ϕi|2 dxdt

)1/2

.

In addition, we observe that
∣∣∣Λε,δ

i

∣∣∣→ 0 and∇ϕi ∈ L2(Ωε,δ
i ). Consequently, by Lebesgue domi-

nated convergence theorem, one gets
∫∫

Λε,δi
|∇ϕi|2 → 0, as ε→ 0.

Finally, by using Holder inequality, the result follows by using estimate (2.14) and assumption
(2.4).

Let us now elaborate the convergence results of J1, · · · , J5. First, we choose a special form
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of test functions to capture the mesoscopic and microscopic informations at each structural level.
Then, we consider that the test functions have the following form:

ϕε,δi = Ψi(t, x) + εΨ1(t, x)Φε
1(x) + εδΨ2(t, x)Φε

2(x)Θε,δ(x), (2.98)

with functions Φε
k and Θε,δ defined by:

Φε
k(x) = Φk

(
x

ε

)
, for k = 1, 2 and Θε,δ(x) = Θ

(
x

εδ

)
,

where Ψi,Ψk, are in D(ΩT ), Φk in H1
#(Yi) for k = 1, 2 and Θ in H1

#(Zc).We have:

∇ϕε,δi = ∇xΨi + Ψ1∇yΦε
1 + Ψ2Φε

2∇zΘε,δ + ε∇xΨ1Φε
1 + εδ∇xΨ2Φε

2Θε,δ + δΨ2∇yΦε
2Θε,δ.

Due to the regularity of test functions together with property (8) of Proposition 2.1 and property
(5) of Proposition 2.2, there holds:

Tδ
(
T iε (ϕε,δi )

)
→ Ψi strongly in L2 (ΩT × Yi × Zc) ,

Tδ
(
T iε (Ψ1Φε

1)
)
→ Ψ1(t, x)Φ1(y) strongly in L2 (ΩT × Yi × Zc) ,

Tδ
(
T iε (Ψ2Φε

2Θε,δ)
)
→ Ψ2(t, x)Φ2(y)Θ(z) strongly in L2 (ΩT × Yi × Zc) ,

Tδ
(
T iε
(
∇ϕε,δi

))
→ ∇xΨi + Ψ1∇yΦ1 + Ψ2Φ2∇zΘ strongly in L2 (ΩT × Yi × Zc) ,

T bε (ϕε,δi )→ Ψi strongly in L2(ΩT × Γy).

Next, we want to use the a priori estimates (2.13)-(2.16) to verify that the remaining terms
of the equations are weakly convergent in the unfolded formulation (2.96)-(2.97). Using es-
timation (2.14), we deduce from Theorem 2.4 that there exist ui ∈ L2 (0, T ;H1(Ω)) , ûi ∈
L2
(
0, T ;L2

(
Ω, H1

#(Yi)
))

and ũi ∈ L2
(
0, T ;L2

(
Ω× Yi, H1

#(Zc)
))

such that, up to a subse-
quence, the following convergences hold as ε goes to zero:

Tδ
(
T iε (uε,δ)

)
⇀ ui weakly in L2

(
0, T ;L2 (Ω× Yi × Zc)

)
,

Tδ
(
T iε (∇uε,δ)

)
⇀ ∇ui +∇yûi +∇zũi weakly in L2(ΩT × Yi × Zc),

with the spaceH1
# is given by (2.91). Thus, since Tδ

(
T iε
(
Mε,δ
i

))
→ Mi a.e in Ω×Yi×Zc, one
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obtains:

J2 →
1
|Y |

1
|Z|

∫∫∫∫
ΩT×Yi×Zc

Mi [∇ui +∇yûi +∇zũi] [∇xΨi + Ψ1∇yΦ1 + Ψ2Φ2∇zΘ] dxdydzdt.

Remark 2.12. Since ui is independent of y and z then it does not oscillate "rapidly". This is
why now expect ui to be the "homogenized solution". To find the homogenized equation, it is
sufficient to find an equation in Ω satisfied by ui independent on y and z.

Furthermore, we need to establish the weak convergence of the unfolded sequences that cor-
responds to vε, wε and Iapp,ε. In order to establish the convergence of T bε (∂tvε),we use estimation
(2.16) to get ∥∥∥T bε (∂tvε)

∥∥∥
L2(ΩT×Γy)

≤ ε1/2 |Y |1/2 ‖∂tvε‖L2(Γε,T ) ≤ C.

So there exists V ∈ L2(ΩT×Γy) such that T bε (∂tvε) ⇀ V weakly in L2(ΩT×Γy). By a classical
integration argument, one can show that V = ∂tv. Therefore, we deduce from Theorem 2.3 that

T bε (∂tvε) ⇀ ∂tv weakly in L2(ΩT × Γy).

Thus, we obtain

J1 = 1
|Y |

∫∫∫
ΩT×Γy

T bε (∂tvε)T bε (ϕi) dxdσydt→
1
|Y |

∫∫∫
ΩT×Γy

∂tvΨi dxdσydt.

Remark 2.13. (a) We observe that the limit v coincides with ui − ue. Indeed, it follows that,
by using property (5) of Proposition 2.1,

ε
∫∫

Γε,T
vεϕ dσxdt = ε

∫∫
Γ̂ε,T

vεϕ dσxdt+ ε
∫∫

Γε,T∩ΛεT
vεϕ dσxdt

= 1
|Y |

∫∫∫
ΩT×Γy

T bε (vε)T bε (ϕ) dxdσydt+
∫∫

Γε,T∩ΛεT
εvεϕ dσxdt

:= Jε +Rε,

for all ϕ ∈ C∞(ΩT ). We can similarly prove that Rε → 0 as in the proof for the terms
R1, . . . , R7 when ε goes to zero. Then, it sufficient to prove the convergence results of Jε
when ε→ 0. On the one hand, to establish the convergence of T bε (vε), we use estimation
(2.15) to get ∥∥∥T bε (vε)

∥∥∥
L2(ΩT×Γy)

≤ ε1/2 |Y |1/2 ‖vε‖L2(Γε,T ) ≤ C.
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So, we deduce from Theorem 2.3 that there exists v ∈ L2(ΩT × Γy) such that

T bε (vε) ⇀ v weakly in L2(ΩT × Γy).

Therefore, we obtain

Jε = 1
|Y |

∫∫∫
ΩT×Γy

T bε (vε)T bε (ϕ) dxdσydt→
1
|Y |

∫∫∫
ΩT×Γy

vϕ dxdσydt.

On the other hand, since vε = (uεi − uεe) |Γε,T and due to the fact that T bε (uεj) is the trace
on Γy of T jε (uεj) for j = i, e (consult Remark 2.10), we can rewrite Jε as follows

Jε = 1
|Y |

∫∫∫
ΩT×Γy

T bε (vε)T bε (ϕ) dxdσydt

= 1
|Y |

∫∫∫
ΩT×Γy

T bε
(
(uεi − uεe) |Γε,T

)
T bε (ϕ) dxdσydt

= 1
|Y |

∫∫∫
ΩT×Γy

(
T iε (uεi )− T eε (uεe)

)
|ΩT×ΓyT bε (ϕ) dxdσydt.

Now, by using Theorem 2.3, there exist uj ∈ L2 (0, T ;H1(Ω)) such that T jε (uεj) ⇀ uj

weakly in L2 (0, T ;L2 (Ω, H1(Yj))) , for j = i, e. Thus, we deduce

Jε →
1
|Y |

∫∫∫
ΩT×Γy

(ui − ue) |ΩT×Γyϕ dxdσydt.

Herein, we used the integration formula of the operator T bε in the first step and exploited
that v is independent of y and v coincides with ui− ue in the last step. This prove Remark
2.11 for vε = (uεi − uεe)|Γε .

(b) Moreover, since we have assumed that the initial data v0,ε, w0,ε in (2.3), are also uniformly
bounded in the adequate norm (see assumption (2.8)). Therefore, in the same way as the
previous proof (a), using again the integration formula (3) of the operator T bε , we know
that there exist v′0, w′0 ∈ L2(ΩT × Γy) such that, up to a subsequence,

ε
∫∫

Γε
v0,εφ dσx →

|Γy|
|Y |

∫
Ω
v0φ dx,

ε
∫∫

Γε
w0,εφ dσx →

|Γy|
|Y |

∫
Ω
w0φ dx,
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for all φ ∈ C∞(Ω), where v0 = 1
|Γy|

∫
Γy
v′0 dσy and w0 = 1

|Γy|

∫
Γy
w′0 dσy.

(c) Finally, one can pass to the limit in the normalization condition defined by (2.9) to recover
a condition on the average of ue (the limit of T eε (uεe)) and we get the following equation,
for all ϕ ∈ C0([0, T ]),

0 =
∫ T

0

(∫
Ωεe
uεedx

)
ϕ dt = 1

|Y |

∫ T

0

(∫∫
Ω×Ye

T eε (uεe)dxdy
)
ϕ dt+

∫ T

0

(∫
Λεe
uεedx

)
ϕ dt

→ 0 = |Ye|
|Y |

∫ T

0

(∫
Ω
uedx

)
ϕ dt,

where the second term in the previous equality goes to zero as the proof for the terms
R1, . . . , R7 when ε→ 0. This implies that we have, for almost all t ∈ [0, T ],

∫
Ω
ue(t, x)dx = 0.

Now, making use of estimate (2.13) with property (6) of Proposition 2.1, one has

∥∥∥T bε (wε)
∥∥∥
L2(ΩT×Γy)

≤ ε1/2 |Y |1/2 ‖wε‖L2(Γε,T ) ≤ C.

Then, up to a subsequence,

T bε (wε) ⇀ w weakly in L2(ΩT × Γy).

So, by linearity of I2,ion, we have:

J4 = 1
|Y |

∫∫∫
ΩT×Γy

I2,ion
(
T bε (wε)

)
T bε (ϕi) dxdσydt→

1
|Y |

∫∫∫
ΩT×Γy

I2,ion(w)Ψi dxdσydt.

Similarly, we can prove the convergence of T bε (Iapp,ε), by using assumption (2.7), to get

∥∥∥T bε (Iapp,ε)
∥∥∥
L2(ΩT×Γy)

≤ ε1/2 |Y |1/2 ‖Iapp,ε‖L2(Γε,T ) ≤ C.

So we can conclude from Theorem 2.3 that there exists Iapp,0 ∈ L2(ΩT × Γy) such that

T bε (Iapp,ε) ⇀ Iapp,0 weakly in L2(ΩT × Γy).
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Thus, we obtain the following convergence:

J5 = 1
|Y |

∫∫∫
ΩT×Γy

T bε (Iapp,ε)T bε (ϕi) dxdσydt→
|Γy|
|Y |

∫∫
ΩT
IappΨi dxdt,

where Iapp = 1
|Γy|

∫
Γy
Iapp,0 dσy.

It remains to obtain the limit of J3 containing the ionic function I1,ion.By the regularity ofϕi,
it sufficient to show the weak convergence of I1,ion

(
T bε (vε)

)
to I1,ion(v) in L2(ΩT ×Γy). Due to

the non-linearity of I1,ion, the weak convergence will not be enough. Therefore, we need also the
strong convergence of T bε (vε) to v inL2(ΩT×Γy) by using Kolmogorov-Riesz type compactness
criterion B.1. Next, we prove by Vitali’s Theorem the strong convergence of I1,ion

(
T bε (vε)

)
to

I1,ion(v) in Lq(ΩT × Γy), ∀q ∈ [1, r/(r − 1)) with r ∈ (2,+∞).
To cope with this, we derive the convergence of the nonlinear term I1,ion, in the following theo-
rem:

Theorem 2.5. The following convergence holds:

T bε (vε)→ v strongly in L2(ΩT × Γy), (2.99)

as ε→ 0. Moreover, we have:

I1,ion
(
T bε (vε)

)
→ I1,ion(v) strongly in Lq(ΩT × Γy), ∀q ∈ [1, r/(r − 1)), (2.100)

as ε→ 0.

Proof. In the case of elliptic problems where no time variable is involved, this compactness
result will be closely related to Theorem 5.2 in [CD12] in which the nonlinear function I1,ion

satisfies the same conditions of the nonlinear term h (see also Theorem 6.1 in [CDZ07]). In our
case (when the time variable is present), we follow the same idea to the proof of Lemma 5.3
in [Ben+19]. The proof of first convergence (2.99) is based on the Kolmogorov compactness
criterion, which is recalled for the convenience of the reader in Proposition B.1. It is carried out
in three conditions:

(i) Let A ⊂ Ω a measurable set. We define the sequence {vεA}ε>0 as follows:

vεA(t, y) :=
∫
A
T bε (vε)(t, x, y) dx, for a.e. t ∈ (0, T ), y ∈ Γy.

It remains to show that the sequence vεA ∈ L2
(
0, T ;H1/2(Γy)

)
is relatively compact in the space
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L2 (0, T ;L2(Γy)) . Since the embedding H1/2(Γy) ↪→ L2(Γy) is compact, we have to show first
that the sequence vεA is bounded in L2

(
0, T ;H1/2(Γy)

)⋂
H1 (0, T ;L2(Γy)) .

We first observe that

‖vεA‖
2
H1/2(Γy) =

∫
Γy

∣∣∣∣∫
A
T bε (vε)(t, x, y) dx

∣∣∣∣2 dσy
+
∫∫

Γy×Γy

∫
A

∣∣∣T bε (vε)(t, x, y1)− T bε (vε)(t, x, y2)
∣∣∣2

|y1 − y2|d+1 dxdσy1dσy2

:= ‖vεA‖
2
L2(Γy) + ‖vεA‖

2
H

1/2
0 (Γy) .

With Fubini and Cauchy-Schwarz inequality and the a priori estimate (2.13), one has

‖vεA‖
2
L2(ΓyT ) ≤ C

∫ T

0

∫
Ω

∫
Γy

∣∣∣T bε (vε)(t, x, y)
∣∣∣2 dσydxdt

≤ C
∥∥∥√εvε∥∥∥2

L2(Γε,T )
≤ C.

Next, we need now to bound theH1/2
0 semi-norm. Since vε = (uεi − uεe) |Γε,we use again Fubini

and Jensen inequality together with the trace inequality in Remark 2.10 to obtain

‖vεA‖
2
H

1/2
0 (Γy) ≤ C

[∫
Ω

∥∥∥T bε (vε)
∥∥∥2

H
1/2
0 (Γy)

dxdt
]

≤ C
[∥∥∥uε,δi ∥∥∥2

L2(Ωε,δi )
+ ε2

∥∥∥∇uε,δi ∥∥∥2

L2(Ωε,δi )
+ ‖uεe‖

2
L2(Ωεe) + ε2 ‖∇uεe‖

2
L2(Ωεe)

]
.

Hence, integrating over (0, T ) and using the a priori estimates (2.14), we have showed that the
sequence vεA is bounded in L2

(
0, T ;H1/2(Γy)

)
.

By a similar argument and making use of the estimate (2.16) on ε1/2∂tvε, we can also show
that

‖∂tvεA‖L2(ΓyT ) ≤ C.

Finally, we deduce that the sequence vεA is bounded in L2
(
0, T ;H1/2(Γy)

)⋂
H1 (0, T ;L2(Γy))

and due to the Aubin-Lions Lemma the sequence is relatively compact in L2 (0, T ;L2(Γy)) .

(ii) Due to the decomposition of the domain (defined in Subsection 2.4.1), Ω can always be
represented by a union of scaled and translated reference cells. Fix ε > 0 and let k ∈ Ξε, be an
index set such that

Ω̂ε =
⋃
k∈Ξε

ε(k` + Y ), with k` := (k1`
mes
1 , . . . , kd`

mes
d ).
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Note that x ∈ ε(k` +Y )⇔
[
x

ε

]
Y

= k`. For every fixed k ∈ Ξε, we subdivide the cell ε(k` +Y )

into subsets ε (k` + Y )σ with σ ∈ {0, 1}d , defined as follows

ε(k` + Y )σ :=

x ∈ ε(k` + Y ) : ε


x+ ε

{
h

ε

}
Y

ε


Y

= ε(k` + σ)

 ,

for a given h ∈ Rd. It holds ε(k` + Y ) = ⋃
σ∈{0,1}d

ε(k` + Y )σ.

We use the same notation as in Proposition B.1. Now, we compute

∥∥∥τhT bε (vε)− T bε (vε)
∥∥∥2

L2((0,T )×Ωh
λ
×Γy) =

∥∥∥τhT bε (vε)− T bε (vε)
∥∥∥2

L2((0,T )×(Ωh
λ
∩Ω̂ε)×Γy)

+
∥∥∥τhT bε (vε)− T bε (vε)

∥∥∥2

L2((0,T )×(Ωh
λ
\Ω̂ε)×Γy)

:= Eh
1,ε + Eh

2,ε.

Proceeding in a similar way to [Dob15; NRJ07], we first estimate Eh
1,ε using the above decom-

position of the domain as follows:

Eh
1,ε =

∑
k∈Ξε

∫ T

0

∫
ε(k`+Y )

∫
Γy

∣∣∣∣∣vε
(
t, ε

[
x+ h

ε

]
Y

+ εy

)
− vε

(
t, ε

[
x

ε

]
Y

+ εy
)∣∣∣∣∣

2

dσydxdt

=
∑
k∈Ξε

∑
σ∈{0,1}d

∫ T

0

∫
ε(k`+Y )σ

∫
Γy

∣∣∣∣∣vε
(
t, ε

(
k` + σ +

[
h

ε

]
Y

)
+ εy

)
− vε (t, εk` + εy)

∣∣∣∣∣
2

dσydxdt

≤
∑
k∈Ξε

∑
σ∈{0,1}d

∫ T

0

∫
ε(k`+Y )

∫
Γy

∣∣∣∣∣vε
(
t, ε

(
k` + σ +

[
h

ε

]
Y

)
+ εy

)
− vε (t, εk` + εy)

∣∣∣∣∣
2

dσydxdt

≤
∑

σ∈{0,1}d

∫ T

0

∫
Ω̂ε

∫
Γy

∣∣∣∣∣T bε vε
(
t, x+ ε

(
σ +

[
h

ε

]
Y

)
, y

)
− T bε vε (t, x, y)

∣∣∣∣∣
2

dσydxdt,

which by using the integration formula (6) (for p = 2) of Proposition 2.1 is equal to

∑
σ∈{0,1}d

ε |Y |
∫ T

0

∫
Γε

∣∣∣∣∣vε
(
t, x+ ε

(
σ +

[
h

ε

]
Y

))
− vε (t, x)

∣∣∣∣∣
2

dσydt.

For a given small γ > 0, we can choose an ε small enough such that
∣∣∣∣∣εσ + ε

[
h

ε

]
Y

∣∣∣∣∣ < γ.
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This amounts to saying that in order to estimate Eh
1,ε, it is sufficient to obtain estimates for given

` ∈ Zd, |ε`| < γ of
‖vε (t, x+ ε`)− vε (t, x)‖2

L2((0,T )×Γε,K) , (2.101)

where Γε,K = Γε ∩K with K ⊂ Ω an open set.
In order to estimate the norm (2.101), we test the variational equation (2.10) for τε`uεe − uεe

with ϕi = η2
(
τε`u

ε,δ
i − u

ε,δ
i

)
and ϕe = η2 (τε`uεe − uεe) , where η ∈ D(K) is a cut-off function

with 0 ≤ η ≤ 1, η = 1 inK and zero outside a small neighborhoodK ′ ofK. Proceeding exactly
as Lemma 5.2 in [Ben+19], Gronwall’s inequality and the assumptions on the initial data give
the following result:

ε ‖vε (t, x+ ε`)− vε (t, x)‖2
L2((0,T )×Γε,K) ≤ Cε |`| ,

where C is a positive constant. Then, we obtain by using the previous estimate

Eh
1,ε ≤ C (|h|+ ε) . (2.102)

Hence, we can deduce thatEh
1,ε → 0 as h→ 0 uniformly in ε, as in [GNRK16]. Indeed, to prove

that
∀ρ > 0,∃µ > 0 such that ∀ε > 0, ∀h, |h| ≤ µ⇒ Eh

1,ε < ρ, (2.103)

one identifies two cases:

(a) For 0 < ε <
ρ

2C : take µ = ρ

2C , then, from (2.102), we get that condition (2.103) holds
for |h| ≤ µ.

(b) For
ρ

2C < ε < 1 : we consider sequences ε of the form εk = 1
k
, k ∈ N, there are

finitely many elements εk in the interval ( ρ
2C , 1) and for each εk, ∃µk = µ(εk) such that

∀h, |h| ≤ µk, condition (2.103) holds, due to the continuity of translations in the mean of
L2-functions. Thus choosing µ = min{ ρ

2C , µk}, property (2.103) is proved.

It easy to check that

Eh
2,ε =

∥∥∥τhT bε (vε)
∥∥∥2

L2((0,T )×(Ωh
λ
\Ω̂ε)×Γy) ≤

∥∥∥τhT bε (vε)
∥∥∥2

L2((0,T )×(Ωλ\Ω̂ε)×Γy) .

Hence, we can deduce that Eh
2,ε → 0 as h→ 0 uniformly in ε. Indeed, to prove that

∀ρ > 0,∃µ > 0 such that ∀ε > 0, ∀h, |h| ≤ µ⇒ Eh
2,ε < ρ, (2.104)
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one identifies two cases:

(a) For ε small enough, say ε < ε0, Ωλ ⊂ Ω̂ε, then Eh
2,ε = 0.

(b) For ε0 < ε < 1 : we consider sequences ε of the form εk = 1
k
, k ∈ N, there are

finitely many elements εk in the interval (ε0, 1) and for each εk, ∃µk = µ(εk) such that
∀h, |h| ≤ µk, condition (2.104) holds, due to the continuity of translations in the mean of
L2-functions. Thus choosing µ = min{µk}, property (2.104) is proved.

This ends the proof of the condition (ii) in Proposition B.1.
(iii) The last condition follows from the a priori estimate (2.15). Indeed, we have:

∫ T

0

∫
Ω\Ωλ

∣∣∣T bε (vε)
∣∣∣2 dxdt ≤ |Ω \ Ωλ|

r−2
r

(∫
ΩT

∣∣∣T bε (vε)
∣∣∣r dxdt) 2

r

≤ C |Ω \ Ωλ|
r−2
r .

The conditions (i)-(iii) imply that the Kolmogorov criterion for T bε (vε) holds true inL2(ΩT×Γy).
This gives (2.99).

Next, we want to prove the second convergence. Note that from the structure of I1,ion given
by (2.6) and using property (2) of Proposition 2.1, we have

T bε (I1,ion(vε)) = I1,ion
(
T bε (vε)

)
Due to the strong convergence of T bε (vε) in L2(ΩT × Γy), we can extract a subsequence, such
that T bε (vε)→ v a.e. in ΩT × Γy. Since I1,ion is continuous, we have

I1,ion
(
T bε (vε)

)
→ I1,ion(v) a.e. in ΩT × Γy.

Further, we use estimate (2.15) with property (6) of Proposition (2.1) to obtain

∥∥∥T bε (I1,ion(vε))
∥∥∥
Lr/(r−1)(ΩT×Γy)

≤ |Y |(r−1)/r
∥∥∥ε(r−1)/rI1,ion(vε)

∥∥∥
Lr/(r−1)(Γε,T )

≤ C.

Hence, using a classical result (see Lemma 1.3 in [Lio69]):

I1,ion
(
T bε (vε)

)
⇀ I1,ion(v) weakly in Lr/(r−1)(ΩT × Γy).

Moreover, we useVitali’s Theorem to obtain the strong convergence of I1,ion
(
T bε (vε)

)
to I1,ion(v)

in Lq(ΩT × Γy), ∀q ∈ [1, r/(r − 1)).

Finally, collecting all the convergence results of J1, . . . , J5 obtained above, we pass to the

118



2.4. Three-scale Unfolding Homogenization Method

limit when ε→ 0 in the unfolded formulation (2.96) to obtain the following limiting problem:

|Γy|
|Y |

∫∫
ΩT
∂tvΨi dxdt

+ 1
|Y |

1
|Z|

∫∫∫∫
ΩT×Yi×Zc

Mi [∇ui +∇yûi +∇zũi] [∇xΨi + Ψ1∇yΦ1 + Ψ2Φ2∇zΘ] dxdydzdt

+ |Γ
y|
|Y |

∫∫
ΩT

I1,ion(v)Ψi dxdt+ |Γ
y|
|Y |

∫∫
ΩT

I2,ion (w) Ψi dxdt

= |Γ
y|
|Y |

∫∫
ΩT
IappΨi dxdt

(2.105)
Similarly, we can prove also that the limit of (2.97) as ε tends to zero, is given by:

|Γy|
|Y |

∫∫
ΩT
∂twφ dxdt−

|Γy|
|Y |

∫∫
ΩT
H(v, w)φ dxdt = 0. (2.106)

2.4.3 Extracellular problem

The authors in [Ben+19] have applied and developed the two-scale unfolding method estab-
lished by Cioranescu et al. [CDZ06] on a problem defined at two scales to obtain the homoge-
nized model (see also [CDG08; Cio+12]). Whereas for the intracellular domain, we develop a
three-scale approach applied to the intracellular problem to handle with the two structural levels
of this domain (see Subsection 2.4.2). We recall the following initial extracellular problem:

Aεuεe = 0 in Ωε
e,T ,

Mε
e∇uεe · ne = ε (∂tvε + Iion(vε, wε)− Iapp,ε) = Im on Γε,T ,

(2.107)

with Aε = −∇ · (Mε
e∇) , where the extracellular conductivity matrices Mε

e = (mpq
e )1≤p,q≤d

defined by:
Mε
e(x) = Me

(
x

ε

)
, a.e. on Rd,

satisfying the elliptic and periodic conditions (2.4).

In our approach, we investigate the same technique used in [Ben+19] for problem (2.107).
So, we unfold the weak formulation (2.10) of the extracellular problem using only the unfolding
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operators T eε and T bε to obtain:

1
|Y |

∫∫∫
ΩT×Γy

T bε (∂tvε)T bε (ϕe) dxdσydt

+ 1
|Y |

∫∫
ΩT×Ye

T eε (Mε
e) T eε (∇uεe) T eε (∇ϕe) dxdydt

+ 1
|Y |

∫∫∫
ΩT×Γy

I1,ion
(
T bε (vε)

)
T bε (ϕe) dxdσydt

+ 1
|Y |

∫∫∫
ΩT×Γy

I2,ion
(
T bε (wε)

)
T bε (ϕe) dxdσydt

= 1
|Y |

∫∫∫
ΩT×Γy

T bε (Iapp,ε)T bε (ϕe) dxdσydt+R′5 −R′4 −R′3 −R′2 −R′1

(2.108)

with R′1, . . . , R′5 are similarly defined as R1, . . . , R5 in the previous section.
Proceeding similarly for the extracellular problem by taking into account that the test func-

tions have the following form:

ϕεe = Ψe(t, x) + εΨ1(t, x)Φε
1(x), (2.109)

with function Φε
1 defined by:

Φε
1(x) = Φ1

(
x

ε

)
,

where Ψe,Ψ1 are in D(ΩT ) and Φ1 in H1
#(Ye). Then, we can prove that the limit of (2.108), as

ε tends zero, is given by:

|Γy|
|Y |

∫∫
ΩT
∂tvΨe dxdt+ 1

|Y |

∫∫∫
ΩT×Ye

Me [∇ue +∇yûe] [∇Ψe + Ψ1∇yΦ1] dxdydt

+ |Γ
y|
|Y |

∫∫
ΩT

I2,ion (w) Ψe dxdt+ |Γ
y|
|Y |

∫∫
ΩT

I1,ion(v)Ψe dxdt

= |Γ
y|
|Y |

∫∫
ΩT
IappΨe dxdt.

(2.110)

2.4.4 Derivation of the macroscopic bidomain model

The convergence results of the previous section allow us to pass to the limit in themicroscopic
equations (2.10)-(2.11) and to obtain the homogenized model formulated in Theorem 2.2.

We first derive the macroscopic (homogenized) equation for the intracellular problem. To
this end, we will find the expression of ûi and ũi in terms of the homogenized solution ui. Then,
we derive the cell problem from the homogenized equation (2.105). Finally, we obtain the weak
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formulation of the corresponding macroscopic equation.

We first take Ψi equal to zero, to get:

1
|Y |

1
|Z|

∫∫∫∫
ΩT×Yi×Zc

Mi [∇ui +∇yûi +∇zũi] [Ψ1∇yΦ1 + Ψ2Φ2∇zΘ] dxdydzdt = 0.
(2.111)

Next, to determine the explicit form of ũi so we take Ψ1 equal to zero. Since ui and ûi are inde-
pendent of the microscopic variable z, then the formulation (2.111) corresponds to the following
microscopic problem:


−∇z · (Mi∇zũi) =

d∑
p,q=1

∂mpq
i

∂zp

(
∂ûi
∂yq

+ ∂ui
∂xq

)
in Zc,

(Mi∇zũi + Mi∇yûi + Mi∇xui) · nz = 0 on Γz,

ũi z-periodic.

(2.112)

Hence, by the z-periodicity of Mi and the comptability condition, it is not difficult to establish
the existence of a unique periodic solution up to an additive constant of the problem (2.112) (see
for instance the work of [Bad+21a]).
Thus, the linearity of terms in the right of the equation (2.112) suggests to look for ũi under the
following form in terms of ui and ûi :

ũi(t, x, y, z) = θi(z) · (∇yûi +∇xui) + ũ0,i(t, x, y), (2.113)

where ũ0,i is a constant with respect to z and each element θqi of θi satisfies the δ-cell problem:

−∇z · (Mi∇zθ

q
i ) =

d∑
p=1

∂mpq
i

∂zp
(y, z) in Zc,

θqi y- and z-periodic,

Mi∇zθ
q
i · nz = −(Mieq) · nz on Γz,

(2.114)

for q = 1, . . . , d. Moreover, the existence and uniqueness of solution θqi ∈ H1
#(Zc) to problem

(2.114) are automatically satisfied with H1
#(Zc) is given by (2.91).

Furthermore, we take Ψ2 equal to zero to find the form of ûi (note that ψ1 is now chosen
different from zero). So, we replace ũi by its form (2.113) on the formulation (2.111). Then, we
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obtain a mesoscopic problem defined on the unit cell portion Yi and satisfied by ûi as follows:
−∇y ·

(
M̃i∇yûi

)
=

d∑
p,k=1

∂m̃pk
i

∂yp

∂ui
∂xk

in Yi,

(
M̃i∇yûi + M̃i∇xui

)
· ni = 0 on Γy,

(2.115)

where the coefficients of the first-level homogenized conductivity matrix M̃i = (m̃pk
i )1≤p,k≤d

defined by:

m̃pk
i (y) = 1

|Z|

d∑
q=1

∫
Zc

(
mpk
i + mpq

i

∂θki
∂zq

)
dz. (2.116)

Remark 2.14. Note that the y-periodicity of M̃i comes from the fact that the coefficients of
conductivity matrix Mi and of the function θi are y-periodic. Following [BLP11; CD99], it is
easy to verify that the homogenized conductivity tensors of the intracellular M̃i and extracellular
M̃e spaces are symmetric and positive definite.

Thus, we prove the existence and uniqueness by using same arguments from Lax-Milgram
theorem (see [Bad+21a] for more details).
Hence, the linearity of terms in the right of the equation (2.115) suggests to look for ûi under
the following form in terms of ui:

ûi(t, x, y) = χi(y) · ∇xui + û0,i(t, x), (2.117)

where û0,i a constant with respect to y and each element χki of χi satisfies the following ε-cell
problem: 

−∇y ·
(
M̃i∇yχ

k
i

)
=

d∑
p=1

∂m̃pk
i

∂yp
in Yi,

M̃i∇yχ
k
i · ni = −

(
M̃iek

)
· ni on Γy,

(2.118)

for ek, k = 1, . . . , d, the standard canonical basis in Rd. Since the matrix M̃i is positive definite,
so we can prove the existence and uniqueness of the solution χki ∈ H1

#(Yi) to problem (2.118).

Finally, inserting the form (2.113)-(2.117) of ũi and ûi into (2.105) and setting Ψ1,Ψ2 equals
to zero, one obtains the weak formulation of the homogenized equation for the intracellular

122



2.4. Three-scale Unfolding Homogenization Method

problem:

µm

∫∫
ΩT
∂tvΨi dxdt+

∫∫
ΩT

˜̃Mi∇ui · ∇Ψi dxdt+ µm

∫∫
ΩT

I1,ion (v) Ψi dxdt

+ µm

∫∫
ΩT

I2,ion(w)Ψi dxdt = µm

∫∫
ΩT
IappΨi dxdt

(2.119)

with µm = |Γy| / |Y | and the coefficients of the second-level homogenized conductivity matrix˜̃Mi =
(˜̃mpq

i

)
1≤p,q≤d

defined by:

˜̃mpq

i := 1
|Y |

d∑
k=1

∫
Yi

(
m̃pk

i

∂χqi
∂yk

(y) + m̃pq
i

)
dy

= 1
|Y |

1
|Z|

d∑
k,`=1

∫
Yi

∫
Zc

[(
mpk
i + mp`

i

∂θki
∂z`

)
∂χqi
∂yk

(y) +
(

mpq
i + mp`

i

∂θqi
∂z`

)]
dzdy

(2.120)

with the coefficients of the conductivity matrix M̃i =
(
m̃pk

i

)
1≤p,k≤d

defined by (2.116).

Remark 2.15. At this point, we deduce that this method is used to homogenize the problem
with respect to z and then with respect to y. We remark also that allows to obtain the effective
properties at δ-structural level and which become the input values in order to find the effective
behavior of the cardiac tissue.

Similarly, we obtain the second homogenized equation for the extracellular problem:

µm

∫∫
ΩT
∂tvΨe dxdt+

∫∫
ΩT

M̃e∇ue · ∇Ψe dxdt+ µm

∫∫
ΩT

I2,ion (w) Ψe dxdt

+ µm

∫∫
ΩT

I1,ion(v)Ψe dxdt = µm

∫∫
ΩT
IappΨe dxdt

(2.121)

with µm = |Γy| / |Y | and the coefficients of the homogenized conductivity matrices M̃e =(
m̃pk

e

)
1≤p,k≤d

defined by:

m̃pk
e := 1

|Y |

d∑
q=1

∫
Ye

(
mpk
e + mpq

e

∂χke
∂yq

)
dy. (2.122)
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each element χke ∈ H1
#(Ye) of χe satisfies the following ε-cell problem:


−∇y ·

(
Me∇yχ

k
e

)
=

d∑
p=1

∂mpk
e

∂yp
in Ye,

Me∇yχ
k
e · ne = − (Meek) · ne on Γy,

(2.123)

for ek, k = 1, . . . , d, the standard canonical basis in Rd.

Remark 2.16. The authors in [Ben+19] treated the initial problem with the coefficients mpq
j

depending only on the variable y for j = i, e. Comparing to [Ben+19], in our work the micro-
scopic conductivity matrixMi of the intracellular space depends on two variables y and z. Using
a three-scale unfolding method, we derive a new approach of the homogenized model (2.17) from
the microscopic problem (2.1). Our homogenized problem is described in three steps. First, we
unfold the weak formulation of the initial problem and prove the convergence results of the cor-
responding terms using the properties of the unfolding operators. Next, we pass to the limit in the
unfolded formulation and we find the explicit forms of the associated solutions. Finally, the last
step describes the two-level homogenization whose the homogenized (macroscopic) conductivity
matrix ˜̃Mi of the intracellular space are integrated with respect to z and then with respect to y.
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3
Homogenization Method Applied To
Microscopic Tridomain Model

The structure of cardiac tissue (myocarde) studied in this chapter is characterized at two dif-
ferent scales (see Figure 3.1). Atmicroscopic scale, the cardiac tissue consists of two intracellular
media which contains the contents of the cardiomyocytes (the cytoplasm) that are connected by
gap junctions and the other is called extracellular and consists of the fluid outside the cardiomy-
ocytes cells. Each intracellular medium and the extracellular one are separated by a cellular
membrane (the sarcolemma). While at the macroscopic scale, this domain is well considered as
a single domain (homogeneous).

Figure 3.1 – Cardiac muscle at microscopic level.
https://en.wikipedia.org/wiki/Cardiac_muscle#/media/File:1020_Cardiac_
Muscle.jpg

It should be noted that there is a difference between the chemical composition of the cyto-
plasm and that of the extracellular medium. This difference plays a very important role in car-
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diac activity. On the one hand, the sarcolemma allows the penetration of inorganic ions (sodium,
potassium, calcium,...) and proteins, some of which play a passive role and others play an active
role powered by cellular metabolism. In particular, the concentration of anions (negative ions) in
cardiomyocytes is higher than in the external environment. This difference of concentrations cre-
ates a transmembrane potential, which is the difference in potential at the sarcolemma between
each intracellular medium and the extracellular one. On the other hand, gap junctions allows
the movement of not only inorganic ions but also organic ions such as sugars, amino acids and
nucleotides between two adjacent cells. It provide the pathways for intracellular current flow, en-
abling coordinated action potential propagation. So, the difference of chemical through the gap
junction creates a gap potential, which is the difference in potential between these two intracel-
lular media. This model that describes the electrical activity of the heart, is called by "tridomain
model". The microscopic tridomain model consists of three quasi-static equations, two for the
electrical potential in the intracellular medium and one for the extracellular medium, coupled
through a dynamic boundary equation at each membrane (the sarcolemma). These equations
depend on scaling parameter ε whose is the ratio of the microscopic scale from the macroscopic
one. The tridomain model was proposed three years ago [Tve+17; Jæg+19].

The goal of the present chapter is to investigate existence and uniqueness of solutions of the
triidomain equations, commonly used for modeling the electrical activity of the heart at a cel-
lular level. Furthermore, we will derive, using a formal and unfolding homogenization method,
the macroscopic (homogenized) tridomain model of the cardiac tissue from the microscopic
tridomain problem.

We mention some different homogenization methods that are applied on the microscopic
bidomain model where the gap junction is ignored. First, M. Pennachio and al. [PSF05] used the
tools of the Γ-convergence method to obtain a rigorous mathematical form of its homogenized
model. Furthermore, C. Henriquez and W. Ying applied the two-scale asymptoptic method to
formally obtain themacroscopicmodel which presented in [HY09]. In [CI18; GK19], the authors
used the theory of two-scale convergence method to derive the homogenized bidomain model.
Moreover, the authors in [Ben+19] proved the existence and uniqueness of solution of the mi-
croscopic bidomain model by using the Faedo-Galerkin method and they applied the unfolding
homogenization method at two scales. Recently, we are developed the microscopic bidomain
model by taking account three different scales and derived a new approach of its macroscopic
model using two different homogenization methods. The first method [Bad+21a] is a formal and
intuitive method based on a new three-scale asymptotic expansion method applied to our meso-
and microscopic model. The second one [Bad+21b] based on unfolding operators which not
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3.1. Geometry. Microscopic Tridomain Model

only derive the homogenized equation but also prove the convergence and rigorously justify the
mathematical writing of the preceding formal method.

The main of contribution of the present chapter:The cardiac tissue structure studied at micro-
macro scales. We start by proving the well-posedness of the microscopic tridomain problem by
using Faedo-Galerkin method and L2-compactness argument on the membrane surface. Further,
we will derive the homogenized tridomain model of cardiac electro-physiology from the micro-
scopic one using two different methods.Wewill apply first a formal approach on the microscopic
tridomain model to obtain its homogenized model based on asymptotic expansion method. Next,
we will derive, using unfolding method, the macroscopic tridomain model from the microscopic
one. The latter method not only makes it possible to develop the homogenized equation but also
to prove the convergence and to rigorously justify the mathematical writing of the preceding
formal method. The homogenization method proposed to investigate the effective properties of
the cardiac tissue at each structural level, namely, micro-macro scales. Moreover, to treat the
tridomain problem in this work, the multi-scale technique is needed to be established in time
domain directly.

This chapter is organized as follows: In Section 3.1, we give a precise description of the ge-
ometry of cardiac tissue and introduce the microscopic tridomain model in the non-dimensional
form featured by scaling parameter ε characterizing the microscopic scale. Furthermore, some
assumptions used for homogenization and the existence of a unique weak solution for the micro-
scopic problem are stated and a priori estimates for themicroscopic solutions are derived. Section
3.2 contains the main result obtained by the previous homogenization methods. In Section 3.4,
we apply three-scale asymptotic homogenization procedure for extracellular and intracellular
problems. Section 3.5 is devoted to unfolding homogenization procedure. In Section 3.5.1, we
recall the notion of the unfolding operator and the convergence results used for unfolding homog-
enization. The unfolding method applied in the microscopic tridomain problem is explained in
Subsection 3.5.2. Finally, in Subsection 3.5.3, the macroscopic tridomain model is recuperated
from the limit equations obtained in Subsection 3.5.2 and the cell problems are decoupled.

3.1 Geometry. Microscopic Tridomain Model

The aim of this section is to describe the geometry of cardiac tissue and to present the mi-
croscopic tridomain model of the heart.
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3.1.1 Two-scale geometry of cardiac tissue with gap junction connections

We refer the reader to Subsection 1.3.2 where the concept of micro-structure and gap junction
connections has been introduced, also see Figure 3.2.

Figure 3.2 – (Left) Periodic heterogeneous domain Ω. (Right) Unit cell Y at ε-structural level.

3.1.2 Microscopic Tridomain Model

Before applying homogenization method, we introduce the basic equations of the micro-
scopic tridomain model given in Subsection 1.4.2 without using micro-scaling parameter de-
noted by ε. In the next section, a non-dimensionalization analysis, based on this scaling parame-
ter, turns out to be an essential ingredient of the asymptotic analysis. In the non-dimensionalization
procedure, εwill appear also in each boundary condition due to the scaling of the involved quan-
tities (see [HY09; CFPS12] for the bidomain case).

3.1.3 Non-dimensionalization procedure

As a natural assumption for homogenization, we want to formulate the tridomain equations
(cf. Subsection 1.4.2) in dimensionless form with the hope to get more insight in the meaning of
the parameter ε.We define the dimensionless parameter ε as the ratio between the microscopic
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3.1. Geometry. Microscopic Tridomain Model

length `mic and the macroscopic length L, i.e.

ε = `mic

L
.

Using all fundamental material constants, several additional time and length constants can be for-
mulated. For convenience, the macroscopic length is defined as L =

√
Rmλ`mic, the membrane

time constant τm is given by:
τm = RmCm,

whereRm is the resistance of the passive membrane and λ is a normalization of the conductivity
matrix Mj for j = i, e.
After that, we can convert the microscopic tridomain problem into a non-dimensional form by
scaling space and time with the constants, such as,

x = Lx̂ and t = τmt̂.

We take x̂ to be the variable at the macroscale (slow variable), y := x̂

ε
to be the microscopic

space variable (fast variable) in the unit cell Y . We also scale the electric potentials for k = 1, 2:

uki = δv ûki , ue = δv ûe,

and wk = δw ŵk

where δv, δw are respectively the convenient units to measure the electric potentials and the
gating variable. Furthermore, we normalize the conductivities matrices as follows

M̂j = 1
λ

Mj, for j = i, e,

and we nondimensionalize the ionic functions Iion, H , the applied current Ikapp, k = 1, 2, and
the gap current Igap by using the following scales:

Îion
(
v̂k, ŵk

)
= Rm

δv
Iion

(
vk, wk

)
, Ĥ

(
v̂k, ŵk

)
= τm
δw

H
(
vk, wk

)
,

Îkapp = Rm

δv
Ikapp, and Îgap (ŝ) = RmCm

δvC1,2
Igap (s) ,

where v̂k = ûki − ûe for k = 1, 2 and ŝ = û1
i − û2

i .
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Remark 3.1. Recalling that the dimensionless parameter ε, given by ε :=
√
`mic

Rmλ
, is the ratio

between the microscopic cell length `mic and the macroscopic length L, i.e. ε = `mic/L and

solving for ε, we obtain ε = L

Rmλ
.

Remark 3.2. Using all scaling parameters, we obtain the dimensionless of gap boundary con-
dition (1.14) as follows

ε
C1,2

Cm

(
∂t̂ŝ+ Îgap (ŝ)

)
= Î1,2 on Γ1,2

ε,T .

As previously stated, we can consider C1,2 = Cm/2 so we rewrite the above equation as follows

ε

2
(
∂t̂ŝ+ Îgap (ŝ)

)
= Î1,2 on Γ1,2

ε,T .

Cardiac tissue exhibits a number of significant inhomogeneities in particular those related
to cell-to-cell communications. Rescaling the equations (1.10)-(1.14) in the intracellular and
extracellular media and omitting the superscript ·̂ of the dimensionless variables, we obtain the
following non-dimensional form:

−∇ ·
(
Mε
i∇uki,ε

)
= 0 in Ωk

i,ε,T := (0, T )× Ωk
i,ε, (3.1a)

−∇ · (Mε
e∇ue,ε) = 0 in Ωe,ε,T := (0, T )× Ωe,ε, (3.1b)

uki,ε − ue,ε = vkε on Γkε,T := (0, T )× Γkε , (3.1c)

−Mε
i∇uki,ε · nki = Mε

e∇ue,ε · ne = Ikm on Γkε,T , (3.1d)

ε
(
∂tv

k
ε + Iion

(
vkε , w

k
ε

)
− Ikapp,ε

)
= Ikm on Γkε,T , (3.1e)

∂tw
k
ε −H

(
vkε , w

k
ε

)
= 0 on Γkε,T , (3.1f)

u1
i,ε − u2

i,ε = sε on Γ1,2
ε,T := (0, T )× Γ1,2

ε , (3.1g)

−Mε
i∇u1

i,ε · n1
i = Mε

i∇u2
i,ε · n2

i = I1,2 on Γ1,2
ε,T , (3.1h)

ε

2 (∂tsε + Igap (sε)) = I1,2 on Γ1,2
ε,T , (3.1i)

with k = 1, 2 and each equation corresponds to the following sense: (3.1a) Intra quasi-stationary
conduction, (3.1b) Extra quasi-stationary conduction, (3.1c) Transmembrane potential, (3.1d)
Continuity equation at cell membrane, (3.1e) Reaction condition at the corresponding cell mem-
brane, (3.1f) Dynamic coupling, (3.1g) Gap junction potential, (3.1h) Continuity equation at gap
junction, (3.1e) Reaction condition at gap junction.

130



3.1. Geometry. Microscopic Tridomain Model

Observe that the tridomain equations (3.1a)-(3.1b) are invariant with respect to the above
scaling. We define now the rescaled electrical potential as follows:

uki,ε(t, x) := uki

(
t, x,

x

ε

)
, ue,ε(t, x) := ue

(
t, x,

x

ε

)
, for k = 1, 2.

Analogously, we obtain the rescaled transmembrane potential vkε , the rescaled gap junction po-
tential sε and the corresponding gating variable wkε for k = 1, 2. Furthermore, the conductivity
tensors are considered dependent both on the slow and fast variables, i.e. for j = i, e, we have

Mε
j(x) := Mj

(
x,
x

ε

)
, (3.2)

satisfying the elliptic and periodicity conditions defined by (3.4). We complete system (3.1) with
no-flux boundary conditions on ∂extΩ:

(
Mε
i∇uki,ε

)
· n = (Mε

e∇ue,ε) · n = 0 on (0, T )× ∂extΩ,

where k = 1, 2 and n is the outward unit normal to the exterior boundary of Ω.We impose initial
conditions on transmembrane potential vkε , gap junction potential sε and gating variable wkε as
follows:

vkε (0, x) = vk0,ε(x), wkε (0, x) = wk0,ε(x) a.e. on Γkε,T ,

and sε(0, x) = s0,ε(x) a.e. on Γ1,2
ε,T ,

(3.3)

with k = 1, 2.

3.1.4 Assumptions on the Data

Keeping in mind the two-scale geometry of cardiac tissue (cf Subsection 1.3.2), we list some
assumptions on the conductivity matrices, the ionic functions, the source term and the initial
data:
Assumptions on the conductivitymatrices.The rescaled conductivity tensorsMε

j(x) := Mj (x, x/ε)
satisfying the following elliptic and periodicity conditions: there exist constants α, β ∈ R, such
that 0 < α < β and for all λ ∈ Rd :

Mjλ · λ ≥ α |λ|2 , (3.4a)

|Mjλ| ≤ β |λ| , (3.4b)

Mj y-periodic, for j = i, e. (3.4c)
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Remark 3.3. Finally, we assume that each Mj is symmetric: MT
j = Mj.

Assumptions on the ionic functions. The ionic current Iion(vk, wk) at each cell membrane
Γk can be decomposed into Ia,ion

(
vk
)
and Ikb,ion

(
wk
)
, where Iion

(
vk, wk

)
= Ia,ion

(
vk
)

+
Ib,ion

(
wk
)
with k = 1, 2. Furthermore, the nonlinear function Ia,ion : R → R is considered

as a C1 function and the functions Ib,ion : R → R and H : R2 → R are considered as linear
functions. Also, we assume that there exists r ∈ (2,+∞) and constantsα1, α2, α3, α4, α5, C > 0
and β1 > 0, β2 ≥ 0 such that:

1
α1
|v|r−1 ≤ |Ia,ion (v)| ≤ α1

(
|v|r−1 + 1

)
, |Ib,ion (w)| ≤ α2(|w|+ 1), (3.5a)

|H(v, w)| ≤ α3(|v|+ |w|+ 1), and Ib,ion (w) v − α4H(v, w)w ≥ α5 |w|2 , (3.5b)

Ĩa,ion : v 7→ Ia,ion(v) + β1v + β2 is strictly increasing with lim
v→0

Ĩa,ion(v)/v = 0, (3.5c)

∀v, v′ ∈ R,
(
Ĩa,ion(v)− Ĩa,ion(v′)

)
(v − v′) ≥ 1

C
(1 + |v|+ |v′|)r−2 |v − v′|2 , (3.5d)

with (v, w) :=
(
vk, wk

)
for k = 1, 2.

Remark 3.4. One can easily show that Ia,ion(0) = −β2, I′a,ion(0) = −β1 and Ia,ion(v) ≥ −β1

for all v ∈ R.

Remark 3.5. Physiological and phenomenological ionic models are available in Subsection
1.4.3. Here, we take the FitzHugh-Nagumo model [Fit61; NAY62] that satisfies assumptions
(3.5) which reads as

H (v, w) = a1v − b1w, (3.6a)

Iion (v, w) = [ρv(1− v) (v − θ)]− ρw := Ia,ion (v) + Ib,ion (w) (3.6b)

where a1, b1, ρ, θ are given parameters with a1, b1 > 0, ρ < 0 and θ ∈ (0, 1). According to this
model, the functions Iion andH are continuous and the non-linearity Ia,ion is of cubic growth at
infinity then the most appropriate value is r = 4. Using Young’s inequality, we have

|v|2 ≤ 2 |v|3

3 + 1
3 , |v| ≤ |v|

3

3 + 2
3 , |v| ≤ |v|

2

2 + 1
2 (3.7)

132



3.1. Geometry. Microscopic Tridomain Model

and then assumption (3.5a) holds for r = 4 :

|Ia,ion (v)| = |ρv(1− v) (v − θ)| ≤
(2

3θ + 1
3(1 + θ)

)
|ρ|+

(1
3θ + 2

3(1 + θ) + 1
)
|ρ| |v|3 ,

|Ib,ion (w)| = |ρ| |w| ,

|H (v, w)| = |a1v − b1w| ≤ a1 |v|+ b1 |w| .

Now, we compute the function E(u, v) := Ib,ion (w) v − α4H(v, w)w defined in R2. So, the
second assumption (3.5b) holds with α4 = − ρ

a1
:

E(u, v) = ρ

a1
w2. (3.8)

Moreover, the conditions (3.5c)-(3.5d) are automatically satisfied by any cubic polynomial Iion
with positive leading coefficient. We end this remark by mentioning other reduced ionic models:
the Roger-McCulloch model [RM94] and the Aliev-Panfilov model [AP96], may consider more
general that the previous model but still rise some mathematical difficulties. Furthermore, the
Mitchell-Schaeffer model [MS03] has been studied in [Bou+08; KM13] and its regularized ver-
sion have a very specific structure. In particular, no proof of uniqueness of solutions for these
models exists in the literature.

Now, we represent the gap junction Γ1,2
ε between intra-neighboring cells by a passive mem-

brane:
Igap(s) = Ggaps, (3.9)

whereGgap = 1
Rgap

is the conductance of the gap junctions. A discussion of the modeling of the
gap junctions is given in [HLR92].
Assumptions on the source term. There exists a constant C independent of ε such that the
source term Ikapp,ε satisfies the following estimation for k = 1, 2:

∥∥∥ε1/2Ikapp,ε
∥∥∥
L2(Γkε,T )

≤ C. (3.10)

Assumptions on the initial data. The initial condition vk0,ε, s0,ε and wk0,ε satisfy the following
estimation:

∑
k=1,2

∥∥∥ε1/rvk0,ε
∥∥∥
Lr(Γkε )

+
∥∥∥ε1/2s0,ε

∥∥∥
L2(Γ1,2

ε )
+
∑
k=1,2

∥∥∥ε1/2wk0,ε
∥∥∥
L2(Γkε )

≤ C, (3.11)

133



Chapter 3 – Homogenization Method Applied To Microscopic Tridomain Model

for some constant C independent of ε.Moreover, vk0,ε, s0,ε and wk0,ε are assumed to be traces of
uniformly bounded sequences in C1(Ω) with k = 1, 2.

Finally, one can observe that Equations in (3.1) are invariant under the change of uki,ε, k =
1, 2 and ue,ε into uki,ε + c, ue,ε + c, for any c ∈ R. Therefore, we may impose the following
normalization condition:

∫
Ωe,ε

ue,ε dx = 0, for a.e. t ∈ (0, T ). (3.12)

3.2 Main results

In this part, we highlight our main results obtained in our paper. First, we define the weak
solutions of the microscopic tridomain model. Next, we find a priori estimates and we supply
our existence and uniqueness results by using Faedo-Galerkin method, compactness argument
and monotonicity.

We start by stating the weak formulation of the microscopic tridomain model as given in the
following definition.

Definition 3.1 (Weak formulation of microscopic system). A weak solution to problem (3.1)-
(3.3) is a collection (u1

i,ε, u
2
i,ε, ue,ε, w

1
ε , w

2
ε) of functions satisfying the following conditions:

(A) (Algebraic relation).

vkε := (uki,ε − ue,ε)|Γkε,T a.e. on Γkε,T , for k = 1, 2,

sε := (u1
i,ε − u2

i,ε)|Γ1,2
ε,T

a.e. on Γ1,2
ε,T .

(B) (Regularity).

uki,ε ∈ L2
(
0, T ;H1

(
Ωk
i,ε

))
, uεe ∈ L2

(
0, T ;H1(Ωe,ε)

)
,∫

Ωe,ε
ue,ε(t, x) dx = 0, for a.e. t ∈ (0, T ),

vkε ∈ L2
(
0, T ;H1/2

(
Γkε
))
∩ Lr

(
Γkε,T

)
, r ∈ (2,+∞)

sε ∈ L2
(
Γ1,2
ε,T

)
, wkε ∈ L2(Γkε,T ),

∂tv
k
ε ∈ L2

(
0, T ;H−1/2

(
Γkε
))

+ Lr/(r−1)
(
Γkε,T

)
,

∂tsε ∈ L2(Γ1,2
ε,T ), ∂tw

k
ε ∈ L2(Γkε,T ) for k = 1, 2.
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(C) (Initial conditions).

vkε (0, x) = vk0,ε(x), wkε (0, x) = wk0,ε(x) a.e. on Γkε ,

and sε(0, x) = s0,ε(x) a.e. on Γ1,2
ε .

(D) (Variational equations).

∑
k=1,2

∫∫
Γkε,T

ε∂tv
k
εψ

k dσxdt+ 1
2

∫∫
Γ1,2
ε,T

ε∂tsεΨ dσxdt

+
∑
k=1,2

∫
Ωki,ε,T

Mε
i∇uki,ε · ∇ϕki dxdt+

∫
Ωe,ε,T

Mε
e∇ue,ε · ∇ϕe dxdt

+
∑
k=1,2

∫∫
Γkε,T

εIion
(
vkε , w

k
ε

)
ψk dσxdt+ 1

2

∫∫
Γ1,2
ε,T

εIgap(sε)Ψ dσxdt

=
∑
k=1,2

∫∫
Γkε,T

εIkapp,εψk dσxdt

(3.13)

∫∫
Γkε,T

∂tw
k
εe
k dσxdt =

∫∫
Γkε,T

H
(
vkε , w

k
ε

)
ek dσxdt (3.14)

for all ϕki ∈ L2
(
0, T ;H1

(
Ωk
i,ε

))
, ϕe ∈ L2 (0, T ;H1(Ωe,ε)) with

• ψk = ψki − ψke :=
(
ϕki − ϕe

)
|Γkε,T ∈ L

2
(
0, T ;H1/2

(
Γkε
))
∩ Lr

(
Γkε,T

)
for k = 1, 2,

• Ψ = Ψ1
i −Ψ2

i := (ϕ1
i − ϕ2

i ) |Γ1,2
ε,T
∈ L2(Γ1,2

ε,T ),

• ek ∈ L2(Γkε,T ) for k = 1, 2.

Remark 3.6. Due to Lions-Magenes theorem (see [BF12] p. 101), the following injection

V :=
{
u ∈ L2

(
0, T ;H1/2

(
Γkε
))
∩ Lr

(
Γkε,T

)
and ∂tu ∈ L2

(
0, T ;H−1/2

(
Γkε
))

+ Lr/(r−1)
(
Γkε,T

)}
⊂ C0

(
[0, T ];L2(Γε)

)
, for k = 1, 2

is continuous with r ∈ (2,+∞). Then, vkε ∈ C0
(
[0, T ];L2(Γkε)

)
for k = 1, 2. Therefore, the

initial data of vkε for k = 1, 2 in Definition 3.1 is well defined. In the same manner, the initial
condition on sε and on wkε for k = 1, 2 makes sense.

Theorem 3.1 (Microscopic Tridomain Model). Assume that the conditions (3.4)-(3.11) hold.
Then, System (3.1)-(3.3) possesses a unique weak solution in the sense of Definition 3.1 for
every fixed ε > 0.
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Furthermore, this solution verifies the following energy estimates: there exists constants
C1, C2, C3, C4, independent of ε such that:

∑
k=1,2

∥∥∥√εvkε∥∥∥2

L∞(0,T ;L2(Γkε ))+
∑
k=1,2

∥∥∥√εwkε∥∥∥2

L∞(0,T ;L2(Γkε ))+
∥∥∥√εsε∥∥∥2

L∞(0,T ;L2(Γ1,2
ε )) ≤ C1 (3.15)

∑
k=1,2

∥∥∥uki,ε∥∥∥L2(0,T ;H1(Ωki,ε))
+ ‖uεe‖L2(0,T ;H1(Ωe,ε)) ≤ C2, (3.16)

∑
k=1,2

∥∥∥ε1/rvkε
∥∥∥
Lr(Γkε,T )

≤ C3 and
∑
k=1,2

∥∥∥ε(r−1)/rIa,ion(vkε )
∥∥∥
Lr/(r−1)(Γkε,T )

≤ C4. (3.17)

Moreover, if vkε,0 ∈ H1/2(Γkε)∩Lr(Γkε), k = 1, 2, then there exists a constant C5 independent of
ε such that:

∑
k=1,2

∥∥∥√ε∂tvke∥∥∥2

L2(Γkε,T )
+
∑
k=1,2

∥∥∥√ε∂twkε∥∥∥2

L2(Γkε,T )
+
∥∥∥√ε∂tsε∥∥∥2

L2(Γ1,2
ε,T )
≤ C5. (3.18)

The proof of Theorem 3.1 is treated in Section 3.3.
Finally, based on homogenization methods, we can derive the following homogenized prob-

lem:

Theorem 3.2 (Macroscopic TridomainModel). A sequence of solutions
(
u1
i,ε, u

2
i,ε, ue,ε, w

1
ε , w

2
ε

)
of the microscopic tridomain model (3.1)-(3.3) (obtained in Theorem 3.1) converges as ε → 0
to a weak solution

(
u1
i , u

2
i , ue, w

1, w2
)
such that uki , ue ∈ L2(0, T ;H1(Ω)), vk = uki − ue ∈

L2(0, T ;H1(Ω)) ∩ Lr(Ω), s = u1
i − u2

i ∈ L2(0, T ;H1(Ω)), ∂tvk ∈ L2(0, T ; (H1(Ω))′) ∩
Lr/(r−1)(ΩT ), wk ∈ C(0, T ;L2(Ω)) and ∂ts ∈ L2(ΩT ) satisfy themacroscopic problem (Reaction-
Diffusion system):

∑
k=1,2

µk∂tv
k +∇ ·

(
M̃e∇ue

)
+
∑
k=1,2

µkIion(vk, wk) =
∑
k=1,2

µkIkapp in ΩT ,

µ1∂tv
1 + µg∂ts−∇ ·

(
M̃i∇u1

i

)
+ µ1Iion(v1, w1) + µgIgap(s) = µ1I1

app in ΩT ,

µ2∂tv
2 − µg∂ts−∇ ·

(
M̃i∇u2

i

)
+ µ2Iion(v2, w2)− µgIgap(s) = µ2I2

app in ΩT ,

∂tw
k −H(vk, wk) = 0 on ΩT ,

(3.19)
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completed with no-flux boundary conditions on ui, ue on ∂extΩ :

(
M̃e∇ue

)
· n =

(
M̃i∇uki

)
· n = 0 on ΣT := (0, T )× ∂extΩ,

and initial conditions for the transmembrane potential vk, the gap potential s and the gating
variable wk :

vk(0, x) = vk0(x), s(0, x) = s0(x) and wk(0, x) = wk0(x),

where µk =
∣∣∣Γk∣∣∣ / |Y | , k = 1, 2, (resp. µg = |Γ1,2| / |Y |) is the ratio between the surface

membrane (resp. the gap junction) and the volume of the reference cell. Furthermore,n represent
the outward unit normal to the boundary of Ω. Herein, the homogenized conductivity matrices
M̃j =

(
m̃pq

j

)
1≤p,q≤d

for j = i, e are respectively defined by:

m̃pq
i := 1

|Y |

d∑
`=1

∫
Y ki

(
mpq
i + mp`

i

∂χqi
∂y`

)
dy, (3.20a)

m̃pq
e := 1

|Y |

d∑
`=1

∫
Ye

(
mpq
e + mp`

e

∂χqe
∂y`

)
dy, (3.20b)

where the components χqj of χj for j = i, e are respectively the corrector functions, solutions of
the ε-cell problems:


−∇y · (Me∇yχ

q
e) = ∇y · (Meeq) in Ye,

χqe y-periodic,

Me∇yχ
q
e · ne = −(Meeq) · ne on Γk, k = 1, 2

(3.21a)



−∇y · (Mi∇yχ
q
i ) = ∇y · (Mieq) in Y k

i ,

χqi y-periodic,

Mi∇yχ
q
i · nki = −(Mieq) · nki on Γk, k = 1, 2

Mi∇yχ
q
i · nki = −(Mieq) · nki on Γ1,2,

(3.21b)

for eq, q = 1, . . . , d, the standard canonical basis in Rd.
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3.3 Existence andUniqueness of solutions for themicroscopic
tridomain model

This section is devoted to proving existence and uniqueness of solutions to the heterogeneu-
ous microscopic tridomain model presented in Section 3.1 for fixed ε > 0. The proof of Theorem
3.1 is based on the Faedo-Galerkin method and carried out in several steps:

• Construction of the basis on the intra- and extracellular domains.

• Construction and local existence of approximate solutions.

• Find some a priori estimates of the approximate solutions.

• Existence and uniqueness of solution to the microscopic tridomain model.

We refer the reader to the well-posedness results for weak solutions of the microscopic bidomain
model, established in [BCP09; Ben+19] by using a Faedo-Galerkin technique. See also [BK06;
Bou+08] for a similar approach, based on a parabolic regularization technique.

In this proof, wewill remove the ε-dependence in the solution
(
u1
i,ε, u

2
i,ε, ue,ε, v

1
ε , v

2
ε , sε, w

1
ε , w

2
ε

)
for simplification of notation. The demonstration is described as follows:

Step 1: Construction of the basis

Wefirst consider functions φ, φ̃ ∈ C0(Ωk

i,ε) and we letVk
0,i denote the completion ofC0(Ωk

i,ε)
under the norm induced by the inner product 〈·, ·〉Vk0,i which defined by

〈Θ, Θ̃〉Vk0,i :=
∫

Ωki,ε
φφ̃ dx+

∫
Γkε
φ|Γkε φ̃|Γkεdσ +

∫
Γ1,2
ε

φ|Γ1,2
ε
φ̃|Γ1,2

ε
dσ, for k = 1, 2,

where Θ = t
(
φ φ|Γkε φ|Γ1,2

ε

)
, Θ̃ = t

(
φ̃ φ̃|Γkε φ̃|Γ1,2

ε

)
.

Similarly, for functions φ, φ̃ ∈ C1(Ωk

i,ε) and we let Vk
1,i denote the completion of C1(Ωk

i,ε)
under the norm induced by the inner product 〈·, ·〉Vk1,i which defined by

〈Θ, Θ̃〉Vk1,i :=
∫

Ωki,ε
Mε
i∇φ · ∇φ̃ dx+

∫
Γkε
φ|Γkε φ̃|Γkε dσ +

∫
Γkε
∇Γkεφ · ∇Γkε φ̃ dσ

+
∫

Γ1,2
ε

φ|Γ1,2
ε
φ̃|Γ1,2

ε
dσ +

∫
Γ1,2
ε

∇Γ1,2
ε
φ · ∇Γ1,2

ε
φ̃ dσ, for k = 1, 2

where ∇Γ denotes the tangential gradient operator on Γ (Γ := Γkε ,Γ1,2
ε ). We note that the fol-

lowing injections hold:
Vk

0,i ⊂ L2(Ωk
i,ε), and Vk

1,i ⊂ H1(Ωk
i,ε).
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Moreover, the injection from Vk
1,i to Vk

0,i is continuous and compact for k = 1, 2. We refer
the reader to [Gal08; RZ+03] for similar approaches. It follows from a well-known result (see
e.g. [Tem12] p. 54) that the bilinear form a(Θ, Θ̃) := 〈Θ, Θ̃〉Vk1,i defines a strictly positive self
adjoint unbounded operator Bki : D(Bki ) = {Θ ∈ Vk

1,i : Bki Θ ∈ Vk
1,i} → Vk

0,i such that, for any
Θ̃ ∈ Vk

1,i, we have 〈Bki Θ, Θ̃〉Vk0,i = a(Θ, Θ̃). Thus, for n ∈ N, we take a complete system of
eigenfunctions {Θk

i,n = t
(
φki,n ψki,n Ψk

i,n

)
}n of the problem

Bki Θk
i,n = λnΘk

i,n, in Vk
0,i, for k = 1, 2,

with {λn}n be a sequence such that 0 < λ1 ≤ λ2, . . . , λn →∞ as n→∞,
and Θk

i,n ∈ D(Bki ), ψki,n := φki,n|Γkε and Ψk
i,n := φki,n|Γ1,2

ε
where φki,n, ψki,n and Ψk

i,n are regular
enough for k = 1, 2.
Moreover, the eigenvectors {Θk

i,n}n turn out to form an orthogonal basis in Vk
1,i and Vk

0,i, and
they may be assumed to be normalized in the norm ofVk

0,i for k = 1, 2. SinceC1(Ωk

i,ε) ⊂ Vk
1,i ⊂

H1(Ωk
i,ε) and C1(Ωk

i,ε) is dense in H1(Ωk
i,ε) then Vk

1,i is dense in H1(Ωk
i,ε) for the H1-norm.

Therefore, {Θk
i,n}n is a basis in H1(Ωk

i,ε) for the H1-norm.

On the other hand, we consider a basis {ζkn}n, n ∈ N that is orthonormal in L2(Γkε) and
orthogonal in H1(Γkε) and we set the spaces

Pki,` = span{Θk
i,1, . . . ,Θk

i,`}, Pki,∞ =
∞⋃
`=1
Pki,`,

Kki,` = span{ζk1 , . . . , ζk` }, Kki,∞ =
∞⋃
`=1
Kki,`,

where Pki,∞ and Kki,∞ are respectively dense subspaces of Vk
1,i and H1(Γkε) for k = 1, 2.

Remark 3.7. Analogously, we construct a basis on the extracellular domain. We let Vp,e denote
the completion of Cp(Ωe,ε) under the norm induced by the inner product 〈·, ·〉Vp,e for φ, φ̃ ∈
Cp(Ωe,ε), p = 0, 1 which respectively defined by

〈Θ′, Θ̃′〉V0,e :=
∫

Ωe,ε
φφ̃ dx+

∑
k=1,2

∫
Γkε
φ|Γkε φ̃|Γkεdσ,

and 〈Θ′, Θ̃′〉V1,e :=
∫

Ωe,ε
Mε
e∇φ · ∇φ̃ dx+

∑
k=1,2

[∫
Γkε
φ|Γkε φ̃|Γkε dσ +

∫
Γkε
∇Γkεφ · ∇Γkε φ̃ dσ

]
,

where Θ′ = t
(
φ φ|Γ1

ε
φ|Γ2

ε

)
, Θ̃′ = t

(
φ̃ φ̃|Γ1

ε
φ̃|Γ2

ε

)
. Similarly, we take a complete basis
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which is orthogonal in V1,e and orthonormal in V0,e and we set the spaces

Pe,` = span{Θe,1, . . . ,Θe,`}, Pe,∞ =
∞⋃
`=1
Pe,`,

where Pe,∞ is a dense subspace of V1,e.

Step 2: Construction and local existence of approximate solutions

Supplied with the basis introduced in the first step, we look for the approximate solutions as
sequences {uki,n}n>1, {ue,n}n>1 and {wkn}n>1, k = 1, 2 defined for t > 0 and x ∈ Ω by:

Uk
i =



uki,n

uki,n

uki,n


:=

n∑
`=1

dki,`(t)



φki,`

ψki,`

Ψk
i,`


, Ue =



ue,n

u1
e,n

u2
e,n


:=

n∑
`=1

de,`(t)



φe,`

ψ1
e,`

ψ2
e,`


and wkn :=

n∑
`=1

ck` (t)ζk` (x),

(3.22)

with φki,`|Γkε = ψki,`, φ
k
i,`|Γ1,2

ε
= Ψk

i,` and φe,`|Γkε = ψke,` for k = 1, 2. To apply the Faedo-Galerkin
scheme, we first regularize the microscopic tridomain system (3.1)-(3.3) using specific approx-
imation as follows (recall that our system is degenerate)

(ε+ δn)
∫

Γ1
ε

∂tu
1
i,nψ

1
i dσx − ε

∫
Γ1
ε

∂tu
1
e,nψ

1
i dσx + δn

∫
Ω1
i,ε

∂tu
1
i,nφ

1
i dx

+ (ε2 + δn)
∫

Γ1,2
ε

∂tu
1
i,nΨ1

i dσx −
ε

2

∫
Γ1,2
ε

∂tu
2
i,nΨ1

i dσx

=
∫

Γ1
ε

ε
(
−Iion(v1

n, w
1
n) + I1

app,ε

)
ψ1
i dσx

− 1
2

∫
Γ1,2
ε

εIgap(sn)Ψ1
i dσx −

∫
Ω1
i,ε

Mε
i∇u1

i,n · ∇φ1
i dx

(3.23)
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(ε+ δn)
∫

Γ2
ε

∂tu
2
i,nψ

2
i dσx − ε

∫
Γ2
ε

∂tu
2
e,nψ

2
i dσx + δn

∫
Ω2
i,ε

∂tu
2
i,nφ

2
i dx

− ε

2

∫
Γ1,2
ε

∂tu
1
i,nΨ2

i dσx + (ε2 + δn)
∫

Γ1,2
ε

∂tu
2
i,nΨ2

i dσx

=
∫

Γ2
ε

ε
(
−Iion(v2

n, w
2
n) + I2

app,ε

)
ψ2
i dσx

+ 1
2

∫
Γ1,2
ε

εIgap(sn)Ψ2
i dσx −

∫
Ω2
i,ε

Mε
i∇u2

i,n · ∇φ2
i dx

(3.24)

− ε
∑
k=1,2

∫
Γkε
∂tu

k
i,nψ

k
e dσx + (ε+ δn)

∑
k=1,2

∫
Γkε
∂tu

k
e,nψ

k
e dσx + δn

∫
Ωe,ε

∂tue,nφe dx

=
∑
k=1,2

∫
Γkε
ε
(
Iion(vkn, wkn)− Ikapp,ε

)
ψke dσx −

∫
Ωe,ε

Mε
e∇ue,n · ∇φe dx

(3.25)

∫
Γkε
∂tw

k
nζ

k dσx =
∫

Γkε
H
(
vkn, w

k
n

)
ζk dσx, (3.26)

where the regularization parameter δn = 1
n
, Θk

i = t
(
φki ψki Ψk

i

)
∈ Pki,n, ζk ∈ Kkn for k = 1, 2,

and Θe = t (φe ψ1
e ψ2

e) ∈ Pe,n. The regularization terms multiplied by δn have been added to
overcome degeneracy in (3.13). Moreover, the resulting regularized problem is supplemented
with initial conditions:

uki,n(0, x) = uk0,i,n(x) :=
n∑
`=1

dki,`(0)φki,`(x),

uki,n(0, x) = uk0,i,n(x) :=
n∑
`=1

dki,`(0)ψki,`(x),

uki,n(0, x) = uk0,i,n(x) :=
n∑
`=1

dki,`(0)Ψk
i,`(x), dki,`(0) := 〈Uk

0,i,Θk
i,`〉Vk0,i ,

ue,n(0, x) = u0,e,n(x) :=
n∑
`=1

de,`(0)φe,`,

uke,n(0, x) = u0,e,n(x) :=
n∑
`=1

de,`(0)ψke,`(x), de,`(0) := 〈U0,e,Θe,`〉V0,e ,

wkn(0, x) = wk0,n :=
n∑
`=1

ck` (0)ζk` (x), ck` (0) := 〈wk0 , ζk` 〉L2(Γkε ),

(3.27)

where Uk
0,i := Uk

i (0, x), for k = 1, 2 and U0,e := Ue(0, x).

Next, we prove in the following lemma the local existence of solutions for the previous reg-
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ularized problem:

Lemma 3.1 (Local existence of solutions for the regularized problems). Assume that the con-
ditions (3.4)-(3.11) hold. Then, there exits a positive time 0 < t0 ≤ T such that System (3.23)-
(3.27) admit a unique solution over the time interval [0, t0].

Proof. The goal is to determine the coefficients dki = {dki,`}n`=1, de = {de,`}n`=1 and ck =
{ck`}n`=1 for k = 1, 2. For this purpose, if n fixed, we choose Θk

i = Θk
i,m, Θe = Θe,m and

ζk = ζkm for 1 ≤ m ≤ n and substitute the approximate solutions (3.22) into (3.23)-(3.26).
Then, the problem (3.23)-(3.26) is equivalent to the system of ordinary differential equations
(ODE) in the following compact form:

(ε+ δn)A1
ii(d1

i )′ − εA
1
ied′e + δnA1

ii(d1
i )′ + (ε2 + δn)A

1
ii(d1

i )′ −
ε

2A
1,2
ii (d2

i )′ = F1
i (t,d1

i ,d2
i ,de, c1, c2)

(ε+ δn)A2
ii(d2

i )′ − εA
2
ied′e + δnA2

ii(d2
i )′ −

ε

2A
1,2
ii (d1

i )′ + (ε2 + δn)A
2
ii(d2

i )′ = F2
i (t,d1

i ,d2
i ,de, c1, c2)∑

k=1,2

[
−εAk

ie(dki )′ + (ε+ δn)Ak

eed′e
]

+ δnAeed′e = Fe(t,d1
i ,d2

i ,de, c1, c2)

Gk(ck)′ = Hk(t,d1
i ,d2

i ,de, c1, c2)
(3.28)

with the (`,m) entry of matrix:

• Ak
ii is 〈φki,`, φki,m〉L2(Ωki,ε)

(
resp. of Aee is 〈φe,`, φe,m〉L2(Ωe,ε)

)
,

• Ak

ii is 〈ψki,`, ψki,m〉L2(Γkε )

(
resp. of Ak

ee is 〈ψke,`, ψke,m〉L2(Γkε )

)
,

• Ak

ie is 〈ψki,`, ψke,m〉L2(Γkε ),

• A
k

ii is 〈Ψk
i,`,Ψk

i,m〉L2(Γkε )

(
resp. of A

1,2
ii is 〈Ψ1

i,`,Ψ2
i,m〉L2(Γ1,2

ε )

)
,

• Gk is 〈ζk` , ζkm〉L2(Γkε ),

for 1 ≤ `,m ≤ n and k = 1, 2. Herein, the vectors Fki , Fe and Hk for k = 1, 2 correspond to the
right hand sides of the equations given in (3.23)-(3.26).

Furthermore, the first three equations in ODE system (3.28) can be written as follows:

M



(d1
i )′

(d2
i )′

d′e
(c1)′

(c2)′


=



F1
i

F2
i

Fe
H1

H2


, (3.29)
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withM := M1 + εM2 and each matrix defined by:

M1 =



δn

(
A1
ii + A1

ii + A
1
ii

)
0 0 0 0

0 δn

(
A2
ii + A2

ii + A
2
ii

)
0 0 0

0 0 δn
(
A1
ee + A2

ee + Aee

)
0 0

0 0 0 G1 0
0 0 0 0 G2


(3.30)

and

M2 =



A1
ii + 1

2A
1
ii −1

2A
1,2
ii −A1

ie 0 0
−1

2
tA

1,2
ii A2

ii + 1
2A

2
ii −A2

ie 0 0
−tA1

ie −tA2
ie A1

ee + A2
ee 0 0

0 0 0 0 0
0 0 0 0 0


. (3.31)

In order to write 

(d1
i )′

(d2
i )′

d′e
(c1)′

(c2)′


= M−1



F1
i

F2
i

Fe
H1

H2


,

one needs to prove that the matrix M is invertible. According to Lemma 3.2, given below, the
matrixM is symmetric positive definite, hence invertible. Consequently, we can write the ODE
system (3.28) in the form z′(t) = F (t, z(t)). Finally, we prove the existence of a local solution
[0, t0) to this ODE system with t0 ∈ (0, T ) (independent of the initial data). To this end, we
show that th entries of Fki ,Fe and Hk for k = 1, 2 are Caratheodory functions bounded by L1

functions using the assumptions (3.4)-(3.11) by following the same strategy in [BK06].

Lemma 3.2. For all n ∈ N∗, the matrix M is positive definite.

Proof. Since we have M = M1 + εM2 with M1 and M2 defined respectively by (3.30)-(3.31).
Note that by the orthonormality of the basis, the matricesAk

ii,Ak
ii,A

k

ii,A
k

ee,Aee andGk are equal
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to the identity matrix In×n for k = 1, 2. So, the matrix

M1 =



3δnIn×n 0 0 0 0
0 3δnIn×n 0 0
0 0 3δnIn×n 0 0
0 0 0 In×n 0
0 0 0 0 In×n


It suffices to show that the matrix M2 is positive semi-definite. Let d = t (d1

i d2
i de c1 c2)

where dki = t
(
dki,1, . . . ,dki,n

)
∈ Rn, de = t (de,1, . . . ,de,n) ∈ Rn and ck = t

(
ck1, . . . , ckn

)
∈ Rn

for k = 1, 2, we prove that tdM2d ≥ 0.
Indeed, we have:

tdM2d = td1
i

(
A1
ii + 1

2A
1
ii

)
d1
i + td2

i

(
A2
ii + 1

2A
2
ii

)
d2
i + tde

(
A1
ee + A2

ee

)
de

− td1
iA

1,2
ii d2

i − 2 td1
iA

1
iede − 2 td2

iA
2
iede

= td1
iA

1
iid1

i − 2 td1
iA

1
iede + tdeA

1
eede

+ td2
iA

2
iid2

i − 2 td2
iA

2
iede + tdeA

2
eede

+ 1
2
td1
iA

1
iid1

i − td1
iA

1,2
ii d2

i + 1
2
td2
iA

2
iid2

i

:= E1 + E2 + E3

We complete by showing that E1 ≥ 0 and the proof of the other terms E2,E3 is similar. Due the
form of matrices and the orthonormality of basis, we obtain:

E1 = td1
iA

1
iid1

i − 2 td1
iA

1
iede + tdeA

1
eede

=
n∑

`,m=1

[
d1
i,`d1

i,m

∫
Γ1
ε

ψ1
i,`ψ

1
i,m − 2d1

i,`de,m
∫

Γ1
ε

ψ1
i,`ψ

1
e,m + de,`de,m

∫
Γ1
ε

ψ1
e,`ψ

1
e,m

]
dσx

=
∫

Γ1
ε

[
n∑
`

d1
i,`ψ

1
i,` − de,`ψ1

e,`

]2

dσx ≥ 0.

Remark 3.8. The above proof of the matrix M points out the role of the regularization term
M1. It allows to obtain a matrix M in (3.29) which is nonsingular, so that the resulting system
of ODE is non-degenerate.
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To prove global existence of the Faedo-Galerkin solutions on [0, T ), we derive a priori es-
timates, independent of the regularization parameter n, bounding uki,n, ue,n, vkn, wkn for k = 1, 2
and sn in the next step.

Step 3: Energy estimates

The Faedo-Galerkin solutions satisfy the following weak formulations:

(ε+ δn)
∫

Γ1
ε

∂tu
1
i,nψ

1
i,n dσx − ε

∫
Γ1
ε

∂tue,nψ
1
i,n dσx + δn

∫
Ω1
i,ε

∂tu
1
i,nϕ

1
i,n dx

+ (ε2 + δn)
∫

Γ1,2
ε

∂tu
1
i,nΨ1

i,n dσx −
ε

2

∫
Γ1,2
ε

∂tu
2
i,nΨ1

i,n dσx

=
∫

Γ1
ε

ε
(
−Iion(v1

n, w
1
n) + I1

app,ε

)
ψ1
i,n dσx

− 1
2

∫
Γ1,2
ε

εIgap(sn)Ψ1
i,n dσx −

∫
Ω1
i,ε

Mε
i∇u1

i,n · ∇ϕ1
i,n dx

(3.32)

(ε+ δn)
∫

Γ2
ε

∂tu
2
i,nψ

2
i,n dσx − ε

∫
Γ2
ε

∂tue,nψ
2
i,n dσx + δn

∫
Ω2
i,ε

∂tu
2
i,nϕ

2
i,n dx

− ε

2

∫
Γ1,2
ε

∂tu
1
i,nΨ2

i,n dσx + (ε2 + δn)
∫

Γ1,2
ε

∂tu
2
i,nΨ2

i,n dσx

=
∫

Γ2
ε

ε
(
−Iion(v2

n, w
2
n) + I2

app,ε

)
ψ2
i,n dσx

+ 1
2

∫
Γ1,2
ε

εIgap(sn)Ψ2
i,n dσx −

∫
Ω2
i,ε

Mε
i∇u2

i,n · ∇ϕ2
i,n dx

(3.33)

− ε
∑
k=1,2

∫
Γkε
∂tu

k
i,nψ

k
e,n dσx + (ε+ δn)

∑
k=1,2

∫
Γkε
∂tu

k
e,nψ

k
e,n dσx + δn

∫
Ωe,ε

∂tue,nϕe,n dx

=
∑
k=1,2

∫
Γkε
ε
(
Iion(vkn, wkn)− Ikapp,ε

)
ψke,n dσx −

∫
Ωe,ε

Mε
e∇ue,n · ∇ϕe,n dx

(3.34)

∫
Γkε
∂tw

k
ne
k
n dσx =

∫
Γkε
H
(
vkn, w

k
n

)
ekn dσx, (3.35)

where

ϕki,n(t, x) :=
n∑
`=1

aki,`(t)φki,`(x), ϕe,n(t, x) :=
n∑
`=1

ae,`(t)φe,`(x), ekn(t, x) :=
n∑
`=1

b`(t)ξk` (x),
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for some given (absolutely continuous) coefficients aki,`(t), ae,`(t), bk` (t) with ` = 1, . . . , n and
k = 1, 2. Moreover, we recall that ψki,n (resp. ψke,n) is the trace of ϕki,n (resp. of ϕe,n) on Γkε and
Ψk
i,n is the trace of ϕki,n on Γ1,2

ε for k = 1, 2.

We find now the a priori estimates of the solution of approximate problem (3.32)-(3.35).
First, we sum the three equations (3.32)-(3.34) to obtain the following weak formulation:

∑
k=1,2

∫
Γkε
ε∂tv

k
nψ

k
n dσx +

∑
k=1,2

∫
Γkε
δn∂tu

k
i,nψ

k
i,n dσx +

∑
k=1,2

∫
Γkε
δn∂tu

k
e,nψ

k
e,n dσx

+ 1
2

∫
Γ1,2
ε

ε∂tsnΨn dσx +
∑
k=1,2

∫
Γ1,2
ε

δn∂tu
k
i,nΨk

i,n dσx

+
∑
k=1,2

∫
Ωki,ε

δn∂tu
k
i,nϕ

k
i,n dx+

∫
Ωe,ε

δn∂tue,nϕe,n dx

+
∑
k=1,2

∫
Ωki,ε

Mε
i∇uki,n · ∇ϕki,n dx+

∫
Ωe,ε

Mε
e∇ue,n · ∇ϕe,n dx

+
∑
k=1,2

∫
Γkε
εIion

(
vkn, w

k
n

)
ψkn dσx + 1

2

∫
Γ1,2
ε

εIgap (sn) Ψn dσx

=
∑
k=1,2

∫
Γkε
εIkapp,εψkn dσx,

(3.36)

∫
Γkε
∂tw

k
ne
k
n dσx =

∫
Γkε
H
(
vkn, w

k
n

)
ekn dσx, (3.37)

where ψkn = ψki,n − ψke,n for k = 1, 2 and Ψn = Ψ1
i,n −Ψ2

i,n.

Next, we substitute ϕki,n = uki,n, ϕe,n = ue,n and ekn = εα4w
k
n, respectively, in (3.36)-(3.37)
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to get the following equality:

1
2
d

dt

 ∑
k=1,2

∫
Γkε

∣∣∣√εvkn∣∣∣2 dσx +
∑
k=1,2

∫
Γkε

∣∣∣∣√δnuki,n∣∣∣∣2 dσx +
∑
k=1,2

∫
Γkε

∣∣∣∣√δnuke,n∣∣∣∣2 dσx
+ 1

2

∫
Γ1,2
ε

∣∣∣√εsn∣∣∣2 dσx +
∑
k=1,2

∫
Γ1,2
ε

∣∣∣∣√δnuki,n∣∣∣∣2 dσx
+
∑
k=1,2

∫
Ωki,ε

∣∣∣∣√δnuki,n∣∣∣∣2 dx+
∫

Ωe,ε

∣∣∣∣√δnue,n∣∣∣∣2 dx


+
∑
k=1,2

∫
Ωki,ε

Mε
i∇uki,n · ∇uki,n dx+

∫
Ωe,ε

Mε
e∇ue,n · ∇ue,n dx

+
∑
k=1,2

∫
Γkε
εIion

(
vkn, w

k
n

)
vkn dσx + 1

2

∫
Γ1,2
ε

εIgap (sn) sn dσx

=
∑
k=1,2

∫
Γkε
εIkapp,εvkn dσx,

(3.38)

α4

2
d

dt

∫
Γkε

∣∣∣√εwkn∣∣∣2 dσx =
∫

Γkε
εα4H

(
vkn, w

k
n

)
wkn dσx, for k = 1, 2. (3.39)

Integrating (3.38)-(3.39) over (0, t) for t ∈ (0, t0] in each equation and then summing the
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resulting equations, we procure the following equality using the assumption (3.5) on Iion:

1
2

 ∑
k=1,2

∥∥∥√εvkn∥∥∥2

L2(Γkε )
+ α4

∑
k=1,2

∥∥∥√εwkn∥∥∥2

L2(Γkε )
+ 1

2
∥∥∥√εsn∥∥∥2

L2(Γ1,2
ε )

+
∑
k=1,2

∥∥∥∥√δnuki,n∥∥∥∥2

L2(Γkε )
+
∑
k=1,2

∥∥∥∥√δnuke,n∥∥∥∥2

L2(Γkε )
+
∑
k=1,2

∥∥∥∥√δnuki,n∥∥∥∥2

L2(Γ1,2
ε )

+
∑
k=1,2

∥∥∥∥√δnuki,n∥∥∥∥2

L2(Ωki,ε)
+
∥∥∥∥√δnue,n∥∥∥∥2

L2(Ωe,ε)


+
∑
k=1,2

∫ t

0

∫
Ωki,ε

Mε
i∇uki,n · ∇uki,n dxdτ +

∫ t

0

∫
Ωe,ε

Mε
e∇ue,n · ∇ue,n dxdτ

+
∑
k=1,2

∫ t

0

∫
Γkε
εĨa,ion

(
vkn
)
vkn dσxdτ

= 1
2

 ∑
k=1,2

∥∥∥√εvk0,n∥∥∥2

L2(Γkε )
+ α4

∑
k=1,2

∥∥∥√εwk0,n∥∥∥2

L2(Γkε )
+ 1

2
∥∥∥√εs0,n

∥∥∥2

L2(Γ1,2
ε )

+
∑
k=1,2

∥∥∥∥√δnuk0,i,n∥∥∥∥2

L2(Γkε )
+
∑
k=1,2

∥∥∥∥√δnuk0,e,n∥∥∥∥2

L2(Γkε )
+
∑
k=1,2

∥∥∥∥√δnuk0,i,n∥∥∥∥2

L2(Γ1,2
ε )

+
∑
k=1,2

∥∥∥∥√δnuk0,i,n∥∥∥∥2

L2(Ωki,ε)
+
∥∥∥∥√δnu0,e,n

∥∥∥∥2

L2(Ωe,ε)


− 1

2

∫ t

0

∫
Γ1,2
ε

εIgap (sn) sn dσxdτ +
∑
k=1,2

∫ t

0

∫
Γkε
ε
(
−Ib,ion

(
wkn
)
vkn + α4H

(
vkn, w

k
n

)
wkn
)
dσxdτ

+
∑
k=1,2

∫ t

0

∫
Γkε
ε
(
β1v

k
n + β2

)
vkn dσxdτ +

∑
k=1,2

∫ t

0

∫
Γkε
εIkapp,εvkn dσxdτ.

(3.40)
We denote by E` with ` = 1, . . . , 9 the terms of the previous equation which is rewritten as
follows (to respect the order):

E1 + E2 + E3 + E4 = E5 + E6 + E7 + E8 + E9.

Now, we estimate E` for ` = 2, . . . , 9 as follows:

• Due the uniform ellipticity (3.4) of Mε
j for j = i, e, we have

E2 + E3 ≥ α

 ∑
k=1,2

∫ t

0

∥∥∥∇uki,n∥∥∥2

L2(Ωki,ε)
dτ +

∫ t

0
‖∇ue,n‖2

L2(Ωe,ε) dτ

 ≥ 0.

• Using the assumption (3.5d) on Ĩa,ion, we deduce that E4 ≥ 0.
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• By the assumptions (3.11) on the initial data, we haveE5 ≤ C for some constant indepen-
dent of n and ε.

• By the structure form of Igap defined in (3.9), we obtain

E6 ≤ Ggap

∫ t

0

∥∥∥√εsn∥∥∥2

L2(Γ1,2
ε )

dτ.

• Using the assumption on Ib,ion and H defined as (3.5b), then we obtain

E7 ≤ α5
∑
k=1,2

∫ t

0

∥∥∥√εwkn∥∥∥2

L2(Γkε )
dτ.

• It easy to estimate E8 as follows

E8 ≤ C
∑
k=1,2

∫ t

0

∥∥∥√εvkn∥∥∥2

L2(Γkε )
dτ,

with C is constant independent of n and ε.

• By Young’s inequality with the uniform L2 boundedness (3.10) of Ikapp,ε, there exist con-
stants C1, C2 > 0 independent of n and ε such that

E9 ≤ C1 + C2
∑
k=1,2

∫ t

0

∥∥∥√εvkn∥∥∥2

L2(Γkε )
dτ.

Collecting all the estimates stated above, one obtains from (3.40) the following inequality
for all t ≤ t0,

∑
k=1,2

∥∥∥√εvkn∥∥∥2

L2(Γkε )
+
∑
k=1,2

∥∥∥√εwkn∥∥∥2

L2(Γkε )
+
∥∥∥√εsn∥∥∥2

L2(Γ1,2
ε )

≤ C

1 +
∑
k=1,2

∫ t0

0

∥∥∥√εvkn∥∥∥2

L2(Γkε )
dτ +

∑
k=1,2

∫ t0

0

∥∥∥√εwkn∥∥∥2

L2(Γkε )
dτ +

∫ t0

0

∥∥∥√εsn∥∥∥2

L2(Γ1,2
ε )

dτ

 .
(3.41)

By an application of Gronwall’s lemma in the last inequality, one gets

∑
k=1,2

∥∥∥√εvkn∥∥∥2

L2(Γkε )
+
∑
k=1,2

∥∥∥√εwkn∥∥∥2

L2(Γkε )
+
∥∥∥√εsn∥∥∥2

L2(Γ1,2
ε )
≤ C.
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Hence, we conclude that

∑
k=1,2

∥∥∥√εvkn∥∥∥2

L∞(0,T ;L2(Γkε )) +
∑
k=1,2

∥∥∥√εwkn∥∥∥2

L∞(0,T ;L2(Γkε )) +
∥∥∥√εsn∥∥∥2

L∞(0,T ;L2(Γ1,2
ε )) ≤ C.

Then, we can deduce from this inequality that our approximate weak solution of the microscopic
tridomain problem is global on (0, T ).

Moreover, one can obtain by exploiting this last inequality along with (3.40) the following a
priori estimates for some constant C > 0 not depending on n and ε:

∑
k=1,2

∥∥∥√εvkn∥∥∥2

L∞(0,T ;L2(Γkε )) +
∑
k=1,2

∥∥∥√εwkn∥∥∥2

L∞(0,T ;L2(Γkε )) +
∥∥∥√εsn∥∥∥2

L∞(0,T ;L2(Γ1,2
ε ))

+
∑
k=1,2

∥∥∥∥√δnuki,n∥∥∥∥2

L∞(0,T ;L2(Γ1,2
ε ))

+
∑
k=1,2

∥∥∥∥√δnuke,n∥∥∥∥2

L∞(0,T ;L2(Γkε ))

+
∑
k=1,2

∥∥∥∥√δnuki,n∥∥∥∥2

L∞(0,T ;L2(Γkε ))
≤ C,

(3.42)

∑
k=1,2

∥∥∥∇uki,n∥∥∥2

L2(Ωki,ε,T )
+ ‖∇ue,n‖2

L2(Ωe,ε,T ) ≤ C, (3.43)

∑
k=1,2

∥∥∥εĨa,ion (vkn) vkn∥∥∥L1(Γkε,T )
≤ C. (3.44)

∑
k=1,2

∥∥∥√εvkn∥∥∥2

L2(Γkε,T )
+
∑
k=1,2

∥∥∥√εwkn∥∥∥2

L2(Γkε,T )
+
∥∥∥√εsn∥∥∥2

L2(Γ1,2
ε,T )
≤ C, (3.45)

for some constant C > 0 not depending on n and ε.
Furthermore, we deduce from (3.44) together with assumption (3.5d) on Ĩa,ion the following

estimation: ∑
k=1,2

∥∥∥ε1/rvkn
∥∥∥r
Lr(Γkε,T )

≤ C, (3.46)

for some constant C > 0 not depending on n and ε. The second estimate (3.17) in Theorem 3.1
is a direct consequence of (3.46) and assumption (3.5a) on Ia,ion.

It remains to estimate on the L2 norms of the intracellular and extracellular potentials which
are need to complete the proof of Estimate (3.16) on H1. To do this end, we will use the next
lemma, which is a consequence of the uniform Poincaré-Wirtinger’s inequality and the trace
theorem for ε-periodic surfaces.

Lemma 3.3. Let uki ∈ H1
(
Ωk
i,ε

)
for k = 1, 2 and ue ∈ H1 (Ωe,ε) . Set vk :=

(
uki − ue

)
|Γkε
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for k = 1, 2. Assume that the condition (3.12) holds, then there exists a positive constants C,
independent of ε, such that

∥∥∥uki ∥∥∥2

L2(Ωki,ε)
≤ C

(∥∥∥√εvk∥∥∥2

L2(Γkε )
+
∥∥∥∇uki ∥∥∥2

L2(Ωki,ε)
+ ‖∇ue‖2

L2(Ωe,ε)

)
, with k = 1, 2. (3.47)

Proof. We follow the same idea to the proof of Lemma 3.7 in [GK19]. Due the normalization
condition (3.12), Poincaré-Wirtinger’s inequality implies that

‖ue,n‖2
L2(Ωe,ε) ≤ C ‖∇ue,n‖2

L2(Ωe,ε) , (3.48)

for some constant C independent on n and ε. Note that in the sequel C is a generic constant
whose value can change from one line to another.
To estimate on the L2 norms of uki,n for k = 1, 2, we write

uki,n = ûki,n + ũki,n,

where ũki,n := 1∣∣∣Ωk
i,ε

∣∣∣
∫

Ωki,ε
uki,ndx is constant in Ωk

i,ε and ûki,n := uki,n − ũki,n has zero mean in Ωk
i,ε.

Clearly, we see that for k = 1, 2
∥∥∥uki,n∥∥∥2

L2(Ωki,ε)
=
∥∥∥ûki,n∥∥∥2

L2(Ωki,ε)
+
∥∥∥ũki,n∥∥∥2

L2(Ωki,ε)
.

In view of Poincaré-Wirtinger’s inequality, one has

∥∥∥ûki,n∥∥∥2

L2(Ωki,ε)
≤ C

∥∥∥∇ûki,n∥∥∥2

L2(Ωki,ε)
= C

∥∥∥∇uki,n∥∥∥2

L2(Ωki,ε)
for k = 1, 2. (3.49)

Let us bound now
∥∥∥ũki,n∥∥∥2

L2(Ωki,ε)
=

∣∣∣Ωk
i,ε

∣∣∣
|Γkε |

∥∥∥ũki,n∥∥∥2

L2(Γkε)
for k = 1, 2. Since

∣∣∣Γkε ∣∣∣ = ε−1
∣∣∣Γk∣∣∣ and∣∣∣Ωk

i,ε

∣∣∣ ≤ |Ω| , we deduce that
∥∥∥ũki,n∥∥∥2

L2(Ωki,ε)
≤ Cε

∥∥∥ũki,n∥∥∥2

L2(Γkε)
, for k = 1, 2.

It easy to check that

∣∣∣ũki,n∣∣∣2 ≤ C
(∣∣∣uki,n − ue,n∣∣∣2 +

∣∣∣ûki,n∣∣∣2 + |ue,n|2
)
.
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Finally, we obtain for k = 1, 2

∥∥∥ũki,n∥∥∥2

L2(Ωki,ε)
≤ C

(
ε
∥∥∥vkn∥∥∥2

L2(Γkε)
+ ε

∥∥∥ûki,n∥∥∥2

L2(Γkε)
+ ε ‖ue,n‖2

L2(Γkε)

)

≤ Cε
∥∥∥vkn∥∥∥2

L2(Γkε)

+ C

(∥∥∥ûki,n∥∥∥2

L2(Ωki,ε)
+ ε2

∥∥∥∇ûki,n∥∥∥2

L2(Ωki,ε)

)
+ C

(
‖ue,n‖2

L2(Ωe,ε) + ε2 ‖∇ue,n‖2
L2(Ωe,ε)

)
≤ C

(∥∥∥√εvkn∥∥∥2

L2(Γkε )
+
∥∥∥∇uki,n∥∥∥2

L2(Ωki,ε)
+ ‖∇ue,n‖2

L2(Ωe,ε)

)
,

where the second inequality is a direct consequence of the trace theorem and the final one is a
result of (3.48) and (3.49). This completes the proof of this lemma.

Now, Estimate (3.43) and (3.47) imply that

‖ue,n‖L2(0,T ;H1(Ωe,ε)) ≤ C, (3.50)

for some constant C independent on n and ε. Furthermore, we have
∥∥∥√εvkn∥∥∥2

L2(Γkε,T )
≤ C for

k = 1, 2. Then Estimates (3.47), (3.43) and (3.50) ensure that for k = 1, 2,
∥∥∥uki,n∥∥∥L2(0,T ;H1(Ωki,ε))

≤ C. (3.51)

This completes the proof of (3.15)-(3.17) in Theorem 3.1.

Now we turn to find some uniform estimates on the time derivatives by following [BK06]
which will be useful for the passage to the limit. We notice first for k = 1, 2 that,

∫∫
Ωki,ε,T

Mε
i∇uki,n · ∇

(
∂tu

k
i,n

)
dx = 1

2

∫ T

0
∂t

(∫
Ωki,ε

Mε
i∇uki,n · ∇uki,n dx

)
dt

= 1
2

 ∫
Ωki,ε

Mε
i∇uki,n(T, ·) · ∇uki,n(T, ·) dx−

∫
Ωki,ε

Mε
i∇uki,n(0, ·) · ∇uki,n(0, ·) dx

,
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and
∫∫

Γkε,T
Ia,ion

(
vkn
)
∂tv

k
n dσxdt =

∫ T

0
∂t

(∫
Γkε

∫ vkn

0
Ia,ion

(
ṽkn
)
dṽkndσx

)
dt

=
∫

Γkε

∫ vkn(T,·)

0
Ia,ion

(
vkn
)
dvkndσx −

∫
Γkε

∫ vkn(0,·)

0
Ia,ion

(
vkn
)
dvkndσx.

Next, we substitute ϕki,n = ∂tu
k
i,n, ϕe,n = ∂tue,n and ekn = εα4∂tw

k
n, respectively, in (3.36)-

(3.37) then integrate in time to deduce using the previous equalities:

∑
k=1,2

∥∥∥√ε∂tvkn∥∥∥2

L2(Γkε,T )
+ α4

∑
k=1,2

∥∥∥√ε∂twkn∥∥∥2

L2(Γkε,T )
+ 1

2
∥∥∥√ε∂tsn∥∥∥2

L2(Γ1,2
ε,T )

+
∑
k=1,2

∥∥∥∥√δn∂tuki,n∥∥∥∥2

L2(Γkε,T )
+
∑
k=1,2

∥∥∥∥√δn∂tuke,n∥∥∥∥2

L2(Γkε,T )
+
∑
k=1,2

∥∥∥∥√δn∂tuki,n∥∥∥∥2

L2(Γ1,2
ε,T )

+
∑
k=1,2

∥∥∥∥√δn∂tuki,n∥∥∥∥2

L2(Ωki,ε,T )
+
∥∥∥∥√δn∂tue,n∥∥∥∥2

L2(Ωe,ε,T )

+ 1
2

 ∑
k=1,2

∫
Ωki,ε

Mε
i∇uki,n · ∇uki,n(T, ·) dx+

∫
Ωe,ε

Mε
e∇ue,n(T, ·) · ∇ue,n(T, ·) dx

+
∑
k=1,2

∫
Γkε

∫ vkn(T,·)

0
εĨa,ion

(
vkn
)
dvkndσx


= 1

2

 ∑
k=1,2

∫
Ωki,ε

Mε
i∇uki,n(0, ·) · ∇uki,n(0, ·) dx+

∫
Ωe,ε

Mε
e∇ue,n(0, ·) · ∇ue,n(0, ·) dx

+
∑
k=1,2

∫
Γkε

∫ vkn(0,·)

0
εIa,ion

(
vkn
)
dvkndσx +

∑
k=1,2

∫
Γkε

∫ vkn(T,·)

0
ε
(
β1v

k
n + β2

)
dvkndσx


− 1

2

∫∫
Γ1,2
ε,T

εIgap (sn) ∂tsn dσxdτ +
∑
k=1,2

∫
Γkε,T

ε
(
−Ib,ion

(
wkn
)
∂tv

k
n + α4H

(
vkn, w

k
n

)
∂tw

k
n

)
dσxdτ

+
∑
k=1,2

∫
Γkε,T

εIkapp,ε∂tvkn dσxdτ.

(3.52)
We denote by E ′` with ` = 1, . . . , 6 the terms of the previous equation which is rewritten as
follows (to respect the order):

E ′1 + E ′2 = E ′3 + E ′4 + E ′5 + E ′6,
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where

E ′1 :=
∑
k=1,2

∥∥∥√ε∂tvkn∥∥∥2

L2(Γkε,T )
+ α4

∑
k=1,2

∥∥∥√ε∂twkn∥∥∥2

L2(Γkε,T )
+ 1

2
∥∥∥√ε∂tsn∥∥∥2

L2(Γ1,2
ε,T )

+
∑
k=1,2

∥∥∥∥√δn∂tuki,n∥∥∥∥2

L2(Γkε,T )
+
∑
k=1,2

∥∥∥∥√δn∂tuke,n∥∥∥∥2

L2(Γkε,T )
+
∑
k=1,2

∥∥∥∥√δn∂tuki,n∥∥∥∥2

L2(Γ1,2
ε,T )

+
∑
k=1,2

∥∥∥∥√δn∂tuki,n∥∥∥∥2

L2(Ωki,ε,T )
+
∥∥∥∥√δn∂tue,n∥∥∥∥2

L2(Ωe,ε,T )
.

Now, we estimate E ′` for ` = 2, . . . , 6 as follows:

• Due the uniform ellipticity (3.4) of Mε
j for j = i, e, with the monotonicity (3.5d) on Ĩa,ion,

then we have

E ′2 ≥ α

 ∑
k=1,2

∥∥∥∇uki,n(T, ·)
∥∥∥2

L2(Ωki,ε)
+ ‖∇ue,n(T, ·)‖2

L2(Ωe,ε)


+
∑
k=1,2

∫
Γkε

∫ vkn(T,·)

0
εĨa,ion

(
vkn(T, ·)

)
dσxdv

k
n ≥ 0.

• Furthermore, using the a priori estimate (3.42) with the assumption on Ia,ion and on the
initial data, one gets

E ′3 ≤ β

 ∑
k=1,2

∥∥∥∇uki,n(0, ·)
∥∥∥2

L2(Ωki,ε)
+ ‖∇ue,n(0, ·)‖2

L2(Ωe,ε)


+ α1

∑
k=1,2

∫
Γkε
ε
(∣∣∣vkn(0, ·)

∣∣∣r +
∣∣∣vkn(0, ·)

∣∣∣) dσx
+ β1

2
∑
k=1,2

∫
Γkε
ε
∣∣∣vkn(T, ·)

∣∣∣2 dσx + β2
∑
k=1,2

∫
Γkε
ε
∣∣∣vkn(T, ·)

∣∣∣ dσx ≤ C3

for some constant C3 independent of n and ε.

• By the structure form of Igap defined in (3.9), we obtain using Young’s inequality with
estimate (3.45)

E ′4 ≤
Ggap

2
∥∥∥√εsn∥∥∥2

L2(Γ1,2
ε,T )

+ 1
4
∥∥∥√ε∂tsn∥∥∥2

L2(Γ1,2
ε,T )

.

≤ C4 + 1
4
∥∥∥√ε∂tsn∥∥∥2

L2(Γ1,2
ε,T )

with C4 independent of n and ε.
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• Similarly, using the assumption on Ib,ion and H defined as (3.5a)-(3.5b), then we obtain
using Young’s inequality with the estimate (3.45)

E ′5 ≤ C5 + 1
2
∑
k=1,2

(∥∥∥√ε∂tvkn∥∥∥2

L2(Γkε,T )
+
∥∥∥√ε∂twkn∥∥∥2

L2(Γkε )

)

with C5 independent of n and ε.

• By Young’s inequality with the uniform L2 boundedness (3.10) of Ikapp,ε, there exist con-
stants C1, C2 > 0 independent of n and ε such that

E ′6 ≤ C6 + 1
2
∑
k=1,2

∥∥∥√ε∂tvkn∥∥∥2

L2(Γkε,T )
,

with C6 independent of n and ε.

Exploiting all this estimates along with (3.52), one obtains

∑
k=1,2

∥∥∥√ε∂tvkn∥∥∥2

L2(Γkε,T )
+ α4

∑
k=1,2

∥∥∥√ε∂twkn∥∥∥2

L2(Γkε,T )
+
∥∥∥√ε∂tsn∥∥∥2

L2(Γ1,2
ε,T )

+
∑
k=1,2

∥∥∥∥√δn∂tuki,n∥∥∥∥2

L2(Γkε,T )
+
∑
k=1,2

∥∥∥∥√δn∂tuke,n∥∥∥∥2

L2(Γkε,T )
+
∑
k=1,2

∥∥∥∥√δn∂tuki,n∥∥∥∥2

L2(Γ1,2
ε,T )

+
∑
k=1,2

∥∥∥∥√δn∂tuki,n∥∥∥∥2

L2(Ωki,ε,T )
+
∥∥∥∥√δn∂tue,n∥∥∥∥2

L2(Ωe,ε,T )
≤ C

(3.53)

for some constant C > 0 not depending on n and ε.

The next steps is devoted to completing the proof of Theorem 3.1 and to passing to the limit
when n goes to infinity. Further, it treat the uniqueness of the weak solutions to System (3.1)-
(3.3)

Step 4: Passage to the limit and global existence of solutions

In view of (3.50)-(3.51), we can see that vkn, ukj,n are bounded in L2
(
0, T ;H1/2(Γkε)

)
for

j = i, e and k = 1, 2 using the standard trace lemma. Similarly, it easy to check that sn and
uki,n are bounded in L2

(
0, T ;H1/2(Γ1,2

ε )
)
for k = 1, 2. Furthermore, we deduce from (3.53) the

uniform bound on ∂tvkn in L2(Γkε,T ) for k = 1, 2 and the uniform bound on ∂tsn in L2(Γ1,2
ε,T ).
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Recall that by the Aubin-Lions compactness criterion, the following injection

W :=
{
u ∈ L2

(
0, T ;H1/2(Γε)

)
and ∂tu ∈ L2

(
0, T ;H−1/2(Γε)

)}
⊂ L2(Γε,T )

is compact with Γε := Γkε ,Γ1,2
ε for k = 1, 2. Hence, we can assume there exist limit functions

u1
i,ε, u

2
i,ε, ue,ε, v

1
ε , v

2
ε , sε, wε with vkε = uki,ε − uke,ε on Γkε,T for k = 1, 2 and sε = u

1
i,ε − u

2
i,ε on

Γ1,2
ε,T , such that as n→∞ ( for fixed ε and up to an unlabeled subsequence)



vkn → vkε a.e. in Γkε , strongly in L2(Γkε,T ),

and weakly L2
(
0, T ;H1/2(Γkε)

)
for k = 1, 2,

sn → sε a.e. in Γ1,2
ε , strongly in L2(Γ1,2

ε,T ),

and weakly L2
(
0, T ;H1/2(Γ1,2

ε )
)
,

wkn ⇀ wkε weakly in L2(Γkε,T ),

uki,n ⇀ uki,ε weakly in L2
(
0, T ;H1(Ωk

i,ε)
)
for k = 1, 2,

ue,n ⇀ ue,ε weakly in L2 (0, T ;H1(Ωe,ε)) ,

Ia,ion
(
vkn
)
→ Ia,ion

(
vkε
)
a.e. in Γkε , weakly in Lr/(r−1)(Γkε,T ),

(3.54)

and 
∂tv

k
n ⇀ ∂tv

k
ε weakly in L2(Γkε,T ),

∂tw
k
n ⇀ ∂tw

k
ε weakly in L2(Γkε,T ) for k = 1, 2,

∂tsn ⇀ ∂tsε weakly in L2(Γ1,2
ε,T ).

(3.55)

Moreover, using again estimate (3.53), we get for j = i, e and k = 1, 2,

√
δn∂tu

k
j,ε ⇀ 0 in D′

(
0, T ;L2(Γkε)

)
for j = i, e,

√
δn∂tu

k
i,ε ⇀ 0 in D′ (0, T ;L2(Γ1,2

ε )) ,
√
δn∂tu

k
i,ε ⇀ 0 in D′

(
0, T ;L2(Ωk

i,ε)
)
,

and
√
δn∂tue,ε ⇀ 0 in D′ (0, T ;L2(Ωe,ε)) .

(3.56)

The last difficulty is to prove that the nonlinear term Ia,ion
(
vkn
)
converges weakly to the

term Ia,ion
(
vkε
)
for k = 1, 2. Since vkn converges strongly to vkε in L2(Γkε,T ), we can extract a

subsequence, such that vkn converges almost everywhere to vkε in Γkε for k = 1, 2. Moreover,
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since Ia,ion is continuous, we have

Ia,ion
(
vkn
)
→ Ia,ion

(
vkε
)
a.e. in Γkε for k = 1, 2. (3.57)

However, using a classical result (see Lemma 1.3 in [Lio69]):

Ia,ion
(
vkn
)
⇀ Ia,ion

(
vkε
)
, weakly in Lr/(r−1)(Γkε,T ) for k = 1, 2. (3.58)

Remark 3.9. By our choice of basis, it is clear that ukj,n(0, x) → uk0,j,ε in L2(Γkε) for k = 1, 2
and j = i, e. Furthermore, we have uki,n(0, x)→ uk0,i,ε in L2(Γkε) for k = 1, 2.

Keeping in mind (3.54)-(3.58), we obtain by letting n→∞ in the weak formulation (3.36)-
(3.37) ∑

k=1,2

∫
Γkε
ε∂tv

k
εψ

k dσx + 1
2

∫
Γ1,2
ε

ε∂tsεΨ dσx

+
∑
k=1,2

∫
Ωki,ε

Mε
i∇uki,ε · ∇ϕki dx+

∫
Ωe,ε

Mε
e∇ue,ε · ∇ϕe dx

+
∑
k=1,2

∫
Γkε
εIion

(
vkε , w

k
ε

)
ψk dσx + 1

2

∫
Γ1,2
ε

εIgap (sε) Ψ dσx

=
∑
k=1,2

∫
Γkε
εIkapp,εψk dσx,

(3.59)

∫
Γkε
∂tw

k
εe
k dσx =

∫
Γkε
H
(
vkε , w

k
ε

)
ek dσx, (3.60)

for all ϕki ∈ H1(Ωk
i,ε), ϕe ∈ H1(Ωe,ε) with ψk = ψki − ψke ∈ H1/2(Γkε) ∩ Lr(Γkε) for k = 1, 2,

Ψ = Ψ1
i −Ψ2

i ∈ L2(Γ1,2
ε ) and ek ∈ L2(Γkε) for k = 1, 2. Finally, it only remains to be proved that

vkε , w
k
ε for k = 1, 2 and sε satisfy the initial conditions stated in Definition 3.1. Using the weak

formulation (3.32)-(3.34), we see that vkε (0, x) = vk0,ε(x) a.e. on Γkε,T , since, by construction,
ukj,n(0, x) → uk0,j,ε in L2(Γkε) for k = 1, 2 and j = i, e. The same argument holds for wkε for
k = 1, 2 and sε.

Step 5: Uniqueness of solutions

This step prove that there there exists at most one weak solution of (3.59)-(3.60). We assume
that u` =

(
u1,`
i,ε , u

2,`
i,ε , u

`
e,ε, w

1,`
ε , w

2,`
ε

)
, ` ∈ {`′, `′′} are two weak solutions in the sense of Defini-

tion 3.1 with same initial data. Thus, this weak formulations hold respectively for uk,`
′

i,ε − u
k,`′′

i,ε

and wk,`′ε − wk,`′′ε for k = 1, 2.
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Firstly, we substitute ϕki = uk,`
′

i,ε − uk,`
′′

i,ε , ϕe = u`
′
e,ε − u`

′′
e,ε, and ek = ε

(
wk,`

′
ε − wk,`′′ε

)
,

k = 1, 2, respectively in (3.59)-(3.60). Then, we add the resulting equations and integrate over
(0, t) for 0 < t ≤ T to get

1
2

 ∑
k=1,2

∫
Γkε

(
ε
∣∣∣(vk,`′ε − vk,`′′ε

)
(t, ·)

∣∣∣2 + ε
∣∣∣(wk,`′ε − wk,`′′ε

)
(t, ·)

∣∣∣2) dσx

+ 1
2

∫
Γ1,2
ε

ε
∣∣∣(s`′ε − s`′′ε ) (t, ·)

∣∣∣2 dσx


+
∑
k=1,2

∫∫
Ωki,ε,t

Mε
i∇

(
uk,`

′

i,ε − u
k,`′′

i,ε

)
· ∇

(
uk,`

′

i,ε − u
k,`′′

i,ε

)
dxdτ

+
∫∫

Ωe,ε,t
Mε
e∇

(
u`
′

e,ε − u`
′′

e,ε

)
· ∇

(
u`
′

e,ε − u`
′′

e,ε

)
dxdτ

+
∑
k=1,2

∫∫
Γkε,t

ε
(
Ĩa,ion

(
vk,`

′

ε

)
− Ĩa,ion

(
vk,`

′′

ε

)) (
vk,`

′

ε − vk,`′′ε

)
dσxdτ

= 1
2

 ∑
k=1,2

∫
Γkε

(
ε
∣∣∣(vk,`′0,ε − v

k,`′′

0,ε

)∣∣∣2 + ε
∣∣∣(wk,`′0,ε − w

k,`′′

0,ε

)∣∣∣2) dσx

+ 1
2

∫
Γ1,2
ε

ε
∣∣∣(s`′0,ε − s`′′0,ε

)∣∣∣2 dσx


+ β1
∑
k=1,2

∫∫
Γkε,t

ε
(
vk,`

′

ε − vk,`′′ε

)2
dσxdτ

−
∑
k=1,2

∫∫
Γkε,t

εIb,ion
(
wk,`

′

ε − wk,`′′ε

) (
vk,`

′

ε − vk,`′′ε

)
dσxdτ

−
∑
k=1,2

∫∫
Γkε,t

ε
(
H
(
vk,`

′

ε , wk,`
′

ε

)
−H

(
vk,`

′′

ε , wk,`
′′

ε

)) (
wk,`

′

ε − wk,`′′ε

)
dσxdτ

− 1
2

∫∫
Γ1,2
ε,t

εIgap
(
s`
′

ε − s`
′′

ε

) (
s`
′

ε − s`
′′

ε

)
dσxdτ

+
∑
k=1,2

∫∫
Γkε,t

εIkapp,ε
(
vk,`

′

ε − vk,`′′ε

)
dσxdτ.
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Due the uniform ellipticity (3.4) of Mε
j for j = i, e, we have

∑
k=1,2

∫∫
Ωki,ε,t

Mε
i∇

(
uk,`

′

i,ε − u
k,`′′

i,ε

)
· ∇

(
uk,`

′

i,ε − u
k,`′′

i,ε

)
dxdτ

+
∫∫

Ωe,ε,t
Mε
e∇

(
u`
′

e,ε − u`
′′

e,ε

)
· ∇

(
u`
′

e,ε − u`
′′

e,ε

)
dxdτ

≥ α

 ∑
k=1,2

∥∥∥∇ (uk,`′i,ε − u
k,`′′

i,ε

)∥∥∥2

L2(Ωki,ε,t)
+
∥∥∥∇ (u`′e,ε − u`′′e,ε)∥∥∥2

L2(Ωe,ε,t)

 ≥ 0.

Furthermore, thanks to the monotonicity assumption (3.5d) on Ĩa,ion, we deduce that

∑
k=1,2

∫∫
Γkε,t

ε
(
Ĩa,ion

(
vk,`

′

ε

)
− Ĩa,ion

(
vk,`

′′

ε

)) (
vk,`

′

ε − vk,`′′ε

)
dσxdτ ≥ 0.

Moreover, by the linearity of Ib,ion, H and Igap, we can deduce using Young’s inequality the
following estimation

1
2

 ∑
k=1,2

∫
Γkε

(
ε
∣∣∣(vk,`′ε − vk,`′′ε

)
(t, ·)

∣∣∣2 + ε
∣∣∣(wk,`′ε − wk,`′′ε

)
(t, ·)

∣∣∣2) dσx+

+ 1
2

∫
Γ1,2
ε

ε
∣∣∣(s`′ε − s`′′ε ) (t, ·)

∣∣∣2 dσx


+ α

 ∑
k=1,2

∥∥∥∇ (uk,`′i,ε − u
k,`′′

i,ε

)∥∥∥2

L2(Ωki,ε,t)
+
∥∥∥∇ (u`′e,ε − u`′′e,ε)∥∥∥2

L2(Ωe,ε,t)


≤ 1

2

 ∑
k=1,2

∫
Γkε

(
ε
∣∣∣(vk,`′0,ε − v

k,`′′

0,ε

)∣∣∣2 + ε
∣∣∣(wk,`′0,ε − w

k,`′′

0,ε

)∣∣∣2) dσx

+ 1
2

∫
Γ1,2
ε

ε
∣∣∣(s`′0,ε − s`′′0,ε

)∣∣∣2 dσx


+ C

 ∑
k=1,2

∫ t

0

∫
Γkε

(
ε
∣∣∣(vk,`′ε − vk,`′′ε

)∣∣∣2 + ε
∣∣∣(wk,`′ε − wk,`′′ε

)∣∣∣2) dσx

+ 1
2

∫
Γ1,2
ε

ε
∣∣∣(s`′ε − s`′′ε )∣∣∣2 dσxdτ



(3.61)
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where C > 0 is a constant independent of ε. Thus, we obtain by applying Gronwall’s inequality

1
2

 ∑
k=1,2

∫
Γkε

(
ε
∣∣∣(vk,`′ε − vk,`′′ε

)
(t, ·)

∣∣∣2 + ε
∣∣∣(wk,`′ε − wk,`′′ε

)
(t, ·)

∣∣∣2) dσx

+ 1
2

∫
Γ1,2
ε

ε
∣∣∣(s`′ε − s`′′ε ) (t, ·)

∣∣∣2 dσx


≤ C

 ∑
k=1,2

∫
Γkε

(
ε
∣∣∣(vk,`′0,ε − v

k,`′′

0,ε

)∣∣∣2 + ε
∣∣∣(wk,`′0,ε − w

k,`′′

0,ε

)∣∣∣2) dσx

+ 1
2

∫
Γ1,2
ε

ε
∣∣∣(s`′0,ε − s`′′0,ε

)∣∣∣2 dσx


for some constant C > 0. Hence, we deduce that vk,`′ε = vk,`
′′

ε , wk,`
′

ε = wk,`
′′

ε for k = 1, 2 and
s`
′
ε = s`

′′
ε .Moreover, using Estimation (3.61), we conclude that

∇
(
u`
′

e,ε − u`
′′

e,ε

)
= 0 a.e. on Ωe,ε,t,

∇
(
uk,`

′

i,ε − u
k,`′′

i,ε

)
= 0 a.e. on Ωk

i,ε,t,

which means that u`′e,ε = u`
′′
e,ε + c and uk,`

′

i,ε = uk,`
′′

i,ε + c for k = 1, 2. On the one hand, due to the
normalization condition (3.12), c = 0 and u`′e,ε = u`

′′
e,ε. On the other hand, the estimation (3.47)

holds for uk,`
′

i,ε − u
k,`′′

i,ε which gives

∥∥∥uk,`′i,ε − u
k,`′′

i,ε

∥∥∥2

L2(Ωki,ε)
≤ C

∥∥∥√ε (vk,`′ε − vk,`′′ε

)∥∥∥2

L2(Γkε )
+
∥∥∥∇ (uk,`′i,ε − u

k,`′′

i,ε

)∥∥∥2

L2(Ωki,ε)

+
∥∥∥∇ (u`′e,ε − u`′′e,ε)∥∥∥2

L2(Ωe,ε)

, with k = 1, 2.

In addition, we have vk,`′ε = vk,`
′′

ε so we obtain finally uk,`
′

i,ε = uk,`
′′

i,ε for k = 1, 2. This gives the
uniqueness proof of weak solutions.

3.4 Two-scale Asymptotic Homogenization Method

The key idea of this method is to guess the solution of the microscopic model using the
asymptotic expansion (3.62) involving the time t, the macroscopic (slow) variable x and the
microscopic (fast) variable y = x/ε. In this section, we study the asymptotic behavior of the
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solutions to the microscopic tridomain model (3.1). This method, among others, is a formal and
intuitive method for predicting the mathematical writing of a homogenized solution that can
eventually approach the solution of the initial problem (3.1).

For that, we start to treat the problem in the intracellular medium then we can solve in similar
way the other one in the extracellular medium using this method.

The authors in [HY09] are applied the two-scale asymptotic expansion method on the mi-
croscopic bidomain model. In our approach, we investigate the same two-scale technique but
herein we have three different domains separated by two boundaries (membrane cellular and
gap junction, see Figure 3.2).

The two-scale asymptotic expansion is assumed for the intracellular electrical potential uki,ε
for k = 1, 2 as follows:

uki,ε(t, x) := uki

(
t, x,

x

ε

)
= uki,0

(
t, x,

x

ε

)
+ εuk1,1

(
t, x,

x

ε

)
+ ε2uki,2

(
t, x,

x

ε

)
+ · · · (3.62)

with each function uki,m(·, y),m = 1, 2, . . . , is y-periodic function dependent on time t ∈ (0, T ),
slow (macroscopic) variable x and the fast (microscopic) variable y. The slow and fast variables
correspond respectively to the global and local structure of the field. Similarly, the extracellular
electrical potential ue,ε, the gating variable wkε and the applied current Ikapp,ε have the same two-
scale asymptotic expansion for k = 1, 2.

We investigate the asymptotic behavior of the solution to the following problem posed in the
intracellular domain Ωk

i,ε for k = 1, 2

Aεuki,ε = 0 in Ωk
i,ε,T := (0, T )× Ωk

i,ε,

−Mε
i∇uki,ε · nki = ε

(
∂tv

k
ε + Iion(vkε , wkε )− Ikapp,ε

)
= Ikm on Γkε,T := (0, T )× Γkε ,

uki,ε − ue,ε = vkε on Γkε,T ,

−Mε
i∇u1

i,ε · n1
i = Mε

i∇u2
i,ε · n2

i = ε (∂tsε + Igap(sε)) = I1,2 on Γ1,2
ε,T := (0, T )× Γ1,2

ε ,

u1
i,ε − u2

i,ε = sε on Γ1,2
ε,T ,
(3.63)

with Aε = −∇ · (Mε
i∇) , where the intracellular conductivity matrices Mε

i defined by:

Mε
i (x) = Mi

(
x

ε

)
,

satisfying the elliptic and periodicity conditions (3.4).
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So, the derivation with respect to x for k = 1, 2 is defined as:

∂uki,ε
∂xq

(t, x) = ∂uki
∂xq

(
t, x,

x

ε

)
+ 1
ε

∂uki
∂yq

(
t, x,

x

ε

)
.

Consequently, the full operator Aε in the initial problem (3.63) is represented as:

Aεuki,ε(t, x) = [(ε−2Ayy + ε−1Axy + ε0Axx)uki ]
(
t, x,

x

ε

)
, for k = 1, 2 (3.64)

with each operator is defined by:

Ayy = −
d∑

p,q=1

∂

∂yp

(
mpq
i (y) ∂

∂yq

)
,

Axy = −
d∑

p,q=1

∂

∂yp

(
mpq
i (y) ∂

∂xq

)
−

d∑
p,q=1

∂

∂xp

(
mpq
i (y) ∂

∂yq

)
,

Axx = −
d∑

p,q=1

∂

∂xp

(
mpq
i (y) ∂

∂xq

)
.

Now,we substitute the asymptotic expansion (3.62) of uki,ε, k = 1, 2 in the developed operator
(3.64) to obtain

Aεuki,ε(x) =
[
ε−2Ayyuki,0 + ε−1Ayyuki,1 + ε0Ayyuki,2 + · · ·

] (
t, x,

x

ε

)
+
[
ε−1Axyuki,0 + ε0Axyuki,1 + · · ·

] (
t, x,

x

ε

)
+
[
ε0Axxuki,0 + · · ·

] (
t, x,

x

ε

)
=
[
ε−2Ayyuki,0 + ε−1

(
Ayyuki,1 +Axyuki,0

)
+ ε0

(
Ayyuki,2 +Axyuki,1 +Axxuki,0

) ] (
t, x,

x

ε

)
+ · · · .

Thus, we also substitute the asymptotic expansion (3.62) of uε,δi into the two boundary con-
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dition equations (3.63) on Γk, k = 1, 2 and on Γ1,2 :

Mε
i∇uki,ε · nki =

[
ε0(Mi∇xu

k
i,0) · nki + ε(Mi∇xu

k
i,1) · nki + · · ·

] (
t, x,

x

ε

)
+
[
ε−1(Mi∇yu

k
i,0) · nki + ε0(Mi∇yu

k
i,1) · nki + ε(Mi∇yu

k
i,2) · nki + · · ·

] (
t, x,

x

ε

)
=
[
ε−1(Mi∇yu

k
i,0) · nki + ε0

(
Mi∇yu

k
i,1 + Mi∇xu

k
i,0

)
· nki

+ ε
(
Mi∇yu

k
i,2 + Mi∇xu

k
i,1

)
· nki

] (
t, x,

x

ε

)
+ · · · .

where nki , k = 1, 2 represents the (outward) normal pointing out from Ωk
i,ε for k = 1, 2 and ne

is the normal pointing out from Ωe,ε.

Hence, by equating the powers-like terms of ε to zero, we have to solve the following system
of equations for the functions uki,m(t, x, y), m = 0, 1, 2, :



Ayyuki,0 = 0 in Y k
i ,

uki,0 y-periodic,

Mi∇yu
k
i,0 · nki = 0 on Γk,

Mi∇yu
k
i,0 · nki = 0 on Γ1,2,

(3.65)



Ayyuki,1 = −Axyuki,0 in Y k
i ,

uki,1 y-periodic,(
Mi∇yu

k
i,1 + Mi∇xu

k
i,0

)
· nki = 0 on Γk,(

Mi∇yu
k
i,1 + Mi∇xu

k
i,0

)
· nki = 0 on Γ1,2,

(3.66)



Ayyuki,2 = −Axyuki,1 −Axxuki,0 in Y k
i ,

uki,2 y-periodic,

−
(
Mi∇yu

k
i,2 + Mi∇xu

k
i,1

)
· nki = ∂tv

k
0 + Iion

(
vk0 , w

k
0

)
− Ikapp,0 on Γk,

−
(
Mi∇yu

1
i,2 + Mi∇xu

1
i,1

)
· n1

i =
(
Mi∇yu

2
i,2 + Mi∇xu

2
i,1

)
· n2

i = ∂ts0 + Igap(s0) on Γ1,2,

(3.67)
The authors in [BLP11]-[CD99] have successively solved the three systems into Dirrichlet

boundary conditions (3.65)-(3.67). Herein, the functions uki,0, uki,1 and uki,2 in the asymptotic ex-
pansion (3.62) for the intracellular potential uki,ε, k = 1, 2 satisfy the Neumann boundary value
problems (3.65)-(3.67) in the local portion Y k

i of a unit cell Y (see [FS02; HY09] for the case
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of Laplace equations).
The resolution is described as follows:

• First step We begin with the first boundary value problem (3.65) whose variational formulation:
Find u̇ki,0 ∈ Wper(Y k

i ) such that

ȧY ki (u̇ki,0, v̇) =
∫
∂Y ki

(Mi∇yu
k
i,0 · nki )v dσy, ∀v̇ ∈ Wper(Y k

i ),
(3.68)

with ȧY ki (u̇, v̇) is given by:

ȧY ki (u̇, v̇) =
∫
Y ki

Mi∇yu∇yvdy, ∀u ∈ u̇, ∀v ∈ v̇, ∀u̇, ∀v̇ ∈ Wper(Y k
i ) (3.69)

andWper(Y k
i ) is given by Definition A.4.

We want to clarify the right hand side of the variational formulation (3.68). By the defini-
tion of ∂Y k

i := Γk ∪ Γ1,2, by taking account the boundary condition on Γk, k = 1, 2 and
on Γ1,2 to say that :

∫
∂Y ki

(Mi∇yu
k
i,0 · nki )v dσy

=
∫

Γk
(Mi∇yu

k
i,0 · nki )v dσ +

∫
Γ1,2

(Mi∇yu
k
i,0 · nki )v dσ = 0.

Using Theorem A.2, we can prove the existence and uniqueness of the solution u̇ki,0. Then,
the problem (3.65) has a unique solution uki,0 independent of y, so we deduce that:

uki,0(t, x, y) = uki,0(t, x), for k = 1, 2.

Similarly, we show that ue,0 does not depend on y (by the same strategy). Since vk0 =
(uki,0 − ue,0))|Γk with k = 1, 2. Then we also deduce that s0 and wk0 , k = 1, 2 not depend
on the microscopic variable y.

Remark 3.10. In the asymptotic expansion (3.62), each element uki,m is a priori an oscil-
lating function, since it depends on the fast variable x/ε. Actually, uki,0, k = 1, 2 and ue,0
depends only on the slow (macroscopic) variable x, so it does not oscillate "rapidly" with
x/ε. This is why we now expect uki,0 and ue,0 to be the "solution homogenized". It remains
to find if there is three equations on Ω satisfied by uki,0, k = 1, 2 and ue,0, in which case
we would have found "homogenized equation" too.
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• Second step We now turn to the second boundary value problem (3.66). Since uki,0 is independent of y,
this equation can be rewritten as:

Ayyuki,1 =
d∑

p,q=1

∂mpq
i

∂yp

∂uki,0
∂xq

in Y k
i ,

uki,1 y-periodic,(
Mi∇yu

k
i,1 + Mi∇xu

k
i,0

)
· nki = 0 on Γk,(

Mi∇yu
k
i,1 + Mi∇xu

k
i,0

)
· nki = 0 on Γ1,2,

(3.70)

Its variational formulation is:Find u̇
k
i,1 ∈ Wper(Y k

i ) such that

ȧY ki (u̇ki,1, v̇) = (F1, v̇)(Wper(Y ki ))′,Wper(Y ki ) ∀v̇ ∈ Wper(Y k
i ),

(3.71)

with ȧY ki is given by (3.69) and F1 is defined by:

(F1, v̇)(Wper(Y ki ))′,Wper(Y ki ) =
d∑

p,q=1

∂uki,0
∂xq

∫
Y ki

mpq
i (y) ∂v

∂yp
dy, ∀v ∈ v̇, ∀v̇ ∈ Wper(Y k

i ).

(3.72)
Using Theorem A.2, we obtain that the second system (3.70)-(3.72) has a unique weak
solution u̇ki,1 ∈ Wper(Y k

i ) (defined by [BLP11] and [OSY09]). Thus, the linearity of terms
in the right hand side of equation (3.70) suggests to look for u̇ki,1 under the following form:

u̇ki,1(t, x, y) =
d∑
q=1
χ̇qi (y)

∂u̇ki,0
∂xq

(t, x) inWper(Y k
i ), (3.73)

with the corrector function χ̇qi satisfies the following ε-cell problem:



Ayyχ̇qi =
d∑
p=1

∂mpq
i

∂yp
in Y k

i ,

χ̇qi y-periodic,

Mi∇yχ̇
q
i · nki = −(Mieq) · nki on Γk, k = 1, 2

Mi∇yχ̇
q
i · nki = −(Mieq) · nki on Γ1,2,

(3.74)

for eq, q = 1, . . . , d, the standard canonical basis in Rd. Moreover, we can choose a rep-
resentative element χqi of the class χ̇qi satisfying the following variational formulation:
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Find χqi ∈ W#(Y k

i ) such that

aY ki (χqi , v) = (F, v)(W#(Y ki ))′,W#(Y ki ), ∀v ∈ W#(Y k
i ),

(3.75)

with aY ki is given by (3.69) and F is defined by:

(F, v)(W#(Y ki ))′,W#(Y ki ) =
d∑
p=1

∫
Y ki

mpq
i (y) ∂v

∂yp
dy,

where the spaceW#(Y k
i ) is given by the expression (2.91) for k = 1, 2. SinceF belongs to

(W#(Y k
i ))′ then the condition of Theorem A.2 is imposed in order to guarantee existence

and uniqueness of the solution.
Thus, by the form of u̇ki,1 given by (3.73), the solution uki,1, k = 1, 2 of the second system
(3.70) can be represented by the following ansatz:

uki,1(t, x, y) = χi(y) · ∇xu
k
i,0(t, x) + ũki,1(t, x) with uki,1 ∈ u̇ki,1, (3.76)

where ũki,1 is a constant with respect to y (i.e ũki,1 ∈ 0̇ inWper(Y k
i )).

• Last step We now pass to the last boundary value problem (3.67). Taking into account the form of
uki,0 and uki,1 for k = 1, 2, we obtain

−Axyuki,1 −Axxuki,0

=
d∑

p,q=1

∂

∂yp

(
mpq
i (y)

∂uki,1
∂xq

)
+

d∑
p,q=1

∂

∂xp

(
mpq
i (y)

(
∂uki,1
∂yq

+
∂uki,0
∂xq

))
.

Consequently, this system (3.67) have the following variational formulation:
Find u̇

k
i,2 ∈ Wper(Y k

i ) such that

ȧY ki (u̇ki,2, v̇) = (F2, v̇)(Wper(Y ki ))′,Wper(Y ki ) ∀v̇ ∈ Wper(Y k
i ),

(3.77)
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with ȧY ki is given by (3.69) and F2 is defined by:

(F2, v̇)(Wper(Y ki ))′,Wper(Y ki )

=
∫

Γk

(
Mi∇yu

k
i,2 + Mi∇xu

k
i,1

)
· nki v dσy

+
∫

Γ1,2

(
Mi∇yu

k
i,2 + Mi∇xu

k
i,1

)
· nki v dσy

−
d∑

p,q=1

∫
Y ki

mpq
i (y)

∂uki,1
∂xq

∂v

∂yp
dy

+
d∑

p,q=1

∫
Y ki

∂

∂xp

(
mpq
i (y)

(
∂uki,1
∂yq

+
∂uki,0
∂xq

))
vdy, ∀v ∈ v̇, ∀v̇ ∈ Wper(y).

(3.78)

The problem (3.77)-(3.78) is well-posed according to Theorem A.2 under the compatibil-
ity condition for k = 1, 2:

(F2, 1)(Wper(Y ki ))′,Wper(Y ki ) = 0.

which equivalent to:

−
d∑

p,q=1

∫
Y ki

∂

∂xp

(
mpq
i (y)

(
∂uki,1
∂yq

+
∂uki,0
∂xq

))
dy

= −
∣∣∣Γk∣∣∣ (∂tvk0 + Iion

(
vk0 , w

k
0

)
− Ikapp

)
+ (−1)k

∣∣∣Γ1,2
∣∣∣ (∂ts0 + Igap(s0)) ,

where Ikapp(t, x) = 1
|Γk|

∫
Γk
Ikapp,0(·, y) dσy for k = 1, 2.

In addition, we replace uki,1 by its form (3.76) for k = 1, 2 in the above condition to obtain:

−
d∑

p,q=1

∫
Y ki

∂

∂xp

(
mpq
i (y)

(
d∑
`=1

∂χ`i
∂yq

∂uki,0
∂x`

+
∂uki,0
∂xq

))
dy

= −
∣∣∣Γk∣∣∣ (∂tvk0 + Iion

(
vk0 , w

k
0

)
− Ikapp

)
+ (−1)k

∣∣∣Γ1,2
∣∣∣ (∂ts0 + Igap(s0)) .
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By expanding the sum and permuting the index, we obtain for k = 1, 2

−
d∑

p,q=1

d∑
`=1

∫
Y ki

∂

∂xp

(
mpq
i (y)∂χ

`
i

∂yq

∂uki,0
∂x`

)
dy −

d∑
p,`=1

∫
Y ki

∂

∂xp

(
mp`
i (y)

∂uki,0
∂xk

)
dy

= −
∣∣∣Γk∣∣∣ (∂tvk0 + Iion

(
vk0 , w

k
0

)
− Ikapp

)
+ (−1)k

∣∣∣Γ1,2
∣∣∣ (∂ts0 + Igap(s0)) ,

which equivalent to find uki,0 for k = 1, 2 satisfying the following problem:

−
d∑

p,`=1

 1
|Y |

d∑
q=1

∫
Y ki

(
mp`
i (y) + mpq

i (y)∂χ
`
i

∂yq

)
dy

 ∂2uki,0
∂xp∂x`

= −

∣∣∣Γk∣∣∣
|Y |

(
∂tv

k
0 + Iion

(
vk0 , w

k
0

)
− Ikapp

)
+ (−1)k |Γ

1,2|
|Y |

(∂ts0 + Igap(s0)) .

Consequently, we see that’s exactly the homogenized equation satisfied by uki,0 for k = 1, 2 of
the intracellular problem can be rewritten as:

Bixxuki,0 = −µk
(
∂tv

k
0 + Iion

(
vk0 , w

k
0

)
− Ikapp

)
+ (−1)kµg (∂ts0 + Igap(s0)) on ΩT ,

(3.79)

where µk =
∣∣∣Γk∣∣∣ / |Y | , k = 1, 2 and µg = |Γ1,2| / |Y | . Herein, the homogenized operator Bixx

is defined by :

Bixx = −∇x ·
(
M̃i∇x

)
= −

d∑
p,`=1

∂

∂xp

(
m̃p`

i

∂

∂x`

)
(3.80)

with the coefficients of the homogenized conductivity matrices M̃i =
(
m̃p`

i

)
1≤p,`≤d

defined by:

m̃p`
i := 1

|Y |

d∑
q=1

∫
Y ki

(
mp`
i + mpq

i

∂χ`i
∂yq

)
dy. (3.81)

Similarly, we can obtain the dimensionless averaged equations for the extracellular problem

Bexxue,0 =
∑
k=1,2

µk
(
∂tv

k
0 + Iion

(
vk0 , w

k
0

)
− Ikapp

)
on ΩT , (3.82)
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where µk =
∣∣∣Γk∣∣∣ / |Y | , k = 1, 2 and the homogenized operator Bexx is defined by :

Bexx = −∇x ·
(
M̃e∇x

)
= −

d∑
p,`=1

∂

∂xp

(
m̃p`

e

∂

∂x`

)
(3.83)

with the coefficients of the homogenized conductivity matrices M̃e =
(
m̃p`

e

)
1≤p,`≤d

defined by:

m̃p`
e := 1

|Y |

d∑
q=1

∫
Ye

(
mp`
e + mpq

e

∂χ`e
∂yq

)
dy. (3.84)

Herein, the corrector function χ`e satisfies the following ε-cell problem:

Ayyχ`e =

d∑
p=1

∂mp`
e

∂yp
in Ye,

χ`e y-periodic,

Me∇yχ
`
e · ne = −(Mie`) · ne on Γk, k = 1, 2

(3.85)

for e`, q = 1, . . . , `, the standard canonical basis in Rd. This completes the proof of Theorem
3.2 using formal asymptotic homogenization method.

3.5 Two-scale Unfolding Homogenization Method

We begin with introducing the unfolding operator and describe some of its properties. For
more properties and proofs, we refer to [Cio+12; CDG18]. First, we present the unfolding op-
erators defined for perforated domains on the domain (0, T ) × Ω. Then we define boundary
unfolding operators one on the membrane (0, T ) × Γk, k = 1, 2 and the other on the gap junc-
tion (0, T )× Γ1,2.

3.5.1 Unfolding operator and some basic properties

In order to define an unfolding operator, we first introduce the following sets inRd (see Figure
3.3)

• Ξε = {ξ ∈ Zd, ε(ξ + Y ) ⊂ Ω},

• Ω̂ε = interior { ⋃
ξ∈Ξε

ε
(
ξ + Y

)
},
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• Ω̂e,ε = interior { ⋃
ξ∈Ξε

ε
(
ξ + Ye

)
},

• Ω̂k
i,ε = interior { ⋃

ξ∈Ξε
ε
(
ξ + Y k

i

)
}, k = 1, 2,

• Γ̂kε = {y ∈ Γk : y ∈ Ω̂ε}, k = 1, 2,

• Γ̂1,2
ε = {y ∈ Γ1,2 : y ∈ Ω̂ε},

• Λε = Ω \ Ω̂ε,

• Ω̂ε,T = (0, T )× Ω̂ε,

• Ω̂k
i,ε,T = (0, T )× Ω̂k

i,ε, k = 1, 2, Ω̂e,ε,T = (0, T )× Ω̂e,ε,

• Λε
T = (0, T )× Λε.

Figure 3.3 – The sets Ω̂ki,ε for k = 1, 2 (in blue), Ω̂εe (in red), Λki,ε (in dark cyan) and Λe,ε (in green).
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For allw ∈ Rd, let [w]Y be the unique integer combination of the periods such thatw−[w]Y ∈
Y. We may write w = [w]Y + {w}Y for all w ∈ Rd, so that for all ε > 0, we get the unique
decomposition:

x = ε
([
x

ε

]
Y

+
{
x

ε

}
Y

)
, for all x ∈ Rd.

Based on this decomposition, we define the unfolding operator in intra- and extracellular
domains.

Definition 3.2 (Domain and boundary unfolding operator).

1. For any function φ Lebesgue-measurable on the intracellular medium Ωk
i,ε,T := (0, T )×

Ωk
i,ε for k = 1, 2, the unfolding operator T i,kε is defined as follows:

T i,kε (φ)(t, x, y) =


φ
(
t, ε

[
x

ε

]
Y

+ εy
)

a.e. for (t, x, y) ∈ Ω̂ε
T × Y k

i ,

0 a.e. for (t, x, y) ∈ Λε
T × Y k

i ,
(3.86)

where [·] denotes the Gauβ-bracket. Similarly, we define the unfolding operator T eε on the
domain Ωε

e,T := (0, T )× Ωε
e. We readily have that:

∀x ∈ Rd, T i,kε (φ)
(
t, x,

{
x

ε

}
Y

)
= φ(t, x), with k = 1, 2.

2. For any functionϕ Lebesgue-measurable on the membrane Γkε := (0, T )×Γkε for k = 1, 2,
the boundary unfolding operator T b,kε is defined as follows:

T b,kε (ϕ)(t, x, y) =


ϕ
(
t, ε

[
x

ε

]
Y

+ εy
)

a.e. for (t, x, y) ∈ Ω̂ε
T × Γk,

0 a.e. for (t, x, y) ∈ Λε
T × Γk.

(3.87)

Similarly, we define the boundary unfolding operator T b,1,2ε on the gap junction Γ1,2
ε,T :=

(0, T )× Γ1,2
ε .

Properties of The unfolding operator

In the following proposition, we state some basic properties of the unfolding operator which
will be used frequently in the next sections.

Proposition 3.1 (Some properties of the unfolding operator).
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1. The operator T i,kε : Lp
(
Ωk
i,ε,T

)
−→ Lp(ΩT × Y k

i ) and T b,kε : Lp(Γkε,T ) −→ Lp(ΩT × Γk)
are linear and continuous for p ∈ [1,+∞) and k = 1, 2. Similarly, we have the same
properties for the unfolding operator T eε and for the boundary unfolding operator T b,1,2ε .

2. For u, u′ ∈ Lp
(
Ωk
i,ε,T

)
and v, w ∈ Lp

(
Γkε,T

)
, it holds that T i,kε (uu′) = T i,kε (u)T i,kε (u′)

and T b,kε (vw) = T b,kε (v)T b,kε (w), with p ∈ (1,+∞) and k = 1, 2.

3. For u ∈ Lp
(
Ωk
i,ε,T

)
, p ∈ [1,+∞), we have

∥∥∥T i,kε (u)
∥∥∥
Lp(ΩT×Y ki )

= |Y |1/p
∥∥∥∥u1Ω̂ki,ε,T

∥∥∥∥
Lp(Ωki,ε,T )

≤ |Y |1/p ‖u‖Lp(Ωki,ε,T ) .

4. For v ∈ Lp
(
Γkε,T

)
, with p ∈ [1,+∞) and k = 1, 2. Then we have

∥∥∥T b,kε (v)
∥∥∥
Lp(ΩT×Γk)

= ε1/p |Y |1/p ‖v‖
Lp(Γ̂kε,T ) ≤ ε1/p |Y |1/p ‖v‖Lp(Γkε,T ) .

5. Let φε ∈ Lp (0, T ;W 1,p (Ω)) , with p ∈ [1,+∞) and k = 1, 2. If φε → φ strongly in
Lp(0, T ;W 1,p(Ω)) as ε→ 0, then

T i,kε (φε)→ φ strongly in Lp(ΩT × Y k
i ),

T b,kε (φε)→ φ|Γk strongly in Lp(ΩT × Γk) as ε→ 0.

6. For u ∈ Lp
(
0, T ;W

(
Ωk
i,ε

))
, p ∈ [1,+∞), it holds that ∇yT i,kε (u) = εT i,kε (∇xu) with

k = 1, 2.

Remark 3.11. If u ∈ Lp
(
0, T ;W 1,p(Ωk

i,ε)
)
for p ∈ (1,+∞), T b,kε (u) is just the trace on Γk of

T i,kε (u). In particular, by the standard trace theorem in Y k
i , there is a constant C such that

∥∥∥T b,kε (u)
∥∥∥p
Lp(ΩT×Γk) ≤ C

(∥∥∥T i,kε (u)
∥∥∥p
Lp(ΩT×Y ki ) +

∥∥∥∇yT i,kε (u)
∥∥∥p
Lp(ΩT×Y ki )

)
.

From the properties of T i,kε (·) in Proposition 3.1, it follows that

∥∥∥T b,kε (u)
∥∥∥p
Lp(ΩT×Γk) ≤ C

(
‖u‖p

Lp(Ωki,ε,T ) + εp ‖∇u‖p
Lp(Ωki,ε,T )

)
.

Similarly, the trace theorem in Ye holds for u ∈ Lp (0, T ;W 1,p(Ωe,ε)) (which can be found as
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Remark 4.2 in [Cio+12]).

In the sequel, we will defineW 1,p
# the periodic Sobolev space as follows

Definition 3.3. Let O be a reference cell and p ∈ [1,+∞). Then, we define

W 1,p
# (O) = {u ∈ W 1,p(O) such that u periodic withMO(u) = 0}, (3.88)

whereMO(u) = 1
|O|

∫
O
u dy. Its duality bracket is defined by:

F (v) = (F, v)(W 1,p
# (O))′,W 1,p

# (O) = (F, u)(W 1,p(O))′,W 1,p(O), ∀u ∈ W 1,p
# (O).

Furthermore, by the Poincaré-Wirtinger’s inequality, the Banach spaceW 1,p
# has the following

norm:
‖u‖W 1,p

# (O) = ‖∇u‖Lp(O) ,∀u ∈ W
1,p
# (O).

Notation: We denoteW 1,2
# (O) by H1

#(O) for p = 2.

Now we state two important results which are needed to get the convergence for the corre-
sponding unfolding operator, see for e.g. Theorem 3.12 in [Cio+12].

Theorem 3.3. Let p ∈ (1,+∞) and k = 1, 2.

1. For any uε ∈ Lp
(
0, T ;W 1,p

(
Ωk
i,ε

))
that satisfies ‖uε‖Lp(0,T ;W 1,p(Ωki,ε)) ≤ C. Then, there

exist u ∈ Lp (0, T ;W 1,p(Ω)) and û ∈ Lp
(
0, T ;Lp

(
Ω,W 1,p

# (Y k
i )
))
, such that, up to a

subsequence (still denoted uε), the following hold when ε→ 0 :

T i,kε (uε) ⇀ u weakly in Lp
(
0, T ;Lp

(
Ω,W 1,p(Y k

i )
))
,

T i,kε (∇uε) ⇀ ∇u+∇yû weakly in Lp(ΩT × Y k
i ).

with the spaceW 1,p
# is defined by (3.88) and k = 1, 2.

2. For any vε ∈ Lp(Γkε,T ) that satisfies ε1/p ‖vε‖Lp(Γkε,T ) ≤ C. Then, there exist a subsequence
of vε and v ∈ Lp (ΩT ) such that

T b,kε (vε) ⇀ v weakly in Lp
(
ΩT × Γk

)
, k = 1, 2.
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3.5.2 Microscopic tridomain model

Our novel derivation tridomain model is based on a new approach describing not only the
electrical activity but also the effect of the cell membrane and gap junctions in the heart tissue.
We intend to pass to the unfolding homogenization limit. We do this by following a three-steps
procedure: In Step 1, the weak formulation of the microscopic tridomain model (3.1) is written
by another one, called "unfolded" formulation, based on the unfolding operators stated in the
previous part. As step 2, we can pass to the limit as ε → 0 in the unfolded formulation using
some a priori estimates and compactness argument to get the corresponding homogenization
equation. In step 3, we take a special form of test functions to obtain finally the macroscopic
tridomain model.

The problem (3.1) satisfies the weak formulation given by (3.13)-(3.14). By summing the
two first equations and since Iion(vkε , wkε ) = Ia,ion(vkε ) + Ib,ion(wkε ), we can rewrite the weak
formulation as follows:

∑
k=1,2

∫
Γkε,T

ε∂tv
k
εψ

k dσxdt+
∫

Γ1,2
ε,T

ε∂tsεΨ dσxdt

+
∑
k=1,2

∫
Ωki,ε,T

Mε
i∇uki,ε · ∇ϕki dxdt+

∫
Ωe,ε,T

Mε
e∇ue,ε · ∇ϕe dxdt

+
∑
k=1,2

∫
Γkε,T

εIa,ion
(
vkε
)
ψk dσxdt+

∑
k=1,2

∫
Γkε,T

εIb,ion
(
wkε
)
ψk dσxdt

+
∫

Γ1,2
ε,T

εIgap (sε) Ψ dσxdt =
∑
k=1,2

∫
Γkε,T

εIkapp,εψk dσxdt,

(3.89)

∫
Γkε,T

∂tw
k
εe
k dσxdt =

∫
Γkε,T

H
(
vkε , w

k
ε

)
ek dσxdt. (3.90)

We denote by Ei with i = 1, . . . , 5 the terms of the equation (3.89) which is rewritten as
follows (to respect the order):

E1 + E2 + E3 + E4 + E5 + E6 + E7 = E8.

"Unfolded" formulation of the microscopic tridomain model

The unfolding operator is defined which is employed below to unfold the oscillating func-
tions such that they are expressed in terms of global and local variables describing positions
at the upper and lower heterogeneity scales, respectively. Using the properties of the unfolding
operator, we rewrite the weak formulation (3.89)-(3.90) in the "unfolded" form.
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Using the property (3.1) of Proposition 3.1, then the first and second term of (3.89) is rewritten
as follows:

E1 =
∑
k=1,2

∫∫
Γ̂kε,T

ε∂tv
k
εψ

k dσxdt+
∑
k=1,2

∫∫
Γkε,T∩Λε,T

ε∂tv
k
εψ

k dσxdt

= 1
|Y |

∑
k=1,2

∫∫
ΩT×Γk

T b,kε (∂tvkε )T b,kε (ψk) dxdσydt+
∑
k=1,2

∫∫
Γkε,T∩Λε,T

ε∂tv
k
εψ

k dσxdt

:= J1 +R1.

E2 =
∫∫

Γ̂1,2
ε,T

ε∂tsεΨ dσxdt+
∫∫

Γ1,2
ε,T∩Λε,T

ε∂tsεΨ dσxdt

= 1
|Y |

∫∫
ΩT×Γ1,2

T b,1,2ε (∂tsε)T b,1,2ε (Ψ) dxdσydt+
∫∫

Γ1,2
ε,T∩Λε,T

ε∂tsεΨ dσxdt

:= J2 +R2.

Similarly, we rewrite the third and fourth term using the property (3.1) of Proposition 3.1:

E3 = 1
|Y |

∑
k=1,2

∫∫∫
ΩT×Y ki

T i,kε (Mε
i )T i,kε (∇uki,ε)T i,kε (∇ϕki ) dxdydt

+
∑
k=1,2

∫∫
Λki,ε,T

Mε
i∇uki,ε · ∇ϕki dxdt

:= J3 +R3

E4 = 1
|Y |

∫∫∫
ΩT×Ye

T eε (Mε
e)T eε (∇ue,ε)T eε (∇ϕe) dxdydt

+
∫∫

Λe,ε,T
Mε
e∇ue,ε · ∇ϕe dxdt

:= J4 +R4

Due to the form of I`,ion,we use the property (3.1)-(3.1) of Proposition 3.1 to obtain T b,kε (I`,ion(·)) =
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I`,ion
(
T b,kε (·)

)
for ` = a, b and k = 1, 2. Thus, we arrive to:

E5 = 1
|Y |

∑
k=1,2

∫∫
ΩT×Γk

T b,kε

(
Ia,ion(vkε )

)
T b,kε (ψk) dxdσydt+

∑
k=1,2

∫∫
Γkε,T∩Λε,T

εIa,ion(vkε )ψk dσxdt

= 1
|Y |

∑
k=1,2

∫∫
ΩT×Γk

Ia,ion
(
T b,kε (vkε )

)
T b,kε (ψk) dxdσydt+

∑
k=1,2

∫∫
Γkε,T∩Λε,T

εIa,ion(vkε )ψk dσxdt

:= J5 +R5

E6 = 1
|Y |

∑
k=1,2

∫∫
ΩT×Γk

T b,kε (Ib,ion(wkε ))T b,kε (ψk) dxdσydt+
∑
k=1,2

∫∫
Γkε,T∩Λε,T

εIb,ion(wkε )ψk dσxdt

= 1
|Y |

∑
k=1,2

∫∫
ΩT×Γk

Ib,ion
(
T b,kε (wkε )

)
T b,kε (ψk) dxdσydt+

∑
k=1,2

∫∫
Γkε,T∩Λε,T

εIb,ion(wkε )ψk dσxdt

:= J6 +R6

Similarly, we can rewrite the last two terms of (3.89) by taking account the form of Igap as
follows:

E7 = 1
|Y |

∫∫
ΩT×Γ1,2

Igap
(
T b,1,2ε (sε)

)
T b,1,2ε (Ψ) dxdσydt+

∫∫
Γ1,2
ε,T∩Λε,T

εIgap(sε)Ψ dσxdt

:= J7 +R7

E8 = 1
|Y |

∑
k=1,2

∫∫
ΩT×Γk

T b,kε (Ikapp,ε)T b,kε (ψk) dxdσydt+
∑
k=1,2

∫∫
Γkε,T∩Λε,T

εIkapp,εψk dσxdt

:= J8 +R8

Collecting the previous estimates, we readily obtain from (3.89) the following "unfolded"
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formulation:

1
|Y |

∑
k=1,2

∫∫
ΩT×Γk

T b,kε (∂tvkε )T b,kε (ψk) dxdσydt+ 1
|Y |

∫∫
ΩT×Γ1,2

T b,1,2ε (∂tsε)T b,1,2ε (Ψ) dxdσydt

1
|Y |

∑
k=1,2

∫∫∫
ΩT×Y ki

T i,kε (Mε
i )T i,kε (∇uki,ε)T i,kε (∇ϕki ) dxdydt

+ 1
|Y |

∫∫∫
ΩT×Ye

T eε (Mε
e)T eε (∇ue,ε)T eε (∇ϕe) dxdydt

+ 1
|Y |

∑
k=1,2

∫∫
ΩT×Γk

Ia,ion
(
T b,kε (vkε )

)
T b,kε (ψk) dxdσydt

+ 1
|Y |

∑
k=1,2

∫∫
ΩT×Γk

Ib,ion
(
T b,kε (wkε )

)
T b,kε (ψk) dxdσydt

+ 1
|Y |

∫∫
ΩT×Γ1,2

Igap
(
T b,1,2ε (sε)

)
T b,1,2ε (Ψ) dxdσydt

= 1
|Y |

∑
k=1,2

∫∫
ΩT×Γk

T b,kε (Ikapp,ε)T b,kε (ψk) dxdσydt+R8 −R7 −R6 −R5 −R4 −R3 −R2 −R1

(3.91)

Similarly, the "unfolded" formulation of (3.90) is given by:

1
|Y |

∫∫
ΩT×Γk

T b,kε (∂twkε )T b,kε (ek) dxdσydt

− 1
|Y |

∫∫
ΩT×Γk

H(T b,kε (vkε ), T b,kε (wkε ))T b,kε (ek) dxdσydt

= −ε
∫∫

Γkε,T∩Λε,T
∂tw

k
εe
k dσxdt+ ε

∫∫
Γkε,T∩Λε,T

H(vkε , wkε )ek dσxdt

:= R9 +R10

(3.92)

Convergence of the "Unfolded" formulation

In this part, we establish the passage to the limit in (3.91)-(3.92). First, we prove that:

R1, · · · , R10 −→
ε→0

0,

by making use of estimates (3.15)-(3.18). So, we prove that R3 → 0 when ε→ 0 and the proof
for the other terms is similar. First, by Cauchy-Schwarz inequality, one has

R3 =
∑
k=1,2

∫∫
Λki,ε,T

Mε
i∇uki,ε · ∇ϕki dxdt ≤

∑
k=1,2

∥∥∥Mε
i∇uki,ε

∥∥∥
L2(Ωki,ε,T )

(∫∫
Λki,ε,T

∣∣∣∇ϕki ∣∣∣2 dxdt
)1/2

.
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In addition, we observe that
∣∣∣Λk

i,ε

∣∣∣→ 0 and∇ϕki ∈ L2(Ωk
i,ε). Consequently, by Lebesgue domi-

nated convergence theorem, one gets for k = 1, 2 :
∫∫

Λki,ε

∣∣∣∇ϕki ∣∣∣2 → 0, as ε→ 0.

Finally, by using Holder inequality, the result follows by making use of estimate (3.16) and
assumption (3.4) on Mε

i .

Let us now elaborate the convergence results of J1, · · · , J8. Using property (3.1) of Propo-
sition 3.1 and due to the regularity of test functions, we know that the following strong conver-
gence:

T b,kε (ψk)→ ψk and T b,kε (ek)→ ek strongly in L2(ΩT × Γk)

T b,1,2ε (Ψ)→ Ψ strongly in L2(ΩT × Γ1,2)

and

T i,kε (ϕki )→ ϕki strongly in L2(ΩT × Y k
i )

T eε (ϕe)→ ϕe strongly in L2(ΩT × Ye).

Next, we want to use the a priori estimates (3.15)-(3.18) to verify that the remaining terms of
the equations are weakly convergent in the unfolded formulation (3.91)-(3.92). Using estima-
tion (3.16), we deduce from Theorem 3.3 that there exist uki , ue ∈ L2 (0, T ;H1(Ω)) , ûki ∈
L2
(
0, T ;L2

(
Ω, H1

#(Y k
i )
))

for k = 1, 2 and ûe ∈ L2
(
0, T ;L2

(
Ω, H1

#(Ye)
))

such that, up to a
subsequence, the following convergences hold as ε goes to zero:

T i,kε (uki,ε) ⇀ ui weakly in L2
(
0, T ;L2

(
Ω× Y k

i

))
,

T i,kε (∇uki,ε) ⇀ ∇uki +∇yû
k
i weakly in L2(ΩT × Y k

i ),

and

T eε (ue,ε) ⇀ ue weakly in L2
(
0, T ;L2 (Ω× Ye)

)
,

T eε (∇ue,ε) ⇀ ∇ue +∇yûe weakly in L2(ΩT × Y k
i ),

with the space H1
# is given by (3.88). Thus, since T i,kε (Mε

i ) → Mi a.e in Ω × Y k
i for k = 1, 2
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and T eε (Mε
e)→ Me a.e in Ω× Ye, one obtains:

J3 →
1
|Y |

∑
k=1,2

∫∫
ΩT×Y ki

Mi

[
∇uki +∇yû

k
i

]
∇ϕki dxdydt,

J4 →
1
|Y |

∫∫∫
ΩT×Ye

Me [∇ue +∇yûe]∇ϕe dxdydt.

Remark 3.12. Since uki and ue are independent of y then it does not oscillate "rapidly". This is
why now expect uki and ue to be the "homogenized solutions". To find the homogenized equations,
it is sufficient to find an equation in Ω satisfied by uki and the other one satisfied by ue both
independent on y.

Furthermore, we need to establish the weak convergence of the unfolded sequences that cor-
responds to vkε , wkε , sε and Ikapp,ε for k = 1, 2. In order to establish the convergence of T b,kε (∂tvkε ),
we use estimation (3.18) to get for k = 1, 2

∥∥∥T b,kε (∂tvkε )
∥∥∥
L2(ΩT×Γk)

≤ ε1/2 |Y |1/2
∥∥∥∂tvkε∥∥∥L2(Γkε,T )

≤ C.

So there exists V k ∈ L2 (ΩT ) such that T b,kε (∂tvkε ) ⇀ V k weakly in L2(ΩT ×Γk) with k = 1, 2.
By a classical integration argument, one can show that V k = ∂tv

k. Therefore, we deduce from
Theorem 3.3 that

T b,kε (∂tvkε ) ⇀ ∂tv
k weakly in L2(ΩT × Γk).

Thus, we obtain

J1 = 1
|Y |

∑
k=1,2

∫∫
ΩT×Γk

T b,kε (∂tvkε )T b,kε (ψk) dxdσydt→
1
|Y |

∑
k=1,2

∫∫
ΩT×Γk

∂tv
kψk dxdσydt.

By the same strategy for the convergence of J1, there exits ∂ts ∈ L2 (ΩT ) such that

T b,1,2ε (∂tsε) ⇀ ∂ts weakly in L2(ΩT × Γ1,2).

Thus, one has

J2 = 1
|Y |

∫∫
ΩT×Γ1,2

T b,1,2ε (∂tsε)T b,1,2ε (Ψ) dxdσydt→
1
|Y |

∫∫
ΩT×Γ1,2

∂tsΨ dxdσydt.
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Now, making use of estimate (3.15) with property (3.1) of Proposition 3.1, one has

∥∥∥T b,kε (wkε )
∥∥∥
L2(ΩT×Γk)

≤ ε1/2 |Y |1/2
∥∥∥wkε∥∥∥L2(Γkε,T )

≤ C,∥∥∥T b,1,2ε (sε)
∥∥∥
L2(ΩT×Γ1,2)

≤ ε1/2 |Y |1/2 ‖sε‖L2(Γ1,2
ε,T ) ≤ C.

Then, up to a subsequences,

T b,kε (wkε ) ⇀ wk weakly in L2(ΩT × Γk),

T b,1,2ε (sε) ⇀ s weakly in L2(ΩT × Γ1,2).

So, by linearity of Ib,ion and of Igap we have respectively:

J6 = 1
|Y |

∑
k=1,2

∫∫
ΩT×Γk

Ib,ion
(
T b,kε (wkε )

)
T b,kε (ψk) dxdσydt→

1
|Y |

∑
k=1,2

∫∫
ΩT×Γk

Ib,ion(wk)ψk dxdσydt,

J7 = 1
|Y |

∫∫
ΩT×Γ1,2

Igap
(
T b,1,2ε (sε)

)
T b,1,2ε (Ψ) dxdσydt→

1
|Y |

∫∫
ΩT×Γ1,2

Igap(s)Ψ dxdσydt.

Similarly, using assumption (3.10) on Ikapp,ε, we obtain the following convergence:

J8 = 1
|Y |

∑
k=1,2

∫∫
ΩT×Γk

T b,kε (Ikapp,ε)T b,kε (ψk) dxdσydt→
1
|Y |

∑
k=1,2

∫∫
ΩT×Γk

Ikappψk dxdσydt.

It remains to obtain the limit of J5 containing the ionic function Ia,ion. By the regularity of
ψk, it sufficient to show the weak convergence of Ia,ion

(
T b,kε (vkε )

)
to Ia,ion(vk) in L2(ΩT × Γk).

Due to the non-linearity of Ia,ion, the weak convergence will not be enough. It is difficult to pass
to the limit of this term on the microscopic membrane surface. Therefore, we need the strong
convergence of T b,kε (vkε ) to vk in L2(ΩT × Γk) for k = 1, 2 by using Kolmogorov-Riesz type
compactness criterion B.1 that can be found as Corollary 2.5 in [GNR16]. Next, we prove by
Vitali’s Theorem the strong convergence of Ia,ion

(
T b,kε (vkε )

)
to Ia,ion(vk) in Lq(ΩT ×Γk), ∀q ∈

[1, r/(r − 1)) with r ∈ (2,+∞).
To cope with this, in the following theorem, we derive the convergence of the nonlinear term
Ia,ion :

Theorem 3.4. The following convergence holds for k = 1, 2:

T b,kε (vkε )→ vk strongly in L2(ΩT × Γk), (3.93)

180



3.5. Two-scale Unfolding Homogenization Method

as ε→ 0. Moreover, we have for k = 1, 2:

Ia,ion
(
T b,kε (vkε )

)
→ Ia,ion(vk) strongly in Lq(ΩT × Γk), ∀q ∈ [1, r/(r − 1)), (3.94)

as ε→ 0.

Proof. We follow the same idea to the proof of Lemma 5.3 in [Ben+19] for first convergence
(3.93) which is based on the Kolmogorov compactness criterion (cf. Theorem B.1).

Next, we want to prove second convergence (3.94). Note that from the structure of Ia,ion given
by (3.6) and using property (3.1) in Proposition 3.1, we have

T b,kε

(
Ia,ion(vkε )

)
= Ia,ion

(
T b,kε (vkε )

)
, for k = 1, 2.

Due to the strong convergence of T b,kε (vkε ) in L2(ΩT × Γy), we can extract a subsequence, such
that T b,kε (vkε )→ vk a.e. in ΩT × Γk with k = 1, 2. Since Ia,ion is continuous, we have

Ia,ion
(
T b,kε (vkε )

)
→ I1,ion(vk) a.e. in ΩT × Γy.

Further, we use estimate (3.17) with property (3.1) of Proposition 3.1 to obtain for k = 1, 2
∥∥∥T b,kε

(
Ia,ion(vkε )

)∥∥∥
Lr/(r−1)(ΩT×Γy)

≤ |Y |(r−1)/r
∥∥∥ε(r−1)/rIa,ion(vkε )

∥∥∥
Lr/(r−1)(Γε,T )

≤ C.

Hence, using a classical result (see Lemma 1.3 in [Lio69]):

Ia,ion
(
T b,kε (vkε )

)
⇀ Ia,ion(vk) weakly in Lr/(r−1)(ΩT × Γk) with k = 1, 2.

Moreover, we obtain, using Vitali’s Theorem, the strong convergence of Ia,ion
(
T b,kε (vkε )

)
to

Ia,ion(vk) in Lq(ΩT × Γk), ∀q ∈ [1, r/(r − 1)) and k = 1, 2.

Finally, we pass to the limit when ε → 0 in the unfolded formulation (3.91) to obtain the
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following limiting problem:

1
|Y |

∑
k=1,2

∫∫
ΩT×Γk

∂tv
kψk dxdσydt+ 1

|Y |

∫
ΩT×Γ1,2

∂tsΨ dxdσydt

+ 1
|Y |

∑
k=1,2

∫∫
ΩT×Y ki

Mi

[
∇uki +∇yû

k
i

]
∇ϕki dxdydt

+ 1
|Y |

∫∫∫
ΩT×Ye

Me [∇ue +∇yûe]∇ϕe dxdydt

+ 1
|Y |

∑
k=1,2

∫∫
ΩT×Γk

Ia,ion(vk)ψk dxdσydt+ 1
|Y |

∑
k=1,2

∫∫
ΩT×Γk

Ib,ion(wk)ψk dxdσydt

+ 1
|Y |

∫∫
ΩT×Γ1,2

Igap(s)Ψ dxdσydt

= 1
|Y |

∑
k=1,2

∫∫
ΩT×Γk

Ikappψk dxdσydt,

(3.95)

Similarly, we can prove also that the limit of (3.92) for k = 1, 2 as ε tends to zero, is given by:

1
|Y |

∫∫
ΩT×Γk

∂twe
k dxdσydt−

1
|Y |

∫∫
ΩT×Γk

H(vk, wk)ek dxdσydt = 0. (3.96)

3.5.3 Derivation of the macroscopic tridomain model

The convergence results of the previous section allow us to pass to the limit in themicroscopic
equations (3.13)-(3.14) and to obtain the homogenized model formulated in Theorem 3.2.

To this end, we choose a special form of test functions to capture the microscopic informa-
tions at each structural level. Then, we consider that the test functions have the following form:

ϕe,ε = φe(t, x) + εθe(t, x)Θe,ε(x),

ϕki,ε = φki (t, x) + εθki (t, x)Θk
i,ε(x),

(3.97)

with functions Θe,ε and Θk
i,ε for k = 1, 2 defined by:

Θe,ε(x) = Θe

(
x

ε

)
and Θk

i,ε(x) = Θk
i

(
x

ε

)
, for k = 1, 2,

where φe, φki , θe and θki are in D(ΩT ), Θe in H1
#(Ye) and Θk

i in H1
#(Y k

i ) for k = 1, 2. Then, we
have: ∇ϕe,ε = ∇xφe + ε∇xθeΘe,ε + θe∇yΘe,ε,

∇ϕki,ε = ∇xφ
k
i + ε∇xθ

k
i Θk

i,ε + θki∇yΘk
i,ε.
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Due to the regularity of test functions and using property (3.1) of Proposition 3.1, there holds
for k = 1, 2:

T i,kε (ϕki,ε)→ φki strongly in L2
(
ΩT × Y k

i

)
,

T i,kε (θki Θk
i,ε)→ θki (t, x)Θk

i (y) strongly in L2
(
ΩT × Y k

i

)
,

T i,kε
(
∇ϕki,ε

)
→ ∇xφ

k
i + θki∇yΘk

i,ε strongly in L2
(
ΩT × Y k

i

)
,

T eε (ϕe,ε)→ φe strongly in L2 (ΩT × Ye) ,

T eε (θeΘe,ε)→ θe(t, x)Θe(y) strongly in L2 (ΩT × Ye) ,

T eε (∇ϕe,ε)→ ∇xφe + θe∇yΘe,ε strongly in L2 (ΩT × Ye) .

Since ψkε :=
(
ϕki,ε − ϕe,ε

)
|Γkε,T for k = 1, 2 and Ψε :=

(
ϕ1
i,ε − ϕ2

i,ε

)
|Γ1,2
ε,T
, then it holds also:

T b,kε (ψkε )→ ψk strongly in L2(ΩT × Γk),

T b,1,2ε (Ψε)→ Ψ strongly in L2(ΩT × Γ1,2),

where ψk :=
(
φki − φe

)
|ΩT×Γk for k = 1, 2 and Ψ := (φ1

i − φ2
i ) |ΩT×Γ1,2 .

Collecting all the convergence results of J1, . . . , J8 obtained in Section 3.5.2, we deduce the
following limiting problem:

∑
k=1,2

∣∣∣Γk∣∣∣
|Y |

∫∫
ΩT
∂tv

kψk dxdt+ |Γ
1,2|
|Y |

∫
ΩT
∂tsΨ dxdt

+ 1
|Y |

∑
k=1,2

∫∫
ΩT×Y ki

Mi

[
∇uki +∇yû

k
i

] [
∇xφ

k
i + θki∇yΘk

i,ε

]
dxdydt

+ 1
|Y |

∫∫∫
ΩT×Ye

Me [∇ue +∇yûe] [∇xφe + θe∇yΘe,ε] dxdydt

+
∑
k=1,2

∣∣∣Γk∣∣∣
|Y |

∫∫
ΩT

Ia,ion(vk)ψk dxdt+
∑
k=1,2

∣∣∣Γk∣∣∣
|Y |

∫∫
ΩT

Ib,ion(wk)ψk dxdt

+ |Γ
1,2|
|Y |

∫∫
ΩT
Igap(s)Ψ dxdt

=
∑
k=1,2

∣∣∣Γk∣∣∣
|Y |

∫∫
ΩT
Ikappψk dxdt.

(3.98)

Similarly, we can prove also that the limit of coupled dynamic equation for k = 1, 2 as ε tends
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to zero, which is given by:∣∣∣Γk∣∣∣
|Y |

∫∫
ΩT
∂twe

k dxdt−

∣∣∣Γk∣∣∣
|Y |

∫∫
ΩT
H(vk, wk)ek dxdt = 0. (3.99)

Now, we will find first the expression of ûki in terms of the homogenized solution uki for
k = 1, 2. Then, we derive the cell problem from the homogenized equation (3.98). Finally, we
obtain the weak formulation of the corresponding macroscopic equation.

We first take φe, θe and φki for k = 1, 2 are equal to zero, to get:

1
|Y |

∑
k=1,2

∫∫
ΩT×Y ki

Mi

[
∇uki +∇yû

k
i

] [
θki∇yΘk

i,ε

]
dxdydt = 0. (3.100)

Since uki , k = 1, 2 is independent on the microscopic variable y then the formulation (3.100)
corresponds to the following microscopic problem:



−∇y ·
(
Mi∇yû

k
i

)
=

d∑
p,q=1

∂mpq
i

∂yp

∂uki
∂xq

in Y k
i ,

ûki y-periodic,(
Mi∇yû

k
i + Mi∇xu

k
i

)
· nki = 0 on Γk,(

Mi∇yû
k
i + Mi∇xu

k
i

)
· nki = 0 on Γ1,2.

(3.101)

Hence, by the y-periodcity of Mi and the comptability condition, it is not difficult to establish
the existence of a unique periodic solution up to an additive constant of the problem (3.101) (see
Section 3.4).
Thus, the linearity of terms in the right of the equation (3.101) suggests to look for ûki under the
following form in terms of uki :

ûki (t, x, y, z) = χi(y) · ∇xu
k
i + ûk0,i(t, x, y), (3.102)

where ûk0,i, k = 1, 2 is a constant with respect to y and each element χqi of χi satisfies the
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following ε-cell problem:



−∇y · (Mi∇yχ
q
i ) =

d∑
p=1

∂mpq
i

∂yp
in Y k

i ,

χ̇qi y-periodic,

Mi∇yχ̇
q
i · nki = −(Mieq) · nki on Γk, k = 1, 2

Mi∇yχ̇
q
i · nki = −(Mieq) · nki on Γ1,2,

(3.103)

for q = 1, . . . , d. Moreover, the comptability condition is imposed to guarantee the existence
and uniqueness of solution χqi ∈ H1

#(Y k
i ) to problem (3.103) with H1

# is given by (3.88).

Finally, inserting the form (3.102) of ûki into (3.98) and setting θki , θe φe to zero, one obtains
the weak formulation of the homogenized equation for the intracellular problem:

∑
k=1,2

µk

∫∫
ΩT
∂tv

kφki dxdt+ µg

∫
ΩT
∂tsφ

1
i dxdt

+ 1
|Y |

∑
k=1,2

∫∫
ΩT×Y ki

M̃i∇uki · ∇φki dxdydt

+
∑
k=1,2

µk

∫∫
ΩT

Ia,ion(vk)φki dxdt+
∑
k=1,2

µk

∫∫
ΩT

Ib,ion(wk)φki dxdt

+ µg

∫∫
ΩT
Igap(s)φ1

i dxdt =
∑
k=1,2

µk

∫∫
ΩT
Ikappφki dxdt,

(3.104)

with µk =
∣∣∣Γk∣∣∣ / |Y | , k = 1, 2, µg = |Γ1,2| / |Y | and the coefficients of the homogenized

conductivity matrices M̃i = (m̃pq
i )1≤p,q≤d defined by:

m̃pq
i := 1

|Y |

d∑
`=1

∫
Y ki

(
mpq
i + mp`

i

∂χqi
∂y`

)
dy. (3.105)

Similarly, we can decouple the cell problem in the extracellular domain and define the homog-
enized matrix M̃e. This completes the proof of Theorem 3.2 using unfolding homogenization
method.

Remark 3.13.

1. Since the conductivity matrices Mj for j = i, e are symmetric then the homogenized con-
ductivity matrices M̃j defined by (3.20a)-(3.20b) are also symmetric for j = i, e.
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2. We can rewrite the homogenized conductivity matrices M̃i = (m̃pq
i )1≤p,q≤d as follows

m̃pq
i := 1

|Y |

d∑
`,`′=1

∫
Y ki

m``′

i

∂ (yq + χqi )
∂y`′

∂ (yp + χpi )
∂y`

dy. (3.106)

Indeed, we recall that χqi is the solution of (3.103). Choosing χ
p
i as test function in (3.103),

one has

d∑
`,`′=1

∫
Y ki

m``′

i

∂χqi
∂y`′

∂χpi
∂y`

dy = −
d∑
`=1

∫
Y ki

m`q
i

∂χpi
∂y`

dy = −
d∑

`,`′=1

∫
Y ki

m``′

i

∂yq
∂y`′

∂χpi
∂y`

dy.

Hence,
1
|Y |

d∑
`,`′=1

∫
Y ki

m``′

i

∂ (yq + χqi )
∂y`′

∂χpi
∂y`

dy = 0. (3.107)

On the other hand, since

∫
Y ki

mpq
i dy =

d∑
`,`′=1

∫
Y ki

m``′

i

∂yq
∂y`′

∂yp
∂y`

dy,

d∑
`=1

∫
Y ki

mp`
i

∂χqi
∂y`

dy =
d∑

`,`′=1

∫
Y ki

m``′

i

∂χqi
∂y`′

∂yp
∂y`

dy,

formula (3.105) can be written as follows:

m̃pq
i = 1

|Y |

d∑
`,`′=1

∫
Y ki

m``′

i

∂ (yq + χqi )
∂y`′

∂yp
∂y`

dy, ∀p, q = 1, . . . , d. (3.108)

Summing (3.107) from (3.108) gives (3.106). Similarly, we can rewrite the other matrix
M̃e in terms of the corresponding corrector function χe.

3. Since the conductivity matrices Mj for j = i, e satisfy the ellipticity conditions defined by
(3.4). Then there exits α0 > 0 such that

M̃jλ · λ ≥ α0 |λ|2 , (3.109a)∣∣∣M̃jλ
∣∣∣ ≤ β0 |λ| , for any λ ∈ Rd. (3.109b)
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Indeed, let λ ∈ Rd and j = i. To prove (3.109a), then from (3.106) it follows that

d∑
p,q=1

m̃pq
i λpλq = 1

|Y |

d∑
p,q=1

d∑
`,`′=1

∫
Y ki

m``′

i λp
∂ (yp + χpi )

∂y`
λq
∂ (yq + χqi )

∂y`′
dy.

Setting ζi =
d∑
p=1
λp
∂ (yp + χpi )

∂y`
and using the ellipticity of Mi defined by (3.4), we get

d∑
p,q=1

m̃pq
i λpλq ≥

α

|Y |

∫
Y ki

|∇ζi|2 dy ≥ 0, for any λ ∈ Rd. (3.110)

Let us show that this inequality implies that

d∑
p,q=1

m̃pq
i λpλq > 0, for any λ ∈ Rd, λ 6= 0.

If this were not true. In view of (3.110), one would have some λ 6= 0 such that

|∇ζi| = 0.

This means that

ζi =
d∑
p=1
λp
∂ (yp + χpi )

∂y`
= constant.

Thus, one has
d∑
p=1
λp
∂yp
∂y`

=
d∑
p=1
λp
∂χpi
∂y`

+ C,

and this impossible since the right-hand side function is y-periodic by definition and λ 6=
0. To end the proof of ellipticity, let M̃ be the following function:

M̃(ξ, ξ) =
d∑

p,q=1
m̃pq

i ξpξq.

This function is continuous on the unit sphere Sd−1 which is a compact set of Rd. Hence,
M̃ achieves its minimum on Sd−1 and, due to the previous result, this minimum is positive.
So, there exists α0 > 0 such that

M̃(ξ, ξ) ≥ α0, ∀ξ ∈ Sd−1.
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Consequently,
d∑

p,q=1
m̃pq

i

λp
|λ|

λq
|λ|
≥ α0, for any λ ∈ Rd, λ 6= 0,

since the vector
(
λ1

|λ|
, . . . ,

λd
|λ|

)
belongs to Sd−1. This ends the proof of inequality (3.109a)

and by the same way we obtain the second inequality.
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Conclusion and Outlook

Many cardiovascular pathologies are due to electro-physiological disorders that disturb the
cardiac rhythm. The mathematical problems that arise on this subject are diverse, which explains
why the literature is so abundant. In this thesis, we are concerned with the analysis of a bido-
main and, respectively, of a tridomain model describing the chemical and the electrical activity
of the complex structured cardiac tissue. We have proposed suitable homogenization methods,
both formal and rigorous, allowing the improvement of the existing models for analyzing the
electrochemical phenomena arising in the human heart. The main lessons and conclusions we
have drawn from this work are given in this last chapter. The innovative tools developed in this
thesis lead to new questions, and perspectives will be proposed. will be proposed. We start with
a list of conclusions and perspectives by chapter. The equations that are referenced refer to those
given in the introduction.

Chapter 2

? Conclusions: In Chapter 2, we have proposed a model that extends the standard mi-
croscopic bidomain model with the periodic inclusions. These inclusions represent non-
excitable regions in the intracellular medium, such as mitochondria, the powerhouse of
the myocardium. The scale of such inclusions is significantly smaller than the scale of the
extracellular and intracellular spaces, and then much smaller compared to the scale of the
tissue. In the first part of this chapter, we proposed a detailed study that consists in provid-
ing a non-dimensionalization to make appear three different scales (macro-meso-micro)
in microscopic equations, based on the literature.

From a computational point of view this microscopic model is very costly, as we need to
create very detailed meshes of the tissue with the sub-domains, and the mesh step would
depend directly on the size of the sub-domains and the periodic cell. To avoid this problem,
we have presented a complete mathematical analysis of the homogenization procedure that
leads to the macroscopic bidomain model based on two different methods: the asymptotic
and unfolding approaches. The macroscopic (homogenized) model is in fact the bidomain
model, where the effects of the micro-structure are observed within the modified intracel-
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lular and extracellular conductivity tensors. In the derivation of the modified conductivity
tensors, we see that both volume and shape of the inclusions play a role.

? Perspectives: To quantify these effects, we could perform numerical tests in 2D or 3D.
We could observe that the modified conductivity tensors, for different shapes, will ex-
press a different dependence on volume fractions. In addition, we could observe changes
in the anisotropy ratios for intracellular and extracellular conductivities. Tests on wave
propagation could show that the inclusions modify the velocity as well as the shape of the
wavefront.
In a second perspective, one could numerically confirm the convergence of the meso-
microscopic problem to the derived homogenized equations.

Chapter 3

? Conclusions: The gap junctions that electrically connect the cardiac cells together, play
an important role for signal propagation in cardiac tissue. They have a dynamical behav-
ior that is neglected in the current mathematical models such as the bidomain model. In
Chapter 3, we were interested in the construction of a novel model describing the electri-
cal activity in cardiac tissue with dynamical gap junctions. First, we established the global
existence and uniqueness of the weak solutions to our microscopic tridomain model. The
global existence of solution, which constitutes the main result of this paper, is proved
by means of an approximate non-degenerate system, the Faedo-Galerkin method, and an
appropriate compactness argument. Then, using the asymptotic and unfolding methods in
homogenization, we showed that the sequence of solutions constructed in this microscopic
model converges to the solution of the macroscopic tridomain model. Because of the non-
linear ionic function, the proof is based on the surface unfolding method and Kolmogorov
compactness argument.

? Perspectives:Afirst perspective would be to see if it is possible to add the other organelles
(mitochondria, endoplasmic reticulim, ...) inside cardiac cells in the tridomain model. We
would need a new analysis taking into account three different scales as described in the
previous chapter.
A second perspective of this work is the consideration of the monodomain model, which
will be a simplification of the tridomain model obtained in the particular case where the
intra- and extracellular domains have equal anisotropy ratios. Then we could numerically
illustrate the diffusion term of this problem.
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Finally, for the sake of mathematical "simplicity" we have assumed in our work the pe-
riodic structure of the tissue. This is not very realistic, and one might explore the non-
periodic structures and non-periodic homogenization techniques.
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A
Appendix A

A.1 Periodic Sobolev space

In this section, we give the properties which play an important role in the theory of ho-
mogenization (see [CD99]). For more details on functional analysis, the reader is referred to
the following references: [Rud73], [AF75], [Edw95], [BCL99], [Zei13]. We denote by O the
interval in Rd defined by :

O = ]0, `1[× · · · × ]0, `d[ , (A.1)

where `1, . . . , `d are given positive numbers. We will refer to O as the reference cell.

We define now the periodicity for functions which are defined almost everywhere.

Definition A.1. Let O the reference cell defined by (A.1) and f a function defined a.e on Rd.

The function f is called y-periodic, if and only if,

f(y + k`iei) = f(y) p.p. on Rd, ∀k ∈ Z, ∀i ∈ {1, . . . , d},

where {e1, . . . , ed} is the canonical basis of Rd.

Definition A.2. Let α, β ∈ R, such that 0 < α < β. We denote by M(α, β,O) the set of the
d× d matrices M = (mpq)1≤p,q≤d ∈ L∞(O)d×d such that :

(M(x)λ, λ) ≥ α |λ|2 ,

|M(x)λ| ≤ β |λ| ,
(A.2)

for any λ ∈ Rd and almost everywhere on O.
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In this part, we introduce a notion of periodicity for functions in the Sobolev space H1. In
the sequel, we take O an open bounded set in Rd.

Definition A.3. Let C∞per(O) be the subset of C∞(Rd) of periodic functions. We denote by
H1
per(O) the closure of C∞per(O) for the H1-norm, namely,

H1
per(O) = C∞per(O)H

1(O)
.

Proposition A.1. Let u ∈ H1
per(O). Then u has the same trace on the opposite faces of O.

In the sequel, we will define the quotient space H1
per(O)/R and introduce some properties

on this space.

Definition A.4. The quotient spaceWper(O) is defined by:

Wper(O) = H1
per(O)/R.

It is defined as the space of equivalence classes with respect to the following relation:

u ' v ⇔ u− v is a constant, ∀u, v ∈ H1
per(O).

We denote by u̇ the equivalence class represented by u.

Proposition A.2. The following quantity:

‖u̇‖Wper(O) = ‖∇u‖L2(O) ,∀u ∈ u̇, u̇ ∈ Wper(O)

defines a norm onWper(O).
Moreover, the dual space (Wper(O))′ can be identified with the set:

(Wper(O))′ = {F ∈ (H1
per(O))′ tel que F (c) = 0, ∀c ∈ R},

with

F (u) = (F, u̇)(Wper(O))′,Wper(O) = (F, u)(H1
per(O))′,H1

per(O), ∀u ∈ u̇, u̇ ∈ Wper(O).

Remark A.1. In particular, we can choose a representative element u of the equivalence class u̇
by fixing the constant. Then, we define a particular space of periodic functions with a null mean
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value as follows:

Wper(O) = {u ∈ H1
per(O) such thatMO(u) = 0}. (A.3)

withMO(u) = 1
|O|

∫
O
u dx. Its dual coincides with the dual space (Wper(O))′ and the duality

bracket is defined by:

F (u) = (F, u)(W#(O))′,W#(O) = (F, u)(H1
per(O))′,H1

per(O), ∀u ∈ W#(O).

Furthermore, by the Poincaré-Wirtinger’s inequality, the Banach spaceW#(O) has the following
norm:

‖u‖W#(O) = ‖∇u‖L2(O) ,∀u ∈ W#(O).

In the sequel, we will introduce some elliptic partial differential equations with different
boundary conditions: Neumann and periodic conditions. In these cases, to prove existence and
uniqueness, the Lax-Milgram theorem will be applied. Few works are available in the literature
about boundary value problems, we cite for instance [LM68], [Lio69]. In this part, we will treat
the following partial equation:

Au = f in O,

with the operator A is defined by:

A = −∇ · (M∇) (A.4)

where the matrix M = (mpq)1≤p,q≤d ∈M(α, β,O) is given by Definition A.2 but with different
boundary conditions:

• Nonhomogenous Neumann condition:

M∇u · n = g on ∂O.

• Periodic-Neumann condition: LetOj a portion of a reference cellO given by (A.1), with
a boundary Γ separate the two regions Oj and O \ Oj . So, we have :

∂Oj = (∂O ∩ ∂Oj) ∪ Γ.
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The boundary condition which plays an essential role in the homogenization of perforated
periodic media, namely, u y-periodic,

M∇u · n = g on Γ.

Theorem A.1. (Nonhomogenous Neumann condition)
We consider the following problem:

Au = f in O,

M∇u · n = g on ∂O.
(A.5)

with the operator A is defined by (A.4). Its variational formulation is:

Find u ∈ H1(O) such that

aO(u, v) = (f, v)H−1(O),H1(O) + (g, v)
H−

1
2 (∂O),H

1
2 (∂O)

∀v ∈ H1(O),
(A.6)

with aO is defined by:

aO(u, v) =
∫
O

M∇u∇vdx, ∀u, v ∈ H1(O).

We take V = H1(O). Suppose that f ∈ L2(O) and g ∈ H 1
2 (∂O) satisfy the following compat-

ibility condition:
(f, 1)H−1(O),H1(O) + (g, 1)

H−
1
2 (∂O),H

1
2 (∂O)

= 0. (A.7)

Then, the problem (A.5)-(A.6) has a unique solution u ∈ H1(O). Moreover,

‖u‖H1(O) ≤
1
α0

(
‖f‖L2(O) + Cγ ‖g‖

H−
1
2 (∂O)

)
,

where α0 = min(1, α) and Cγ is the trace constant.

Theorem A.2. (Periodic-Newmann condition)
LetOj a portion of a unit cellO given by (A.1), with Lipschitz continuous boundary Γ separate
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the two regions Oj and O \ Oj . Consider the following problem:


Au = f in Oj,

u y-periodic,

M∇u · n = g on Γ.

(A.8)

We take V =Wper(Oj). Then, for any f ∈ (Wper(Oj))′ and for any g ∈ H
1
2 (Γ), the variational

formulation of the problem (A.8) is:
Find u̇ ∈ Wper(Oj) such that

ȧOj(u̇, v̇) = (F, v̇)(Wper(Oj))′,Wper(Oj) ∀v̇ ∈ Wper(Oj),
(A.9)

with aOj is given by:

ȧOj(u̇, v̇) =
∫
Oj

M∇u∇vdy, ∀u ∈ u̇, ∀v ∈ v̇,

and F is defined by:

(F, v̇)(Wper(Oj))′,Wper(Oj) =
∫

Γ
Mi∇u · nv dσ(y) +

∫
Oj
fv dy, ∀v ∈ v̇, ∀v̇ ∈ Wper(Oj),

where n denotes the unit outward normal to Γ.
Assume that M belongs toM(α, β,O) with y-periodic coefficients. Suppose that F belongs

to (Wper(Oj))′ which equivalent to

(F, 1)(Wper(Oj))′,Wper(Oj) = 0.

Then problem (A.9) has a unique weak solution. Moreover, we have the following estimation:

‖u̇‖Wper(Oj) ≤
1
α0

(
‖f‖L2(Oj) + Cγ ‖g‖

H−
1
2 (Γ)

)
.

where α0 = min(1, α) and Cγ is the trace constant.

By the definition ofWper, the previous theorem shows that the problem (A.8) admits a so-
lution in H1

per, defined up to an additive constant. If we take the particular case V = W#(O)
defined by (2.91), we obtain the same result.
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B
Appendix B

B.1 Compactness result for the space Lp(Ω, B)

In this part, we give a characterization of relatively compact sets F in Lp(Ω, B) for p ∈
[1; +∞), Ω ⊂ Rd open and bounded set and B a Banach space.

Proposition B.1 (Kolmogorov-Riesz type compactness result). Let Ω ⊂ Rd be an open and
bounded set. Let F ⊂ Lp(Ω, B) for a Banach space B and p ∈ [1; +∞). For f ∈ F and h ∈ Rd,

we define τhf(x) := f(x+ h). Then F is relatively compact in Lp(Ω, B) if and only if

(i) for every measurable set C ⊂ Ω the set {
∫
C fdx : f ∈ F} is relatively compact in B,

(ii) for all λ > 0, h ∈ Rd and hi ≥ 0, i = 1, . . . , d, there holds

sup
f∈F
‖τhf − f‖Lp(Ωh

λ
,B) → 0, for h→ 0,

where Ωh
λ := {x ∈ Ωλ : x+ h ∈ Ωλ} and Ωλ := {x ∈ Ω : dist(x, ∂Ω) > λ},

(iii) for λ > 0, there holds sup
f∈F

∫
Ω\Ωλ |f(x)|p dx→ 0 for λ→ 0.

Proof. The proof of the proposition can be found as Corollary 2.5 in [GNR16].
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Titre : Méthode d’homogénéisation d’éclatement multi-échelle appliquée aux modèles d’élec-
trocardiologie bidomaine et tridomaine.
Mot clés : Bidomaine, Tridomaine, Méthode d’homogénéisation asymptotique à trois échelles, Méthode
d’éclatement périodique, Gap junctions, Électro-cardiologie.

Résumé : Cette thèse est principalement consacrée à la
modélisation et à l’analyse multi-échelle de systèmes d’élec-
trocardiologie bidomaine et tridomaine. L’électrophysiologie car-
diaque décrit et modélise les phénomènes chimiques et élec-
triques qui se produisent dans le tissu cardiaque.
Au niveau microscopique, le tissu cardiaque est très complexe
et il est donc très difficile de comprendre et de prévoir son
comportement à l’échelle macroscopique (observable). Ainsi,
à chaque système (bidomaine ou tridomaine) on associe un
modèle microscopique (de type elliptique), couplé à un sys-
tème d’EDO non-linéaire et un autre macroscopique (de type
réaction-diffusion).
En se basant sur la loi de la conduction électrique d’Ohm et
la conservation de la charge électrique, on obtient le modèle
microscopique qui donne une description détaillée de l’activité
électrique dans les cellules responsables de la contraction car-
diaque. Ensuite, en utilisant des techniques d’homogénéisation,
on obtient le modèle macroscopique qui, à son tour, permet de
décrire la propagation des ondes électriques dans le cœur en-
tier.
Cette thèse est composée en deux grandes parties. D’abord,
on donne une justification mathématique formelle et rigoureuse

du processus d’homogénéisation périodique qui conduit au mo-
dèle macroscopique bidomaine. La méthode formelle est un
développement asymptotique à trois échelles appliqué au mo-
dèle bidomaine méso- et microscopique. En outre, la justifica-
tion mathématique rigoureuse est basée sur des opérateurs
d’éclatement qui non seulement dérivent l’équation homogénéi-
sée mais aussi prouvent la convergence de la suite de solutions
du problème bidomaine microscopique vers la solution du pro-
blème macroscopique. Pour traiter les modèles ioniques non li-
néaires, l’opérateur d’éclatement sur la surface et un argument
de type Kolmogorov sont utilisés pour assurer la compacité.
Ensuite, on travaille sur l’analyse mathématique d’un nouveau
modèle décrivant l’activité électrique des cellules cardiaques en
présence de jonctions communicantes est proposé. Il s’agit no-
tamment du modèle "tridomaine". On montre l’existence et l’uni-
cité de la solution faible du modèle microscopique tridomaine
en utilisant la méthode constructive de Faedo-Galerkin. Finale-
ment, l’obtention du modèle tridomaine macroscopique (homo-
généisé) est justifiée d’une part par la méthode de développe-
ment asymptotique et d’autre part par l’analyse de convergence
du modèle microscopique en s’appuyant sur la méthode d’écla-
tement périodique.

Title: Multi-scale unfolding homogenization method applied to bidomain and tridomain electro-
cardiology models.
Keywords: Bidomain, Tridomain, Three-scale asymptotic homogenization method, Periodic unfolding
method, Gap junctions, Electro-cardiology.

Abstract: This thesis is mainly devoted to the modeling
and multi-scale analysis of bidomain and tridomain electro-
cardiology systems. Cardiac electro-physiology describes and
models the chemical and electrical phenomena that occur in
cardiac tissue.
At the microscopic level, cardiac tissue is very complex and it
is therefore very difficult to understand and predict its behavior
at the macroscopic (observable) scale. Thus, to each (bidomain
or tridomain) system we associate a microscopic model (of el-
liptical type), coupled to a nonlinear ODE system and another
macroscopic one (of reaction-diffusion type).
Based on Ohm’s law of electrical conduction and conservation
of electrical charge, we obtain the microscopic model that gives
a detailed description of the electrical activity in the cells re-
sponsible for cardiac contraction. Then, using homogenization
techniques, we obtain the macroscopic model which, in turn, al-
lows us to describe the propagation of electrical waves in the
entire heart.
This thesis is composed of two main parts. First, we give a for-
mal and rigorous mathematical justification of the periodic ho-

mogenization process that leads to the macroscopic bidomain
model. The formal method is a kind of asymptotic development
at three scales that we apply to our meso- and microscopic
bidomain model. Moreover, the rigorous method is based on un-
folding operators which not only derive the homogenized equa-
tion but also prove the convergence of the solution sequence of
the microscopic bidomain problem to the solution of the macro-
scopic problem. Because of nonlinear terms, the boundary un-
folding operator and a Kolmogorov type argument for the phe-
nomenological ionic models are used.
Then, we work on the mathematical analysis of a new model
that describes the electrical activity of cardiac cells in the pres-
ence of junctions. This model is the "tridomain" model. We show
the existence and uniqueness of the weak solution of the trido-
main microscopic model using the Faedo-Galerkin constructive
technique and a compactness argument in L2. Finally, while us-
ing the two previous homogenization methods, we develop the
macroscopic tridomain model which corresponds to an approx-
imation of our microscopic model.
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