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Abstract

Over the last years, cloud computing has increasingly become a standard for saving
costs and enabling elasticity. While cloud providers expand their services, their clients are
still concerned about the security of cloud technologies. This is mainly because security
issues often lead to data breaches which demand significant efforts and extreme costs
for correction. To address these issues, encryption is usually used to protect confidential
data stored and processed on untrustworthy clouds. Encrypting outsourced data however
mitigates the functionalities of applications since supporting fundamental functions on
encrypted data is still limited, range queries for example.

Many studies have been done on range query processing over encrypted data in recent
years. Nevertheless, none of prior schemes exhibits satisfactory performances for modern
systems, that require not only low-latency responses, but also high scalability. In par-
ticular, most of existing solutions suffer from either inefficient range query processing or
security issues. For example, they would take hundreds of seconds to evaluate a range
query or disclose the privacy of plaintexts. Even if some can achieve both strong pri-
vacy protection and fast query processing, they are unable to provide scalable solutions.
In other words, these schemes incur bottlenecks, prohibitive storage overhead, or even
limited update operations.

In this dissertation, we aim at providing scalable solutions for secure range query pro-
cessing while still maintaining high efficiency and strong privacy protection. Our contribu-
tion is many-fold: 1) We introduce an approach to support secure range query processing
in the context where data arrive at a high speed. 2) We propose an intensive ingestion
framework dedicated to secure range query processing on encrypted data. 3) We present
a scalable scheme for private range query processing on outsourced data.

The first contribution is to avoid potential bottlenecks in the context where the system
confronts a high rate of incoming data. Additionally, our approach preserves fast range
query processing and strong privacy protection. To achieve this goal, we extend PINED-
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RQ, one of the most efficient state-of-the-art solutions, and adapt this work to the target
context. To this purpose, we introduce a notion of index template to PINED-RQ so that
the system can consume incoming data on the fly. Besides, a noise management strategy
and a complementary data structure are designed to prevent potential privacy leaks caused
by such extension. We then develop a parallel version of this extension for improving the
ingestion throughput. With practical assumptions, we prove that the privacy protection
of our solution is as strong as that of PINED-RQ. The experimental results show that our
proposal outperforms PINED-RQ in various metrics. For instance, the publishing time of
a dataset of ∼0.5M records is reduced up to ∼ 35× while the maximum data rate of the
system experiences a reduction of up to ∼ 2.7×.

The second contribution is an intensive ingestion framework dedicated to secure range
query processing on encrypted data. The security and efficiency of this framework still
remain high. This contribution results from the fact that all existing schemes cannot
provide a satisfactory ingestion throughput for real-life needs. To overcome this limitation,
we aim at enhancing our first contribution so that it is able to scale the intake ability up as
much as possible. In particular, we introduce a new architecture relying on a set of shared-
nothing machines and make it fully distributed. By doing it, the ingestion throughput
can be scaled up by just adding more nodes into the system. In addition, a new data
representation and an asynchronous publishing method are presented and integrated into
this architecture to avoid throughput degradation or potential congestion. By precisely
coordinating all of them together, our framework can support an intensive consumption
throughput, e.g., over 160 thousand record insertions in a second. As compared to our
previous contribution, the ingestion throughput is improved by up to ∼ 43×. Besides, we
adapt our framework to a stronger type of attackers (e.g., online attackers) by introducing
and integrating a new noise management into the new architecture. Interestingly, this
method also increases the practicality of the framework.

The third contribution is a novel scheme for private range query processing on en-
crypted data. This scheme addresses the need of a scalable solution in terms of efficiency,
high security, practical storage overhead, and numerous updates, which cannot be sup-
ported by the former schemes. To achieve it, we develop our solution relying on equal-size
chunks (buckets) of data and secure indexes. The former helps to protect privacy of the un-
derlying data from the adversary while the latter enables efficiency. To support lightweight
updates, we propose to decouple secure indexes from their buckets by using use equal-
size bitmaps. These bitmaps privately maintain links between secure indexes and buckets
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of outsourced data. This decoupling approach allows our scheme to efficiently support
unlimited lightweight updates without revealing anything about underlying plaintexts.
More importantly, our scheme incurs significantly lower storage overhead as compared to
its counterparts. With thorough experiments, we show that this novel scheme outperforms
the state-of-the-art schemes in various metrics. For example, as compared to PINED-RQ
[94], PARADOT is two orders of magnitude faster in terms of query response latency and uses
at most ∼111× less space requirement. Moreover, PARADOT is able to efficiently support
numerous updates that are often very costly or even not supported in previous works.
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Resumé

Au cours des dernières années, l’infonuagique est devenue de plus en plus une norme
pour réduire les coûts et offrir de l’élasticité. Alors que les fournisseurs de nuage élargis-
sent leurs services, leurs clients sont toujours préoccupés par la sécurité des technologies
des nuages. Cela est principalement dû au fait que les problèmes de sécurité entraînent
souvent des violations de données qui nécessitent des efforts considérables et des coûts de
correction extrêmes. Pour résoudre ces problèmes, le chiffrement est généralement utilisé
pour protéger les données confidentielles stockées et traitées sur des nuages non fiables.
Le chiffrement des données externalisées atténue toutefois les fonctionnalités des appli-
cations, car la prise en charge des opérations fondamentales sur les données chiffrées est
encore limitée, les requêtes d’intervalle par exemple.

Malgré les récents travaux sur le Fully Homomorphic Encryption (FHE) [43, 44] qui
montrent qu’il est possible de faire des calculs arbitraires sur des données chiffrées, les
surcharges sont extrêmement hautes. Une approche plus pratique est d’utiliser des schémas
de chiffrement qui permettent à des nuages non fiables d’effectuer des primitives de calcul
spécifiques, par exemple des requêtes d’intervalle sur des données chiffrées.

Dans cette thèse, nous nous concentrons sur le problème de la prise en charge des
requêtes d’intervalle non agrégées sur des données chiffrées stockées dans les nuages. Une
requête d’intervalle est une opération fondamentale dans une base de données qui permet
d’exprimer une restriction limitée sur les enregistrements récupérés. Par exemple, un
hôpital peut externaliser la gestion des dossiers électriques de ses patients, la requête
suivante de type SQL peut récupérer les dossiers des patients dont l’âge est compris entre
a et b :

SELECT * FROM patients WHERE age ≥ a AND age ≤ b

Ces dernières années, de nombreuses études ont été réalisées sur le traitement des
requêtes d’intervalle sur des données chiffrées. Néanmoins, aucun des schémas précédents
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ne présente des performances satisfaisantes pour les systèmes modernes qui exigent non
seulement des réponses à faible latence, mais aussi une haute évolutivité. En particulier, la
plupart de ces solutions tentent principalement de trouver un compromis entre efficacité
et sécurité. Par exemple, alors que les solutions de chiffrement à vecteur caché (Hidden
Vector Ecryption) entraînent des surcharges de calcul prohibitives, les techniques basées
sur la préservation de l’ordre (Order Preserving Encryption) sont vulnérables aux at-
taques statistiques. De même, les systèmes de conteneurisation (Bucketization) sont soit
sans garantie formelle, soit confrontés à de hauts taux de faux positifs. Il est donc diffi-
cile d’obtenir des solutions évolutives à partir des schémas précédents. Bien que certains
systèmes basés sur un index, comme PINED-RQ [94]), permettent d’obtenir à la fois un
traitement rapide des requêtes et un haut niveau de sécurité, ils sont encore loin d’être sat-
isfaisants à divers points de vue. Nous nous concentrons en particulier sur les dimensions
suivantes.

Premièrement, les systèmes modernes sont souvent confrontés au contexte dans
lequel les données sont générées rapidement par diverses sources de données telles que
l’Internet des Objets (IoT) ou les applications mobiles. Cette situation exige par la suite
que le système supporte un haut débit d’ingestion pour éviter les embouteillages po-
tentiels. Notre observation montre que la plupart des protocoles de requête d’intervalle
sécurisée existants souffrent de goulots d’étranglement dans un tel contexte. En particulier,
les systèmes précédents doivent effectuer des opérations supplémentaires (prétraitement)
sur des données avant de transmettre les données traitées au nuage. Ces opérations sont
exécutées sur un composant de confiance (par exemple, le collecteur) afin de garantir la
confidentialité des données. Malheureusement, ce processus est souvent lourd et prend
du temps, comme le chiffrement des données et la construction d’un index sécurisé. Par
conséquent, les solutions existantes, en particulier celles basées sur un index, souffrent
de hauts niveaux de goulots d’étranglement au niveau du collecteur lorsque les données
arrivent à grande vitesse. Plus important encore, toutes les solutions de pointe n’ont pas
envisagé un cadre permettant un débit d’ingestion intensif pour des besoins réels, par
exemple des centaines d’insertions par seconde.

Deuxièmement, en plus de la nécessité de requêtes à faible latence, les systèmes
modernes devraient être efficaces en termes de gestion de l’espace. Mais la plupart des
systèmes efficaces, qui disposent d’un calcul rapide des requêtes et d’une protection élevée
de la confidentialité, doivent faire face à des surcharges de stockage sévères telles que
[65, 32, 64, 86]. Bien que le protocole de [94] présente un petit espace de surcharge, il ne
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fonctionne que dans des circonstances restreintes, par exemple, un individu possède un
petit nombre d’enregistrements. Sinon, il souffre d’une surcharge d’espace prohibitif de
données fictives lorsqu’un individu est lié à plusieurs enregistrements dans un ensemble de
données. Il est également intéressant de noter que le problème de surcharge de stockage
mène non seulement à une gestion inefficace de l’espace, mais peut également augmenter
le temps de réponse aux requêtes.

Troisièmement, la mise à jour (insertion, modification et suppression) est une
opération de base des systèmes de bases de données. En raison de la haute fréquence
des mises à jour dans le contexte cible, cette opération devrait être rapide et légère.
Cependant, aucune des solutions efficaces précédentes ne peut répondre à ces exigences,
et même beaucoup d’entre elles ne permettent pas l’opération de mise à jour. Bien que
certaines solutions prennent en charge les mises à jour, elles sont soit très coûteuses,
soit limitées. Par exemple, alors que les opérations de mise à jour dans [32, 64] créent
d’importantes surcharges de communication, la solution dans [94] ne prend en charge
qu’un nombre limité de mises à jour.

Dans cette thèse, nous visons à fournir des solutions évolutives pour le traitement des
requêtes d’intervalle sécurisées en préservant une haute efficacité et une forte protection de
la confidentialité. Notre contribution est multiple : 1) Nous introduisons une approche pour
soutenir le traitement des requêtes d’intervalle sécurisées dans le contexte où les données
arrivent à un haut débit. 2) Nous proposons un cadre d’ingestion intensive dédié au
traitement des requêtes d’intervalle sécurisées sur des données chiffrées. 3) Nous présentons
un schéma évolutif pour le traitement des requêtes d’intervalle privées sur des données
externalisées.

La première contribution consiste à éviter les goulots d’étranglement potentiels dans
le contexte où le système est confronté à un haut débit de données entrantes. En outre,
notre approche préserve la rapidité du traitement des requêtes et une forte protection
de la confidentialité. Pour atteindre cet objectif, nous étendons PINED-RQ, l’une des
solutions de pointe les plus efficaces, et adaptons ce travail au contexte cible. À cette
fin, nous introduisons une notion de modèle d’index dans PINED-RQ afin que le système
puisse consommer les données entrantes à la volée. De plus, une stratégie de gestion du
bruit et une structure de données complémentaires sont conçues pour prévenir les fuites
potentielles de données privées causées par cette extension. Nous développons ensuite
une version parallèle de cette extension pour améliorer le débit d’ingestion. Avec des hy-
pothèses pratiques, nous prouvons que la protection de la confidentialité de notre solution
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est aussi forte que celle du PINED-RQ. Les résultats expérimentaux montrent que notre
proposition est plus performante que PINED-RQ dans divers indicateurs. Par exemple, le
délai de publication d’un ensemble de données de 0,5 million d’enregistrements est réduit
jusqu’à ∼ 35×, tandis que le débit de données maximal du système est réduit jusqu’à
∼ 2, 7×.

La deuxième contribution est un cadre d’ingestion intensive, FRESQUE, dédié au traite-
ment de requêtes d’intervalle sécurisée sur des données chiffrées. La sécurité et l’efficacité
de ce cadre restent élevées. Cette contribution résulte du fait que tous les systèmes ex-
istants ne peuvent pas fournir un débit d’ingestion satisfaisant à des besoins réels. Pour
surmonter cette limitation, nous visons à améliorer notre première contribution afin qu’elle
soit en mesure d’augmenter la capacité de réception autant que possible. En particulier,
nous introduisons une nouvelle architecture basée sur un ensemble de machines et de
manière entrièrement distribuée. Ce faisant, le débit d’ingestion peut être augmenté en
simplement des noeuds dans le système. En outre, une représentation des données et une
méthode de publication asynchrone sont présentées et intégrées dans cette architecture
pour éviter la dégradation du débit ou une congestion potentielle. En coordonnant pré-
cisément tous ces éléments, notre cadre peut soutenir un débit de consommation intensif,
par exemple plus de 160,000 insertions d’enregistrements en une seconde. Par rapport à
notre contribution précédente, le débit d’ingestion est amélioré jusqu’à ∼ 43×. De plus,
nous adaptons notre cadre à un type des attaques plus fortes (par exemple, les attaques en
ligne) en introduisant et en intégrant une nouvelle gestion du bruit dans la nouvelle archi-
tecture. Il est intéressant de noter que cette méthode augmente également la praticabilité
du cadre.

La troisième contribution est un nouveau système de traitement des requêtes d’intervalle
privées sur des données chiffrées, PARADOT. Ce système répond au besoin d’une solution
évolutive en termes d’efficacité, de haute sécurité, de frais de stockage pratiques et de
nombreuses mises à jour, qui ne peuvent être pris en charge par les anciens systèmes.
Pour y parvenir, nous développons notre solution en nous basant sur des conteneurs de
données de taille égale et des index sécurisés. Le premier permet de protéger la confi-
dentialité des données contre l’adversaire, tandis que le second permet l’efficacité. Pour
permettre des mises à jour légères, nous proposons de découpler les index sécurisés de leurs
conteneurs en utilisant des bitmaps de taille égale. Ces bitmaps maintiennent en privé les
liens entre les index sécurisés et les conteneurs de données externalisés. Cette approche de
découplage permet à notre système de prendre en charge efficacement un nombre illimité
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de mises à jour légères sans révéler quoi que ce soit sur les données en clair. Plus im-
portant encore, notre système implique des frais de stockage nettement inférieurs à ceux
de ses homologues. Grâce à des expériences approfondies, nous montrons que ce nouveau
système surpasse les systèmes de pointe dans divers indicateurs. Par exemple, par rapport
à PINED-RQ [94], PARADOT est deux ordres de grandeur plus rapide en termes de latence
de réponse aux requêtes et utilise au maximum ∼111× moins d’espace requis. De plus,
PARADOT est capable de prendre en charge efficacement de nombreuses mises à jour qui
sont souvent très coûteuses ou même non prises en charge dans les travaux précédents.
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Chapter 1

Introduction

1.1 Context and Motivation

With the prosperity of online social network, web-based services, and IoT, an un-
precedented amount of personal data is collected every second. To achieve analytical and
administrative purposes, it becomes increasingly desirable for modern systems to sup-
port not only low-latency query processing, but also intensive ingestion throughput over
incoming data. This puts a tremendous strain on data management activities.

A dynamic and elastic IT infrastructure like cloud computing is a good alternative to
handle such massive and unpredictable data [68, 55]. Cloud computing has increasingly
gained huge attention over the last years due to continuously increasing needs. Many
organizations of all sizes adopt cloud computing technologies to benefit from resource and
cost elasticity. According to a recent survey [56], 81% of organizations confirmed already
using computing infrastructure or having applications in the cloud.

Despite huge benefits, cloud computing encounters security threats. These threats
primarily come from the distributed architecture of cloud computing [21, 90]. Indeed, as
several virtual machines share the same physical server, a malicious virtual machine can
infer some information about the other virtual machines through shared memory or other
shared resources [2, 51, 118]. Another severe threat that cloud computing also faces is
insider threats, which could account for more than 43% of all data breaches according
to recent statistics [57]. Generally, the insider threat can be considered as the one who
has access rights to a system and wrongly uses her privileges [102, 9]. These threats can
be malicious such as staff members going rogue, e.g., in 2010, a Google employee broke

1



CHAPTER 1. INTRODUCTION

into the Gmail and Google Voice accounts of several children [48], but they can also be
due to negligence or simple human errors, e.g., in 2019, thousands of customer records
of Capital One are leaked by a firewall misconfiguration [17] when they are stored on
Amazon Web Services (AWS). Such data breaches not only require significant efforts for
corrections, but also may destroy the reputation of related organizations. These security
threats consequently make cloud computing become an untrusted environment, remaining
one of the top concerns hindering the widespread adoption of such technology [21, 96, 90].
In order to urge the broader adoption of cloud computing, such security concerns must
be addressed.

Over the last years, encryption has become one of the powerful techniques to protect
confidential data stored on untrusted environments like clouds [93, 85, 88, 105]. With such
an approach, sensitive data is first encrypted at a trusted component before the corre-
sponding ciphertext is sent to the cloud for managing. Nevertheless, this straightforward
solution also poses several challenges to data management activities. One of them is that
the encrypted data may not be decrypted at the cloud due to the requirement of "total
privacy". This means that the client may not fully trust the cloud server for complete
access to its sensitive data. A naive solution is to transmit the encrypted data from the
cloud to a trusted component, decrypt the data, and execute queries over the correspond-
ing plaintexts. But this approach is not scalable and diminishes almost the advantages
of cloud computing since it is now only considered as a storage cloud. Therefore, there is
a need of performing computations over encrypted data without decrypting the data at
untrustworthy clouds.

Although recent work on Fully Homomorphic Encryption (FHE) [43, 44] shows it is
able to compute arbitrary computations on encrypted data, its performance overheads are
extremely high. A more practical approach is to use encryption schemes that allow un-
trusted cloud to perform specific computation primitives, e.g., range queries on encrypted
data.

In this dissertation, we focus on the problem of supporting non-aggregate range queries
on encrypted data stored on clouds. A range query is a fundamental operation in database
that enables to express a bounded restriction over the fetched records. For instance, a
hospital may outsource the management of the electric records of its patients, the following
SQL-like query can retrieve the records of patients with the age between a and b:

SELECT * FROM patients WHERE age ≥ a AND age ≤ b
More specifically, we consider solutions that allow efficiently perform range queries over
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encrypted data while still preserving a high level of security. Besides, proposed solutions
must be scalable enough to cope with the target context.

Addressing the problem of range query processing on encrypted data has increasingly
become a hot topic over the last years [50, 63, 53, 1, 14, 12, 11, 54, 112, 66, 32, 64, 94,
86]. Prior schemes can be classified into four main categories according to the techniques
they use. First, hidden vector encryption (HVE) methods [14, 112] use bilinear groups
equipped with bilinear maps and hide attributes in an encrypted vector. Range predicate is
evaluated over such encrypted vector. Second, order preserving encryption (OPE) schemes
[1, 12, 11, 74, 87, 86] aim at keeping the order of the ciphertexts the same as the that
of the corresponding plaintexts. Such property enables range predicate evaluation over
encrypted data. Third, bucketization based solutions [50, 53, 54, 63] propose to partition
an attribute domain into a finite number of buckets and a range query retrieves all data
of buckets falling within the range. Fourth, several index-based approaches [32, 66, 64,
94, 86] have been proposed with the aim of maintaining secure indexes on encrypted data
such that they often achieve very fast range query processing.

Nonetheless, none of existing schemes can cope with scalability requirements of modern
systems. More specifically, most of these solutions mainly attempt a trade-off between
efficiency and security, instead of achieving both of them. For example, while the hidden
vector encryption solutions incur prohibitive computation overhead, the order preserving
based techniques are vulnerable to statistical attacks. Similarly, the bucketization schemes
either lack formal guarantees or confront high false positives. Therefore, it is hard to
achieve scalable solutions from these schemes. Although some of the index-based schemes
like PINED-RQ [94] can achieve both fast query processing and a high level of security,
they are still far from satisfactory manners in various perspectives. We particularly focus
on the following dimensions.

First, modern systems often confront the context where data is generated rapidly by
various data sources such as IoT devices or mobile applications. This situation subse-
quently demands the system to support a high ingestion throughput for avoiding po-
tential congestion. Our observation show that most existing secure range query protocols
suffer from bottlenecks in such context. In particular, prior schemes have to perform ad-
ditional operations (pre-processing) on clear data before sending the processed data to
the cloud. These operations are executed on a trusted component (e.g., collector) to en-
sure the confidentiality of the data. Unfortunately, this process is often heavy and takes
time, such as data encryption and secure index construction. As a consequence, bottle-
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necks highly occur at the collector in the existing solutions, especially the index-based
solutions, when data come at a high speed. More importantly, a framework supporting
intensive ingestion throughput for real-life needs, e.g., hundreds of insertions/second, has
not been considered by all of the state-of-the-art solutions.

Second, in addition to the need of low-latency queries, modern systems are expected to
be efficient in terms of space management. But, most of the efficient schemes, that have fast
query computation and strong privacy protection, confront severe storage overhead such
as [65, 32, 64, 86]. Although the protocol in [94] has small space overhead, it only works
in restricted circumstances, e.g., an individual has a small number of records. Otherwise,
it suffers from prohibitive space overhead of dummy data when an individual is linked to
multiple records in a dataset. It is also worth noting that the storage overhead problem
not only leads to inefficient space management, but also may increase query response
time.

Third, update (insertion, modification, and deletion) is a basic operation of database
systems. Due to the high frequency of updates in the target context, such operation is
expected to be fast and lightweight. However, none of prior efficient solutions can cope
with these requirements, even many of them do not enable the update operation. Although
some support updates, they are either very costly or limited. For instance, while update
operations in [32, 64] create high communication overheads, the solution in [94] only
supports a limited number of updates.

1.2 Research contributions

According to the drawbacks of the existing schemes as presented in Section 1.1, this
section highlights the research goals of this dissertation. As mentioned earlier, despite the
fact that some schemes enable a good level of query processing and security, they do not
cope with the context where data arrives at a high rate. It is expected a new approach to
avoid the respective problems, such as bottlenecks, while still maintaining efficiency and
high security. Besides, we also need a scalable framework that allows the system smoothly
ingest a large number of records per second for real-life needs, e.g., over 100K records/s.
This framework should ensures flexibility, efficiency, and strong privacy protection. Lastly,
existing solutions cannot achieve all requirements of fast query computation, small storage
overhead, high security, and lightweight updates. There is the need of designing a novel
scheme that meet all these requirements together.
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We propose several practical solutions for range query processing on outsourced databases
in clouds. In particular, we have made the following contributions.

1) PINED-RQ++: An adaptation of PINED-RQ to the context of high rate of
incoming data. This extension addresses the bottleneck problem of the existing schemes
in case of high speed of incoming data while still ensuring high security and fast range
query processing. To this purpose, we extend PINED-RQ, one of the state-of-the-art solu-
tions, achieving both efficiency and high security by using secure indexes. In other words,
we introduce and integrate the notion of index template to PINED-RQ, that allows the
collector to process incoming data on the fly while preserving secure indexes for published
data. To maintain high security, we introduce a noise management strategy as well as a
complementary data structure (matching table) to the integration process. In addition, we
develop a parallel PINED-RQ++ with the aim of improving the ingestion throughput of the
system. The experimental results exhibit very good performance, e.g., the publishing time
of the NASA dataset (∼0.5M records) [78] is reduced up to ∼35x while the maximum
data rate at the collector experiences a reduction of up to ∼2.7x. Finally, we propose a
new architecture that enables to achieve the same level of security with PINED-RQ.

2) FRESQUE: An intensive ingestion framework dedicated to secure range query
processing on clouds. We develop a framework for supporting highly scalable ingestion
throughput that is required by real-life applications. To achieve that goal, we re-design the
architecture of PINED-RQ++ and make it fully distributed by using a set of shared-nothing
machines. We then present an array data representation and an asynchronous publishing
strategy to the new architecture. By coordinating all of them together, this framework
is able to support an intensive ingestion throughput, e.g., over 160K records/second.
Experimental results show that compared to (non-)parallel PINED-RQ++, the ingestion
throughput is improved by ∼43× and ∼5.6× in NASA [78] dataset, respectively. Addi-
tionally, we propose a new noise management method that not only aligns FRESQUE with
a stronger type of adversaries (e.g., online attackers) but also improves its practicality.

3) PARADOT: A novel scheme for scalable and private range query processing
on outsourced data. We propose a scalable approach for supporting secure range query
processing on encrypted data, PARADOT, that meets practical requirements, namely small
storage overhead and unlimited lightweight updates, while ensuring efficiency and strong
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privacy protection. Our scheme relies on equal-size buckets and secure indexes. The for-
mer enables to protect the privacy of outsourced data while the latter allows to provide
fast range query processing. In addition, we propose to decouple secure indexes from
their buckets by using equal-size bitmaps. These bitmaps privately maintain links be-
tween secure indexes and buckets of outsourced data. This decoupling approach allows
our scheme to efficiently support unlimited lightweight updates without revealing anything
about underlying plaintexts. Moreover, the proposal exhibits a practical space overhead
of encrypted bitmaps. Experimental results show that PARADOT significantly outperforms
the state-of-the-art solutions in various metrics when both uniform and skewed distribu-
tions are used. For instance, as compared to PINED-RQ, our solution is ∼ 176× faster
in terms of query response latency and uses at most ∼ 119.55× less space requirement.
Furthermore, with dataset sizes of 0.5M and 5M records, the index size of PARADOT is
about 42MB and 406MB while PBtree [66] requires 1.598GB and 18.494GB, respectively.

1.3 Outline

The remainder of this dissertation is organized as follows. Chapter 2 gives basic con-
cepts of cloud computing and data privacy. Chapter 3 presents background knowledge
for serving the understanding of our contributions. Additionally, the related works on
secure range queries are also reviewed in this chapter. Chapter 4 describes an extension of
PINED-RQ. Chapter 5 presents an intensive ingestion framework for secure range query
processing. We then introduce a novel scheme for scalable and private range query pro-
cessing over encrypted data in Chapter 6. Lastly, we give conclusion and our future works
in Chapter 7.
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Chapter 2

Cloud computing and Privacy

2.1 Introduction

This chapter aims at giving key concepts about cloud computing as well as data
privacy. We start from cloud computing with regard to its core elements and potential
security issues in Section 2.2. We then briefly discuss personal data and privacy in Section
2.3. In addition, we present an overview about the encryption technique that is widely
used to protect privacy in Section 2.4. Section 2.5 concludes this chapter.

2.2 Cloud computing

Cloud computing is an IT organization paradigm that aims at offering on-demand re-
sources to users and companies [18]. Traditionally, enterprises of any size have to possess
IT infrastructures and need technical employees to deploy and manage services, which
result in huge costs of ownership. In contrast, cloud computing offers virtual resources,
which encompasses both hardware and software, anytime, anywhere following a pay-as-
you-go model. By using this paradigm, enterprises not only cut down the maintenance
costs, but also easily create scalable global applications. These advantages have led to
a widespread adoption of cloud computing over the last years. Many organizations mi-
grate their applications from on-premise to cloud infrastructures. In 2020, IDG reported
that 81% of organisations have at least one application or portion of their computing
infrastructure in the cloud [56].

While companies can benefit a lot from cloud computing, there are still several security
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issues when using systems that are not provided in-house. To understand these security
issues, first it is important to understand the basic concepts and technologies of cloud
computing.

2.2.1 Concepts in cloud computing

Cloud computing offers software, platforms, and infrastructure as services based on
pay-as-you go models. Until now, there have been three main service models that are
provided by cloud computing: Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS). SaaS offers the highest level of abstraction and
allows users to access to ready-to-use applications which are already deployed in the cloud.
Cloud-based applications such as Google G Suite [72], Microsoft Office 365 [24], Dropbox
[33], and Overleaf [83] are instances of SaaS. In PaaS, users are offered with more control
over their IT resources. It provides a framework for developers to easily create cloud
applications. But users do not have control on the underlying infrastructure. Examples of
PaaS include AWS Elastic Beanstalk [6], Google App Engine [70], and Microsoft Azure
[23]. Finally, IaaS provides access to computational resources such as Virtual Machines
(VMs) and storage space. It is the pillar of cloud computing and allows users to access
the IT infrastructure they require in a flexible way. Examples of IaaS include Amazon
EC2 [5], Google Compute Engine [71], and Microsoft Azure [23].

Regarding the access scope, clouds can be classified into three categories: public cloud,
private cloud, and hybrid cloud. Private clouds refer to being the property and man-
aged by an organization. They are only accessed within the organization or by its part-
ners/customers. Meanwhile, public clouds are often owned by a single organization, but
they are used in public. Finally, hybrid clouds are a combination of private and public
cloud. Public clouds are the most popular and often owned by a single large company
such as Amazon, Google, or Microsoft. Their infrastructure can be scattered around the
world. For example, in 2020, Amazon operates in 77 availability zones located in 24 re-
gions in 5 different continents [7]. In this dissertation, we primarily focus on public clouds
for designing our solutions.

2.2.2 Virtualization

The main feature that makes cloud computing appealing to businesses is scalability.
This property is mainly created by a virtualization mechanism. The virtualization is a
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process that converses physical IT resources into a virtual IT resources. The IT resources
encompass servers, storage, and network. A Virtual Machine Monitor (VMM) or hypervi-
sor is a software or a firmware component that can virtualize system resources. Hypervisor
is considered a core component in virtual computer systems. It resides between the Vir-
tual Machines (VMs) and the real machine hardware and is used to control the virtualized
resources [103]. With the hypervisor, multiple isolated virtual machines run on the same
physical host. Hypervisors can be divided into two types [91] as depicted in Figure 2.1.

Figure 2.1 – Types of hypervisor in cloud computing [38]

— Type 1: Here the hypervisor runs directly on the physical host hardware, interacting
directly with its CPU, memory, and physical storage. This type of hypervisor is
efficient since it does not depend on any intermediary layers. Another benefit with
this approach is that security levels can be increased by isolating the guest VMs.
This means that when a virtual machine is compromised, it can only impact itself
and does not interfere with the hypervisor or other guest VMs.

— Type 2: The second type of hypervisor is installed and run on a pre-existing oper-
ating system (host operating system) that provides virtualization services such as
I/O device support and memory management. All interactions of virtual machines,
namely I/O requests, network operations, and interrupts, are managed by the hy-
pervisor. One of the downsides of this approach is that it may introduce potential
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security risks when the host OS is compromised by attackers since they could then
manipulate any guest OS running in this hypervisor.

2.2.3 Security threats in cloud computing

With the promise of high scalability and availability, it has become increasingly preva-
lent to host services as well as data in public clouds. By moving data services to the cloud,
data owners can cut down costs in various aspects of data management. However, these
benefits often come with a risk of exposing data to more security threats as compared
to traditional computer systems. This section thus discusses some major data security
threats in cloud computing, including data breaches, malicious insiders, and data loss.

Data breaches. Data breach is defined as the leakage of confidential information of
customers or organizations to unauthorized user. A data breach may result from various
sources, such as flaws in infrastructure, human errors, and poor security practices [4]. For
example, in 2015, BitDefender leaked an undisclosed number of customer usernames and
passwords due to a security vulnerability in its public cloud application hosted on Amazon
WebServices (AWS) [15]. Moreover, data breaches could also take place as several virtual
machines share the same physical server. That is, a malicious virtual machine can infer
sensitive information of other virtual machines through shared memory or other shared
resources [2, 51, 118]. A cross-VM side channel attack was introduced by Zhang et al.
[118], that extracts cryptographic keys of other VMs on the same system and can access
their data.

Malicious insiders. Generally, a malicious insider threat to an organization is the one
who has access rights to a system, namely a current or former employee, contractor, or
other business partners, and wrongly uses their privileges [102, 9]. For example, in 2010,
a Google employee broke into the Gmail and Google Voice accounts of several children
[48]. A malicious insider threat can also come from negligence or simple human errors. In
2019, thousands of customer records of CapitalOne, being stored on AWS, were disclosed
by a firewall misconfiguration [17].

Data loss. Data loss is one of the major issues related to cloud security. Similar to
data breach, data loss is a sensitive matter for any organization and can devastatingly
affect its business. Data loss can be caused by malicious attackers, data deletion, data
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corruption, loss of data encryption key, or natural disasters [4].

2.3 Personal data and privacy

With the convergence of mobile communications, Internet-connected devices, and on-
line social networks, we are witnessing an unprecedented increase in the creation, collec-
tion, and consumption of huge amount of personal data. This personal data is precious
since it may result in a great potential for applications and business, e.g., seasonal dis-
ease tracking, smart grids management, healthcare surveillance, participatory sensing,
etc. Mining and analyzing such personal data allows us to well understand the human’s
behavior and significantly benefit from this knowledge. For example, users often pay un-
limited access to their data for using free services that are provided by big companies
like Google. This company exploited the collected data for targeted ads and gained $31.2
billion in just the first three months of 2018 [89].

However, the collected data often contains sensitive information, e.g., sociodemo-
graphic data, medical data, tweets, photos, videos, and location information, etc. Compa-
nies seek to protect data from compromise by external attackers and malicious insiders.
This is because data breaches often not only require huge efforts for correction, but also
may destroy the reputation of companies. One of the big challenges for companies is how
to avoid privacy violation while still making use of the data. In other words, how they
still support computation over the data stored on untrusted clouds without violating the
data privacy.

2.4 Data confidentiality in Cloud

Encryption is considered as a standard technique to ensure confidentiality of sensitive
private data stored on untrusted environment like clouds [85, 88, 105]. However, simple
encryption approaches cannot support complex requirements such as queries, thus a vari-
ety of techniques have been proposed for query processing on encrypted data over the last
years. For example, fully homomorphic encryption [43, 42] is a kind of encryption system
that allows performing any operation on ciphertexts without decrypting them. However,
it confronts very complicated calculation, and the cost of computing and storage is ex-
tremely high. This means that the fully homomorphic encryption is still impractical for
modern systems. During the meantime, various encryption schemes for specific tasks have
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been studied, namely order preserving encryption [1], encrypted keyword search [31, 19],
equality queries [116], and range queries [50, 53, 94]. These methods mainly focus on the
dimensions of security and efficiency. Particularly, most of them attempt to reach a trade-
off between performance and privacy. Although some can provide fast query computation
on encrypted data, they are still far from the performance needs of present systems. More-
over, the scalability dimension has not been thoroughly considered in prior schemes, thus
it is non-trivial to integrate them into modern systems. In this dissertation, we focus our
attention on range query and encrypted data stored on clouds. More importantly, we take
the scalability dimension into account so that our solutions well suit the needs of real-life
applications.

2.5 Conclusion

This chapter presents an overview of cloud computing. In particular, we describe key
elements of cloud, e.g., cloud services, virtualization mechanism, and its security issues.
Finally, the privacy concept and a common technique for protecting data privacy are also
discussed in this chapter. In the next chapter, we give background techniques for serving
the understanding of our contributions. Additionally, we present related works on secure
range query processing.
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Chapter 3

Background and Related Works

3.1 Introduction

In this chapter, we present background knowledge and related works for understanding
the contributions in this dissertation. We start with basic concepts in database as well as
related privacy tools. Then, several studies on querying encrypted data are reviewed in
Section 3.4. Especially, we give a focus on the scalability of these schemes with respect
to our target context. Research problems are thus identified in this section. We next
briefly present PINED-RQ in Section 3.5, a recent scheme, that is closely related to our
contributions. Section 3.6 concludes this chapter.

3.2 Basic concepts in database

3.2.1 Range queries

Range query is a fundamental database operation that retrieves all records where some
value is between an upper and a lower boundary. For example, a doctor, Alice, wants to
get encrypted records of patients whose ages are between a and b. One example of a range
query (in form of a SQL query) can be: SELECT * FROM database WHERE age ≥ a AND age ≤
b. In this dissertation, we only focus on one dimension non-aggregate range queries since
they are one of the most basic operations.
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3.2.2 Indexing

Indexing is one of the most essential database techniques. Indexing is related to cre-
ating and maintaining any auxiliary data structure that helps queries access data fast.
With the support of indexes, queries can quickly find and retrieve certain records without
the need of scanning the entire table. In this section, we mainly focus on the traditional
indexes that efficiently support range queries such as B-tree and B+-tree.

B-tree. A B-tree is a tree data structure that keeps data sorted and supports searches,
insertions, and deletions in logarithmic time [22]. The B-tree is considered as a gener-
alization of a binary search tree (BST). The main difference is that nodes of a B-tree
keep pointers to many children nodes rather than being limited to only two as in BST, as
illustrated in Figure 3.1. A B-tree of order m is an m-way search tree has the following
properties:

— All leaves are on the same level.

— The nodes in a B-tree of order m can have a maximum of m children.

— Each internal node except the root has at most m children and at least dm/2e
children.

— A non-leaf node with k children has k − 1 keys.

— The root has at least two children unless it is a leaf.

Figure 3.1 – A B-tree of order three

B+-tree. A well-known variant of the B-tree is B+-tree which is extensively used for
disk-resident data. The main difference is that in B-tree the keys and pointers to records
can be stored as internal as well as leaf nodes whereas in B+-tree, the internal nodes store
only the keys (and not the pointers to records) [22]. The leaf nodes in B+-tree store the
pointers to the record corresponding to the key. The leaves are linked to each other in a
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Figure 3.2 – Example of B+-tree

doubly linked list fashion to facilitate their traversal without accessing the parents. For
this reason, B+-tree can provide fast and efficient searches. Figure 3.2 presents a simple
example of B+-tree with the order of 3.

To maintain such data structure in untrustworthy environments without the leak of
privacy of underlying dataset is non-trivial work. Although encryption can be used to
conceal node data, the security is not fully guaranteed. For example, index scan opera-
tions may reveal the order of underlying value of tree nodes, that might be vulnerable to
statistical attacks [79]. In this dissertation, a variety of secure indexes will be discussed.
Especially, we seek to use secure indexes for our contributions due to their fast range
searches.
Bitmap index. The bitmap index was first introduced by Spiegler and Maayan [98].

Figure 3.3 – Basic bitmap index for the column GPA that can only take on five distinct
values from 0 to 4. RowID represents for "row identifiers"

It is used to boost the performance on various query types including range, aggregation,
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and join queries. This technique uses a sequence of bits to indicate the presence or ab-
sence of an item in the indexed data. With the bitmap index, queries are evaluated with
bitwise logical operations, such as AND, OR, NOT, and XOR. Bitmap index is one of the
most efficient indexing methods available for speeding up range queries for read-only or
read-mostly data [115] while traditional tree-based indexing structures are designed for
databases that change frequently over time.

Basic bitmap index. Given an attribute with n distinct values, the basic bitmap index
creates n bitmaps with m bits each, where m indicates the number of records (rows) in
the dataset. As a simple example shown in Figure 3.3, the attribute GPA has 5 distinct
values (0-4), and there are 10 records. Then, 5 bitmaps are generated and each has 10
bits. If the indexed attribute in the ith record is of a specific value, j, the ith bit of the
corresponding bitmap j is set to "1", otherwise the bit is "0". That is, a bit with value 1
indicates that a particular row has the value represented by the bitmap.

Queries can be quickly answered with bitwise logical operations on the bitmaps which
are well adapted to the computer hardware. In the example shown in Figure 3.3, a range
query "GPA > 0 and GPA < 4" can be answered by performing bitwise OR on b2, b3

and b4 (i.e., b2|b3|b4). Such property makes the bitmap index particularly useful for query-
intensive applications, namely data warehousing and on-line analytical processing. In
Chapter 6, we also take advantage of this property of the bitmap index to build a novel
scheme for scalable secure range queries.

3.3 Privacy tools

3.3.1 Differential privacy

Differential privacy is a powerful tool for data privacy proposed by Dwork [34]. This
model considers the very strong adversary that has unlimited computational power. Let
D(A1, ..., An) be the dataset and Ai is an attribute of that dataset. Let variable r is a
record sampled from a universe X . Two datasets D and D′ are neighboring if they differ
in only one record.

A query f is a function that maps dataset D to a real number: f : D → R. Differen-
tial privacy uses a randomization mechanism M to mask the difference on the outputs
between the neighboring datasets. The maximal difference on the outputs of query f is
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defined as the sensitivity ∆f . The sensitivity determines how much perturbation must be
added to the outputs. In other words, the adversary learns nothing about an individual,
regardless of whether her record is present or absent in D. A formal definition of differ-
ential privacy is as follows.

Definition 1 (ε-differential privacy [34, 35]): A randomized function M satisfies
ε-differential privacy, if for any set of outcomes O ∈ Range(M), and any pair of neigh-
boring datasets D and D′,

Pr[M(D) = O] ≤ eε · Pr[M(D′) = O] (3.1)

where ε is defined as the privacy budget, that controls the privacy level the mechanismM.
A smaller ε means stronger privacy level. Apparently, ε depends on specific application,
and in practice it is often set as less than or equal to 1.

Basically, there are two privacy budget compositions that are widely used in the design
of mechanisms [75], the sequential composition and the parallel composition, being defined
as follows.

Definition 2 (Sequential Composition [75]): LetM = {M1, . . . ,Mm} denote a set
of functions being sequentially performed on a dataset D, and eachMi gives εi-differential
privacy. ThenM satisfies (∑m

i=1 εi)-differential privacy.

The sequential composition ensures the privacy guarantee for a sequence of differen-
tially private computations. As a sequence of randomized mechanisms are sequentially
performed on a dataset, the privacy budgets will be summed together.

Definition 3 (Parallel Composition [75]): LetM = {M1, . . . ,Mm} denote a set of
functions, and eachMi gives εi-differential privacy guarantee on a disjoint subset of the
entire dataset. ThenM satisfies (max{εi, . . . , εm})-differential privacy.

The parallel composition considers the case where eachMi is performed on disjointed
subsets of the dataset. The final privacy budget is determined by the largest one.

Definition 4 (Global Sensitivity): For a query f : D → R, the global sensitivity
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of f is defined as follows.

∆f = max
D,D′
‖ f(D)− f(D′) ‖1 (3.2)

where datasets D and D′ differ in at most one record.
Roughly speaking, the global sensitivity of a function is the largest possible difference

that a single record can have on the output of that function, for any dataset. In other
words, it indicates how much the difference should be hidden in mechanisms. For example,
the counting query normally has ∆f = 1 since adding or removing one record from any
dataset will change the count by at most 1.

Laplace Mechanism. The Laplace mechanism is the most common method to obtain
ε-differential privacy. It adds controlled noise to the query result before returning the
noisy result to user. The noise is sampled from the Laplace distribution, which has mean
zero and scaling λ. Its respective probability density function is: pdf(x, λ) = 1

2λe
−|x|/λ.

Definition 5 (Laplace mechanism [36]). Given a function f : D → R over a dataset
D, the mechanismM gives the ε-differential privacy.

M(D) = f(D) + Lap(∆f
ε

) (3.3)

where ∆f is the sensitivity of the function f .

3.3.2 Semantic security

Loosely speaking, a cryptosystem is semantically secure if it is infeasible for a
computationally-bounded adversary, i.e., a probabilistic polynomial algorithm, to
derive significant information about plaintext from its ciphertext and any auxiliary
information, e.g., obtained from external sources. Today, AES (in CBC mode) [113] is
a common instance of efficient private key encryption schemes satisfying semantic security.

Definition 6 (Semantic security [46]): A private key encryption algorithm Eχ,
where χ is the secret key, is semantically secure if for every probabilistic polynomial time
algorithm A there exists a probabilistic polynomial time algorithm A′ such that for every
input data set D, every auxiliary background knowledge ζ ∈ {0, 1}∗, every polynomially
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bounded function g : {0, 1}∗ → {0, 1}∗, every polynomial p(·), every sufficiently large
n ∈ N , it holds that:

Pr[An(Eχ(D), |D|, ζ) = g(D)] < Pr[A′n(|D|, ζ) = g(D)] + 1
p(n) (3.4)

3.3.3 Computational differential privacy model

A variant of differential privacy that requires privacy guarantees to hold against
computationally bounded adversaries [77]. This model considers the cryptographically-
negligible leaks due to the use of efficient real-world encryption schemes such as
AES (in CBC mode) [113] or Paillier scheme [84]. Definition 3 is a simplification of εn-
SIM-CDP, the simulation-based computational differential privacy model proposed in [77].

Definition 7 (εn-SIM-CDP privacy [77]): Randomized function fn provides
εn-SIM-CDP if there exists a function Fn that satisfies εn-differential-privacy and a
polynomial p(·), such that for every input dataset D, every probabilistic polynomial time
adversary A, every auxiliary background knowledge ζ ∈ {0, 1}∗, and every sufficiently
large n ∈ N , it holds that:

Pr[An(fn(D, ζ)) = 1]− Pr[An(Fn(D, ζ)) = 1] ≤ 1
p(n) (3.5)

3.3.4 Unified privacy model

Sahin et al. [94] have introduced a probabilistic relaxation of a variant of differential
privacy that considers computationally bounded adversaries [77] and that considers the
cryptographically-negligible leaks due to the use of efficient real-world encryption schemes.

Definition 8 ((ε, δ)-Probabilistic-SIM-CDP [94]): A randomized function fn

satisfies (ε, δ)-Probabilistic-SIM-CDP, if it provides εn-SIM-CDP to each individual with
probability greater than or equal to δ, where δ ∈ [0, 1].

3.3.5 Partially homomorphic encryption

Partially homomorphic encryption (PHE) schemes have the capacity of computing over
encrypted data without access to the private key. For instance, additively homomorphic
schemes, such as Paillier cryptosystem [84], enable to carry out the addition of ciphertexts,
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such that the decrypted result is equal to the sum of the plaintexts. Given a message
m ∈ Zn, where n is a product of two large prime numbers p and q, we denote E(m)
∈ Zn2 to be the encryption of m with the public key. Then, ∀m1,m2 ∈ Zn, E(m1).E(m2)
= E(m1 +m2).

Any partially homomorphic encryption scheme used in this dissertation must meet two
main properties. First, it needs to provide semantic security guarantees. Second, it should
be additively-homomorphic. In particular, we consider the use of Paillier cryptosystem
[84] to build PARADOT in Chapter 6.

3.4 Range queries over encrypted data

We now review prior works on privacy-preserving range queries over the last years.
More importantly, we identify their drawbacks with respect to the target context. Particu-
larly, none of efficient and secure schemes adapts well to the context of intensive ingestion
and satisfies all target scalability requirements such as small space usage and unlimited
lightweight updates. Table 3.1 presents a summary of related works as well as proposed
solutions with respect to scalability requirements.

Table 3.1 – Summary of prior schemes as well as proposed solutions with respect to various
metrics

Scheme
Formal
security

guarantees

Unlimited
lightweight
updates

Low
latency

Small
storage
overhead

High
ingestion

throughput
FHE [43, 42] X
ORAM [47, 82, 100] X
HVE [14, 112] X
Bucketization [50, 53, 54] X X X
OPE [1, 12, 11, 74, 87] X X X
PBtree [66] X X
IBtree [64] X X
ArxRange [86] X X
Demertzis et al. [32] X X
PINED-RQ [94] X X X
PINED-RQ++ (Chapter 4) X X X X
FRESQUE (Chapter 5) X X X X
PARADOT (Chapter 6) X X X X
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3.4.1 Fully homomorphic encryption

Fully Homomorphic Encryption (FHE) [43, 42] was invented by Gentry [43, 42] in
2009. It enables to compute any function directly on the ciphertexts without disclosing
any information about the underlying plaintexts and results. Unfortunately, FHE is now
still impractical due to its prohibitive overheads of space requirement and computational
time.

3.4.2 Oblivious RAM

Oblivious RAM (ORAM) [47, 82, 100] was first introduced by Goldreich and Ostrovsky
[47] with the aim of protecting software from the adversary who seeks to exploit memory
access pattern. To achieve it, ORAM algorithms continuously shuffle and re-encrypt data
as they are accessed by a client. By doing it, even though attackers can observe the
physical storage locations accessed, they have negligible probability of learning anything
about the true access pattern.

Several studies have been carried out to find solutions that are not only theoretically
interesting, but also practical. Nevertheless, most of them still suffer from high bandwidth
overhead, client storage cost, and many rounds of communications. For instance, Boneh,
Mazières, and Popa [13] propose a scheme that achieves O(1) amortized of rounds com-
munication, but using a client cache of size O(

√
N logN), where N is the total number of

data blocks. This client cache is used to store positions of data blocks at remote server.
Then, a client can directly accesses the desired blocks, hence reducing the number of
client-server interactions. Moreover, the scheme also supports data requests concurrently
with shuffling using an additional space at remote server. However, this work suffers from
O(logN) online cost. Recently, Path ORAM has been introduced by Stefanov et al. [100],
which organizes server storage as a binary tree of height L = dlog2(N)e. Each node in the
tree is a bucket that has Z slots to store logical data blocks. Every slot contains either
a real block or a dummy block. Each block is assigned to a path in the binary tree. A
query will fetch all blocks on the path which contains the query target, push them into
client memory and then put another group of blocks back to the tree. In other words,
every read or write request requires the client to download and upload a random path.
Although this protocol is simple and efficient, it still incurs relatively high communication
overhead, reaching O(log2 N).
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3.4.3 Hidden vector encryption

To encrypt data, hidden vector encryption (HVE) methods [14, 112] use bilinear groups
equipped with bilinear maps and hide attributes in an encrypted vector. Nevertheless, it
is extremely costly to compute exponentiation and pairing in a composite-order group.
These solutions thus incur prohibitive computation overhead. For example, PaRQ [112]
needs almost 500s to answer a range query over a dataset of 10K records. Moreover, they
confront high space requirements due to large encrypted vectors. In particular, to support
range predicate, every data item is associated with two vectors, each of which requires
the space of O(l × n), where l is the number of attributes and n is the domain of the
indexed attribute. HVE approaches cannot cope with the target context which demands
low latency responses and being easy to scale up. The latter requires that the system
only accepts small storage overhead for scalable protocols. More importantly, high rate of
incoming data is not considered by these solutions.

3.4.4 Bucketization

Hacigümüş et al. [50] introduced the bucketization-based approach for range query
processing in an untrusted server in 2002. This work simply partitions a query attribute
into some continuous buckets. This process is similar to histogram construction. Each
bucket is then assigned a random tag (bucket-id), that makes data items in a bucket
indistinguishable from another. A clear index may be built over these bucket ids for
boosting the query processing. When the client sends a range query to the server, the
buckets that intersect the query are determined by using the index tag stored at the client.
All contents of the intersecting buckets are finally returned to the client. Apparently, the
results almost contain false positives, that are eliminated at the post-processing phase
by the client. The straightforward solution proposed in [50] not only incurs large false
positives, but also lacks an in-depth privacy analysis against various attack scenarios [58].
Intuitively, the larger the bucket, the higher the privacy protection.

Damiani et al. [28] presented an indexing approach that strike a balance between query
efficiency and privacy protection. They build a B-tree over plaintexts, then encrypt every
record and the B-tree at the node level. This approach does not disclose the content of
B-tree to an untrusted server. However, one of the downsides of this approach is that the
B-tree scan is now performed by executing a sequence of queries that retrieve tree nodes
at progressively deeper level.
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A more principled method has been considered by Hore, Mehrotra, and Tsudik [53].
They provide solutions for maximizing privacy protection while keep the number of false
positives bounded. Later, a multi-dimensional solution is also presented in [54]. Unfor-
tunately, bucketing approaches lack formal security guarantees. Moreover, the ingestion
throughput and scalability dimensions were not considered in these schemes.

3.4.5 Order-preserving encryption

Oder-preserving encryption schemes (OPE) [1, 12, 11, 74, 87, 86] transform plaintexts
into ciphertexts so that the relative order of their plaintexts is preserved. This property
enables to efficiently execute range predicate evaluation on encrypted data. Due to its
good performance, order-preserving encryption has been widely used in databases for
SQL queries over encrypted data during the last decade such as [41, 59, 106, 88].

One of the first OPE schemes was proposed by Agrawal et al. [1]. It allows the untrusted
server to evaluate range queries on the encrypted representation of numeric data. A formal
security analysis of such an OPE scheme was later given by Boldyreva et al. [12]. On the
other hand, modular order preserving encryption (MOPE) [11] adds a secret offset to the
data before it is encrypted. The aim is to shift the ciphertext (in a ring) and to conceal the
real location of the encrypted data in their distribution. An improved version of MOPE
has been introduced by Mavroforakis et al. [74]. In order to prevent attacks that exploit
the max/min values and improve the security of MOPE, this scheme uses fake queries
over the gap between the maximum and minimum values.

Popa, Li, and Zeldovich [87] introduced a mutual order-preserving encoding scheme
(mOPE) that can provide ideal security guarantee IND-OCPA [12]. This means that
attackers learn nothing except for the order of the plaintexts. To achieve such level of
security, mOPE accepts a number of interactions between clients and an untrusted server
for inserting a new value. In particular, mOPE stores encrypted values on a binary tree
at the server. An insert of a new value requires retrieving one node at each level in this
tree (starting from the root) to find a right position for the new value. Consequently,
the amortized cost of such interaction is O(log n), where n is the total number of values
encrypted.

It is noted that OPE schemes disclose the underlying data distribution, and hence
they are vulnerable to statistical attacks. For instance, recently, Naveed, Kamara, and
Wright [79] presented a variety of inference attacks on encrypted databases built upon
order-preserving encryption schemes. They show that, given just a data dump of an en-
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crypted database and public auxiliary information, i.e. publicly available statistics such
as census data or hospital statistic, the adversary can successfully recover almost all of
the underlying plaintext values from their ciphertexts.

3.4.6 Index-based schemes

Li et al. [66] propose to maintain a secure index, PBtree, on an encrypted dataset
for fast range query processing. To achieve that goal, this work creates a binary tree
as follows. For each data item x, it builds a set of prefixes (or prefix family), F (x), so
that x ∈ [a, b] if and only if F (x) ∩ (F (a) ∪ F (b)) 6= ∅. The root contains prefix family
of all data items. The algorithm runs recursively, starting from the root and working
in a top-down fashion. At each node, it splits the prefix families in two subsets, each
corresponding to one child. To achieve privacy protection, prefix families at each node are
stored in a Bloom Filter [10]. A range query starts from the root of the index. It traverses
a child if it has an intersection with the given range. This is repeated recursively until
reaching the leaves of the index. Despite the fact that this scheme can achieve fast range
query computation, it suffers from high space overhead and false positives. With regards
to the security perspective, this scheme only focuses on non-adaptive adversaries rather
than adaptive ones [25]. This means that it is secure only in applications that allow the
users to submit all queries once, and then they shut down. Otherwise, it is not secure
against adaptive adversaries that ask some queries first, and then based on the responses
returned, they adapt their attacks with more queries later. This limits the applicability
of this solution in real-world applications. Moreover, PBtree does not support updates.

To address the downsides of PBtree [66], several sophisticated improvements have been
introduced in [64]. To achieve a better security, particularly adaptive IND-CKA security
model [25], a novel private index IBtree was developed based on a new data structure,
Indistinguishable Bloom Filter (IBF) [64]. Similar to PBTree [66], IBtree also requires
high space requirements, O(n log n), where n is the number of indexing data items. IBtree
needs at least 10.28GB for a dataset of 5M data items. Furthermore, this approach also
needs significant time to build a secure index, reaching to hundreds of minutes. Hence, this
might lead to bottlenecks as the system has to ingest high rate of incoming data. Although
IBtree supports update operation, it is extremely costly in terms of communication and
latency. For example, with a dataset of 5M records, IBtree takes 8.105 minutes for inserting
a new record and incurs the communication overhead of 2.239 GB.

On the other hand, Sahin et al. [94] propose a "clear" secure index relying on differential
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privacy [34] and semantic security, PINED-RQ, for serving fast range query processing in
clouds. The efficiency is enabled by such clear secure index while the security is achieved by
using a unification of differential privacy and semantic security. However, since PINED-
RQ has to publish data in batches, high rate of incoming data may create potential
bottlenecks in the system. Also, PINED-RQ cannot support numerous updates. We delay
the discussion of these limitations to Section 3.5.

Poddar, Boelter, and Popa [86] have recently proposed ArxRange that is built on the
mOPE protocol [87] and runs on top of MongoDB [20]. It first constructs an index over
a set of keywords, and stores at each index node a garbled circuit [117, 45] such that
the untrusted server is able to secretly compare the query predicate against the keyword
hidden at the node. By delegating comparison computation to the server, ArxRange can
eliminate interaction overheads in mOPE. However, ArxRange suffers from prohibitive
storage cost (e.g., three range indices results in an overhead of 16×). The storage overhead
in ArxRange is high since it has to maintain two garbled circuits at every tree node.
Furthermore, this work only achieves a modest ingestion throughput, e.g., roughly 450
insertions/second with caching.

3.4.7 Secure hardware

Another direction is to use secure hardware for processing encrypted data, such as
Cipherbase [8]. However, with a range index, Cipherbase discloses the full ordering infor-
mation of index keys. Thus, similar to order preserving encryption (OPE), range indexes
in Cipherbase provide “similar confidentiality guarantees” [8], and being vulnerable to
attacks based on statistical analysis on encrypted data.

3.5 PINED-RQ

PINED-RQ [94] is one of the solutions that can achieve at the same time efficient
range query processing and high security guarantee. The efficiency is enabled by using
clear secure index, that relies on differential privacy, while strong privacy protection results
from applying semantic security encryption to outsourced data. Moreover, the index in
PINED-RQ is "clear" and has a form of B+Tree, it can thus leverage several optimizing
techniques that have been developed for B+Tree. Since our study is closely related to
PINED-RQ [94], we briefly introduce it in this section. Given a dataset at a trusted
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component such as data owner, PINED-RQ builds an index (hierarchy of histograms)
over this dataset, then it perturbs the index by using Laplace noise to get a differentially
private index. Finally, this secure index is published to the cloud along with the encrypted
dataset for serving range queries.

3.5.1 Index construction

Typically, there are two primary steps to build a private index over an attribute Aq,
denoted I(Aq), in PINED-RQ.

Step 1 - Building an index. given a data set at the collector, a clear index is

(a) Clear index (b) Perturbed index

Figure 3.4 – Sample PINED-RQ index

constructed based on a B+Tree. In PINED-RQ, the set of all nodes is defined as a
histogram covering the domain of an indexed attribute. For example, the participants’
body temperature (Temp) is used to build histograms as illustrated in Figure 3.4a. Each
leaf node has the count that represents the number of records falling within its interval.
It also keeps pointers to these records. Likewise, the root and any internal node have
a range and a count, combining the intervals and the counts of their children, respectively.

Step 2 - Perturbing an index. To make the index private from the adversary,
PINED-RQ takes advantage of differential privacy model. In particular, Laplace mech-
anism [36] is used to perturb the index. All counts in the index are then independently
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perturbed by Laplace noise [36]. Nevertheless, the noise generated from Laplace method
may be positive or negative, thereby after this step, the count of a node may increase
or decrease, respectively. As shown in Figure 3.4b, the count of node 4 changes from 1
to -1 while the count of node 6 changes from 1 to 2. These changes consequently lead
to inconsistencies between the noisy count of a leaf node and the number of pointers it
holds.

To address this issue, PINED-RQ adds dummy records to the dataset as a leaf node
receives positive noise, otherwise, if a leaf node receives negative noise, real records are
removed from the dataset. To ensure these removed records are to be involved in query
processing, Sahin et al. [94] propose to use overflow arrays. Each leaf node is allocated
an overflow array for containing all removed records of that leaf. These overflow arrays
are later filled with dummy records so that they have the same size. Such approach thus
allows concealing removed records from the adversary. As illustrated in Figure 3.4b, the
record (David) belonging to node 4 is removed from data set while one dummy record is
added and linked to node 6. To determine the size for overflow arrays, PINED-RQ uses
the inverse of the cumulative distribution function (CDF) of the Laplace distribution with
an adjustable probability, δ.

Lastly, PINED-RQ uses a semantic encryption scheme (e.g., AES in CBC mode) to
encrypt the dataset and overflow arrays before publishing them to the cloud along with
the perturbed index.

3.5.2 Query processing

In PINED-RQ, a client first sends a range query to the collector. It is partially answered
according to local un-indexed data. The query is then redirected to the cloud to be
evaluated on indexed data.

At the cloud, a range query will start from the root of an index. It then traverses the
child of any node that has a non-negative count and intersects with the query range. This
is repeated recursively until the leaves of the index are reached. At the leaves that overlap
the query range, their records and overflow arrays are returned.

3.5.3 Privacy protection

PINED-RQ is designed to satisfy (ε, δ)n-Probabilistic-SIM-CDP privacy model [94],
as presented in Section 3.3, that is a variant of differential privacy [35]. Intuitively, this
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model results from the introduction of the encryption and the overflow arrays to the index
building process.

3.5.4 Limitations

Although PINED-RQ can provide very good performance in terms of index scanning
and high level of security, it still has some downsides.

First, since an update directly to such published indexes would violate differential
privacy [34, 35], PINED-RQ cannot support live updates. Additionally, PINED-RQ is
also reluctant to publish very small data sets since the aggregation noise would destroy
indexes’ utility. These properties make PINED-RQ bottlenecked at the collector as data
comes at a high speed.

Second, PINED-RQ fail to support numerous updates, especially those of the same
individual. That is, this scheme needs to spend a piece of the fixed privacy budget for
an update to the same individual. As a result, for applications where an individual has
a huge number of updates, e.g., in a patient management system, a patient has multiple
records, the system will run out of privacy budget and shut down soon.

3.6 Conclusion

This chapter mainly focuses on background knowledge and related works. More specif-
ically, we present basic concepts in database as well as privacy tools. We then consider
the related works on secure range query processing over encrypted and their drawbacks.
None of existing schemes can handle the situation of high speed of incoming data and
provides a scalable solution for modern systems. These drawbacks mainly lead to our
contributions in this dissertation. Lastly, we briefly describe PINED-RQ, especially the
main steps necessary for building a secure index over a dataset, and its main drawbacks.
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Chapter 4

PINED-RQ++

Abstract: In this chapter we address the problem of privacy-preserving range query
processing with regards to the context of the high speed of incoming data. Several solutions
have been proposed for secure range query processing, however, they become inefficient
or impractical for the target context. In particular, prior schemes often suffer from per-
formance issues such as overload or bottleneck. To address these problems, we develop an
extension of PINED-RQ, named PINED-RQ++. More precisely, we seek to adapt PINED-
RQ to the target context by using a notion of index template. Such index template allows
the collector to process incoming data on the fly while still maintaining private indexes
for published data. By using the index template, we can reverse the process of construct-
ing the PINED-RQ index while incoming data can be processed and forwarded to the
cloud as soon as possible. Considering the security dimension, we introduce a noise man-
agement strategy and a complementary data structure to the reversing process. These
modifications allow PINED-RQ++ to avoid privacy leaks of the reversing process. As a re-
sult, PINED-RQ++ can eliminate potential bottlenecks in the system when data arrives at a
high speed while high security is still guaranteed. Furthermore, we also develop a parallel
PINED-RQ++, with the aim of enhancing the low ingestion throughput caused by the index
template building process. We implemented both the non-parallel and the parallel version
of PINED-RQ++, evaluated, and compared them to PINED-RQ. The experimental results
show that our extension outperforms PINED-RQ in various metrics. We also demonstrate
experimentally that the parallel extension significantly improves the ingestion throughput
of the system in general.
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4.1 Introduction

A wide range of applications, such as online survey management and disease tracking,
require the capability of performing quick analytics on high-speed, continuously generated
data coming from various data sources such as web-based systems and mobile devices.
Needless to say, such systems need to efficiently support both fast data consumption and
low-latency queries.

For example, to reduce the impact of seasonal epidemics (e.g., H1N1 influenza), early
detection of spatial spread of the epidemics could help alleviate severe consequences. It is
thus important to track and predict the spread of such diseases in the population. To do
that, an individual can interact with a website or mobile application to report personal
data (e.g., age, phone, sex, symptoms, travel plan, social network account, etc.), to be
utilized for real-time predicting analyses. These systems usually run in very short periods,
a few days or weeks after an epidemic emerges. Similarly, a university wants to get their
student opinions university services at the end of every semester. To have quick responses
for changes in the next semester, such survey can be performed by a web-based system.

Since most of these systems need significant computing capacity in very short peri-
ods, purchasing and maintaining local servers would be wasteful. Cloud computing with
on-demand capacity and a pay-as-you-go model deserves to be used for managing and ex-
ploiting collected data. However, the problem is that cloud computing suffers from security
issues, e.g., sensitive information can be exploited by cloud’s administrators. Encrypting
outsourced data is a common solution to handle privacy issues in clouds. In this chapter,
we focus on secure range queries over encrypted data with respect to the high rate of
incoming data. In particular, such situation creates bottlenecks in prior schemes.

To solve the drawback of existing works, we aim at adapting PINED-RQ [94] to the
target context. As presented in Section 3.5, PINED-RQ maintains a "clear" secure index
for published data such that range queries can be privately evaluated on this index.
Our choice is motivated by the fact that PINED-RQ provides a high level of security
while it offers significantly faster range query processing and requires less storage space
as compared to its counterparts [32, 66, 64, 86]. Nonetheless, like many prior schemes,
PINED-RQ has to publish data in batches and partially processes data at a trusted
component (e.g., collector). Consequently, bottlenecks may occur as incoming data and
query requests arrive at a high rate. Therefore, to adapt PINED-RQ to the target context,
we aim to shift heavy workload from the collector to the cloud, that is able to provide on-
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demand capacity. In particular, instead of publishing data in batches, when a new record
arrives, the collector immediately sends it to the cloud. The challenge to this approach is
how to build the PINED-RQ index for the new records that are previously transferred to
the untrusted cloud.

In this chapter, we propose PINED-RQ++, an extension of PINED-RQ, to mainly prevent
potential bottlenecks at the collector while ensuring a secure index for new data. The
key idea behind our prototype is to reverse the process of constructing the PINED-RQ
index. This allows the sending of new data to the cloud as soon as possible without
sacrificing privacy protection. The experimental results give very good performance, e.g.,
the publishing time of the NASA dataset (∼0.5M records) [78] is reduced up to ∼35x while
maximum data rate at the collector experiences a reduction of up to ∼2.7x. Additionally,
our solution eliminates almost query computation at the collector, making the system
more scalable. The contributions of this chapter are as follows.

1. We introduce a notion of index template within PINED-RQ to support high rate of
incoming data.

2. We propose a mechanism, PINED-RQ++, for updating the index template while still
retaining privacy protection for published data comparable to PINED-RQ.

3. We also develop a parallel version of PINED-RQ++ to improve the ingestion through-
put of the system.

4. We provide a thorough privacy analysis to show the security protection of
PINED-RQ++.

5. We implement the non-parallel and the parallel version of PINED-RQ++ to show the
superiority of them compared with PINED-RQ.

4.2 Problem definition

The dataset stored at the collector is a relationD(A1, . . . , Ad), where Ai is an attribute.
Queries are non-aggregate one-dimensional range queries. A query Q is evaluated over the
attribute Aq of D.

In this chapter, we mainly focus on the metrics related to the congestion of the system,
namely publishing time and network traffic. The former measures how long a publication
is sent to clouds while the latter records the total size of data transferred per second at
the collector.
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4.2.1 Overview architecture of PINED-RQ++

Figure 4.1 – Architecture of PINED-RQ++

We focus on the architecture as depicted in Figure 4.1. Data generators produce raw
data and send them to a collector. The data is then pre-processed prior to being sent to a
cloud. A consumer poses range queries to the cloud. In this architecture, we assume that
the cloud is honest-but-curious while the other components are trusted.

At the beginning, an index template is built at the collector. Whenever a new record
arrives, the index template is updated with that record. Next, the record is encrypted and
forwarded to the cloud. When the index template is published at a later time, the cloud
associates it with unindexed data to produce a secure index as described in Section 3.5.
The collector then initiates a new index template for future incoming data.

A query is only processed at the cloud which holds both indexed and unindexed data
at time. As a result, as a consumer issues a query, it is first evaluated on indexed data (as
in PINED-RQ’s query processing [94]), the result of this evaluation and all the un-indexed
data are returned to the consumer. Finally, the consumer decrypts and filters the returned
data for the final results.

4.2.2 Threat model

Our architecture targets attackers to the cloud. Hence, our threat model assumes
that attackers do not control or observe data and execution on the trusted components.
However, they may access the cloud that consists of encrypted data sets and secure indices.

We consider the honest-but-curious model [46]. In this model, an attacker examines
data stored on the cloud to glean sensitive information, but follows the protocol as specified
and does not change the data sets or query results. In this chapter, we consider two types
of attackers, online and offline attackers. The offline attacker tries to steal a copy of
encrypted data sets and secure indices. Meanwhile, the online attacker can record and
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observe any information available at the cloud or being exchanged between the cloud
and the trusted components to deduce anything in a computationally-feasible way. The
observed information includes all changes to the data sets, all in-memory state, and all
queries at any time points for any amount of time. Furthermore, we assume that attackers
does not have good knowledge about the data distribution of the incoming time of real
data.

4.3 PINED-RQ++

This section describes PINED-RQ++, an extension of PINED-RQ, that can cope with
the high rate context. The main goal is to process incoming data one by one at the
collector instead of publishing data in large batches. More precisely, when a record arrives,
the collector pre-processes the record and sends it to the cloud immediately. Such an
approach relieves the heavy burden of computation on the collector at publishing time,
thereby avoiding potential bottlenecks at this component. However, the difficulty for this
approach is how to build the PINED-RQ index over attribute Aq, denoted I(Aq), on new
records that are immediately transferred to the untrusted cloud.

To this end, we aim at reversing the process of constructing the PINED-RQ index
at the collector while at the same time keeping privacy protection as strong as possible.
To achieve this goal, we introduce a notion of index template based on the PINED-RQ
index structure. The index template stores on the collector the information necessary for
building I(Aq) at publishing time. Such information includes the Laplace noise and real
bin counts being updated according to incoming data. In other words, the collector starts
by initiating an index template and independently adds the Laplace noise to its bins.
Then, whenever a record arrives at the collector, the index template is updated with that
record. The record is then encrypted and forwarded to the cloud. When the updated index
template is published, the cloud associates it with un-indexed data to achieve a complete
I(Aq).

In addition to the index template, we introduce a new noise management mechanism
as well as a complimentary data structure, named matching table. The former secretly
manages the addition of dummy records and the deletion of removed records. Meanwhile,
the latter privately maintains pointers between the index template and un-indexed records
until the index template is published to the cloud. Note that we only focus on the append-
only context (i.e. redesigning the CREATE and INSERT functions of PINED-RQ) in this
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extension.

4.3.1 Index template

Figure 4.2 – Sample index template

An index template, denoted IT (Aq), over the queriable attribute Aq of a dataset D,
is computed from the domain of D. Basically, the process of building an index template
is the same as that of PINED-RQ index (see Section 3.5). The main difference is that the
count variables of an index template only contain the Laplace noise and its leaves have no
pointers to records (see Figure 4.2). Therefore, to achieve an index I(Aq) from an index
template IT (Aq), the count variables and pointers of the IT (Aq) need to be updated
and maintained during a time interval, which is defined as the period from when an index
template is initiated to when it is published.

Recall that due to the injected noise, the process of building a secure index in PINED-
RQ may require adding some dummy records to D and removing real ones from D.
PINED-RQ++ also needs to guarantee such tasks to be performed during a time interval.
Nonetheless, this poses several challenges to the proposed approach, for instance, how to
publish dummy records to the cloud or how to ensure that pointers between leaves and the
new data do not disclose sensitive information to attackers. In Sections 4.3.2 and 4.3.3,
we discuss these challenges as well as our solutions.

4.3.2 Matching table

When an index template is published, the cloud should associate it with un-indexed
data to achieve a complete PINED-RQ index for those data. To prepare for such associa-
tion, the collector needs to keep the pointers between un-indexed data and leaves during a
time interval. A straightforward solution is to mark the ciphertext of a new record by the
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Figure 4.3 – Index template and its matching table

identifier (id) of the leaf node to which the record belongs, and send the marked ciphertext
to the cloud. Later, the cloud can rebuild pointers from marked ciphertexts when the in-
dex template is published. However, such marked ciphertexts reveal real pointers between
un-indexed data and leaves to the cloud during a time interval. PINED-RQ++ consequently
discloses more extra information, e.g., the actual distribution of the incoming time of real
data, when compared to PINED-RQ.

To prevent the leakage, we propose to use unique random numbers which are viewed as
temporary ids of records and amatching table, as depicted in Figure 4.3. A matching table,
denoted MT , can be computed directly from IT (Aq). In the matching table, the first
column stores leaves’ id while each row of the second column holds the temporary id of
records that belong to the corresponding leaf node. For instance, record 1 belongs to node
3 while record 2 belongs to node 5. With this approach, at publishing time, a matching
table will be created at the collector. When a record is available, the collector encrypts it,
generates a unique random number, and sends the pair of <random number, ciphertext>
to the cloud. A copy of the generated number is also stored in the corresponding row in
the matching table at the collector. The randomness of such number guarantees that no
useful information about the published data will be leaked to attackers.

At the end of each time interval, the matching table will be sent to the cloud along
with the corresponding index template. Based on these data structures, the cloud can
easily reconstruct the pointers between the un-indexed data and the index template,
denoted as matching process. Specifically, the matching process starts by looping over the
published matching table. At each row, it retrieves a leaf id and a set of record ids in
the second column, finds encrypted records having the corresponding record ids in the
un-indexed dataset. Then, the pointers between the corresponding leaf and the found
encrypted records are formed. After matching, a complete index for the new dataset is
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achieved, and the matching table and records’ id are destroyed.

4.3.3 Noise management

As presented in Section 3.5, the Laplace noise primarily helps to protect the privacy
of PINED-RQ index. However, the injected noise may result in the insertion and deletion
of some dummy and real records, respectively. In other words, PINED-RQ will randomly
remove c records from dataset as a leaf node receives negative noise -c. Otherwise, c
dummy records will randomly be added to dataset as it receives a positive noise c. One
challenge to PINED-RQ++ is that the collector initiates and perturbs the index template
without any existing data. This means no record is available to be deleted in case of
negative noise. Also, when leaves receive positive noise, the collector can generate dummy
records. However, the question is how to publish these dummy records? To this end, we
present two approaches as follows.

a) Positive noise. Indeed, one may suppose that the collector can immediately
generate and send dummy records to the cloud at any random time points within a time
interval. Nevertheless, the arrival of all dummy records at the same time could be unsafe
since the adversary can exploit the distribution of such arrivals. On the other hand, we
can randomly release dummy records over a time interval. It is, however, true that the
privacy would be leaked as a dummy record arrives at a chosen time at which real records
are unlikely. To avoid such case, we propose to send dummy data according to the actual
distribution of the sending time of the real records. This means that the probability of
sending a dummy record at each time point is computed from the distribution of real
records. With this approach, when a pair of <random number, ciphertext> comes to the
cloud, the adversary cannot distinguish which pair is dummy or real data.

b) Negative noise. As a leaf node initially receives negative noise c, the collec-
tor removes the first c records (when they arrive) of that leaf node. To keep the removals
of real records secret from the adversary, we need to hold removed records at the collector.
At publishing time, the collector generates overflow arrays and randomly fills all overflow
arrays with dummy and removed records. Finally, the collector sends the overflow arrays
to the cloud along with the index template and matching table. Notably, the deletion of
records only occurs at the collector and the adversary does not know which nodes receive
negative noise, hence the privacy of such movements is preserved.
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4.3.4 Index template update management

(a) New record belongs to positive leaf

(b) New record belongs to negative leaf

Figure 4.4 – Updating index template and matching table

We now describe how to ensure the counts of PINED-RQ++ index template are the same
as those of PINED-RQ index when the index template is published. In PINED-RQ, the
count of a leaf node represents the number of records falling within its interval. The count
of internal nodes and the root is a summation of their children’s counts. All counts are
then perturbed by the Laplace noise. In contrast, an index template only contains noise
at first and it will increase its counts as a record arrives at the collector.

Basically, when a record arrives at the collector, the leaf node to which the record
belongs is determined. Then, the count of that leaf node and all its ancestors will be
increased by 1. As shown in Figure 4.4a, as the new record <Madison, 2> has GPA lying
within the interval of node 5, the count of node 5 and all its ancestors (node 2 and node
0) are increased to 2, 2 and 1, respectively. On the other hand, if a new record belongs to
a negative leaf, it is kept at the collector as removed. For instance, e.g., since the record
<Chloe, 3.5> belongs to node 6 (see Figure 4.4b), it is kept at the collector and the counts
in the corresponding path are also increased by one.
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4.3.5 Query processing strategy

Figure 4.5 – Query processing strategy in PINED-RQ++

In PINED-RQ++, both unindexed and indexed data are stored at the cloud, as shown
in Figure 4.5. The collector only keeps removed records of the current publication. Hence,
when the consumer issues a query, it is sent to both collector and cloud. At the cloud, the
query is first evaluated on indexed data (as in Section 3.5), the result of this evaluation
and all the un-indexed data are returned to the consumer. In parallel, at the collector,
the removed records overlapping the query range are also returned to the consumer. The
consumer finally decrypts and filters the returned data for the final results. It is worth
noting that a query in PINED-RQ++ is only executed on removed records at the collector
instead of the whole unpublished dataset as in PINED-RQ. Hence, PINED-RQ++ enables to
relieve the burden of query processing on the collector, especially when it needs to serve
a high frequency of consuming requests.

4.3.6 PINED-RQ++’s correctness

We analyze the correctness of PINED-RQ++ by comparing with its original version.
First, we note that the indexes of the two prototypes have the same structure as stated
in Section 4.3.1. Second, the main difference between the two prototypes is their noisy
counts. In particular, in PINED-RQ, the noisy count of a bin bi is pi = ci + v, where ci
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is the number of real records of D lying into bi and v is the Laplace noise. PINED-RQ
then applies the constrained inference technique [52] on pi to get pi before an index is
published to the cloud. Meanwhile, PINED-RQ++ only guarantees the count of bin bi is pi at
publishing time. To achieve that, it initially adds v to a new index template (see Section
4.3.1) and ci is incrementally updated during a time interval (see Section 4.3.4). Thus, at
publishing time, PINED-RQ++ ensures that the noisy count of a bin bi is pi = ci+v instead
of pi. Third, PINED-RQ builds pointers between the leaves of an index and the records of
D at the collector while those are constructed at the cloud based on the matching table
in PINED-RQ++. Fourth, PINED-RQ moves the records that belong to the leaf receiving
negative noise to the corresponding overflow array, and adds dummy records to D as a
leaf receives positive noise. These operations are performed during a time interval using
the noise management mechanism in PINED-RQ++, as presented in Section 4.3.3.

Apparently, the index achieved at the cloud of the two prototypes is almost the same.
The minor difference comes from the fact that PINED-RQ++ does not apply the constrained
inference technique on pi to get pi, that may slightly improve the utility of the index.
However, we will see in Section 4.7.5 that the quality of the index of the two prototypes is
very competitive. We also emphasize that not applying the constrained inference technique
on bin counts has no impact on the privacy protection of the PINED-RQ++ index.

4.4 Parallel PINED-RQ++

Recall that PINED-RQ++ attempts to avoid bottlenecks by processing incoming data
one by one. Nonetheless, sequentially processing arrivals greatly diminishes the ingestion
throughput at the collector. To support tens of thousands of records per second, we come
with a new architecture for PINED-RQ++, named parallel PINED-RQ++. The main goal is
to shift the process of updating index template to a set of shared-nothing machines 1 as
much as possible. This approach will enable the new architecture to ingest incoming data
faster and be more scalable than the non-parallel PINED-RQ++. To this purpose, we first
decompose the updating process at the collector into components. We then orchestrate
them to achieve the parallel PINED-RQ++.

1. We use the shared-nothing architecture is because it is highly scalable. This means the system can
scale up to multiple nodes easily.
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4.4.1 Workflow at collector

After the collector initiate a new index template, new data sequentially passes the
following components:

1. Parser transforms raw data into a pre-defined format.

2. Checker buffers the parsed record at the collector as the indexed attribute of that
record lies within the range of a negative leaf. The index template is also updated
with that record. Otherwise, the record is forwarded to the next component.

3. Enricher adds a unique random id to the record.

4. Updater updates the index template and matching table based on the record.

5. Encrypter uses an encryption scheme, e.g., AES in CBC mode, to encrypt the
record, and obtains an e-record (encrypted record). Finally, the encrypter sends the
pair of <id, e-record> to the cloud.

Note that the parser and the checker rely on the index template that is a shared data
structure. Indeed, the checker repeatedly reads count variables for the checking task while
the updater modifies the corresponding count variables due to the arrival of new records.
Additionally, to perform the checking task, the checker relies on the parser for obtain-
ing the value of the indexed attribute. Hence, both parser and checker are designed to
sequentially run in the parallel PINED-RQ++.

4.4.2 Architecture of parallel PINED-RQ++

We assume that the collector of the parallel PINED-RQ++ runs on a small cluster of
commodity machines. At the collector, one (and only one) node runs Dispatcher (D)
and all worker nodes in the cluster run a Computing Node (CN). The dispatcher plays
the role of a coordinator. Only the dispatcher can start a new publication by initiating
a new Index Template (IT) and sending the clone (CL) of the index template to all
available computing nodes. A clone only contains zero counts. During a time interval,
the dispatcher parses, checks, enriches new data, and sends them to computing nodes
according to the round robbin approach. Dummy records are also generated at the
dispatcher and released based on pre-defined strategy as discussed in Section 4.3.3.
Computing nodes take the outputs from the dispatcher and generate a local Matching
Table (MT) according to the received clone. When a new record arrives, a computing
node updates the clone and the matching table, encrypts the record, and sends the
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Figure 4.6 – Architecture of parallel PINED-RQ++

encrypted version of that record to the cloud. Notice that the dispatcher and computing
nodes can coexist on the same node. In order to demonstrate how data is processed at the
collector and transported to the cloud, Figure 4.6 shows the composition of the parallel
PINED-RQ++’s collector running on three nodes (one dispatcher and two computing nodes)
while Figure 4.7 gives a concrete example with three real records and one dummy record.

Dispatcher (D). At the beginning of a time interval, the dispatcher initiates an
IT, unique random numbers, and dummy records. It then sends the clone (CL) of IT
to all available computing nodes. The dispatcher schedules the time points at which
the dummy records will be released, as stated in Section 4.3.3. During a time interval,
new data are passed throughout the parser and the checker. If new records belong to
a negative leaf, they will be kept at the dispatcher. The IT is updated based on that
record. Otherwise, the records are then sent to computing nodes in a round-robin fashion
after receiving unique ids from the enricher. As shown in Figure 4.7a, two records (Alice,
2) and (Diana, 0.5) come first and in turn fall within leaves 5 and 3 which have positive
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(a) During a time interval

(b) At publishing time

Figure 4.7 – Example of processing incoming data in parallel PINED-RQ++. The original
index template is presented in Figure 4.2
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noise. They are enriched by unique ids, namely 9 and 5, respectively, before being sent
to Computing node 1 and 2. In contrast, record (Bob, 3) belongs to leaf 6 which contains
negative noise (-1), and hence it is kept at the dispatcher. On the other hand, assume
one dummy record is released after the arrivals of these real records, it is also assigned
by an id prior to being sent to Computing node 1.

At the end of each time interval, the dispatcher sends a publishing message to all
available computing nodes and waits for the CLs (clones) and MTs (matching tables)
returned from these nodes. Upon receiving these data structures, the dispatcher merges
them with the local IT to achieve a complete IT and MT. The dispatcher generates
Overflow Arrays (OAs) and randomly inserts removed records into OAs before sending
the complete IT, MT, and OAs to the cloud. As demonstrated in Figure 4.4, assume the
overflow arrays’ size is 2 records, the dispatcher then combines its data (e.g., updated IT
and removed records) with data from all computing nodes (e.g., CLs and MTs) before
sending the combination to the cloud. Finally, the dispatcher sends a done message to
all computing nodes and initiates a new publication. The merging process may take
time, especially when datasets and OAs are large. Hence, during the meantime, the
dispatcher still ingests incoming data and sends them to computing nodes. Such data
will be buffered at computing nodes until a new publication is initiated.

Computing Node (CN). At the beginning of a time interval, or when a com-
puting node receives a done message, it receives the CL from the dispatcher, and initiates
a new MT. During a time interval, when a new record arrives, the computing node
updates the local CL and MT. Then it encrypts the record and sends the encrypted
record to the cloud. As depicted in Figure 4.7a, the matching tables and clones at two
computing nodes are updated with incoming records from the dispatcher. Note that the
CLs are used only for keeping counts on real records, thereby dummy records do not
cause any updates to these CLs, but the MTs. For instance, Computing node 1 only
inserts the id of the incoming dummy record (11,3,Dummy) to the first row of its MT
since this dummy record is generated for leaf 3, but does not update the CL. Finally,
they are encrypted and sent to the cloud.

When the computing node receives a publishing message from the dispatcher, it sends
the updated CL and MT back to the dispatcher. While waiting for a new publication, all
incoming records will be buffered at computing nodes.
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Cloud. During a time interval, the cloud stores arriving encrypted records on disk
due to their high space requirements. When the cloud receives IT, MT, and OAs from the
dispatcher, the matching process is triggered, as described in Section 4.3.2. In particular,
the cloud reads all records from disk, performs the matching, shuffles the dataset, and
writes them back to disk. The output of that process is a secure index over the encrypted
dataset, as shown in Figure 4.7b. Although this study considers persisting incoming
records on disks, non-volatile memory (NVM) can be used to temporarily store the
data. Such approach would greatly shorten the time for the matching process since it
avoids heavy I/O accesses to disk drives. Obliviously, such choice mainly relies on specific
applications and resource availability.

4.5 Privacy leak and TEX-PINED-RQ++

4.5.1 Privacy leak of real timestamps

Figure 4.8 – Privacy leak of timestamps
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Figure 4.9 – TEX-PINED-RQ++’s architecture for addressing leakages introduced by times-
tamps of published data

With PINED-RQ++, we find that it incurs extra privacy leaks due to the timestamps
of published data. In other words, when a matching table is sent to the cloud at the end
of each time interval, based on that matching table and un-indexed data, the adversary
can infer the distribution of the incoming time (timestamp) of real data. To demonstrate
how attackers can exploit such information, we use an example as in Figure 4.8. Assume
that the data arrival to the collector is uniform over a time interval [t0, t3]. We thus
uniformly release dummy records over that period. At the end of the time interval (t3),
when the collector shuffles ids of the matching table and releases the shuffled matching
table to the cloud, based on the timestamps of incoming data, attackers can easily derive
sub-matching tables (MT1, MT2, and MT3) as well as their corresponding data part.
This means that MT1, MT2, and MT3 in turn contain ids of data parts belonging to
the time interval [t0, t1), [t1, t2), and [t2, t3]. Unfortunately, these parts may not contain
enough dummy records, and hence attackers can infer sensitive information from their
sub-matching tables.

Note that such leakage only occurs during the matching process, from when the match-
ing table arrives at the cloud to when the matching table is destroyed (after the matching
process is finished). Thus, this disclosure can only be exploited by the online attackers
who can observe any information available at the cloud at any time points. PINED-RQ++
provides still strong privacy protection in case of offline attackers who try to steal a
copy of encrypted data sets and secure indices, but cannot observe data exchanged and
computations at the cloud.
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4.5.2 TEX-PINED-RQ++

To remedy the security issue caused by real timestamps, we present TEX-PINED-RQ++,
a new scheme that highly protects data privacy against Timestamps EXploitation in
PINED-RQ++. This solution consists using a complimentary cloud provider (Cloud 2) for
perturbing real timestamps of un-indexed data, as depicted in Figure 4.9. We assume
that Cloud 2 must not collude with the existing one (Cloud 1). The model of using two
non-colluding semi-honest cloud providers is not new and has already been widely used
in many works such as [37, 76, 112]. To adopt this model, during a time interval, un-
indexed data is sent to Cloud 2 instead of Cloud 1. At the end of each time interval,
the content of the current matching table is shuffled and sent to Cloud 1 along with the
index template. In parallel, Cloud 2 shuffles and sends all un-indexed data to Cloud 1 for
a matching process. With this approach, there is no sensitive information to be revealed
to both clouds, as analyzed in Section 4.6.

4.6 Privacy analysis

We now analyze the privacy protection of the non-parallel and the parallel version
of PINED-RQ++ in comparison with PINED-RQ. It is noted that since PINED-RQ++ is de-
signed to release data during a time interval, they will reveal pairs of <random number,
ciphertext> to the cloud over that period. In addition, since the collector immediately
sends incoming data to the cloud, attackers can glean useful information from the times-
tamps as discussed in Section 4.5.1.

4.6.1 Analysis of timestamps

We consider the disclosure of timestamps of real data to the cloud. Particularly, we
examine the two following models.

Single-cloud model. As discussed in Section 4.5.1, in case of single-cloud model,
attackers can easily infer sensitive information by using the timestamp of un-indexed
data and the corresponding matching table. Such leakage can be exploited by online
attackers, but it is unavailable to offline ones.

Two non-colluding clouds model. With such a model, we consider the disclo-
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sure of the two clouds. First, during a time interval, Cloud 2 will receive pairs of
encrypted data, and obtains the corresponding timestamps. However, Cloud 2 cannot
glean any useful information from these timestamps without the matching table. Second,
Cloud 1 will receive an index template and matching table from the collector at
publishing time. In parallel, Cloud 1 also receives the corresponding dataset from Cloud
2. The matching table (from the collector) and dataset (from Cloud 2) are shuffled before
arriving Cloud 1. This means that the timestamps of published data are shuffled before
arriving at Cloud 1. Hence, Cloud 1 cannot learn any useful information from the shuffled
dataset and the shuffled matching table.

4.6.2 Analysis of the rest

First, we consider the case where the adversary tries to deduce secret information from
the content of the published pairs. Fortunately, since the real id of leaves is replaced with a
random number, such pairs do not reveal any sensitive information to attackers. Second,
we consider the privacy protection of the noise management mechanism. For dummy
records, we release them according to the real distribution of the incoming time of real
data (see Section 4.3.3). This means that the probability of sending a dummy record at
each time point is computed from the distribution of real records. Hence, when a pair of
data arrives at the cloud, attackers cannot distinguish between a dummy and real pair.
Therefore, the privacy of dummy records is also protected in PINED-RQ++.

On the other hand, removed records are kept at the collector. Note that attackers
do not have prior knowledge about the real distribution of the incoming time of real
data. Additionally, they do not know which leaf node receives negative noise. Hence, the
attackers cannot know which real records are removed by the collector. In addition, such
removed records are only released to the cloud after they are concealed into overflow
arrays. These properties make the removing process of PINED-RQ++ private.

4.6.3 Comparison with PINED-RQ

According to the above analyses, we can conclude that the security guarantee of
PINED-RQ++ is as strong as that of PINED-RQ when the two-cloud model is used.
This means that TEX-PINED-RQ++ does not incur any extra privacy leaks as compared
to PINED-RQ, and hence, satisfies (ε, δ)-Probabilistic-SIM-CDP. In contrast, with the
single-cloud model, PINED-RQ++ only ensures the same level of privacy protection with
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PINED-RQ against offline attackers. This is because it reveals real timestamps of data to
online attackers.

4.7 Validation

We evaluate our solutions with regards to the two targeted contexts: low and high
rate of incoming data. We demonstrate the efficiency and practicality of PINED-RQ++ by
examining the effects of varying system configuration parameters. Section 4.7.1 shows the
benchmark environment that is used for our experiments. We give results of our solutions
in 4.7.5.

4.7.1 Benchmark environment

We implemented PINED-RQ++ in Java. All experiments of PINED-RQ++ are run on the
Galactica platform [67]. The the non-parallel and the parallel version of PINED-RQ++ are
configured as a set of several nodes running on Ubuntu 14.04.4 LTS. The configuration
of nodes is detailed in Table 4.1. The TCP socket is used for exchanging data among
the components, and the lfstat package [29] is utilized to monitor network traffic of the
collector.

Table 4.1 – Experimental environment of PINED-RQ++

Component vCPU
(2.4 GHz)

Memory
(GB)

Disk
(GB)

Dispatcher 4 8 80
Computing node 2 2 20
Consumer 4 8 80
Cloud 16 64 160

4.7.2 Datasets

The experiments were performed with real datasets. We chose Gowalla [61], a social
networking website where users share their locations by checking-in, and the US Postal
Employees [30], USPS, dataset. The Gowalla dataset consists of 6,442,890 check-in records.
For query attribute, we use the 32-bit integer representation of check-in times. The USPS
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dataset compromises 624,414 employees. We use annual salary as a query attribute and
filtered out employee records with an hourly payment rate. After filtering, the dataset con-
sists of 394,763 records. The USPS dataset is highly skewed, whereas Gowalla is relatively
uniform.

4.7.3 Settings

The branching factor (bf) is set to 16 and the total privacy budget εtotal to 1. The
domain of Aq is normalized to [0, 100]. The size of overflow arrays is selected using the
inverse of the CDF of the Laplace distribution with 99.99% confidence interval.

Query Set. In the experiments, we create various query sets of ranges corresponding to
1%, 5%, 10%, 25%, 50%, and 75% of the entire domain. For each set of query ranges, we
sample 1000 queries uniformly over the domain. Unless stated, all other experiments are
conducted using a uniform workload.

4.7.4 Metrics

We evaluate PINED-RQ++ on four main metrics, namely network traffic, the time needed
to publish a dataset, response time latency, and ingestion throughput. Additionally, since
PINED-RQ++ does not apply the constrained inference technique to the index, the quality
of PINED-RQ++ index may be different from that of PINED-RQ. We thus take the recall
and precision metric into account. We use a time interval of 1 minute. We assume that
each publication is about a disjoint set of individuals. The total privacy budget is 1 for
each publication. We generate data in uniform fashion, hence dummy records are released
uniformly.

4.7.5 Experimental results

We now present the experimental results of non-parallel PINED-RQ++ in comparison
with PINED-RQ. Especially, we point out that the former is able to avoid potential
bottlenecks, that the latter suffers from, as incoming data is rapid.

a) Network traffic: Network traffic metric gives an idea of the stability of the
overall system, which is crucial for analytical processing. In these experiments, we take
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Figure 4.10 – Network traffic of the three prototypes
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Figure 4.11 – Network traffic of PINED-RQ and parallel PINED-RQ++

successive 1-millisecond intervals and obtain data rate (in and out) at the collector over
five minutes. Since the collector in non-parallel PINED-RQ++ performs heavy operations
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(e.g., parsing, encrypting) on incoming data, its throughput is modest and around
7k (Gowalla) and 3k (USPS) records/s, as depicted in Figure 4.13. We thus consider
two cases: (1) We compare network traffic among the three prototypes by choosing
medium incoming data rates (in rates) varied between 1k and 7k records/s; (2) We then
use higher in rates, ranging from 10k to 20k records/s, to measure network traffic of
PINED-RQ and parallel PINED-RQ++.

(1) The results in Figure 4.10 show that the network traffic in (non-)parallel PINED-RQ++
is significantly more stable than that in PINED-RQ. (Non-)parallel PINED-RQ++ con-
stantly experience a lower data rate compared to PINED-RQ. With an in rate of 7k
records/s in Gowalla, the maximum data rate of (non-)parallel PINED-RQ++ is (∼4,883
KB/s) ∼8,410 KB/s, and (∼9.2×) ∼5.5× lower than that of PINED-RQ (∼46,192
KB/s). Likewise, by using an in rate of 3k records/s in USPS, the maximum data rate of
(non-)parallel PINED-RQ++ is (∼2,049 KB/s) ∼3,734 KB/s, and (∼10.2×) ∼5.6× smaller
than that of PINED-RQ (∼11,777 KB/s). PINED-RQ++ and its parallel version achieve
such gains since they immediately process and send incoming data to the cloud instead
of publishing data in batches as in PINED-RQ.

It is worth noting that the maximum data rate of parallel PINED-RQ++ is slightly
higher than that of non-parallel PINED-RQ++. This is because parallel PINED-RQ++ needs
to transfer data between computing nodes and the dispatcher at publishing time, such
as matching tables and clones of index template. In particular, the maximum data rate
of parallel PINED-RQ++ is ∼1.7× (in rate=7k records/s, Gowalla) and ∼1.8× (in rate=3k
records/s, USPS) higher as compared to PINED-RQ++.

We also consider the fluctuation range of the three prototypes. The fluctuation range
here represents the gap between the lowest point and the highest point of a data rate
line over the measured period. A wide fluctuation range may highly contribute to the
instability of the network. Figure 4.10 exhibits that the fluctuation range of all prototypes
rises as the in rate increases. However, PINED-RQ exhibits a larger fluctuation range
compared to (non-)parallel PINED-RQ++. For example, with an in rate of 7k records/s in
Gowalla, the fluctuation range of (non-)parallel PINED-RQ++ is at most (∼4,773) ∼7,741
KB/s while that of PINED-RQ is ∼46,135 KB/s.

(2) The results in Figure 4.11 give similar patterns as in (1). With the three dif-
ferent in rates (10k, 15k, and 20k records/s), parallel PINED-RQ++ still has better network
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stability than PINED-RQ. The maximum data rate of parallel PINED-RQ++ is at least
∼6× (in rate=15k, USPS) and at most ∼10.5× (in rate=20k, USPS) lower than that
of PINED-RQ. Similarly, as we use an in rate of 20k records/s, Gowalla dataset gives
the maximum fluctuation range, with ∼15,834 KB/s of parallel PINED-RQ++ against
138,370 KB/s of PINED-RQ. In other words, the maximum fluctuation range of parallel
PINED-RQ++ is ∼8.7× smaller than that of PINED-RQ.

b) Publishing time: We compare the time required to publish a dataset to the
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Figure 4.12 – Publishing time

cloud among the three prototypes: PINED-RQ, PINED-RQ++, and parallel PINED-RQ++.
This metric is essential in case of applications having high rate of incoming data since a
long delay may lead to bottlenecks in the system. We measure such metric by varying
the size of publications. To obtain datasets with different sizes, we simply adjust the
time interval parameter. Note that PINED-RQ consists of two main tasks that mainly
contribute to the publishing time at the collector: 1) building an index; 2) publishing
a dataset, that includes the encryption of the corresponding dataset. Thus, we also
evaluate the processing time of these tasks, represented as t1 and t2, respectively.

The results in Figure 4.12 show that (non-)parallel PINED-RQ++ mostly needs a
very short time to publish a dataset while the publishing time in PINED-RQ is propor-
tional to the size of datasets. Specifically, as we increase dataset size, the time remarkably
goes up in PINED-RQ while the publishing time of (non-)parallel PINED-RQ remains
almost unchanged. This is because (non-)parallel PINED-RQ only publishes two small
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data structures, e.g., index template and matching table, at publishing time. The size
of index template is independent of the size of dataset while that of matching table
slightly rises due to the increase of the number of random ids. These properties make
the publishing time of (non-)parallel PINED-RQ very short, and hence, they are able to
avoid potential bottlenecks at the collector. As shown in Figure 4.12, for a dataset of 2M
records, the publishing time of (non-)parallel PINED-RQ++ is about (75×) 22× and (35×)
20× shorter than that of PINED-RQ for Gowalla and USPS, respectively. Moreover,
PINED-RQ witnesses a long delay, ∼65s (Gowalla) and ∼60s (USPS), that is even longer
than or equal the set time interval (e.g., 60s). This means that as the system needs to
publish a dataset of 2M records within 60 seconds, bottlenecks will occur at the collector
in PINED-RQ. In contrast, (non-)parallel PINED-RQ needs at most ∼2.95s to publish a
dataset of such size.

It is also worth noting that although the building time (t1) and the publishing time
(t2) both increase according to the dataset size, PINED-RQ spends too much time for
publishing datasets instead of building indexes. Figure 4.12 gives that the gap between
t1 and t2 incrementally rises as the size of datasets goes up. In particular, with a dataset
of 2M records, PINED-RQ needs at least 41.62s for publishing and at least 17.44s for
building the index. Such difference comes from the fact that PINED-RQ must heavily
encrypt datasets at publishing time, thereby making the time t2 constantly longer than
t1. In contrast, (non-)parallel PINED-RQ++ avoids that heavy computation at publishing
time thanks to the index template-based approach.

c) Ingestion throughput: We now evaluate the performance of parallel PINED-RQ++
by comparing its ingestion throughput with that of non-parallel PINED-RQ++. The
ingestion throughput is defined as the number of incoming records that a system is able
to process per second. To capture the maximum throughput of the two prototypes, the
incoming data rate is chosen to be very high, e.g., 200k records/s. Different number of
computing nodes are considered in these experiments. For each presented value, we take
10 successive publications and obtain the average.

As we expected, parallel PINED-RQ++ always has significantly higher throughput
compared to non-parallel PINED-RQ++. The results in Figure 4.13a show that when the
number of computing nodes increases, the ingestion throughput of parallel PINED-RQ++
is considerably improved and reaches the peaks of ∼46k records/s (Gowalla) and ∼34.8k
records/s (USPS). Meanwhile, non-parallel PINED-RQ++ can only ingest up to ∼7k
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Figure 4.13 – Ingestion throughput improvement of parallel PINED-RQ++. Note that the
throughput of non-parallel PINED-RQ++ is ∼7k records/s (Gowalla) and ∼3k records/s
(USPS)

records/s (Gowalla) and ∼3k records/s (USPS). As shown in Figure 4.13b, with the
setting of 12-computing node cluster, the enhancement of parallel PINED-RQ++ is approx-
imately 5.4× and 10× in Gowalla and USPS, respectively. Note that the gap between the
two datasets comes from the fact that the size of the USPS records is larger than the other.

d) Query latency: We turn our attention to query latency over intermediate
data (un-indexed data). PINED-RQ keeps intermediate data on disks at the collector. In
contrast, PINED-RQ++ holds intermediate data at the cloud as pairs of <random number,
ciphertext>. For this scenario, the data generator produces different incoming data rates
between 1k and 7k records/s. The consumer sends one query per second.

In Figure 4.14, the results indicate that as in rate increases, the latency goes up
in all prototypes. As expected, PINED-RQ has lower latency compared to PINED-RQ++
for all range sizes. The reason is that PINED-RQ++ always downloads all intermediate
data and locally processes them at the consumer. Meanwhile, in PINED-RQ, the range
query is processed at the collector and only the relevant records are returned. As shown
in Figure 4.14, the largest gap is witnessed as an in rate of 7k records/s and Gowalla
dataset are used. Specifically, PINED-RQ++ takes about 6s while PINED-RQ spends 1.8s
for a 25%-range query. However, it is important to note that the overhead of PINED-RQ++
only takes place over immediate data whose size is tiny as compared to historical data.
Furthermore, while PINED-RQ suffers from query processing on intermediate data at
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Figure 4.14 – Response time latency of 1000 queries

the collector, PINED-RQ++ almost eliminates such computation at this component. As a
result, PINED-RQ++ would avoid overload at the collector in case of high workload.

e) Recall and precision: As discussed in Section 4.3.6, PINED-RQ++ builds the
index during a time interval, and does not apply the constrained inference approach
[52] to the index. This may give rise to differences in recall and precision rate between
PINED-RQ and PINED-RQ++. It is necessary to analyze the utility of the index of the
two prototypes. Apparently, the speed of incoming data does not impact the quality of
the PINED-RQ++ index, but the size of publications. Thus, we just consider the variation
of dataset size instead of incoming data rate. We use variants of Gowalla dataset that
represent different periods, 5 days (95,276 records), 10 days (304,055 records), and 25
days (837,402 records). The measures are taken after a matching table is published to
cloud. The results in Figure 4.15 indicate that the recall of the two prototypes holds
100% for all range sizes. The reason is that the indexes have no negative inner nodes
that often cause missed records in the returned results. Considering the precision, the
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Figure 4.15 – Comparison between PINED-RQ and PINED-RQ++ in terms of recall and
precision

two prototypes are competitive and preserve a high percentage, even if the smallest
range size (1%) is used, particularly, for the 5-day dataset, the precision rate is at least
92.10% (PINED-RQ) and 91.45% (PINED-RQ++). However, as a 10-day dataset is used,
the minimum precision rate of PINED-RQ++ is slightly higher than that of PINED-RQ,
with 97.51% in PINED-RQ++ against 97.16% in PINED-RQ. For the 25-day dataset, the
precision rate of both is almost the same and constantly higher than 99.51%.

4.8 Conclusion

High rate of incoming data have raised major challenges to prior schemes on secure
range queries, specially bottlenecks in the system. Therefore, we developed PINED-RQ++
to address these challenges. To do that, we introduce a new approach to build secure
indexes based on the notion of index template. By doing so, PINED-RQ++ allows continu-
ously ingesting arrivals as soon as possible, and hence avoiding bottlenecks in case of high
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rate of incoming data. Furthermore, we also propose a parallel PINED-RQ++ that signif-
icantly enhances the ingestion throughput, making our solutions practical to real-world
applications. In terms of security, we analyze and show that the non-parallel and the
parallel version of PINED-RQ++ do not reveal anything about publications as compared
to PINED-RQ when the two non-colluding clouds is used. Otherwise, if a single cloud
model is used, PINED-RQ++ guarantees that level of security against offline attackers. We
finally implemented the non-parallel and the parallel version PINED-RQ++ and extensively
carried out experiments on real datasets. The experimental results show that our solution
provides better performance than PINED-RQ while privacy is also protected.

Although PINED-RQ++ can prevent bottlenecks from happening in the system in gen-
eral, both (non-)parallel PINED-RQ++ cannot cope with real-life needs in terms of the
ingestion throughput. This make them unable to many applications where the system
has to accept huge number of arrivals in very short period. To address this limitation of
PINED-RQ++, in the next chapter, we propose a new approach that allows scaling up the
ingestion capacity of the system, e.g., over one hundred thousand of records per second.

57





Chapter 5

FRESQUE

Abstract: The previous chapter presented the solutions for preventing potential bot-
tlenecks from the context where data arrives at a high rate. Nevertheless, similar to prior
schemes, their scalability still remains limited. Their ingestion throughput is not scal-
able enough for real-life needs. To address this limitation, in this chapter we introduce a
novel framework for secure range query processing, FRESQUE. Indeed, we aim at enhancing
PINED-RQ++ so that it is able to scale the intake ability up as much as possible. To this
purpose, we introduce a new architecture relying on a set of shared-nothing machines and
make it fully distributed. With such an approach, the ingestion throughput can be scaled
up by just adding more nodes into the system. In addition, a data representation and
an asynchronous publishing method are presented and integrated into this architecture
to avoid throughput degradation or potential congestion. By carefully coordinating all of
these elements together, FRESQUE can support an intensive consumption throughput, e.g.,
165 records/second. As compared to PINED-RQ++ and parallel PINED-RQ++, the ingestion
throughput is improved by 43× and 5.6×, respectively. Moreover, we also adapt FRESQUE
to a stronger type of attackers by presenting a new noise management into the new ar-
chitecture. Interestingly, this method also increases the practicality of the framework.
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5.1 Introduction

Although parallel PINED-RQ++ can help improve ingestion in the system, it is far
from satisfactory. Intensive ingestion throughput is demanded by a wide range of modern
applications. For instance, seasonal influenza is a primary cause of morbidity and mortality
worldwide, 3 to 5 million of serious illnesses [114], and for 290,000 to 650,000 deaths
annually. Reducing the impact of seasonal epidemics (e.g., influenza) is demanding for
public health officials. To address it, participatory surveillance systems, to name few, have
been deployed in recent years such as Flu Near You [39] in North America, Influenzanet
[49] in Europe, and FluTracking in Australia and New Zealand. FluTracking [27, 40] is
a surveillance system that weekly collects symptoms from the participants to typically
track influenza nation-wide. Even recently, some extra coronavirus-related questions have
been added to track the spread of COVID-19 [73]. In 2020, FluTracking has around 140
thousand reports every week [40]. Similarly, to control the spread of COVID-19, many
governments require travelers and all residences submitting e-medical declaration forms
such as [108, 3]. In these systems, a large amount of data is generated every second.
However, PINED-RQ++ does not exhibit a high throughput. It is only able to consume up
to ∼46K records/s that is much lower than real-life needs, that might need to support
hundreds of thousand insertion per second.

Therefore, this chapter aims at developing a scalable ingestion framework dedicated to
secure range query processing. Our solution is developed based on the PINED-RQ family
[94, 104]. This choice is motivated by the fact that the PINED-RQ family can achieve
both fast range query computation and provable security while the clear secure index
requires very small space. More specifically, we re-design the architecture of PINED-RQ++
[104] in order to make it fully distributed. We attempt to parallelize all heavy tasks (e.g.,
parsing and encrypting data) on a set of shared-nothing machines 1. By relying on such
architecture, the ingestion throughput can be scaled up/down by just adding/removing
nodes into the system. Additionally, a data representation and a asynchronous publish-
ing method are introduced and integrated into this architecture to avoid throughput
degradation. By carefully coordinating all of them together, our framework is scalable
and supports intensive ingestion throughput. Experimental results show that compared
to the non-parallel and parallel version of PINED-RQ++ [104], the ingestion throughput
is improved by ∼43× and ∼5.6× in NASA [78] dataset, respectively. Furthermore, we

1. We take the shared-nothing architecture into account since it is highly scalable. In order words, the
system can scale up to several nodes easily.
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also present a new noise management mechanism to adapt PINED-RQ++ to a stronger
type of adversaries who may have good knowledge about the timestamp distribution of
incoming data. This method also improves the practicality of FRESQUE since it does not
require a pre-defined timestamp distribution as in PINED-RQ++ (see Section 4.3.3). In this
chapter, we develop FRESQUE, an ingestion framework for secure range query processing
on cloud, including the following contributions.

1. We thoroughly analyze the architecture of the PINED-RQ family [94, 104], and
point out obstacles that prevent the existing architecture from achieving a high
ingestion throughput. Also, we present an approach to adapt our framework to
stronger adversaries.

2. We design an ingestion architecture that enables to distribute all heavy jobs to
multiple workers (computing nodes) of a cluster. Besides, we present and integrate
a data representation and an asynchronous publishing method to this architecture,
mitigating throughput degradation.

3. We extensively evaluate FRESQUE on real-world datasets to demonstrate its scala-
bility. Particularly, the throughput of FRESQUE is about 43× higher than that of
PINED-RQ++ and being at least one order of magnitude higher than that of other
efficient solutions such as [87, 86, 12].

4. We give a formal proof of the security of FRESQUE.

The chapter is structured as follows. In Section 5.2, we briefly present problem statement.
We then describe our framework in Section 5.3. Section 5.4 gives security analyses while
Section 5.5 presents our experimental results. We discuss a potential application of our
solution and potential extension in Section 5.6. We conclude and give future work in
Section 5.7.

5.2 Problem statement

We assume that data sources produce a set of records where all records have the same
number of attributes. These records are immediately sent to the collector. The dataset
stored at the collector is a relation D(A1, . . . , Ad), where Ai is an attribute. Queries are
non-aggregate one-dimensional range queries. A query Q is evaluated over the attribute
Aq of D, which contains numerical values. Periodically, the collector will pre-process the
dataset, e.g., building a secure index over the dataset and encrypting it. The processed
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dataset is then sent to the cloud for serving range queries.
In this chapter, we mainly focus on the scalability dimension of the system in terms

of ingestion throughput. This metric measures how many records a system is able to
consume within a period.

5.2.1 Threat model

Similar to PINED-RQ++, this architecture targets attackers at the cloud. We thus con-
sider the honest-but-curious model [46]. In this model, an attacker examines data stored
on the cloud to glean sensitive information, but follows the protocol as specified and
does not change the datasets or query results. In this chapter, we also consider two types
of attackers, online and offline attackers. Nevertheless, the one that differentiates from
PINED-RQ++ is that this chapter considers stronger online attackers who may have good
knowledge about the data distribution of the incoming time of real data, named online-ext.

5.2.2 Security guarantees

Recall that the security guarantee of PINED-RQ++ is (ε, δ)-Probabilistic-SIM-CDP
when the two-cloud model is used. However, with the single-cloud model, PINED-RQ++
only ensures that level of privacy protection against offline attackers because it reveals
data timestamps to online attackers.

In this chapter, with the single-cloud model, we seek to design FRESQUE to meet the
(ε, δ)-Probabilistic-SIM-CDP [94].

5.2.3 Limitations of PINED-RQ++

We now identify the obstacles that hinder PINED-RQ++ from achieving a scalable
solution, particularly parallel PINED-RQ++.

Partial parallelism. In PINED-RQ++, the index template is proposed to temporarily
store information that is necessary to build the secure index later. By doing so, the
count variables of the index template are updated and referenced by the updater and
the checker, respectively, during a time interval. The index template is thus considered
as a shared data structure, that was not run simultaneously in the parallel PINED-RQ++.
Furthermore, the checker depends on the parser for the checking operation. Hence, both
parser and checker are organized to run in sequence at the collector (see Figure 4.6).
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Unfortunately, the parsing task is heavy and takes time, especially in case of large
record size. Thus, the parser mainly makes the ingestion throughput of the parallel
PINED-RQ++ incredibly degraded. For instance, our experiments show that the parsing
task reduces the throughput of the collector by over 50% when we use NASA dataset
[78].

Heavily updating index template. Since PINED-RQ++ uses the whole index template
for updating and checking incoming data, leading to some unnecessary overheads at the
collector in terms of memory usage and computation. For example, an update always
requires traversing from the root to leaves of the index template, incurring a complexity
of O(logk n), where n is the number of leaves and k is the branching factor. Likely, the
checker faces the same complexity for checking a record whether it belongs to negative
leaf or not. These tasks will take time to process records and diminish the ingestion
ability of the system, especially when the domain of index template is huge. The situation
is even worse when all tasks which reference to the index template have to be processed
sequentially.

Synchronous publishing. Both PINED-RQ++ and its parallel version are designed
to synchronously publish datasets to the cloud. In other words, they will start a new
publication only if the current publication is sent to the cloud. This mechanism may
create congestion in some circumstances. For example, at the end of each time interval,
the collector needs to generate overflow arrays whose size primarily relies upon several
configurable parameters, namely domain size, security level (e.g., ε), and bin interval.
These parameters vary for different applications, thereby the size of overflow arrays will
also change accordingly. As the size of overflow arrays is large, the collector spends long
time for generating overflow arrays, giving a heavy burden on the ingestion performance
or even bottlenecks at this component. More specific, bottlenecks are more likely to occur
as the collector has to publish large overflow arrays within a short time interval.

5.3 FRESQUE

Before describing FRESQUE, we now present its principal modules that enable to tackle
the presented problems of PINED-RQ++ [104] being identified in Section 5.2.3. Then, we
present a complete architecture of FRESQUE and its instantiation.
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5.3.1 Principle designs

a) A fully distributed architecture

As stated earlier, partial parallelism mainly causes low ingestion throughput in
PINED-RQ++. To deal with that, we aim at making the collector fully distributed by par-
allelizing all heavy jobs (e.g., parser and encrypter) on a cluster of computing nodes.

The challenge is that the checker, that resides between the parser and the encrypter
in the workflow, cannot be parallelized since it relies on not only the parser, but also
a shared data structure (e.g., index template). This means that the checker should be
positioned after the parser and cannot be run in parallel. In fact, we can run the parser
and the encrypter on multiple computing nodes while the checker runs sequentially at
another node. After incoming records are parsed at the instances of the parser, they are
sent to the checker. These records are then checked by the checker before being sent back
to the instances of the encrypter. Nevertheless, this approach would increase unnecessary
communication overheads among components at the collector. Instead, we position the
checker after the parser and the encrypter in the workflow, as illustrated in Figure 5.2. This
approach allows to scale the intake ability of the collector without creating unnecessary
transmission overheads. However, the question is how the checker processes a record after
it is encrypted. To address it, we add additional information (e.g., leaf offset) to the
ciphertext of the record so that the checker can know which leaf the record belongs to.

b) Array representation of Leaves (AL)

To address the problem of heavily updating index template, we replace the index
template by an array representation of its leaves for the updating and checking operations
in our new architecture. Such array representation is small to keeps in memory and access-
ing array elements requires constant time, O(1). Particularly, the collector maintains two
arrays of integers, one with noise (ALN) and the other without noise (AL). The former is
used to check whether a record falls within a negative leaf or not while the latter is mainly
used to count the number of real records passing the collector. Each element of AL/ALN
represents the true count/noise of a leaf, respectively. The size of the two arrays is equal
to the number of leaves of the index template. Note that the AL contains the true count
of leaves while the IT only contains noise, thereby the two components are sufficient to
compute the secure index.

To integrate such data representation into the new architecture, for a given value, the
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collector needs to know the leaf offset of the corresponding element in AL(N). Thanks
to the B+-Tree shape of the PINED-RQ index, the leaf offset of a record can be easily
obtained based on the configurable parameters of the system. Given parameters, namely
domain min (dmin), domain max (dmax), bin interval (Ib), and an indexed attribute value
(v), the leaf offset (Ov) of v can be achieved as follows.

Ov ← min(b(v − dmin)/Ibc, b(dmax − dmin)/Ibc − 1)

c) Asynchronously publishing mechanism

To address the issues of the synchronous publishing mechanism, we design our new
architecture to asynchronously publish datasets. To this purpose, we add a new component
to our architecture, named merger, that runs independently of the ingestion component
(e.g., dispatcher), as depicted in Figure 5.2. The merger is only responsible for publishing
tasks, namely building overflow arrays and combining a secure index from the AL and the
IT (Index Templates). At the end of each time interval, the publishing tasks are shifted
to the merger, and a new publication is immediately initiated at the dispatcher. With this
approach, while the dispatcher ingests data for a new publication, the merger performs
the publishing tasks for the previous one. This eliminates the burden of the publishing
tasks on the ingesting component and prevents potential bottlenecks at the collector.
More importantly, the asynchronous publishing method allows the system to continuously
consume incoming data with a very small latency of starting a new publication. Such
property partially improves the ingestion throughput.

By using the asynchronous publication strategy, all components in FRESQUE, including
the dispatcher and the merger, run independently. To ensure data consistency among
publications, e.g., how a component determines to which publication a record belongs, we
mark each publication with a unique monotonic number, named publication number.

5.3.2 Upgrade of PINED-RQ++

Injected noise, e.g. dummy/removed records of a publication, may be disclosed as the
incoming order of data at the cloud is the same with that at the collector. We note that
in this chapter we consider the threat model where attackers have good knowledge about
the distribution of incoming time of real data, they might know for sure there is a real
record at a certain time point. However, some records may be buffered (removed) by the
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checker at the collector since it lies in the interval of a negative leaf. Consequently, the
absence of such removed records at the cloud would be recognized by online-ext, and
hence the secure index no longer guarantees differentially private. On the other hand, the
insertion of dummy data also confronts the same privacy issue. That is, online-ext can
easily determine whether an arrival is a dummy or real record based on prior knowledge
about real data distribution. For that reason, PINED-RQ++ can not be protected against
online-ext.

In addition, the noise management method of PINED-RQ++ requires the collector to
know in advance the distribution of the incoming time of real data. Indeed, dummy records
of a publication are released by the collector according to such distribution in order to
prevent privacy disclosure. Nonetheless, the distribution of the incoming time of real data
is often difficult to be determined in real-life applications. For instance, in FluTracking
[40], an admin does not know exactly when a participant submits data to the system.
Consequently, such requirement will limit the application of the solution. We now seek
to design a new noise management method that must avoid privacy leaks and does not
depend upon any pre-defined distribution of the incoming time of real data.

In order to achieve these goals, one may randomly release dummy records over a
time interval. This approach is straightforward and allows to eliminate the dependence
upon a pre-defined distribution of timestamps. Nonetheless, the problem of this method
is the privacy disclosure of injected noise to the cloud. As stated in Section 5.2.1, the
adversary may have good knowledge about the distribution of incoming time of real data.
As dummy data are randomly released, they might arrive at cloud at an unlikely time
point at which there is no real data. Consequently, the privacy of dummy data is disclosed
to the adversary. Likewise, removed records will be recognized by the adversary.

To address this, we introduce a new component, randomer, to our architecture (see
Figure 5.2). It aims at perturbing the distribution of the incoming time of real data at
the collector so that the insertion of dummy records or the deletion of real records are
hidden from the adversary. The randomer consists of a fixed-size buffer and a trigger
function. The former is used to mix incoming real and dummy records together while
the latter is used to control the size of the buffer. In particular, all dummy records of a
publication are first generated and being randomly sent to the buffer of the randomer
during a time interval. For example, suppose a publication has 100 dummy records,
then 100 time points are randomly chosen over a time interval, each dummy record is
released at a such time point. When a record (real/dummy) arrives at the randomer, it
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is buffered here. If the randomer buffer is full, then the randomer randomly picks one
record in the buffer and releases it to the next component. Note that at any time point
when one record is picked and released, it may be a real or dummy record. As a result,
although a new record arrives the cloud at an improbable time point, the adversary
cannot conclude whether it is dummy or not. Similarly, when the adversary does not see
an expected record at a time point at cloud, she/he cannot be sure it is removed or not
due to the uncertainty caused by the randomer. The leakage caused by injected noise is
thus addressed by the randomer. Moreover, since the collector randomly releases dummy
data, FRESQUE does not require knowing in advance a data distribution, hence it disposes
of the issue of limited practicality.

Challenges of randomer. One of the challenges of using randomer is how to

Figure 5.1 – Privacy leak of randomer

choose a right size for its buffer. Intuitively, a large buffer gives high security. However,
if the chosen size is huge, the system may confront bottlenecks at collector, particularly
at the checking node. Otherwise, a tiny buffer may result in the privacy leak of dummy
records, especially when the capacity of the randomer buffer is smaller than the total
number of the dummy records of a publication. As an example depicted in Figure 5.1,
we first assume that no real data is presence during the period between t0 and t1 and the
size of the buffer is smaller than the total number of dummy records. Since all dummy
records are randomly released over a time interval, there is a case where all dummy
records will be released during the period [t0, t1]. The buffer is subsequently full at this
time, the trigger function is activated, and dummy records in the buffer are released
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before t1. These dummy records will be recognized by the adversary who has prior
knowledge about real data distribution. Fortunately, such situation only happens as the
randomer buffer is smaller than the total number of dummy records. Otherwise, if the
randomer buffer is larger than that number, no records will appear at the cloud in that
period. Therefore, the buffer size must be chosen to be larger than the total number of
the dummy records of a publication.

A straightforward solution is to determine the buffer size by multiplying the actual
number of the dummy records of a publication by several times. However, since we will
publish the whole buffer at the end of a time interval, the adversary may infer the size of
the buffer, and hence the actual number of dummy records can be leaked. So the method
of determining buffer size must (*) not depend on the real number of dummy records and
(**) being larger than the number of the dummy records of a publication.

We note that since dummy records are generated due to the Laplace noise, the number
of dummy records varies for each publication. It is thus difficult to choose a right capacity
for the randomer buffer while meeting both (*) and (**). Fortunately, since the noise in
FRESQUE is sampled from the Laplace distribution, we can choose buffer size based on
the inverse CDF of the Laplace distribution with a very high probability, δ′. Intuitively,
this approach gives an upper bound on the number of dummy records. Interestingly, it is
earlier used to select the size of overflow arrays to protect the privacy of removed records
in PINED-RQ [94].

Given a set of m leaves, denoted L = {l1, ..., lm}, we probabilistically compute the
maximum number of dummy records of leaf li based on the inverse CDF of the Laplace
distribution, considered as si. Then, T = ∑m

i=1 si is viewed as the maximum number of
dummy records of an index. To guarantee the buffer size is larger than T , we multiply it
by a configurable coefficient, α. To ensure the buffer size is larger than the total number
of dummy records, we suggest to set α ≥ 2. Then, the buffer size, S, of the randomer is:
S = ∑m

i=1 si × α (or S = T × α), where α ≥ 2.
Note that although the randomer size is exposed to the adversary, she cannot infer

the chance of picking a dummy/real record when an encrypted record arrives at the cloud
at any time point ti. Indeed, to achieve such chance, the adversary needs to rely on real
data distribution, however, such distribution has been perturbed by the randomer before
ti. Hence, when the adversary receives an encrypted record, it cannot distinguish between
real and dummy record.

Another question is that where the randomer should be placed at the collector. A
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wrong decision would disable the randomer. For example, if we put the randomer after the
updater, the privacy of removed records is revealed. The reason is that incoming records
are checked and may be removed before being perturbed by the randomer. Otherwise, as
it resides at the dispatcher, the collector would incur long publishing time since it has
to heavily processes (e.g., parsing and encrypting) the randomer’s buffer whose size is
adjustable. Therefore, the right choice should be the position between the checker and
computing nodes, as shown in Figure 5.2. With this organization, randomer prevents
privacy leak of removed records while resulting in a negligible delay at the publishing
time.

5.3.3 Architecture of FRESQUE

Following the principal design in Section 5.3.1, we now detail the novel ingestion
framework to support efficient range query processing over encrypted data. Especially, we
describe how we orchestrate different components in the new architecture.

a) Ingestion life cycle

The collector of FRESQUE runs on a small cluster of commodity machines as shown in
Figure 5.2. At the collector, one (and only one) node runs Dispatcher (D) and all worker
nodes in the cluster run a Computing Node (CN) while the randomer, the checker and
the updater runs on the same Checking node (C).

The dispatcher plays the role of a coordinator. At the beginning of each time interval,
only the dispatcher can start a new publication by initiating a new Index Template (IT),
Publication Number (PN), and scheduling the releasing time of dummy data according
to the method explained in Section 5.3.2. Finally, the dispatcher sends IT and PN to
the checking node. The checking node takes IT from the dispatcher and generates the
corresponding AL and ALN.

During a time interval, when new records arrive the dispatcher, they are immediately
sent to the computing nodes according to a round robbin approach. This approach is used
for the sake of load balancing. The computing node first pre-processes incoming data to
get pairs of <leaf offset, e-record>. These pairs are then sent to the checking node. After
being randomized and checked at the checking node, such pairs forwarded to the cloud
or the merger. At the end of each time interval, the dispatcher notifies all components at
the collector by a message. Note that the dispatcher, the computing node, the merger,
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Figure 5.2 – Architecture of FRESQUE

and the checking node can coexist on the same node.

b) Instantiation of FRESQUE

In order to demonstrate how data is processed at the collector and transported to
the cloud, Figure 5.2 shows the composition of FRESQUE running on five nodes at the
collector and Figure 5.3 gives a running example.

Dispatcher (D): At the beginning of a time interval, the dispatcher initiates an
Index Template (IT), dummy records, and a Publication Number (PN), as illustrated
in Figure 5.3a. The dispatcher then sends the IT and the PN to the checking node.
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(a) Initiation

(b) During a time interval

(c) At publishing time

Figure 5.3 – A simple example demonstrating how FRESQUE process incoming data by
using two computing nodes. Assume that the size of randomer buffer is 4 pairs of e-
record. For the sake of simplicity, we also assume that all dummy records are released
before the arrivals of real data.
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At the same time, it also schedules the releasing of all dummy records as presented in
Section 5.3.2. During a time interval, whenever the dispatcher receives new data from
data sources, it distributes the data to the computing nodes in a round-robin fashion.
As an example shown in Figure 5.3b, there are three records, (Bob,37), (Alice,39),
and (Diana,38), arriving in order at the dispatcher. These records are then distributed
to the two computing nodes. At the end of each time interval, the dispatcher sends
a publishing message to all available computing nodes and to the checker. By using
the asynchronous publishing method, a new publication is immediately started after a
publishing message is sent instead of waiting for the publishing tasks to be done. This
allows the system to continuously ingest arrivals. By completely removing heavy jobs
(e.g., parsing, encrypting, and checking) from the dispatcher and using the asynchronous
publishing method, throughput ingestion is maximized at this component.

Computing Node (CN): During a time interval, when new data comes, the
computing node parses the raw data into a record, calculates the leaf offset, and encrypts
it. Then, a pair of <leaf offset, e-record> is transferred to the checking node. As showed
in Figure 5.3b, after passing the two computing nodes, three records are now parsed,
encrypted, and associated with the corresponding leaf offsets, 0, 2, 1, respectively. We
assume that these pairs of records come to the checking node in the same order as they
arrive at the dispatcher. When the computing node receives a publishing message from
the dispatcher, it waits for a done message from the checking node. Notably, during the
meantime, all incoming data will be processed and stored in local in-memory buffers at
the computing nodes. By doing it, the delay of performing heavy tasks on buffered data
is reduced when a new publication is started.

As mentioned earlier, the parser and the encrypter mainly cause the throughput
degradation in the system. With the parallel approach, the degradation is reduced
significantly and only relies on the number of the computing nodes used. Interestingly,
this approach not only allows to easily scale the throughput up, but also shortens the
publishing time at the collector. For instance, PINED-RQ++ has to sequentially encrypt
removed records and insert them into overflow arrays at the end of each time interval,
whereas they are now encrypted in a parallel manner by a set of networked machines
during that period. As a result, at the end of each time interval, the collector only
randomly inserts removed encrypted records into the corresponding overflow arrays
before transferring them to the cloud, reducing the publishing time in FRESQUE.
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Checking node (C): At the beginning of a time interval, the checking node re-
ceives Index Template (IT) and Publication Number (PN) from the dispatcher. It first
initiates the corresponding AL and ALN (see Figure 5.3b). The checking node then
forwards the IT to the merger while the PN is sent to the cloud. During a time interval,
when a pair of <leaf offset, e-record> arrives, it stores that pair in the buffer of the
randomer. If the buffer is full, one of them is randomly picked and passed to the checker.
Next, the checker gets its leaf offset (e.g., i) from the selected pair. If the ith element of
ALN is less than zero, the checker increases the value of the ith element of both ALN
and AL by one, and then sends that pair to the merger as removed. Otherwise, that pair
is sent to the updater, and only the value of the ith element of AL is increased by one.
Finally, that pair is sent to the cloud. As the example presented in Figure 5.3b, when
the pair <0, (Bob,37)> comes to the checking node at timestamp t0, it is inserted into
the randomer’s buffer. When this pair is released at timestamp t1, the 0th element of AL
is increased by one since the 0th element of ALN is positive. Otherwise, at timestamp
t2, when the pair <1, (Diana,38)> is considered, since it belongs to a negative element
of ALN, the 1th element of AL and ALN are both increased by one and this pair is then
sent to the merger.

When the checking node receives publishing messages from all available computing
nodes, it will send the updated AL to the merger (see Figure 5.3c). We emphasize that
the condition of receiving publishing messages from all computing nodes needs to be
guaranteed so that the consistency of publications is achieved. In order words, it makes
sure that all (dummy/real) data of the current publication, that are sent by the dispatcher,
are received by the checking node. The randomer buffer is then shuffled and published to
the cloud. Finally, the checking node sends a done message back to the computing nodes.

It is worth noting that the checker and the updater will ignore the dummy records when
they pass the checking node. This means that the counts of AL and ALN are independent
of such dummy data. To achieve it, the checker and the updater need to perceive which
incoming record is dummy in order to ignore it during the updating process. Nonetheless,
the difficulty is that they all become ciphertexts after being encrypting by the computing
nodes. To address it, we add to dummy records a special flag (e.g., -1) to distinguish them
from real data. This straightforward technique allows the checker and the updater to know
which record is dummy or real. As shown in Figure 5.3b, at timestamp t0, a dummy pair
is released by the checking node, and does not lead to any update on AL and ALN.
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Even if all tasks at the checking node are designed to run sequentially such as the
checker and the updater, they do not have much impact on the ingestion throughput at
the collector. Moreover, thanks to the array representation, our architecture diminishes
the complexity of the updating and checking tasks from O(logk n) to O(1), and hence
shortening the delay of processing a record and boosting the consumption throughput.

Merger (M): At the beginning of each time interval, the merger receives IT and
PN from the checking node, then keeps them in memory. During a time interval, the
merger may receive removed records from the checker. Whenever the merger receives the
updated AL, it triggers a new merging job that performs publishing tasks, e.g., combing
IT and AL to achieve the complete secure index, generating overflow arrays (OAs) to
conceal the removed records. Finally, the merger sends them to the cloud with the
corresponding PN, as shown in Figure 5.3c. We note that merger runs independently of
the ingestion components, a long delay in this component does not result in any impact
on the ingestion throughput of the system, but the availability of secure indexes at the
cloud. We delay the discussion of the latter in Section 5.6.

Cloud: When the cloud receives a new PN from the checking node, it creates a
new file for storing the incoming data. However, when its secure index is published by the
merger, the published data will be read from the file on disk for a matching process and
finally written back to disk again. Such approach gives rise to high I/O overhead. Instead,
we keep small information about the published data, e.g., metadata, that is used for the
matching process. Specifically, when a pair of <leaf offset, e-record> arrives, the cloud
writes the e-record to disk, gets its physical address, and caches a pair of <leaf offset,
physical location> in memory. To boost the matching process, we organize metadata in
the form of <leaf offset, list of physical locations>, as demonstrated in Figure 5.3b. Such
metadata is relatively small and independent of the size of e-records. When a publication
comes from the merger, the matching process immediately associates the physical address
of e-records with leaves based on the cached metadata. The metadata is finally destroyed
(see Figure 5.3c).

c) Query processing

In FRESQUE, when a query comes at the cloud, it is evaluated on both indexed and
unindexed data. With regard to indexed data, the query processing strategy is applied as
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in Section 3.5. Meanwhile, unindexed data are processed one by one based on the query
range. The (removed) records have a range overlapping the query range at the cloud, at
the randomer, and the merger are returned to the client. Finally, the client use a shared
private key to decrypt and filter dummy data from the results.

5.4 Security analysis

We develop FRESQUE that builds a PINED-RQ index [94] during a time interval. With
such an approach, at the end of each time interval, all parts of the index (e.g., IT, AL, and
removed e-records) are combined at the merger to get a secure index and overflow arrays.
In other words, this process only occurs at the trusted collector, and hence FRESQUE
apparently inherits the privacy protection level of the PINED-RQ index and satisfies
(ε, δ)-Probabilistic-SIM-CDP.

The main difference between FRESQUE and PINED-RQ [94] in the index creating
function is that FRESQUE immediately publishes encrypted records, that include dummy
records and removed records, during a time interval. However, since attackers know the
distribution of the incoming time of real data, they are able to infer which record is
dummy or real based on the timestamps of the published data. Consequently, FRESQUE
(without the randomer) does not meet (ε, δ)-Probabilistic-SIM-CDP [94]. Fortunately,
thanks to the randomer, such potential privacy disclosure is avoided. Theorem 2 shows
the security of the FRESQUE.

Theorem 2 (Security of FRESQUE): The index creating function of FRESQUE satis-
fies the (ε, δ)-Probabilistic-SIM-CDP [94].

Proof. Considering dummy records. First, we consider the case where a record arrives
at the cloud at the time point at which there is real data. Since real/dummy records are
randomly mixed together before being released, the adversary does not infer any useful
information from such case.

Second, we consider the case where a record arrives at the cloud at an unlikely time
point at which there is no real data. This situation happens when a dummy record is
inserted into the full randomer buffer. This means that this randomer buffer contains
both real and dummy records. Hence, a record is picked and released to the cloud at this
time point is indistinguishable under the adversary’s view.
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Third, we consider the case where the checking node sends the randomer buffer to the
cloud at the end of each time interval. Indeed, dummy records are mixed with real ones
at the randomer during a time interval. Additionally, the ratio between real and dummy
data at any time point is also private from the adversary (see Section 5.3.2), hence the
adversary cannot infer any useful information from this case.

Fourth, we consider the case where the randomer contains all dummy records and no
real ones. Note that such situation only occurs as all dummy records are released before
real data arrive at the collector. If the buffer of the randomer is smaller than or equal
to the total number of dummy records, a dummy record is certainly picked and released
to the cloud. As a consequence, the adversary can conclude it is dummy, and FRESQUE
no longer meets (ε, δ)-Probabilistic-SIM-CDP [94]. However, FRESQUE requires that the
buffer of the randomer is chosen to be larger than the total number of dummy records of
a publication (see Section 5.3.2). Hence, this case does not happen.

However, since a dummy record may cause an arrival at the cloud, the randomer may
reveal the total number of dummy records. There may be some dummy records do not
cause an arrival at the cloud since they are released at the beginning of a time interval,
especially when the randomer is not full. Similarly, an dummy record may result in a
picking and releasing of a record that is then removed by the checker, hence an arrival of
the dummy record does not always reveal to the adversary. This means the total number
of dummy records, that the adversary recognised, may be different from the actual total
number of dummy records. Clearly, the larger randomer buffer, the less chance of leaking
such information. In other words, the possibility of such limited leakage can be controlled
by adjusting the coefficient α. Especially, when the randomer buffer size is equal to the
publication size, such leakage is eliminated.

Considering removed records. Since dummy records will not be deleted by the
checking node, we only consider the case where a real record that belongs to a negative
leaf. Without the randomer, this record is removed and sent to the merger by the checker
and the adversary can conclude that there is a record being removed from dataset due
to its absence at the cloud at an expected time point. This privacy leakage results from
the knowledge of the adversary about the incoming order of real data. However, the
randomer enables to randomize such order before the removing process is performed.
This means that a record arrives at the randomer at time point ti, and it can be released
to the cloud at any time point tj (ti ≤ tj ≤ tn), where tn is the publishing time point.
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Thus, after passing the randomer, the order of a record is randomized. This property
makes removed records secret from the adversary. Although the adversary does not know
which record is removed from a publication, one may think that FRESQUE will leak the
total number of removed records since the adversary can observe whenever an expected
record does not arrive at the cloud. However, removed records may be delayed until
the time point tn. This confirms that the total number of missed records during a time
interval may not be equal to the total number of removed records. Similar to the case
of inserting dummy data, the possibility of such limited leakage can be controlled by
adjusting the coefficient α. When the randomer buffer size is equal to the publication
size, such leakage is eliminated.

Comparison with PINED-RQ [94]. The highest security of FRESQUE is achieved
as the coefficient α is chosen so that the randomer buffer can contain the whole dataset
and all dummy records. In that case, at the end of each time interval, the randomer
shuffles and sends the buffer to the cloud along with a secure index and overflow arrays.
It is easy to see that this case is the same with the publishing process of PINED-RQ
[94]. Thus, in that case, the FRESQUE has the same level of privacy protection with the
PINED-RQ and also satisfies (ε, δ)-Probabilistic-SIM-CDP [94].

Comparison with PINED-RQ++ [104]. FRESQUE has better security since it prevents
privacy leaks from stronger adversaries, particularly online-ext.

5.5 Validation

In this section, we evaluate the FRESQUE against the (non-)parallel PINED-RQ++ [104].
We mainly focus on the metrics contributing to the scalability of the system, namely
ingestion throughput and publishing latency at the collector as well as at the cloud.

5.5.1 Benchmark environment

We implemented FRESQUE in Java 1.8.0. Data was encrypted by the Java package
(javax.crypto). We ran our experiments on the Galactica platform [67] and organized
FRESQUE as a cluster of 17 nodes running on Ubuntu 14.04.4 LTS. Each node was used to
run one component of the FRESQUE. The configurations of nodes are detailed in Table 5.1.
The TCP socket was used for exchanging data among the components of the FRESQUE.
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Table 5.1 – Experimental environment of FRESQUE

Component CPU (2.4 GHz) Memory (GB) Disk (GB)
Dispatcher 4 8 80
Merger 4 8 80
Checking node 4 8 80
Computing node 2 2 20
Data source 4 16 80
Cloud 16 64 160

We evaluate our solution on two real datasets NASA log [78] (1, 569, 898 records, five
attributes), Gowalla [61] (6, 442, 892 records, three attributes). We use the reply byte and
check-in time as indexed attributes, respectively. Based on these datasets, the domain of
the reply byte is divided into 3421 bins and each bin interval represents 1 KB. Meanwhile,
the domain of the check-in time is 626 bins and each bin interval implies one hour. The
fanout is set to 16. We use a time interval of 60 seconds and incoming data rate is
200k records per second. The initial privacy budget and coefficient is set to 1 and 2,
respectively, for all experiments unless otherwise stated. Both δ and δ′ are set to 99% and
all experiments were run over ten minutes. Then, we present the averaged results of ten
publications in Section 5.5.2.

5.5.2 Results

a) Ingestion throughput
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Figure 5.4 – Ingestion throughput of FRESQUE
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We first present the ingestion throughput of FRESQUE with a varied number of com-
puting nodes. Then we compare its ingestion throughput to those of the (non-)parallel
PINED-RQ++. The results in Figure 5.4 show that the throughput of FRESQUE significantly
increases as the number of computing nodes goes up. Especially, the highest throughput
is reached to ∼142k records/second (NASA) and ∼165k records/second (Gowalla) as we
use the setting of 12 and 8 computing nodes, respectively. As compared to ArxRange
[86], one of the state-of-the-art solutions, FRESQUE ensures the ingestion throughput is at
least two orders of magnitude higher.

(1) Comparison with non-parallel PINED-RQ++. With the given settings, non-parallel
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Figure 5.5 – Improvement of FRESQUE, compared to PINED-RQ++

PINED-RQ++ is able to ingest only 3,159 records/s in NASA and 13,223 records/s in
Gowalla. Such ingestion throughputs are substantially lower than those of FRESQUE.
The results in Figure 5.5 demonstrate the outperformance of FRESQUE compared to
non-parallel PINED-RQ++. The enhancement goes up as the number of computing
nodes grows. The highest improvement can be seen as the collector is configured as a
12-computing node cluster, and the ingestion throughput is improved by ∼11× and
∼43× in Gowalla and NASA dataset, respectively. Even if only two computing nodes are
used, FRESQUE can achieve the improvement of 7.61× (NASA) and 2.69× (Gowalla).

Compared to Gowalla, NASA always exhibits higher improvement with the same
number of computing nodes. The major source of this gap comes from the fact that the
record size and the domain of NASA record are larger than those of Gowalla. Based on
such observation, we can conclude that FRESQUE would be more beneficial as datasets
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have larger size and/or domain.

(2) Comparison with parallel PINED-RQ++. The throughput of FRESQUE is always
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Figure 5.6 – Comparison of ingestion throughput with parallel PINED-RQ++

higher than that of parallel PINED-RQ++ as we vary the number of computing nodes at
the collector, as shown in Figure 5.6. The setting of 12-computing node cluster gives
the biggest gap, the throughput of FRESQUE is ∼6.6× (NASA) and ∼3.0× (Gowalla)
better than that of parallel PINED-RQ++. Noted that since the record size of Gowalla is
smaller than that of NASA, the throughput in FRESQUE reaches the peak as we only use
8 computing nodes in Gowalla, thereby the use of more computing nodes does not bring
more benefit in this case.

b) Throughput degradation

We measure the throughput degradation at the collector of the three prototypes. Such
metric is obtained by comparing their maximum ingestion throughput with the maximum
incoming throughput (without any processing on incoming data) at the collector. As
shown in Figure 5.7, FRESQUE experiences the lowest throughput degradation among the
three prototypes, with a reduction of at least ∼3.9× (compared to parallel PINED-RQ++)
in NASA, and at most ∼7.9× (compared to PINED-RQ++) in Gowalla.
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c) Publishing time
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Figure 5.8 – Publishing time in FRESQUE

We now turn our attention into the publishing time metric. That is, the time required
to publish a dataset of FRESQUE and parallel PINED-RQ++. Noted that FRESQUE consists
of the three main components, namely the dispatcher, the checking node, and the merger
which mainly decide the publishing time at the collector. We thus measure the delay of
the three components separately. Additionally, we consider the time needed to perform
a matching process at the cloud. This is because a long delay of this process might also
lead to bottlenecks.
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(1) Publishing time at the dispatcher. As shown in Figure 5.8, the time is always
lower than 520ms in NASA and 200ms in Gowalla. The delay even gradually decreases as
the number of computing nodes increases. In particular, the dispatcher takes only 101ms
(NASA) and 19ms (Gowalla) for performing the publishing tasks in a 12-computing node
cluster.

(2) Publishing time at the merger. Upon receiving the AL and IT of a publication
from the checking node, the merger performs following tasks: combining the AL and
IT to get a secure index, inserting removed records into pre-built overflow arrays, and
publishing them to the cloud. Such tasks are performed independently of the other
components at the collector, and may not cause any bottlenecks for the ingesting
components (e.g., dispatcher, checking node). However, a small delay at this component
would bring much benefit since it allows to early supports indexing over published data.
The results in Figure 5.8 indicates that the time is virtually unchanged in the two
datasets as their size changes. Specifically, the time in NASA fluctuates between 149ms
and 191ms while that in Gowalla varies between 18ms and 20ms. Since the domain size
of NASA (3421 bins) is larger than the one of Gowalla (626 bins), the NASA experiences
a higher publishing time than that of the Gowalla dataset.

(3) Publishing time at the checking node. It is worth noting that the data of a
new publication is only sent to the cloud as soon as the checking node finishes the
publishing job on the previous publication. Thus, we attempt to design FRESQUE so
that the checking node has a lightweight publishing job and does not impact much on
the ingestion performance. In particular, the checking node only sends the buffer of
the randomer to the cloud and the updated AL to the merger at the end of each time
interval. The results in Figure 5.8 give that the time is under 600ms in NASA and 80ms
in Gowalla. It is also easy to understand that the publishing time at the checking node is
mainly represented by the time of sending the randomer buffer that varies according to
the required level of security. A huge randomer buffer would result in long publishing time
at this component, however, thanks to the local buffer of computing nodes, the ingestion
throughput is not degraded much. We delay the evaluation of using the randomer in the
later part of this section and discuss the scalability of the system with regard to the
randomer in Section 5.6.

82



(4) Matching time at the cloud. To show the efficiency of FRESQUE at the cloud
side, we measure the time required to associate metadata (physical locations of records)
with published index. As depicted in Figure 5.8, the time in FRESQUE goes up according
to publication size. This is not because the complexity of the matching algorithm, but the
size of the metadata. The larger publication, the larger metadata the cloud maintains,
and the longer time the cloud takes to write such metadata to file after it is associated
with the corresponding index. Nonetheless, FRESQUE spends only 877ms and 837ms
on matching the large dataset of 8.1M records (NASA) and 9.8M records (Gowalla),
respectively. These performances come from the deletion of the matching table from
FRESQUE’s architecture.

(5) Comparison with parallel PINED-RQ++. We now compare publishing time at
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Figure 5.9 – Comparison of publishing time at collector with parallel PINED-RQ++

the collector between FRESQUE and parallel PINED-RQ++. Since the different numbers
of computing nodes used result in different publication sizes, we consider the time is
required to publish a record instead of a whole dataset. The results in Figure 5.9 show
that parallel PINED-RQ++ (dispatcher) takes longer delay than FRESQUE (dispatcher,
checking node, and merger) for the two datasets used. Regarding the dispatcher, the
publishing time of FRESQUE is at most ∼62× and ∼127× lower in NASA and Gowalla,
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respectively, compared to parallel PINED-RQ++.

d) Matching time
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Figure 5.10 – Comparison of matching time at cloud with parallel PINED-RQ++

PINED-RQ++ uses a matching table to keep the relationships (i.e., pointers) between
published data and an index template during a time interval. When a matching table
is published to the cloud, a matching job will immediately be triggered to reconstruct
such pointers. The matching job however has a complexity of O(n2), where n is dataset
size. Obviously, as n is large, the cloud needs long time for the matching job, leading
to potential bottlenecks at the cloud. We thus evaluate the matching time is needed to
process a publication in parallel PINED-RQ++ and FRESQUE. The results in Figure 5.10
show that the time of parallel PINED-RQ++ increases when publications are larger. For
example, when a dataset of 5M records is used, the matching time in parallel PINED-RQ++
reaches ∼78s (NASA) and ∼76s (Gowalla). In contrast, FRESQUE constantly maintains a
short time for processing a publication at the cloud, with a maximum is ∼54ms (NASA)
and ∼43ms (Gowalla). The matching time of FRESQUE is at least two orders of magnitude
shorter than that of parallel PINED-RQ++.
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e) Impact of the randomer

Due to privacy dimension, we propose to use the randomer that always maintains
a local buffer for perturbing incoming data. A large size of the buffer may introduce a
bottleneck at the collector. We thus take the impact of this component into account.
Indeed, the buffer size is mainly determined by two configurable parameters, namely
privacy budget ε and coefficient α. Hence, we run various experiments with varied values
of the two parameters to evaluate the impact of the randomer. We use a configuration of
10 computing nodes.

(1) Privacy budget ε. We now consider the impact of the randomer in terms of
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Figure 5.11 – Publishing time with different privacy budgets when the coefficient is set to
2.

publishing time as we use different privacy budgets, ranging from 0.1 to 2.0, for
a publication. In these experiments, we record the publishing time at the collector
(dispatcher, checking node, and merger), and the matching time at the cloud. The results
in Figure 5.11 show that the privacy budget influences the publishing time at the three
components. Indeed, as a smaller privacy budget is used, their publishing time goes up.
The highest increase is witnessed at the checking node, approximately 7s (NASA) and
about 0.8s (Gowalla) for the budget of 0.1. Similarly, as the privacy budget declines,
the size of overflow arrays and the number of dummy/removed records go up, causing a
slight increase of the publishing time at the dispatcher and the merger.

85



CHAPTER 5. FRESQUE

(2) Coefficient α. We adjust the value of α to see the impact of randomer on
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Figure 5.12 – Publishing time with different coefficients when the privacy budget is set to
1.

publishing time at the checking node, the merger and the cloud. As expected, when we
increase the value of α, the publishing time grows (see Figure 5.12). However, even if α
is set to 20, the checking node only takes about 6s (NASA) and 0.8s (Gowalla). Also, the
time does not change much at the dispatcher, the merger and the cloud.

(3) Impact of the randomer on ingestion throughput. We also consider the inges-
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Figure 5.13 – Ingestion throughput of FRESQUE with randomer
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tion throughput at the collector as we vary the two parameters ε and α. Although the
publishing time at the checking node goes up as we use smaller privacy budget and/or
larger coefficient, the ingestion throughput at the collector is relatively stable. This is
because while the checking node prepares publish the current dataset, including the
sending of randomer to the cloud, incoming data of the new publication is still processed
and buffered at the computing nodes. As it can be seen in Figure 5.13a and Figure
5.13b, the results show that the throughput in NASA dataset fluctuates between ∼115K
records/s and ∼134K records/s while that of Gowalla ranges from ∼150K records/s to
∼166K records/s.

5.6 Discussion

a) An application of FRESQUE

We present a possible real-life application of FRESQUE, that is to say FluTracking [40].
Flutracking [40] is a web-based survey of influenza-like illness. This system weekly

sends a link via email to all participants who will then submit required information via a
web interface. The submitted data can be managed in a cloud and accessed by authorized
users for analysis and prediction.

Although our description of FRESQUE focuses on the insertion of one record per indi-
vidual, it is simple to extend our approach to the case of multiple records per individual.
For example, in Flutracking [40], an individual can submit personal data several times to
the database, at most once for a week. For such case, an important question is how to
manage privacy budget over multiple insertions of the same individual.

In the targeted use case, it is unlikely to have multiple records of the same individual
over a short period (e.g., weekly). Therefore, we can assume that a dataset of each period
(e.g., week) is published with a secure index, and this publication consists of at most one
record per individual. For each dataset, the system uses a portion of the total privacy
budget εtotal for constructing a secure index. To determine how much budget is spent
for a publication, an admin may necessarily determine how long the system needs secure
indices for fast range query processing. εtotal is then divided according to the determined
period. For instance, if the system must maintain indices for one year (52 weeks), then
an admin can divide the total privacy budget εtotal into 52 equal portions, ε1, ..., ε52, so
that εtotal = ∑52

i=1 εi. Each of which is used to publish dataset of one week. Certainly,
the system needs to make sure that an individual contributes at most one record per
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publication. Fortunately, thanks to the existing collecting method of the Flutracking, this
work can simply be achieved. In particular, a unique link can be sent to all participants
every Monday. The link is set to expired and a dataset is published before the next
Monday. This ensures that a participant links to at most one record per publication.

b) Pre-building overflow arrays

One of the challenges of PINED-RQ++ [104] is the time for building overflow arrays.
Specifically, when the number of bin of index is large, the time for building overflow
arrays is high, resulting in potential bottlenecks. Although FRESQUE avoids bottlenecks
due to the asynchronous publishing method, the merger confronts will take time in such
case. This thus delays the availability of secure at the cloud. To address it, we can simply
pre-build overflow arrays. In particular, at the beginning of each time interval, FRESQUE
builds overflow arrays for the publication. However, there may be a situation where the
time interval is small and the domain size is large. Pre-building overflow arrays during a
time interval may not be enough. To solve it, we can prepare a database of dummy records
in advance. The building process of overflow arrays can use such database to boost the
building time.

c) Scalability of randomer

The randomer buffer mainly depends on the in-memory storage for fast access. This
would raise scalable challenges on the checking node as the system needs a huge buffer.
Recently, persistent memory (PM) technology [16] has had significant achievements, it
features close-to-DRAM and could be larger than DRAM in capacity. Thus, when a ran-
domer buffer is huge, such technology could be taken into account. We would let such
extension as one of our future works.

5.7 Conclusion

This chapter presents a scalable ingestion framework for secure range query processing
over encrypted data on clouds, FRESQUE. Particularly, we thoroughly analyze and identify
the problems, degrading the ingestion throughput, of the-state-of-the-art solutions, espe-
cially those of PINED-RQ++. To address these drawbacks, we design a new architecture
such that it is fully distributed processing incoming data at the collector. Additionally,
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we introduce a data representation as well as an asynchronous publication mechanism. All
of them together allows FRESQUE to achieve intensive consumption throughput, reaching
over 165K records/s. Moreover, we introduce and carefully integrate the randomer into
our new architecture to adapt FRESQUE to a stronger type of adversary (e.g., online-ext)
as well as improving the practicality of the framework. We give formal proof to prove the
security guarantees of FRESQUE. Lastly, we discuss a potential application of FRESQUE as
well as its scalability.

Although FRESQUE allows to efficiently ingest huge arrivals per second, like PINED-RQ++
it supports only a limited number of updates. This is because PINED-RQ, PINED-RQ++,
and FRESQUE have to use a portion of the fixed privacy budget for each update to the
same individual, and hence running out of budget soon in case of numerous updates.
Moreover, such situation can lead to high sensitivity that causes large injected noise to
the private index, hence not only destroying the index utility, but also resulting in high
overhead of storage. These drawbacks make PINED-RQ impractical to applications where
an individual has many records. To deal with these limitations, in Chapter 6, we introduce
a novel scheme that practically supports an unlimited number of updates while ensuring
good range query performance.
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Chapter 6

PARADOT

Abstract: Many studies, including PINED-RQ++ and FRESQUE, have been proposed to
address range query processing on encrypted data, however, none of them can meet the
requirements of strong privacy protection, efficiency, lightweight updates, and practical
space needs. This chapter thus presents a novel scheme for secure range query processing
over encrypted data, PARADOT, that practically satisfies all these requirements. This means
that PARADOT can achieve both efficiency and strong privacy protection while ensuring
practical space overhead and lightweight update operations. To achieve these goals, our
scheme relies on equal-size buckets and secure indexes. The former enables to protect the
privacy while the latter allows to provide fast range query processing. In addition to these
components, we propose to decouple secure indexes from their buckets by using equal-size
bitmaps. These bitmaps privately maintain links between secure indexes and buckets of
outsourced data. This decoupling approach allows PARADOT to efficiently support unlimited
lightweight updates without revealing anything about underlying plaintexts. Moreover,
the proposed approach exhibits practical space overhead of encrypted bitmaps. With
thorough experiments on real-world datasets, we show that PARADOT outperforms the
state-of-the-art solutions in various metrics. For example, as compared to PINED-RQ [94],
PARADOT is two orders of magnitude faster in terms of query response latency and uses
at most ∼111× less space requirement. More importantly, PARADOT is able to efficiently
support numerous lightweight updates, that are either very costly or are not supported
by previous schemes.
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6.1 Introduction

Many studies have been proposed to address privacy-preserving range query processing
on encrypted data. However, they are still far from acceptable solutions. Particularly, none
of existing schemes can satisfy the requirements of efficiency, high security, lightweight
updates, and small space overhead. Although PINED-RQ++ and FRESQUE can avoid conges-
tion in case of high speed of incoming data, they fail to support numerous updates. These
schemes also incur high space overhead when an individual has many records. In this
chapter, we thus develop a novel scheme that meets all the target requirements, namely
efficiency, high security, lightweight updates, and small space overhead. The efficiency
and high security are enabled by the use of existing secure indexes, e.g., PINED-RQ [94],
while the scalability in terms of update and space usage relies on encrypted bitmaps. Fur-
thermore, we use the two non-colluding semi-honest cloud providers in this scheme. We
emphasize that this model is not new and has widely been used in several recent works
such as [112, 76, 37, 69].

We first present an algorithm that partitions a dataset into a set of equal-size buckets.
Each bucket is assigned a unique identifier (id). We then use equal-size bitmaps [81, 80]
to encode these bucket ids for keeping the relationship between the buckets and distinct
values in the indexed attribute. A secure index is then built over these bitmaps instead
of buckets or records. These bitmaps are subsequently encrypted by an additively ho-
momorphic encryption scheme (e.g., Paillier [84]) while the buckets are encrypted by a
symmetric encryption scheme (e.g., AES in CBC mode [113]). The private index and en-
crypted bitmaps are finally published to the first cloud while the encrypted buckets sent
to the second cloud. By using equal-size bitmaps and equal-size buckets, we prove that the
adversary cannot infer any useful information from the published data while the problem
of high storage overhead in prior schemes are addressed.

With such an approach, every update to existing publications results in two interac-
tions. One is an appending to all encrypted bitmaps at the first cloud so that the size
of all encrypted bitmaps is always kept equal. The second interaction is the sending of
the encrypted buckets, that contains the update, to the second cloud. We note that the
condition of equal size for bitmaps is necessarily ensured to make updates to existing data
indistinguishable. Hence, updates do not disclose any useful information about underlying
plaintexts at the first cloud. Similarly, by being separated from the secure indexes, the
second cloud cannot also infer any sensitive information when the encrypted equal-size
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buckets are arrived. With this updating mechanism, PARADOT is able to efficiently support
an unlimited number of updates.

The proposed scheme provides not only efficient secure range query processing, but
also high privacy protection, even in case of numerous updates. Experimental results
show that PARADOT significantly outperforms prior solutions in various metrics when both
uniform and skewed distributions are used. For instance, as compared to PINED-RQ,
PARADOT is ∼176× faster in terms of query response latency and uses at most ∼111×
less space requirement. Furthermore, with dataset sizes of 0.5M and 5M records, the
index size of PARADOT is about 42MB and 406MB while PBtree [66] requires 1.598GB and
18.494GB, respectively. Therefore, we develop PARADOT, a novel scheme for private and
scalable range query processing on encrypted outsourced data, including the following
main contributions.

1. A novel publication approach for efficient range query processing on encrypted data,
consisting of a partitioning algorithm, an encoding method based on bitmaps, and
a decoupling storage model.

2. A lightweight updating strategy that requires only two simultaneous interactions.

3. A privacy proof for the proposed scheme.

4. A thorough empirical evaluation demonstrating the superiority of our solutions com-
pared to the state-of-the-art solutions such as PINED-RQ [94] and BPtree [66].

The chapter is structured as follows. In Section 6.2, we briefly present the problem state-
ment. We then describe PARADOT in Section 6.3. We analyze the security of PARADOT in
Section 6.4. Section 6.5 presents our experimental results. We finally give conclusion in
Section 6.6.

6.2 Problem definition

A dataset is a relation D(A1, . . . , Ad), where Ai is an attribute. An index can be built
over a subset of attributes Ak = {Ai, . . . , Aj} (1 ≤ i ≤ j ≤ d). Queries are non-aggregate
one-dimensional range queries. A query Q is evaluated over Ak. Let V = {v1, v2, . . . , vn}
be a set of distinct values from the domain of Ak. The dataset may contain multiple
records that have the same value vi on Ak.
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Figure 6.1 – Overview architecture of PARADOT

6.2.1 Overview architecture of PARADOT

We consider the architecture as depicted in Figure 6.1. We model our solution with an
assumption of the existence of two non-colluding semi-honest cloud providers, Cloud S1

and Cloud S2, where Cloud S1 holds private indexes and Storage Cloud stores encrypted
records. We refer Cloud S1 as Indexing Cloud and Cloud S2 as Storage Cloud. We em-
phasize that there are several cloud services that are often provided by large companies,
namely Amazon, Google, and Microsoft. A collusion among them is highly unlikely to
happen as it will destroy their reputation.

In this architecture, data is first gathered at the collector. Periodically, the collector
independently pre-processes the collected data. This process partitions the dataset into
equal-size buckets and creates two complementary data structures, a secure index (e.g.,
PINED-RQ [94], Logarithmic-SRC [32], or Arx [86]) and a set of bitmaps. The index is
built on these bitmaps which keep private links to buckets. Before being published, the
buckets are encrypted by an encryption scheme while the bitmaps are encrypted by an
additively homomorphic encryption scheme (e.g., Paillier [84]). Then, the private index
is published to Indexing Cloud along with the encrypted bitmaps while the encrypted
buckets are transferred to Storage Cloud. A client with a private key can send a range
query to Indexing Cloud. Based on the encrypted bitmaps and the private index, Indexing
Cloud obtains the links to relevant buckets. These links are then sent to Storage Cloud for
retrieving the corresponding buckets before returning them to the client. The returned
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buckets are lastly decrypted for final results. In our architecture, we consider the two
clouds as untrusted components while the others are trusted. This chapter considers the
same threat model as the previous one (Section 5.2.1).

6.2.2 PINED-RQ index

In this chapter, we integrate PINED-RQ index into our scheme to facilitate the query
processing. We choose PINED-RQ [94] due to the fact that it ensures efficiency and formal
security guarantees while a clear secure index requires very small space. Unfortunately, it
encounters high sensitivity as an individual links to many records. To get rid of the privacy
budget issues in PINED-RQ, we only consider indexing identity attributes. A value of such
attribute allows to identify uniquely an individual. It can be direct identifiers (e.g., driver’s
license, bank account number, social security number, etc.) or a group of quasi-identifiers
(e.g., zip code, race, gender, and date of birth, etc.). Interestingly, our approach allows
PINED-RQ to support unlimited number of updates in that setting.

6.3 PARADOT

This section overviews PARADOT. In particular, given a dataset, D, the collector
first partitions it into a set of buckets. Each bucket has a unique id and only contains
records that have the same value of the indexed attribute, Ak. However, records with the
same value of Ak may be distributed to more than one bucket. The number of buckets
thus varies according to the evolution of the data collection. The collector then creates
bitmaps on the bucket ids to keep links to these buckets. To do that, for each unique
value vi of Ak, a bitmap is built to encode the ids of the buckets that contain records
whose indexed value is vi. Then, a private index (e.g., PINED-RQ [94]) is built over the
created bitmaps instead of records. Lastly, PARADOT uses a symmetric encryption scheme
(e.g., AES) to encrypt the dataset (now it is buckets) and a partially homomorphic
encryption scheme (e.g., Paillier) to encrypt the bitmaps before publishing them to the
clouds, as illustrated in Figure 6.2.

Key management. In PARADOT, the public key, kpub1 , of the PHE scheme is held
at the collector and Indexing Cloud while the corresponding private key, kpriv1 , is
shared with Storage Cloud. With such an approach, after bitmaps are encrypted by
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the collector, Indexing Cloud is able to perform the addition of the encrypted bitmaps,
but cannot know the underlying plaintexts. Only Storage Cloud can decrypt the data
encrypted by kpub1 . On the other hand, the secret key, k2, of the symmetric encryption
scheme is shared among the two components, namely the collector and the client, for
encrypting/decrypting buckets.

Figure 6.2 – PARADOT protocol

6.3.1 Scheme overview

We now delve into details of how the collector processes and publishes a dataset. This
process includes the following main steps.

a) Partition

This step aims to partition a dataset into a set of equal-size buckets so that each
bucket contains only records of the same indexed attribute value. However, the challenge
is that the input dataset is often non-uniform and results in buckets with different sizes,
that can be exploited by the adversary. Hence, our partitioning strategy must ensure that
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Figure 6.3 – Sample publication

all buckets are equal in size before they are encrypted and published to the cloud. One
may propose to pad small buckets with fake data to achieve equal-size buckets. But this
approach would incur significant storage overhead, especially when data distribution is
highly skewed. Instead, PARADOT seeks to use multiple smaller buckets for values with
high frequency. That is, records with the same value of Ak can be distributed to more
than one buckets with a smaller size. The question is now how to find a bucket size,
s∗, so that all s∗-size buckets completely contains the dataset while avoiding inserting
fake data as much as possible. To address it, we design an algorithm that searches for
s∗. Basically, our algorithm tries all potential sizes, sp (1 ≤ sp ≤ smax), where smax is
the maximum frequency of a value in Ak. For each sp, the algorithm calculates the total
number of injected dummy records that are necessary to make the size of output buckets
equal. Then, it picks the one that leads to the smallest number of dummy records, as
illustrated in Algorithm 1. It is worth noting that since sp starts from 1, two possible
values that the algorithm can return, 1 or the minimum frequency. This also means that
with such setting, our protocol does not insert any dummy record into buckets such that
they are equal in size. However, this reveals the minimum frequency in dataset. To avoid
such leakage, sp can be initiated by a value larger than 1. Then, equal-size buckets may
contain dummy records. We let this choice as an application-specific parameter since the
leakage is limited.

After the size, s∗, is found, PARADOT simply obtains n s∗-size buckets for all values in
Ak. The i-th bucket is assigned a unique random identifier qi, where qi ∈ [0, n − 1]. As
demonstrated in Figure 6.3, there are in total 6 buckets for the whole toy dataset, D,
and each bucket has size of 2. Finally, we obtain a list of unique values to which a list of
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buckets belongs.

Algorithm 1: Partition
input : A list of potential sizes (slist)
output: A bucket size
smin:= 1;
smax:= Max (slist);
for k ← smin to smax do

// Find total fake records for each k
fakeRecordSize ← 0;
for s ∈ slist do

numBucket ← s div k;
if s mod k == 0 then

numBucket ← numBucket + 1;
end
fakeRecordSize ← numBucket ×k − s

end
map [k] ← fakeRecordSize ;

end
// Return the element having the least number of fake records
foundSize ← findMin (map);
return foundSize

b) Encode and Transform

This step considers using bitmaps [81] to privately keep links to the buckets which are
generated in the previous step. More specifically, suppose the dataset D is partitioned into
a set of n buckets, B = {B1, . . . , Bn}, with the corresponding identifiers, {q1, . . . , qn}. For
each distinct value vi of the indexed attribute, PARADOT allocates a bitmap bi to encode
the id of buckets belonging to vi. The j-th bit of bi is turned on (true or 1) if and only if
there exists a bucket whose id is j belongs to value vi. The number of bits in a bitmap is
equal to the number of buckets of the publication. Due to the same length, these bitmaps
become indistinguishable from the adversary after they are encrypted. As an example
shown in Figure 6.3, because there are 6 buckets, each bitmap has the length of 6. As the
1-st and 4-th buckets whose SSN is 003, the corresponding bitmap is 010010. With this
approach, range queries over the indexed attribute can be answered efficiently with these
bitmaps. For instance, the range query, (Q1) Select * From database Where SSN Between
002 And 003, can be answered by performing OR over the bitmaps of 100000 and 010010.
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The result of such operation is 110010, and then the buckets whose id is 0, 1, and 4 are
returned. Nonetheless, the question is how to privately perform such bit-wise operation
at the cloud.

One may delegate the bit-wise computation to another trusted component, the col-
lector for example. But such an approach would not be scalable since it results in high
communication overhead and puts more pressure on the collector. Instead, we propose
to use a partially homomorphic encryption scheme to privately perform that task on the
cloud. To achieve it, bitmaps should be converted into numbers that partially homomor-
phic encryption schemes often work on. Particularly, when all bucket ids are encoded, the
bitmaps are then transformed into numerical representations. In other words, the collec-
tor first reverses the order of bits in a bitmap. The reversed bitmap is now considered
as a binary number and is transformed into the corresponding decimal representation,
hereafter referred to as b-code (bitmap code). For example, considering the first bitmap
(000001), its binary representation (reversed bitmap) and its b-code are 100000 and 32,
respectively. This step finally outputs a bitmap table, BT , where the first column contains
the indexed attribute values and the second column holds the corresponding b-codes. To
answer the query Q1 with b-codes, PARADOT now performs the sum operation over b-codes
of the values between 002 and 003, particularly 1 and 18, to obtain 19. This number
is then converted to binary representation (010011) and reversed to the corresponding
bitmap (110010). Based on that bitmap, the corresponding buckets (0, 1, and 4) are
returned.

c) Build a private index

We now describe how to build a secure index on the b-codes obtained from the
previous step, particularly the PINED-RQ index [94]. More importantly, with our
approach, PINED-RQ gets rid of the problem of high sensitivity and avoids a huge
number of injected dummy data. The main reason is that a distinct value in the indexed
attribute (or an individual) is represented by only one b-code, and when the PINED-RQ
index is built on such b-codes, the sensitivity is constantly one.

Build a clear index. The process of building a clear index in PARADOT is the
same as that in PINED-RQ [94]. The main difference is that instead of building an index
over the records of a dataset, PARADOT constructs it over the corresponding bitmap table
BT . More precisely, a clear index will be constructed over the indexed attribute Ak of
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that bitmap table.
Note that since each row in the bitmap table represents only one unique value of the

indexed attribute (or an individual in case of identity attributes), the absence/presence
of an individual will change the counts on the corresponding path from root to leaf by at
most 1. This makes the sensitivity of secure index constant (∆f = 1) and independent of
the frequency in Ak. Such property allows PARADOT to avoid significantly injected noise
as the Laplace mechanism is applied to perturb the index. Considering the example in
Figure 6.3, PINED-RQ needs to set the value of the sensitivity parameter to 4 to guarantee
privacy protection while that is only 1 in PARADOT.

PARADOT also creates links from the index leaves to the corresponding rows in the
bitmap table. After these links are formed, the first column of the bitmap table is
removed. This means that the index leaves only have references to b-codes at the end of
this process, as illustrated in Figure 6.3.

Perturb the index. Before publishing the index to Indexing Cloud, the collector
needs to perturb it with the Laplace noise as in PINED-RQ. However, the noise is
independently added to each index node and may be positive or negative, leading to
inconsistency between the count of a leaf and its pointers to b-codes. To deal with this
issue, PINED-RQ adds dummy records in case of positive noise and removes real records
in case of negative noise. Removed records will be concealed into the corresponding
overflow arrays. Our approach also maintains such operations to ensure the consistency.
However, the query processing needs to add all b-codes of queried leaves together,
including dummy and real ones, such dummy b-codes may change the information
encoded in real ones. Thus, to make sure dummy b-codes have no impact when they are
added to real b-codes, we propose to used zero b-codes (see Figure 6.3).

Considering positive noise, when a leaf receives a positive noise c, PARADOT then ran-
domly adds c zero b-codes (dummy data) to the existing set of b-codes and links them
to that leaf. For example, since node 3 receives positive noise (+1), one zero b-code is
generated and randomly linked to that node.

Regarding negative noise, we can indeed use overflow arrays for hiding removed b-codes
as in PINED-RQ, however, these overflow arrays unnecessarily result in a large number
of dummy records. Instead, PARADOT adds all removed b-codes of a leaf into a single b-
code, that is considered as the rb-code (removed b-code) of that leaf. As demonstrated in
Figure 6.3, two b-codes are removed from node 6 due to the negative noise (-2). These
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removed b-codes and its zero rb-code are then summed together to get a final rb-code
(22). It is also worth noting that since the id of buckets is unique, all removed b-codes of
a leaf can be completely hidden into a single rb-code without incurring overflow or losing
the information held by b-codes (see Section 6.3.4). This differentiates from PINED-
RQ overflow array, that only ensures to hide all removed records with an adjustable
probability. Moreover, our approach now needs only one number for each leaf and does
not incur any dummy data for concealing removed b-codes while PINED-RQ would add
a large amount of dummy data as high security is required.

d) Publish

PARADOT encrypts all b-codes, rb-codes, and buckets before sending them to Indexing
Cloud and Storage Cloud, respectively. In particular, the collector shuffles and encrypts
the (r)b-codes by using the public key, kpub1 , and all buckets by using the secret key k2.
The encrypted (r)b-codes and the private index are published to Indexing Cloud while
the encrypted buckets are shuffled and sent to Storage Cloud. Note that although the id
of buckets is kept in clear as they published, no sensitive information can be exploited
from such ids since they are random. As discussed in Step a), the only thing that the
adversary can learn from these buckets is the minimum frequency.

6.3.2 Updates

This section describes how PARADOT supports updates to existing publications. The
updating feature here includes insertion, modification, and deletion. PARADOT considers
updates as new inserts of new records to the existing publication and each new record
contains an extra attribute to indicate the corresponding action on it, namely inser-
tion, modification, or deletion. Based on this extra attribute, when the consumer receives
results, modifications and deletions are then processed locally. Since PARADOT stores en-
crypted dataset (buckets) on Storage Cloud and private index on Indexing Cloud, updates
also require interactions to both of them. We consider the two following cases.

a) Updates of existing values

Given a delta dataset, ∆D, that contains updates to existing values of the indexed
attribute, the collector partitions the delta dataset into buckets, then it builds the cor-
responding bitmap table. After that, the collector encrypts these components and sends
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Figure 6.4 – Updating the existing index that is presented in Figure 6.3

them to Storage Cloud and Indexing Cloud, respectively. Apparently, the updating pro-
cess of existing values is similar to the publishing process of a new dataset, however, the
difference is that it does not require building a new secure index. The question is how to
manage several updates, including (r)b-codes and buckets, of an existing publication at
the clouds.

To address it, PARADOT uses sequential numbers to track updates to the same pub-
lication. In particular, for a new publication/update, a sequential number is generated
and tagged to their components (e.g., private index, a set of buckets and (r)b-codes), as
shown in Figure 6.4. The (r)b-codes of an update will be appended to the (r)b-codes of
the previous one of the same index at Indexing Cloud. Such organization subsequently
forms tables of b-codes and r-codes, denoted as CT and RCT, respectively, for each in-
dex at Indexing Cloud. Each CT row contains b-codes of an indexed attribute value or
dummy b-codes and each column (from the second one) implies the corresponding update
to that index. Similarly, each RCT row contains r-codes of a leaf and each column (from
the second one) represents the corresponding update.

With this organization, when a range query reaches leaves of an index, the correspond-
ing rows in the tables CT and RCT are retrieved, and the sum is performed over cells
of the same column. This outputs a row of encrypted sums, each is associated with its
sequential number. When this row is sent to Storage Cloud, it is decrypted and Storage
Cloud is able to find the buckets belonging to each update. Since the addition of columns
is independent, PARADOT can take advantages of parallelism to boost the summing com-
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putation.

b) Inserts of new values

Figure 6.5 – Inserts of new values: Two toy datasets, D1 and D2, are disjoint such that
two distinct privacy budgets ε1 and ε2 are in turn used to build the corresponding secure
indexes.

In case of new values, PARADOT simply treats records of these values as a new dataset
and publishes it as a new publication. This means that, PARADOT needs to build a new
secure index for such new publication. With regards to PINED-RQ index, we can use the
whole privacy budget to perturb the index since datasets are disjoint. As a simple example
illustrated in Figure 6.5, there are two datasets D1 and D2 are disjoint and assume that
D2 contains updates of new values. In this case, we use the whole privacy budget ε2 to
build a new secure index for this dataset.
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6.3.3 Unbounded bitmap size challenge

Note that the domain of b-codes is mainly decided by the size of bitmaps (or the
total number of generated buckets). However, the latter varies according to the evolution
of data. In the worst case, the largest number of buckets can be achieved when the
bucket size is one. This means that the encoding process may produce huge b-codes (huge
integers). The difficulty is that partially homomorphic encryption schemes like Paillier [84]
only properly encrypts/decrypts bounded values for a given public key. This means that
it does not properly work on b-codes whose value exceeds the upper bound of a generated
key. Using only one key that can encrypt huge numbers for all publications can solve the
challenge, however, this solution causes inefficient computations when publications have
very small number of buckets. Likewise, we can adaptively use different keys for different
publications, however, this approach would create unnecessary complexity for the key
management.

To address this, PARADOT uses a fixed-domain key and smaller groups of buckets. In
particular, suppose the maximum value that Paillier [84] can encrypt/decrypt is ku bits,
this means that bitmaps can maximally encode ku−1 bucket ids. If the number of buckets
is larger than ku − 1, they will be split into smaller groups of buckets so that the size
of each group is less than or equal to ku − 1. The first group is considered as a new
publication while the rest is updates to this publication. Regarding the example in Figure
6.3, assume that the value of ku is 4 bits, then the original group of buckets is split into
two groups whose size is 3 (see Figure 6.6). PARADOT then constructs a secure index over
the first group G1 while the second group G2 is considered as an update to that secure
index.

6.3.4 Query processing

As illustrated in Figure 6.2, when a range query is posed by the client, it is sent to
Indexing Cloud. The query is then evaluated over private indexes as in PINED-RQ (see
Section 3.5). This evaluation results in a set of encrypted (r)b-codes retrieved. Indexing
Cloud performs the addition of these (r)b-codes to obtain the encrypted sums which are
subsequently forwarded to Storage Cloud. Upon receiving these encrypted sums, Storage
Cloud uses the private key, kpriv1 , to performs a series of operations on them such as
decrypting, reversing, and transforming to get the corresponding bitmaps. Based on these
bitmaps, the corresponding encrypted buckets are retrieved and returned to the client.
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Figure 6.6 – Split large group of buckets into smaller ones

The client lastly uses the secret key k2 to decrypt the returned buckets for the final results.

Correctness. We now prove the correctness of the query processing in PARADOT.
Let C be a function that converts a binary number to the corresponding decimal
representation. Assume that there are n bitmaps of size m, that are reversed (R) and
transformed (T) as belows.

a11a12 . . . a1m

a21a22 . . . a2m

. . .

an1an2 . . . anm

(R)−−→

a1m . . . a12a11

a2m . . . a22a21

. . .

anm . . . an2an1

(T )−−→

c1 = C(a1m . . . a12a11)
c2 = C(a2m . . . a22a21)

. . .

cn = C(anm . . . an2an1)

(6.1)

, where aij ∈ {0, 1} is the j-th bit of bitmap i (1 ≤ j ≤ m and 1 ≤ i ≤ n).

Traditionally, to answer a range query by using these bitmaps, a logical operation
such as OR is applied on relevant bitmaps to get a resulting bitmap, denoted B. Based
on this returned bitmap, the corresponding buckets are retrieved. By contrast, PARADOT
performs the addition of b-codes of these bitmaps, then it transforms and reverses this
sum to the resulting bitmap, denoted B′. We now prove that B′ is equal to B.
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First, let b′i be the sum of all bits at the position i of n bitmaps.

b′1 = ∑n
i=1 ai1

b′2 = ∑n
i=1 ai2

. . .

b′m = ∑n
i=1 aim

(6.2)

Since a b-code is decimal representation of the corresponding reversed bitmap (or binary
number), the addition of b-codes is the same as the addition of the corresponding binary
numbers (*). Additionally, these bitmaps are used to encode unique random identifiers.
This means that at the same position of n bitmaps, there is at most one bit 1 and at least
(n−1) 0s. The addition of these binary numbers does not create any carry (**). From (*)
and (**), we can write the sum of n b-codes as b′m . . . b′2b′1 and C(b′m . . . b′2b′1) = ∑n

j=1 cj.
When the sum is obtained, it is reversed to get B′ = b′1b

′
2 . . . b

′
m.

To obtain B, we perform a logical operation OR (|) on n bitmaps. Similarly, since
identifiers are unique, B = b1b2 . . . bm and

b1 = (a11|a21| . . . |an1) = ∑n
i=1 ai1

b2 = (a12|a22| . . . |an2) = ∑n
i=1 ai2

. . .

bm = (a1m|a2m| . . . |anm) = ∑n
i=1 ai1

(6.3)

From (6.2) and (6.3), we have

b1 = b′1
b2 = b′2
. . .

bm = b′m

(6.4)

We can then conclude that b1b2 . . . bm = b′1b
′
2 . . . b

′
m (or B = B′)

6.3.5 Space overhead of bitmaps

Suppose a publication/update has b buckets. Each distinct value in Ak is associated
with a b-bit bitmap and a leaf is allocated an additional b-bit r-code for hiding removed
b-codes. Let m and l be in turn the total number distinct values in Ak and the total
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number of leaves, then the storage overhead in plaintext at Indexing Cloud is b ∗ (m+ l)
bits. These bits must be encrypted by a PHE scheme before being published. Hence, the
actual storage overhead of such bitmaps is O(|kpub1 | ∗ (m + l)), where kpub1 is the public
key of a PHE scheme used to encrypt a b-bit number. As experimentally demonstrated
in Section 6.5.6, this overhead is very small as compared to the state-of-the-art solutions,
especially when a uniform distribution is used.

6.4 Security analysis

We now analyze the privacy protection of PARADOT. Since PARADOT uses the two clouds
model, both Indexing Cloud and Storage Cloud are necessarily considered in this analysis.

Theorem 2 (Security of PARADOT): Security guarantee at Indexing Cloud relies
on the used secure index, particularly εn-SIM-CDP in case of PINED-RQ. Meanwhile,
PARADOT ensures semantic security at Storage Cloud with a limited leakage (e.g., the
minimum frequency of data) as the minimum of bucket size is one.

Proof. Indexing Cloud. PARADOT exposes two main data structures, secure index and
encrypted b-codes, to Indexing Cloud. Since the secure index is perturbed by the Laplace
noise, this data structure itself satisfies ε-differential privacy. This index is linked to a
set of b-codes that are encrypted by a partially homomorphic encryption scheme (e.g.,
Paillier). Such encryption scheme also provides semantic security [84]. Moreover, since
removed b-codes of a leaf are completely added into a complimentary rb-code, that is also
encrypted before being published, they also ensure semantic security. Hence, PARADOT
meets εn-SIM-CDP at Indexing Cloud.

Storage Cloud. We consider the case where the collector sends buckets to Stor-
age Cloud. We note that before sending buckets to Storage Cloud, the collector encrypts
them by using a semantic encryption scheme (e.g., AES in CBC mode) and then shuffles
the encrypted buckets. Additionally, the identifier of the published buckets is a unique
random number. Thus, the adversary cannot infer any information from these ciphertexts
and random identifiers. As a result, PARADOT meets semantic security at Storage Cloud.
However, as the minimum size of bucket is equal to one, the partitioning algorithm
reveals the minimum frequency in dataset, as discussed in Section a).
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Updating function. We also consider the case where updates are sent to the clouds. In-
deed, every update sends encrypted b-codes and encrypted buckets to Indexing Cloud and
Storage Cloud, respectively. At Indexing Cloud, the b-code table CT of an existing index
is appended by a column that contains the corresponding updating b-codes. Although
attackers are aware of some modifications to existing indexed values, they can not deter-
mine which one is updated due to equal-size b-codes. Meanwhile, the process of sending
the corresponding buckets to Storage Cloud is similar to that of publishing a new publi-
cation. Therefore, the privacy protection of such operations is also guaranteed in PARADOT.

Query processing. When a range query arrives at Indexing Cloud, after scan-
ning indexes, PARADOT directly performs the addition of the corresponding encrypted
b-codes. This operation enables to achieve the encrypted sums of b-codes without
revealing any useful information about underlying plaintexts. Upon receiving the
encrypted sums from Indexing Cloud, Storage Cloud uses the private key, kpriv1 , to
decrypt them for retrieving the corresponding buckets. Note that since Storage Cloud
only receives encrypted sums from Indexing Cloud, the adversary does not know
which b-codes contribute to those sums. In other words, she cannot infer to which
leaf/attribute value a fetched bucket belongs. In addition, the posed range queries
are inaccessible to Storage Cloud. Therefore, the adversary at Storage Cloud cannot
infer any useful information from these sums. However, since the same query will
result in the same retrieved buckets at Storage Cloud, PARADOT is vulnerable to access
pattern attacks at this component. To deal with it, ORAM such as [99, 95] can be taken
into account. Note that the integration of such approach is beyond the scope of this thesis.

Comparison to PINED-RQ(++). PINED-RQ satisfies (ε, δ)n-Probabilistic-SIM-CDP
privacy model [94] while PINED-RQ++ [104] meets that model with an assumption of the
existence of the two non-colluding clouds. In contrast, PARADOT meets εn-SIM-CDP at
Indexing Cloud, semantic security at Storage Cloud, and only discloses the minimum
frequency to the adversary at Storage Cloud. Note that this limited leakage can be
eliminated when the size of buckets is larger than one. Apparently, with such setting
and the assumption about two non-colluding clouds ensured, PARADOT provides stronger
privacy protection than PINED-RQ(++) since PARADOT does not rely on the δ parameter,
that is introduced by the use of overflow arrays in PINED-RQ(++).
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6.5 Validation

6.5.1 Benchmark environment

For the sake of simplicity, we use LevelDB [62] to store data at cloud servers. It is
an open-source on-disk key-value store developed by Google. At Indexing Cloud, secure
indexes are persisted into separate files while their b-code tables are put in LevelDB. Each
cell (encrypted b-code) in this table forms a key-value pair in LevelDB. Particularly, the
key of a pair is formed by the combination of four components, namely index identifier, leaf
identifier, the column and row number of the corresponding b-code. Meanwhile, the value
is the content of a cell in the table CB. On the other hand, Storage Cloud needs to store
bunches of encrypted buckets, each is associated with a sequential updating number. The
value is the ciphertext of a bucket while the key of a bucket in LevelDB is the combination
of three components, namely publication (or index) identifier, group identifier, and bucket
identifier.

PARADOT is implemented in Java. All experiments in this study are run on the private
cloud Galactica [67]. Specifically, the whole system is configured as a set of several virtual
machines running on the Ubuntu 14.04.4 LTS. Each component is run on an independent
machine. The configuration of instances is detailed in Table 6.1. The TCP socket is used
for exchanging data among these components.

Table 6.1 – Experimental environment of PARADOT

Component vCPU
(2.4 GHz)

Memory
(GB)

Disk
(GB)

Collector 4 8 80
Consumer 4 8 80
Indexing Cloud 8 16 80
Storage Cloud 8 16 80

6.5.2 Datasets

We use two real datasets, UMass Smart [107] and ExtraSensory [110, 109], for all exper-
iments. UMass Smart dataset, hereafter referred to as Smart dataset, contains 57,543,030
records of electricity usage of 114 single-family apartments in 2016. ExtraSensory dataset,
hereafter referred to as Sensor dataset, consists of 377,346 records of 60 users. Records

109



CHAPTER 6. PARADOT

are sampled from user’s smart phone. We construct a private index over the identifier of
apartments (Smart) and users (Sensor).

6.5.3 Settings

The branching factor (bf) is set to 16 and the total privacy budget εtotal to 1. The
domain of Ak is [1, 114] and [1, 60] for Smart and Sensor datasets, respectively. The
security parameter of Paillier scheme is set to 1024 bits.

6.5.4 Query Set

In the experiments, we create various query sets of ranges corresponding to 1%, 5%,
10%, 25%, 50%, and 75% of the entire domain. For each set of query ranges, we sample
1000 queries uniformly over the domain. All experiments are conducted using a uniform
workload.

6.5.5 Evaluation metrics

We evaluate PARADOT on three main metrics, namely storage overhead, communication
costs, and query latency. We seek to compare PARADOT’s performance with its counterparts
such as PINED-RQ [94], PBtree [65], and IBtree [64]. Additionally, we take the recall and
precision metric [94] into account in order to compare PARADOT with PINED-RQ.

6.5.6 Experimental results

a) Recall and precision

This section compares the recall and precision rate between PARADOT and PINED-RQ.
More precisely, we consider two distinct scenarios, uniform and non-uniform distribution
of datasets.

Uniform. We first consider the uniform scenario where all indexed attribute val-
ues have the same number of records, particularly 1000 records per value, for these
experiments. The results in Figure 6.7a show that PARADOT always provides better
precision, but equal recall as compared to PINED-RQ. For example, PARADOT constantly
holds 100% of recall and precision for all experiments. The reason is that the publications
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(b) Non-uniform

Figure 6.7 – Recall and Precision

of PARADOT do not have any dummy records or inner negative nodes in the index. Despite
maintaining the same recall rate as compared to PARADOT, PINED-RQ experiences a very
low precision percentage for all range sizes due to high overhead of dummy data, being
constantly lower than 8.5% in both datasets. This low precision mainly results from the
high sensitivity in PINED-RQ (∆f = 1000) that causes large injected noise and a huge
number of dummy records in the index.

Non-Uniform. With the non-uniform scenario, we use a variant of Smart dataset
that consists of 200k records and follows the Zipfian distribution (skew = 1). Meanwhile,
the whole Sensor dataset is also used for these experiments since it is naturally non-
uniform. Interestingly, PARADOT still achieves 100% of recall and precision rate in both
datasets, as shown in Figure 6.7b. This once again proves that the recall and precision
of PARADOT are independent of the frequency of indexed attribute values. In contrast,
PINED-RQ encounters a substantial decline in recall and precision. The worst recall and
precision rate are witnessed in PINED-RQ when the 50%-domain range queries are used.
With that setting, the recall rate falls to ∼51.34% (Smart) and ∼92.6% (Sensor) while
the precision rate is only ∼0.26% (Smart) and ∼4.23% (Sensor).

111



CHAPTER 6. PARADOT

1 25 50 75 100
0

2

4

6

·103

% of domain

T
im

e
(m

s)

Uni-Smart

1 25 50 75 100
0

20

40

·103

% of domain

Zipf-Smart

1 25 50 75 100
0

10

20

·103

% of domain

25%-Sensor

PINED-RQ PARADOT

Figure 6.8 – Latency comparison

b) Query latency

We now take the query response latency into account. Moreover, we also compare
PARADOT’s latency to that of PINED-RQ. To the best of our knowledge, PINED-RQ
provides the best index scanning time as compared to the state-of-the-art solutions. Two
variants of Smart dataset are used for this scenario, with 144K records per each. One is
uniform (1000 records per indexed attribute value), denoted Uni-Smart, and the other
adheres to the Zipfian distribution (skew = 1), denoted Zipf-Smart. For Sensor dataset,
we extract 25% of the original that is non-uniform as default, named 25%-Sensor. For
fair comparison, we also store the publications of PINED-RQ in LevelDB with the same
settings. We then measure the time response of 1000 range queries. The average of these
measurements is obtained for evaluation.

The results in Figure 6.8 exhibit that PARADOT significantly outperforms PINED-RQ
in terms of response time latency, and at most two orders of magnitude faster than
PINED-RQ. The non-uniform dataset has higher latency overhead as compared to the
uniform one in both prototypes. In particular, the maximum latency in Uni-Smart is
∼6.53s (PINED-RQ) and ∼0.04s (PARADOT) while those of Zipf-Smart is in turn ∼49.28s
and ∼0.83s. Nonetheless, PARADOT constantly experiences significant lower latency com-
pared to PINED-RQ. For example, as the largest range is utilized in the uniform scenario,
PINED-RQ takes ∼6.53s and being ∼176× longer than that in PARADOT (∼0.04s). On the
other hand, in the non-uniform case, the biggest gap is witnessed as the 100%-range query
is considered, the average response time is ∼49.28s in PINED-RQ and ∼0.83s in PARADOT.
The similar patterns can be seen in 25%-Sensor, PINED-RQ takes at least ∼4.39× (1%
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range size) and at most ∼10.51× (100% range size) longer as compared to PARADOT.
PINED-RQ suffers from high latency response due to injected dummy data. Moreover,
the volume of such injected dummy data is proportional to the number of records per
individual (or the sensitivity). Therefore, as a dataset has larger record size and/or higher
number of updates per individual, the gap between the two prototypes still rises.

c) Storage overhead

Our solution uses encrypted b-codes to secretly keep links to buckets. These encrypted
b-codes mainly contribute to the storage overhead in PARADOT. Meanwhile, the space
overhead in PINED-RQ primarily comes from dummy data that is added to dataset as
well as overflow arrays. We use four datasets, namely Uni-Smart (2.7MB, 144K records),
Uni-Smart* (74.4MB, 5.7M records), Zipf-Smart (2.7MB, 144K records), 25%-Sensor
(123.8MB, 93,330 records), and Sensor (490MB, 377,346 records). In PARADOT, we
measure the storage overhead at both Indexing Cloud and Storage Cloud. The overhead
at Indexing Cloud is primarily caused by encrypted b-codes while that at Storage Cloud
results from the encryption of buckets.

Storage overhead of PARADOT. The results in Figure 6.9 demonstrate that when
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Figure 6.9 – Storage overhead of PARADOT

data distribution is uniform, the storage overhead at Indexing Cloud is negligible,
occupying only ∼120KB of extra storage in Uni-Smart*. This is because when dataset is
uniform, the number of generated buckets is minimal, and hence leading to the smallest
number of b-codes. In contrast, the space requirement at Indexing Cloud increases as the
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non-uniform datasets are considered. Particularly, PARADOT allocates 6.2MB (Zipf-Smart)
and 14MB (Sensor) at Indexing Cloud, experiencing an overhead of ∼2.3× and ∼0.03×,
respectively. Interestingly, the storage overhead for 25%-Sensor and Sensor datasets is
the same at this component, about 0.03×.

On the other hand, at Storage Cloud, the space overhead is at least ∼1.56× (25%-
Sensor) and at most ∼3.7× (Zipf-Smart). It is worth noting that the space overhead of
Indexing Cloud (∼4.44×) is slightly larger than that of Storage Cloud (∼3.7×) in case of
Zipf-Smart dataset. This is not because the encrypted b-codes take too much space, but
the record size of this dataset is too small, particularly, the size of a 144K-record dataset
is 2.7MB.

Comparison with PINED-RQ. As can be seen from Figure 6.10, PINED-RQ
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Figure 6.10 – Comparison of storage overhead

incurs much more space overhead as compared to PARADOT. Indeed, the storage overhead
of PINED-RQ is at least ∼25.75× (Uni-Smart) and at most ∼111× (Zipf-Smart) higher
than that of PARADOT.

Comparison with PBtree [65]. To compare PARADOT with this index, we use
two non-uniform variants of Smart dataset, whose size is 0.5M and 5M records. Note
that, we use the non-uniform datasets for fair comparison, that is, PARADOT experiences
the highest overhead in such setting. Experimental results present that the index
sizes, including the size of encrypted (r)b-codes), in PARADOT are 42MB and 406MB,
respectively. Meanwhile, with the same number of data items for each dataset, PBtree
requires in turn 1.598GB and 18.494GB [66]. In addition, an improved version of this
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index, IBtree [64], also incurs the same space complexity, O(n log n) (with compression),
where n is the number of data items.

d) Communication costs
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Figure 6.11 – Communication latency between Indexing Cloud and Storage Cloud in
PARADOT

Since PARADOT relies on the two-cloud providers model, we evaluate communication
latency between Indexing Cloud and Storage Cloud. Such latency results from the sending
of encrypted sums from Indexing Cloud to Storage Cloud for every query processing. The
transferring of these encrypted sums basically just leads to small extra communication
overhead. As shown in Figure 6.11, the communication latency is relatively modest, being
under 7ms, in all these experiments. Such delay primarily relies on the size of the b-code
table CT . As data distribution is uniform like Uni-Smart, the CT is small, hence resulting
in short latency, under 0.5ms. Nevertheless, when Zipf-smart is used, PARADOT experiences
a higher delay, fluctuating between 1.5ms and 2.9ms. The largest delay is witnessed in
Sensor, ranging from 5.5ms to 6.8ms. It is worth nothing that our experiments are carried
out on the same private cloud. It is expected there some additional delays as the two
clouds reside at different regions/countries. However, such evaluation is beyond the scope
of this dissertation.
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e) Updates

We focus on two cases for update operations, existing values (U-1) and new values
(U-2). Two mains metrics, query latency and communication overhead, are also taken
into account in these experiments.

U-1: Existing values. We first consider the case where all updates contain data
of the existing values. This context is common in a wide range of real-world applications,
especially in IoT. For example, Internet-connected devices (e.g., sensors) are configured to
periodically send the sensing data to a central server. To mimic such real world situation,
for Smart dataset, we sample 100 updates, and each consists of 164,160 records. This
represents the number of records are generated every day of 114 users with an interval of
1 minute (a record/user/minute). This also means that a user contributes 1440 records
to each update. Regarding Sensor dataset, we also sample 100 updates and each contains
1% of the original dataset that is equivalent to 3,744 records. That is, if a user has 100
records, every update contains one record of that user.

Query latency. The results in Figure 6.12 give that the total time increases when
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Figure 6.12 – Query latency of PARADOT

larger range sizes are used. More importantly, PARADOT often spends much time decrypt-
ing the returned results at the client side. For instance, in Smart dataset, the decryption
occupies at least 29.75% (1%-range size) and at most 54.63% (100%-range size) of the
total time. Likewise, the decryption time reaches up to 64.61% (100%-range size) of the
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total latency when the Sensor dataset is taken into account. By contrast, PARADOT spends
very short time performing the addition of encrypted (r)b-codes at Indexing Cloud. As
depicted in Figure 6.12, even though the largest range size (100%) is used, such task takes
at most ∼73ms (Smart) and ∼138ms (Sensor), accounting for ∼2.64% and ∼1.38% of the
total time, respectively. Thanks to the parallelism at Indexing Cloud, as the range size
grows, the contribution of the summing time gradually declines from ∼4.13% to ∼2.64%
in Smart and from 2.43% to 1.38% in Sensor. This somehow demonstrates the use of
encrypted b-codes at Indexing Cloud does not much degrade the query performance in
general.

Communication overhead. As shown in Figure 6.13, the size of the transferred
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Figure 6.13 – Communication overhead of PARADOT

data between the two clouds is constantly ∼0.03MB in Smart dataset and ∼0.12MB
in Sensor dataset for all range sizes. The difference in size between the two datasets
comes from the fact that the number of encrypted sums in Sensor is larger than that
in Smart. More precisely, since Sensor dataset is non-uniform, there are more buckets
created as compared to Smart dataset, and hence more columns of the b-code table
are formed in Sensor. As a result, the number of encrypted sums in Sensor is larger
than that of Smart. Due to the small size of the transferred data, the communication
latency is relatively low in all experiments, at most 1.86ms in Smart and 5.87ms in Sensor.

U-2: New values. In these experiments, we reuse the sampled Smart dataset
from U-1. However, we uniformly partition the dataset into two smaller equal-size
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datasets, denoted Smart-1 and Smart-2, so that each contains data of 50% distinct
values of the indexed attribute, that is, one of them contains data of 57 users. Every
dataset is then equally divided into 100 parts, each has the size of 82,080 records. This
implies the number of records are generated every day of 57 users with an interval of 1
minute (a record/user/minute). Smart-1 is used as an initial publication while Smart-2
is used to generate updates to this publication. More precisely, one part of Smart-1 is
initially sent to the clouds, and then one part of Smart-2 is published to the clouds as an
update of the previous one. Obviously, there are two secure indexes are created at Index-
ing Cloud. The rest of these datasets are sequentially sent to the clouds as further updates.

Query latency. The results in Figure 6.14 show that there is a similar pattern as
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Figure 6.14 – Query latency of PARADOT

compared to U-1. This means that when a larger range is used, the query latency
increases accordingly. Despite the fact that the storage overhead at Indexing Cloud in
U-2 is nearly double that in U-1, 16MB against 8.3MB, the latency in U-2 is slightly
longer than that in U-1. For example, when the largest query range is used, U-1 and U-2
in turn exhibit a latency of 2.7s and 2.8s.

Communication overhead. As shown in Figure 6.15, the experimental results show
that the size of the transferred data is permanently ∼0.06MB and the communication
latency fluctuates between 2.6ms and 3.0ms.
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Figure 6.15 – Communication overhead of PARADOT

f) Scalability of using bitmaps

We now turn our attention to the scalability of using encrypted bitmaps in PARADOT.
To achieve it, we seek to use varying size for the b-code table. In particular, we create
several small updates from Smart dataset, ranging from 1K to 10K updates. Each update
is uniform and has small number of records (e.g., 144 records). This means that each
update results in one column in the b-code table, hence the number of columns of that
table varies between 1K and 10K. Then, we measure various metrics that are primarily
impacted by the increase in size of the b-code table. Additionally, we present significant
performance gains that come from the parallelism at Indexing Cloud.

Performance gains of parallelism. Figure 6.16 gives the considerable gains of
using parallelism for improving range query processing in general, and particularly the
summing operation on encrypted (r)b-codes at Indexing Cloud. The parallel summing
operation is from one to two orders of magnitudes faster than the non-parallel version.
With the smallest range size, the summing time of the parallel Indexing Cloud is at least
∼89.7× and at most ∼149.6× shorter than that of the non-parallel one. Even if the
largest range size is considered, the improvement of the parallel version remains still very
high, at least 10.78× among all experiments.
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Figure 6.16 – Parallelism on summing operation at Indexing Cloud

Latency overhead of the b-code table. When a query is processed at the two clouds,
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Figure 6.17 – Scalability

the latency of the b-code table includes reading relevant rows from LevelDB, summing
these rows, and sending the summing row from Indexing Cloud to Storage Cloud. The
results in Figure 6.17 show that when the size of the table grows, the time is needed for
the three operations gradually rises accordingly. However, the sending time is negligible
as compared to the summing and reading time. With the largest b-code table, Indexing
Cloud takes at most ∼95ms to send the summing row to Storage Cloud. In contrast,
Indexing Cloud spends significant time reading the table from disks. For example, for
the 1K-column table, the reading time rises from 34ms to 1698ms, being at most 131.8×
and 3.6× higher than that of the sending and summing time, respectively. The longest
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delay of the reading operation is experienced as the 10K-column table and the largest
range are taken into account, roughly ∼33s. On the other hand, thanks to the parallelism
at Indexing Cloud, the summing time is practically acceptable. Even though the worst
case is considered (10K-column table, 100%-range size), Indexing Cloud only spends
approximately 5s on the summing operation.

Storage overhead of the b-code table. With a fixed number of indexed at-
tribute values, the storage overhead of the b-code table is linear to its size. In particular,
with the number of columns grows from 1K to 10K, the size of the b-code table on
disks grows from 90MB to 828MB, respectively. It is worth noting that such overhead
is partially caused by the use of additional keys for each b-code as they are stored in
LevelDB.

6.6 Conclusion

In this chapter, we proposed PARADOT, a scalable scheme for one-dimensional range
query processing over encrypted data stored at clouds. It can achieve all scalability re-
quirements, namely fast computation, lightweight updates, and practical storage overhead,
while the privacy is highly protected. To achieve it, we first designed a partitioning al-
gorithm that enables to divide a dataset into equal-size buckets. We then proposed an
encoding method based on equal-size bitmaps. An existing secure index is built on these
bitmaps for fast query processing. Meanwhile, equal-size buckets and equal-size bitmaps
enable high security in PARADOT. To support unlimited lightweight updates, we take a de-
coupling storage model into account. With such an approach, while our solution is able to
support an unlimited numbers of updates, the storage overhead is practically acceptable.
We finally show the practicality and scalability of PARADOT through extensive experiments
performed on real datasets with various metrics.
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Chapter 7

Conclusion and Future Works

7.1 Summary of contributions

In this dissertation, we focused on three main problems of the state-of-the-art solutions,
namely bottlenecks in case of high rate of incoming data, modest ingestion throughput,
and scalability in terms of storage and updates.

Regarding the issue of bottlenecks, rather than publishing datasets in large batches,
we aimed to immediately send incoming data to the cloud one by one. To this purpose, we
integrated a notion of index template into one of the most efficient solutions, particularly
PINED-RQ index. To ensure privacy protection, we also designed a noise management
method as well as a complementary data structure (e.g., matching table). Our solution,
PINED-RQ++ thus allows to smoothly ingest incoming data while still highly keeping the
confidentiality of outsourced data. Nonetheless, with only these elements, the problem
of bottlenecks might not be addressed since the collector endures heavy workflows. We
thus proposed the parallel PINED-RQ++ that mainly enhances the ingestion throughput of
the system in general. Moreover, we gave thorough privacy analyses with regards to the
two models, namely single cloud and two non-colluding clouds. The former ensures the
privacy protection as strong as PINED-RQ [94] in case of offline attackers while the latter
guarantees that PINED-RQ++ has the same security level as compared to PINED-RQ. To
evaluate our solutions, we extensively carried out experiments of both PINED-RQ++ and
parallel PINED-RQ++ on real datasets with various scenarios. The experimental results
showed that PINED-RQ++ outperforms PINED-RQ in two main metrics, such as network
traffic and publishing time, that mainly influence the congestion in the system. For exam-
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ple, the publishing time of the NASA dataset (∼0.5M records) is decreased up to ∼35x
while the maximum data rate experiences a reduction of up to ∼2.7x. Furthermore, par-
allel PINED-RQ++ also experiences a significant improvement in ingestion throughput, e.g.,
with the setting of 12-computing node cluster, the enhancement of parallel PINED-RQ++
is approximately 5.4× and 10× in Gowalla and USPS, respectively. Such gains make our
solutions practical for a wide range of real-life applications.

Considering the problem of modest ingestion throughput, although PINED-RQ++ can
avoid bottlenecks when data arrives rapidly, like many existing solutions, its ingestion
throughput is still far from the needs of several real-world applications. To address this
problem, we re-designed the architecture of parallel PINED-RQ++ such that it is fully
distributed processing in coming data at the collector. Moreover, we introduced a data
representation and an asynchronous publishing mechanism to avoid throughput degrada-
tion as much as possible. All of them together allows FRESQUE to achieve high ingestion
throughput. Besides, we adapted FRESQUE to a stronger type of attackers as well as im-
proving its practicality. To this end, we introduced and integrated a new component, e.g.,
randomer, into FRESQUE. We implemented and evaluated FRESQUE on real-world datasets.
FRESQUE gave the lowest ingestion degradation and the highest throughput among the
three prototypes, namely FRESQUE, parallel PINED-RQ++, and PINED-RQ++. FRESQUE is
able to achieve over 165K insertions in a second when 12-computing node cluster is used,
outperforming PINED-RQ++ and parallel PINED-RQ++ by ∼43× and ∼5.6×, respectively.
We also discussed an application of FRESQUE and the possibility of using cutting-edge
technologies to increase the scalability.

For the scalability dimension, we proposed a novel scheme for scalable and private
range rang query processing, PARADOT. This scheme achieves all scalability requirements,
namely efficient computation, practical storage overhead, and lightweight updates, while
strong privacy protection is still ensured. To achieve these goals, we first designed a
partitioning algorithm that enables to divide a dataset into equal-size buckets. We then
proposed an encoding method based on equal-size bitmaps. PARADOT relies on existing
secure indexes (e.g., PINED-RQ) for fast range queries. While the bitmaps privately keep
links to the buckets, a secure index is built on these bitmaps. We then decoupled the secure
index from buckets by using the two non-colluding cloud providers model. By doing it,
PARADOT not only gave very good performance, but also efficiently supported numerous
updates. More importantly, our solution incurs practical space complexity. For instance, as
compared to PINED-RQ, our solution is ∼176× faster in terms of query response latency
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and uses at most ∼119.55× less space requirement. Furthermore, with dataset sizes of
0.5M and 5M records, the index size of PARADOT is in turn about 42MB and 406MB while
PBtree requires 1.598GB and 18.494GB [66], respectively.

7.2 Future Works

7.2.1 Privacy budget management

The current method of managing privacy budget of FRESQUE is straightforward and
works well when at most one record of an individual comes every fixed-period (e.g.,
weekly). However, it may not be efficient in terms of privacy budget usage as multi-
ple records of an individual comes at any time points. This drawback should be involved
in our future work.

7.2.2 Optimizations on encrypted bitmaps

Although PARADOT achieves very good performance and high scalability, it was imple-
mented for identity attributes due to the limitation of PINED-RQ index. Thus, a more
general approach should be considered in the future. Moreover, physical organization of
b-code tables in this study relies on LevelDB and needs an additional key for each cell of
the tables, and thereby PARADOT encounters higher overheads as it is, namely data retriev-
ing latency and storage. We plan to consider a more appropriate approach, i.e. physical
pointers, to improve this situation.

We used bitmap index to privately keep links between buckets and secure indexes,
however, the biggest weakness of the bitmap index is that its size grows linearly with the
number of distinct values. Consequently, PARADOT would incur performance degradation in
case of long-term storage. To address this, various strategies to control the bitmap index
sizes and improve the query response time have been considered, such as compression,
encoding and binning [111, 101]. Nevertheless, the major challenge is how to align these
techniques with the query processing in PARADOT without incurring any privacy leak. This
question opens potential future research.
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7.2.3 Reducing query latency

Most of the efficient schemes can provide fast query processing. Nevertheless, when
the continuous range queries are considered, they may not meet latency requirements. To
deal with this situation, caching techniques [92, 60, 26] can be applied to reduce the query
latency. Indeed, such techniques enable to reuse the results of the previous queries, hence
shortening the query latency.

Similarly, PARADOT may take advantages from such idea for boosting the addition of
encrypted bitmaps. This means that we can cache requested sums at Storage Cloud for
further queries. This is expected to relieve the overhead of query processing and commu-
nication between Storage Cloud and Indexing Cloud. However, one of the challenges of
this approach is how to protect privacy of cached data from the adversary.

7.2.4 Edge computing

The increased adoption of edge computing primarily results from the resource-
constrained of IoT devices, e.g., limited computation and storage capabilities. By shifting
data computing and storage to the network edge [97], traffic and computational pressure
on the centralized cloud are significantly mitigated and response time of cloud services is
also reduced. However, edges are often untrusted and the question is how to protect data
stored at these edges. A straightforward application of existing solutions like FRESQUE or
PARADOT may not work since they always require a trusted component in their architec-
tures. Seeking a solution for this challenge should be included in our future works.
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Titre : Traitement des Requêtes d’Intervalle sur des Nuages Non Fiables
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Résumé : Le nuage informatique est devenu
de plus en plus un standard pour réduire les
coûts et permettre l’élasticité. Alors que les
fournisseurs de nuages élargissent leurs ser-
vices, les préoccupations relatives à la sé-
curité des données externalisées empêchent
une adoption généralisée des technologies
des nuages. Pour y remédier, le chiffrement
est généralement utilisé pour protéger les don-
nées confidentielles stockées et traitées sur
des nuages non fiables. Le chiffrement des
données externalisées diminue toutefois les
fonctionnalités des applications parce que la
prise en charge de certaines fonctions fonda-
mentales sur les données chiffrées est encore
limitée.

Cette thèse se concentre sur le problème
de la prise en charge des requêtes d’intervalle
sur des données chiffrées stockées dans les
nuages. De nombreuses études ont été intro-
duites dans ce domaine. Néanmoins, aucun
des schémas précédents ne montre des per-
formances satisfaisantes pour les systèmes
modernes, qui exigent non seulement des ré-
ponses à faible latence, mais aussi une haute
évolutivité. En particulier, la plupart des solu-
tions existantes souffrent soit d’un traitement
inefficace des requêtes d’intervalle, soit d’un
manque de confidentialité. Même si certaines
peuvent assurer à la fois une protection éle-
vée de la vie privée et un traitement rapide,
elles ne satisfont pas aux exigences d’évolu-
tivité, à savoir un haut débit d’ingestion, une
surcharge de stockage pratique et des mises
à jour légères.

Pour surmonter ces limites, nous propo-
sons des solutions évolutives sur le traitement
des requêtes d’intervalle sécurisées tout en

préservant l’efficacité et une sécurité forte.
Nos contributions sont les suivantes : (1) Nous
adaptons l’une des solutions de pointe au
contexte de haut débit de données entrantes
qui crée souvent des goulets d’étranglement.
En d’autres termes, nous introduisons et inté-
grons la notion de modèle d’index dans l’une
des solutions de pointe afin qu’elle puisse
s’adapter au contexte cible. (2) Nous déve-
loppons un cadre d’ingestion intensive dédié
au traitement de requêtes d’intervalle sécu-
risée sur des données chiffrées. En particu-
lier, nous reconcevons l’architecture de la pre-
mière contribution pour la rendre entièrement
distribuée. Une présentation des données et
une méthode asynchrone sont ensuite intro-
duites. Ensemble, elles augmentent significa-
tivement la capacité de réception du système.
En outre, nous adaptons le cadre à un type
d’adversaires plus forts (par exemple, les at-
taquants en ligne) et améliorons son aspect
pratique. (3) Nous proposons un schéma pour
le traitement des requêtes d’intervalle privées
sur des ensembles de données externalisés.
Ce schéma répond au besoin d’une solution
évolutive en termes d’efficacité, de haute sé-
curité, de surcharge de stockage pratique et
de nombreuses mises à jour, qui ne peuvent
être pris en charge par les protocoles exis-
tants. À cette fin, nous développons notre so-
lution basée sur des conteneurs de données
de taille égale et des index sécurisés. Le pre-
mier permet de protéger la confidentialité des
données contre l’adversaire, tandis que le se-
cond permet l’efficacité. Pour permettre des
mises à jour légères, nous proposons de dé-
coupler les index sécurisés de leurs conte-
neurs en utilisant des bitmaps de taille égale.



Title: Range Query Processing over Untrustworthy Clouds
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Abstract: Cloud computing has increasingly
become a standard for saving costs and en-
abling elasticity. While cloud providers expand
their services, concerns about the security
of outsourced data hinder cloud technologies
from a widespread adoption. To address it,
encryption is usually used to protect confi-
dential data stored and processed on untrust-
worthy clouds. Encrypting outsourced data
however mitigates the functionalities of appli-
cations since supporting some fundamental
functions on encrypted data is still limited.

This thesis focuses on the problem of sup-
porting range queries over encrypted data
stored on clouds. Many studies have been in-
troduced in this line of work. Nevertheless,
none of prior schemes exhibits satisfactory
performances for modern systems, that re-
quire not only low-latency responses, but also
high scalability. Particularly, most existing solu-
tions suffer from either inefficient range query
processing or privacy leaks. Even if some can
achieve both strong privacy protection and fast
processing, they do not satisfy scalability re-
quirements, namely high ingestion throughput,
practical storage overhead, and lightweight
updates.

To overcome this limitation, we propose
scalable solutions on secure range query pro-
cessing while still preserving efficiency and
strong security. Our contributions are: (1) We

adapt one of the state-of-the-art solutions to
the context of high rate of incoming data that
often creates bottlenecks. In other words, we
introduce and integrate the notion of index
template into one of the state-of-the-art solu-
tions so that it can cope with the target context.
(2) We develop an intensive ingestion frame-
work dedicated to secure range query pro-
cessing on encrypted data. Particularly, we re-
design the architecture of the first contribution
to make it fully distributed. A data presenta-
tion and asynchronous method are then in-
troduced. Together, they significantly increase
the intake ability of the system. Besides, we
adapt the framework to a stronger type of
adversaries (e.g., online attackers) and en-
hance its practicality. (3) We propose a scal-
able scheme for private range query process-
ing on outsourced datasets. This scheme ad-
dresses the need of a scalable solution in
terms of efficiency, high security, practical stor-
age overhead, and numerous updates, which
can not be supported by existing protocols. To
this purpose, we develop our solution relying
on equal-size chunks (buckets) of data and se-
cure indexes. The former helps to protect pri-
vacy of the underlying data from the adversary
while the latter enables efficiency. To support
lightweight updates, we propose to decouple
secure indexes from their buckets by using use
equal-size bitmaps.
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