Thèse soutenue

Couches minces métalliques sur substrats à faible interaction : Dynamique de croissance à l'échelle nanométrique, contraintes résiduelles, et morphologie

FR  |  
EN
Auteur / Autrice : Andreas Jamnig
Direction : Grégory AbadiasKostas Sarakinos
Type : Thèse de doctorat
Discipline(s) : Milieux denses et Matériaux
Date : Soutenance le 05/11/2020
Etablissement(s) : Poitiers en cotutelle avec Université de Linköping (Suède)
Ecole(s) doctorale(s) : Ecole doctorale Sciences et ingénierie des matériaux, mécanique, énergétique (Poitiers ; 2018-2022)
Partenaire(s) de recherche : Laboratoire : Pôle poitevin de recherche pour l'ingénieur en mécanique, matériaux et énergétique - PPRIMME (Poitiers) - Institut Pprime / PPRIME
faculte : Université de Poitiers. UFR des sciences fondamentales et appliquées
Jury : Président / Présidente : Fredrik Eriksson
Examinateurs / Examinatrices : Grégory Abadias, Kostas Sarakinos, Sophie Camelio, David Horwat, Rémi Lazzari
Rapporteurs / Rapporteuses : Gregory B. Thompson, Frédéric Leroy

Résumé

FR  |  
EN

La morphologie de films minces métalliques polycristallins élaborés par condensation d’une phase vapeur sur des substrats à faible interaction (SFI) possède un caractère 3D intrinsèque. De plus, la nature hors équilibre de la croissance du film depuis une phase vapeur conduit souvent à la génération de contraintes mécaniques, ce qui peut compromettre davantage la fiabilité et la fonctionnalité des dispositifs optoélectroniques. Les objectifs de cette thèse sont liés à la croissance de films métalliques sur SFI et visent à : (i) contribuer à une meilleure compréhension des processus à l'échelle atomique qui contrôlent l'évolution morphologique des films ; (ii) élucider les processus dynamiques qui régissent la génération et l'évolution des contraintes en cours de croissance ; et (iii) développer des méthodologies pour manipuler et contrôler la morphologie des films à l'échelle nanométrique. L’originalité de l’approche mise en œuvre consiste à suivre la croissance des films in situ et en temps réel par couplage de plusieurs diagnostics, complété par des analyses microstructurales ex situ. Les grandeurs mesurées sont confrontées à des modèles optiques et des simulations atomistiques.L’ensemble des résultats obtenus dans cette thèse fournissent les bases pour : (i) déterminer les coefficients de diffusion sur une large gamme de systèmes films/SFI; (ii) concevoir des stratégies non invasives pour les contacts multifonctionnels dans les dispositifs optoélectroniques;(iii) apporter des éléments de compréhension à l’origine du développement de contrainte, qui permettent de prédire et contrôler le niveau de contrainte intrinsèque à la croissance de films minces polycristallins.