Thèse soutenue

Production de γ-valerolactone par hydrogénation d'acide lévulinique ou de lévulinates d'alkyle : étude calorimétrique et cinétique

FR  |  
EN
Auteur / Autrice : Yanjun Wang
Direction : Sébastien Leveneur
Type : Thèse de doctorat
Discipline(s) : Génie des procédés
Date : Soutenance le 20/03/2020
Etablissement(s) : Normandie
Ecole(s) doctorale(s) : École doctorale physique, sciences de l’ingénieur, matériaux, énergie (Saint-Etienne du Rouvray, Seine Maritime)
Partenaire(s) de recherche : Etablissement de préparation : Institut national des sciences appliquées Rouen Normandie (Saint-Etienne-du-Rouvray ; 1985-....)
Laboratoire : Laboratoire de sécurité des procédés chimiques (Saint Etienne du Rouvray, Seine-Maritime ; 1989-....)
Jury : Président / Présidente : Claude de Bellefon
Examinateurs / Examinatrices : Sébastien Leveneur, Igor Plazl, Henrik Grénman, Tapio Salmi, Vincenzo Russo, Lamiae Vernières-Hassimi
Rapporteurs / Rapporteuses : Igor Plazl, Henrik Grénman

Résumé

FR  |  
EN

Les énergies fossiles jouent un rôle fondamental dans l'économie, la société et la politique. Il existe différentes énergies renouvelables pouvant présenter une alternative telles le solaire, l'éolien, l'hydro-électrique ou encore la biomasse. Parmi ces énergies renouvelables, la biomasse est la seule source de carbone pouvant être utilisée pour la production de carburants, produits chimiques ou matériaux. Parmi les produits chimiques issus de la biomasse, la production de molécules plateformes comme l'acide lévulinique (AL) et ses esters est une voie attractive. Ces molécules peuvent être obtenues par solvolyse de la cellulose ou hémicellulose. L’hydrogénation de ces molécules plateformes conduit à la production de γ-valerolactone (GVL) qui peut aussi être considéré comme une molécule plateforme. Pour favoriser le passage à l'échelle industrielle et trouver les conditions opératoires optimales vis-à-vis de la sécurité et des coûts de production, les questions suivantes doivent être répondues : - Quel est le risque thermique de cette réaction d' hydrogénation? ; - Quel réactif doit-on utiliser : AL ou ses esters? ; - Afin de favoriser l’intégration énergétique, comment mesurer les enthalpies de réactions? Dans un premier temps l'évaluation des risques thermiques pour l' hydrogénation de l’acide lévulinique en GVL catalysée par Ru/C dans l'eau a été effectuée. Un modèle cinétique simple incluant un bilan énergétique en condition pseudo-adiabatique a été développé pour estimer les constantes cinétiques et les paramètres de risque thermique. Par cette étude, il a été possible de déterminer des conditions opératoires sûres pour ce système afin de prévenir les emballements thermiques. Dans un deuxième temps, une approche structure-réactivité a été effectuée en utilisant le concept de relation linéaire de l’énergie libre, à savoir l’équation de Taft. Cette équation a été utilisée pour l'hydrogénation de l'acide lévulinique et de ses esters en GVL catalysée par Ru/C. Le GVL a été utilisé comme solvant pour solubiliser les différents réactifs : AL, lévulinate de méthyle (LM), d'éthyle (LE) et de n-butyle (LB). Il a été démontré que la première étape cinétique, à savoir l'hydrogénation de LA, LM, LE ou LB en leurs intermédiaires et la cinétique de la deuxième étape, à savoir la cyclisation suivent l'équation de Taft. Les effets polaires et stériques ont été évalués et il a été montré que l'effet polaire gouverne ces étapes réactionnelles. La dernière partie de cette thèse consiste à estimer les enthalpies de réaction par calorimétrie. L'estimation de ces constantes thermodynamiques peut s'avérer complexe parce que le GVL est utilisé comme solvant et qu'il n'y a pas d'informations sur les intermédiaires. L’hydrogénation du lévulinate de méthyle a été sélectionnée pour cette étude. Une méthode utilisant les données calorimétriques et analyse chimique a permis d’évaluer l'enthalpie réactionnelle globale et les enthalpies des 2 réactions consécutives. Il a été montré que l'enthalpie globale a une valeur de -51.5 kJ/mol de GVL produits montrant que le système est dans sa globalité exothermique. L’enthalpie d'hydrogénation a été estimée à -58-66 kJ/mol de LM consommé et celle de cyclisation à +7,16 kJ/mol de GVL produits.