Thèse soutenue

Méthodologie de génération systématique et de conception des chaines de traction de véhicules hybrides

FR  |  
EN
Auteur / Autrice : Bilal Kabalan
Direction : Rochdi Trigui
Type : Thèse de doctorat
Discipline(s) : Génie électrique
Date : Soutenance le 10/03/2020
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale Électronique, électrotechnique, automatique (Lyon)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Claude Bernard (Lyon ; 1971-....)
Laboratoire : Equipe Eco-gestion des systèmes énergétiques pour les transports - Institut français des sciences et technologies des transports, de l’aménagement et des réseaux (France ; 2011-2019)
Jury : Président / Présidente : Betty Lemaire-Semail
Examinateurs / Examinatrices : Rochdi Trigui, Ali Sari, Emmanuel Vinot
Rapporteurs / Rapporteuses : Theo Hofman, Daniela Chrenko

Résumé

FR  |  
EN

Pour répondre aux objectifs de consommation des flottes de véhicules, au normes d’émissions de polluants et aux nouvelles demandes de l’usager, les constructeurs automobiles doivent développer des motorisations hybrides et électriques. Réaliser une chaine de traction hybride reste cependant une tâche difficile. Ces systèmes sont complexes et possèdent de nombreuses variables réparties sur différents niveaux : architecture, technologie des composants, dimensionnement et contrôle/commande. L’industrie manque encore d’environnements et d’outils pouvant aider à l’exploration de l’ensemble de l’espace de dimensionnement et à trouver la meilleure solution parmi tous ces niveaux. Cette thèse propose une méthodologie systématique pour répondre au moins partiellement à ce besoin. Partant d’un ensemble de composants, cette méthodologie permet de générer automatiquement tous les graphes d’architectures possibles en utilisant la technique de programmation par contraintes. Une représentation dédiée est développée pour visualiser ces graphes. Les éléments de boites de vitesse (embrayages, synchroniseurs) sont représentés avec un niveau de détails approprié pour générer de nouvelles transmission mécaniques sans trop complexifier le problème. Les graphes obtenus sont ensuite transformés en d’autres types de représentation : 0ABC Table (décrivant les connections mécaniques entre les composants), Modes Table (décrivant les modes de fonctionnement disponibles dans les architectures) et Modes Table + (décrivant pour chaque mode le rendement et le rapport de réduction global des chemins de transfert de l’énergie entre tous les composants). Sur la base de cette représentation, les nombreuses architectures générées sont filtrées et seules les plus prometteuses sont sélectionnées. Elles sont ensuite automatiquement évaluées et optimisées avec un modèle général spécifiquement développé pour calculer les performances et la consommation de toute les architectures générées. Ce modèle est inséré dans un processus d’optimisation à deux niveaux ; un algorithme génétique GA est utilisé pour le dimensionnement des composants et la programmation dynamique est utilisée au niveau contrôle (gestion de l’énergie) du système. Un cas d’étude est ensuite réalisé pour montrer le potentiel de cette méthodologie. Nous générons ainsi automatiquement toutes les architectures qui incluent un ensemble de composants défini à l’avance, et le filtrage automatique élimine les architectures présupposées non efficaces et sélectionnent les plus prometteuses pour l’optimisation. Les résultats montrent que la méthodologie proposée permet d’aboutir à une architecture meilleure (consommation diminuée de 5%) que celles imaginées de prime abord (en dehors de toute méthodologie)