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Introduction

1 Introduction (en Français)

Cette thèse s’inscrit dans le cadre de la topologie quantique, un domaine au carrefour de l’algèbre,
la topologie et la physique mathématique qui a ses origines dans les années 1980. La topologie
quantique s’intéresse à deux familles d’objets : objets de nature topologique et invariants de ces objets.
Commençons par une description brève et intuitive des objets de nature topologique auxquels on
s’intéresse : en dimension un, on s’intéresse aux nœuds, aux entrelacs, etc. ; en dimension deux,
on s’intéresse aux surfaces et ses groupes de « symétrie » ; et en dimension trois, on s’intéresse aux
variétés de dimension trois. En fait, nœuds (ou entrelacs) et « symétries » de surfaces peuvent être
vus comme variétés de dimension trois.

Théorie des nœuds. On considère des objets de dimension un plongés dans un espace de dimension
trois. Par exemple les nœuds, les entrelacs, les enchevêtrements, etc. Voir la Figure 1.1 pour quelques
exemples.

Figure 1.1: (a) Nœuds, (b) entrelacs et (c) enchevêtrement.

Deux objets noués sont dit équivalents si l’un peut être déformé (en étirant, emmêlant, démêlant
mais sans couper) dans l’autre. Par exemple les deux nœuds K1 et K2 dans la Figure 1.1 (a) sont
équivalents. On peut passer du nœud K1 au nœud K2 comme on montre dans la Figure 1.2.

Figure 1.2: Équivalence entre K1 et K2.

Groupe d’homéotopie des surfaces. On considère une surface Σg,1 compacte connexe orientée de
genre g avec une seule composante de bord. Voir la Figure 1.3.

La classification des surfaces compactes connexes est bien connue. Ainsi l’objet auquel on s’intéresse
est le groupe des « symétries » de la surface. Plus précisement, il s’agit du groupe des classes d’isotopie
des homéomorphismes h : Σg,1 → Σg,1 qui préservent l’orientation et fixent le bord ∂Σg,1. Dans la
suite, ce groupe sera noté Mg,1.

v
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Figure 1.3: Surface Σg,1.

Variétés de dimension 3. On s’intéresse aux variétés de dimension 3 compactes connexes et orientées
avec ou sans bord. En particulier on s’intéresse aux cobordismes de Σg,1 à Σf,1 : ce sont des 3-variétés
M dont le bord se décompose comme l’union d’une copie de la surface Σg,1 (en haut), une copie
de la surface Σf,1 (en bas) et le cylindre S1 × [−1, 1] (bord latéral). Ainsi, on a des plongements
m+ : Σg,1 → ∂M ⊆ M et m− : Σf,1 → ∂M ⊆ M . Schématiquement :

Par exemple dans la Figure 1.4 (a), on considère un cobordisme de Σ2,1 à Σ3,1.

Figure 1.4: (a) Cobordisme de Σ2,1 à Σ3,1 (b) présentation par enchevêtrement bas-haut du cobordisme
montré à gauche.

Un autre exemple de variété de dimension 3 est le corps en anses de genre g : il s’agit de la variété
de dimension trois obtenue à partir d’une boule fermée de dimension 3 en collant g anses (d’indice 1)
[0, 1]×D2 sur son bord. On note Vg cette variété. Remarquons que le bord de Vg peut être décomposé
comme l’union de la surface Σg,1 avec un disque D, voir Figure 1.5.

Figure 1.5: Corps en anses Vg et décomposition ∂Vg = Σg,1 ∪ D.

Dorénavant, on utilise le terme de « 3-variété » à la place de « variété de dimension trois compacte
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connexe et orientée ».
Les trois familles d’objets topologiques mentionnées ci-dessus sont étroitement liées :

1. Toute 3-variété sans bord peut être obtenue comme une chirurgie le long d’un entrelacs dans S3.
Un tel entrelacs s’appelle présentation chirurgicale de la 3-variété.

2. Toute 3-variété sans bord peut être obtenue comme la réunion de deux corps en anses Vg rec-
ollés via ih où h, l’élément du recollement, est un élément du groupe d’homéotopie du bord en
commun et i : ∂Vg → ∂Vg est l’involution qui échange les méridiens et longitudes (préférées)
de ∂Vg. Une telle décomposition s’appelle un scindement de Heegaard de la 3-variété. Il est
intéressant de noter que certaines propriétés topologiques de la 3-variété obtenue à partir d’un
scindement de Heegaard se reflètent dans les propriétés algébriques de l’élément de recollement et
réciproquement. Par exemple, une 3-variété avec un scindement de Heegaard dont l’élément de
recollement agit trivialement en homologie, est une sphère d’homologie, c’est-à-dire une 3-variété
avec les mêmes groupes d’homologie que S3.

3. Tout cobordisme de Σg,1 à Σf,1 peut être représenté (après chirurgies) comme un objet noué
dans le cube [−1, 1]3. Une telle présentation s’appelle présentation par enchevêtrement bas-haut
(« bottom-top tangle presentation »). Par exemple, l’enchevêtrement de la Figure 1.4 (b) est
une présentation par enchevêtrement bas-haut du cobordisme de Σ2,1 à Σ3,1 montré dans la
Figure 1.4 (a).

4. Tout élément h du groupe Mg,1 permet de définir un cobordisme de Σg,1 à Σg,1 comme suit. On
considère le cylindre Σg,1 × [−1, 1] avec les plongements m± : Σg,1 → ∂(Σg,1 × [−1, 1]) donnés
par m+(x) = (h(x), 1) et m−(x) = (x, −1). Ce cobordisme s’appelle le cylindre d’application
associé à h et on le note par c(h).

Les liens décrits entre ces objets permettent d’interpréter un problème dans une famille particulière
(par exemple les 3-variétés) en termes d’une autre famille (par exemple les nœuds ou les groupes
d’homéotopie). C’est une manière très fructueuse d’aborder l’étude de ces familles d’objets et nous
l’utiliserons tout au long de ce travail.

Une des questions fondamentales en topologie est la suivante : comment distinguer deux objets de
même nature (deux nœuds, deux 3-variétés ou deux éléments de Mg,1) ? Par exemple, la Figure 1.2
montre que les deux nœuds K1 et K2 de la Figure 1.1 (a) sont équivalents et elle montre aussi une
façon de déformer l’un dans l’autre. Cependant, supposons que nous ayons les deux entrelacs de la
Figure 1.1 (b) et que nous voulions savoir s’ils sont équivalents ou non. Nous pouvons commencer
par essayer de déformer l’un dans l’autre. À supposer que nous n’y arrivons pas, cela ne veut pour
autant dire qu’il n’est pas possible de le faire. Nous avons donc besoin d’une autre façon d’aborder
le problème. Une alternative est la construction d’invariants, c’est-à-dire de « quantites » (nombres,
polynômes, groupes parmi d’autres) qui sont égales pour des objets équivalents. Un exemple d’un
invariant pour les entrelacs orientés est le nombre d’enlacement qui admet la définition suivante :
soit K un entrelacs orienté et considérons une projection régulière de K dans un plan. Soient Ki

et Kj deux composantes de K. Le nombre d’enlacement Lk(Ki, Kj) entre Ki et Kj est défini par

Lk(Ki, Kj) =
1

2

∑

c

sgn(c),

où c parcourt l’ensemble de croisements entre Ki et Kj et sgn(c) désigne le signe du croisement c
défini selon la règle donnée dans la Figure 1.6.
Par exemple, pour l’entrelacs K1 ∪ K2 de la Figure 1.1 (b), nous avons Lk(K1, K2) = 0 tandis que
pour l’entrelacs K ′

1 ∪ K ′
2 dans la même figure, nous avons Lk(K ′

1, K ′
2) = −1. On peut donc dire que

les entrelacs K1 ∪ K2 et K ′
1 ∪ K ′

2 ne sont pas équivalents.

Jusque dans les années 1980, la topologie algébrique était la principale source de construction des
invariants des entrelacs et 3-variétés. Un grand événement est survenu en 1984 avec la découverte
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Figure 1.6: Croisement positif et négatif.

par Jones d’un nouvel invariant des entrelacs qui est actuellement connu sous le nom de polynôme de
Jones [35]. Un des faits remarquables de cet invariant est que, dans sa construction originale, il n’est
pas fait appel à la topologie algébrique et il y a des idées qui viennent de la mécanique statistique.
En 1989, Witten donne une interprétation physique de cet invariant [67]. Cette interprétation lui
a permis de proposer, de façon heuristique, la définition de nouveaux invariants des 3-variétés. Ces
deux moments historiques sont généralement considérés comme les origines de la topologie quantique.
Les idées de Jones et Witten ont été, et continuent d’être, une grande source d’inspiration pour la
recherche en topologie. Ces découvertes ont ouvert la voie à de multiples connexions entre la topologie
en basse dimension et d’autres domaines des mathématiques et de la physique.

Une première définition rigoureuse des invariants des 3-variétés inspiré par ces nouvelles idées
a été obtenue par Reshetikhin et Turaev à l’aide des représentations des groupes quantiques [59],
approche qui est connue comme non-perturbative. Cela a abouti à l’avènement de nombreux nouveaux
invariants, appelés invariants quantiques, puisque la méthode de Reshetikhin et Turaev permet de
construire un invariant à partir de la quantification d’une algèbre de Lie semi-simple. De cette façon,
nous avons au moins autant d’invariants que d’algèbres de Lie semi-simples. Par conséquent, les
invariants quantiques ne sont pas seulement des outils intéressants pour essayer de distinguer deux
objets topologiques différents, mais ils deviennent par eux-mêmes un objet d’étude à part entière. Par
exemple, une question fondamentale est : est-il possible d’organiser/hierarchiser ces invariants d’une
certaine manière ? Il s’avère que c’est le cas avec la théorie des invariants de type fini (Vassiliev-
Goussarov) dans le cas des entrelacs [65, 17, 6] et avec la théorie des invariants de type fini (Ohtsuki-
Goussarov-Habiro) dans le cas des 3-variétés [55, 26, 18].

Un succès important a été obtenu avec l’introduction de l’intégrale de Kontsevich pour les en-
trelacs [36, 1] et de l’invariant perturbatif universel de Le-Murakami-Ohtsuki (invariant LMO) pour
les 3-variétés [38], ici le mot “perturbatif ” fait allusion aux méthodes perturbatives de la physique.
L’importance de ces invariants réside dans le fait qu’ils sont universels par rapport aux invariants
de type fini à valeurs dans Q. Grosso modo, cette propriété dit que chaque invariant de type fini à
valeurs dans Q (en particulier chaque invariant de Reshetikhin-Turaev convenablement « développé »)
est complètement déterminé par l’intégrale de Kontsevich dans le cas des entrelacs ou par l’invariant
LMO dans le cas des 3-sphères d’homologie.

À l’origine, l’invariant LMO a été construit pour les variétés fermées. Bar-Natan, Garoufalidis,
Rozansky et Thurston en ont donné une nouvelle construction en utilisant un type d’intégrale gaussi-
enne au niveau diagrammatique [4, 5]. Leur définition n’est valable que pour les sphères d’homologie.
Mais il s’agit du contexte le plus intéressant pour l’invariant LMO.

L’invariant LMO a été généralisé aux variétés à bord sous la forme d’une TQFT (Topological
Quantum Field Theory), appelée foncteur LMO, par Cheptea, Habiro et Massuyeau [9] (d’autres
généralisations de l’invariant LMO pour les variétés à bord avaient été obtenues auparavant dans
[8, 53]). Le foncteur LMO Z̃ : LCobq → tsA part d’une catégorie de cobordismes de surfaces à bord
LCobq et prend ses valeurs dans une catégorie de diagrammes de Jacobi tsA. Voir la Figure 1.13 pour
quelques exemples de diagrammes de Jacobi.

La construction du foncteur LMO est sophistiquée : elle utilise des présentations chirurgicales
des cobordismes, une version combinatoire de l’intégrale de Kontsevich, qui dépend du choix d’un
associateur de Drinfeld, et afin de lever l’ambiguïté dans la présentation chirurgicale, il est nécessaire
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de faire plusieurs opérations combinatoires dans l’espace de diagrammes de Jacobi. Ainsi, une question
importante se pose :

• Quelle est l’information topologique codée par le foncteur LMO ? En particulier, est-il possible
de donner des interprétations du foncteur LMO en termes d’invariants classiques ?

Le but principal de cette thèse est d’apporter des éléments de réponse à cette question. Pour
l’aborder nous utilisons l’interaction décrite ci-dessus entre les cobordismes, les groupes d’homéotopie
et les objets noués. En particulier, ceci nous amène à faire un étude détaillée de quelques suites
décroissantes de sous-groupes du groupe Mg,1, que nous appelons filtrations de type Johnson, et des
homomorphismes définis sur chacun des termes de chaque filtration que nous appelons homomor-
phismes de type Johnson. Ainsi, les deux principaux protagonistes de cette thèse sont « le foncteur
LMO » et « les homomorphismes de type Johnson ». Une partie de nos résultats principaux peut être
résumée en disant que certaines réductions du foncteur LMO peuvent être interprétées à l’aide des
homomorphismes de type Johnson.

Dans la suite, nous donnons une description plus précise de nos résultats.

1.1 Théorie de Johnson-Morita

Notons simplement Σ := Σg,1 et M := Mg,1. Une façon naturelle d’étudier le groupe M est d’analyser
la façon dont il agit sur d’autres objets. Par exemple, on peut considérer l’action sur le premier groupe
d’homologie H = H1(Σ;Z) de Σ. Cette action donne lieu à la représentation symplectique :

σ : M −→ Sp(H, ω),

où ω : H ⊗ H → Z est la forme d’intersection de Σ et Sp(H, ω) est le groupe d’automorphismes de H
qui préservent ω. L’homomorphisme σ est surjectif mais il est loin d’être injectif. Son noyau est connu
sous le nom de groupe Torelli de Σ et est noté I. Ainsi, nous avons la suite exacte courte

1 −→ I
⊂

−−→ M
σ

−−→ Sp(H, ω) −→ 1. (1.1)

Nous voyons ainsi que, pour comprendre la structure algébrique de M, le groupe de Torelli I
mérite une étude particulière car, d’une certaine manière, c’est la partie de M qui va au-delà de
l’algèbre linéaire (au moins en ce qui concerne la représentation symplectique).

L’action de M sur le groupe fondamental π := π1(Σ, ∗), où ∗ ∈ ∂Σ est un point fixé, s’avère plus
intéressante, puisqu’on obtient un homomorphisme injectif

ρ : M −→ Aut(π),

qui est connu comme la représentation de Dehn-Nielsen-Baer et dont l’image est le sous-groupe des
automorphismes de π qui fixent la classe d’homotopie du bord de Σ.

Filtrations de type Johnson. On peut considérer des approximations pas à pas de la représenta-
tion ρ, c’est-à-dire, considérer l’action de M sur les quotients nilpotents de π :

ρm : M −→ Aut(π/Γm+1π),

où Γ1π := π et Γm+1π := [π, Γmπ] pour m ≥ 1 est la suite centrale descendante de π. C’est l’approche
suivie par Johnson [32] et Morita [51]. Cette approche permet de définir la filtration de Johnson :

M ⊇ I = J1M ⊇ J2M ⊇ J3M ⊇ · · · (1.2)

où JmM := ker(ρm). En particulier, ρ1 = σ et J1M = I.
En considérant l’interaction entre le groupe d’homéotopie et les 3-variétés mentionnée ci-dessus,

il est naturel de considérer la surface Σ comme une partie du bord d’un corps en anses V := Vg,
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voir Figure 1.4. Notons ι : Σ →֒ V l’inclusion induite et soient B = H1(V ;Z) et π′ = π1(V, ι(∗)).
Notons A le sous-groupe ker(H ι∗−→ B) de H et A le sous-groupe ker(π

ι#
−→ π′) de π, où ι∗ et ι# sont

respectivement les applications induites par ι en homologie et en homotopie. Le groupe d’homéotopie
lagrangien de Σ est le groupe

L = {f ∈ M | f∗(A) ⊆ A}.

En considérant une suite décroissante (Km)m≥1 de sous-groupes distingués de π (différente de la
suite centrale descendante), Habiro et Massuyeau [28] ont introduit une filtration du groupe d’homéoto-
pie lagrangien L :

L ⊇ Ia = Ja

1M ⊇ Ja

2M ⊇ Ja

3M ⊇ · · · (1.3)

que nous appelons ici la filtration de Johnson alternative. Nous appelons le premier terme Ia := Ja
1M

de cette filtration le groupe de Torelli alternatif. On remarque que Ia est un sous-groupe dinstingué
dans L, mais il n’est pas distingué dans M. Grosso modo, le groupe Km est le sous-groupe de π

engendré par les commutateurs de poids m, où les éléments de A sont considérés comme de poids 2.
Par exemple K1 = π, K2 = A · Γ2π, K3 = [A, π] · Γ3π, etc. La filtration de Johnson alternative sera
notre objet d’étude principal dans la section 4 du chapitre 2.

Par ailleurs, Levine [43, 46] avait défini une filtration différente de L en considérant la suite centrale
descendante de π′ :

L ⊇ IL = JL
1 M ⊇ JL

2 M ⊇ JL
3 M ⊇ · · · (1.4)

et dont le premier terme est le groupe de Torelli lagrangien1 IL = {f ∈ L | f∗|A = IdA}.
Nous appelons cette filtration la filtration de Johnson-Levine. Remarquons que, à nouveau, IL est
distingué dans L mais pas dans M.

Par filtration de type Johnson, nous entendons la filtration de Johnson, la filtration de Johnson
alternative ou la filtration de Johnson-Levine.

Contrairement à la filtration de Johnson, la filtration de Johnson alternative et celle de Johnson-
Levine prennent en compte un corps en anses bordé par la surface. Par ailleurs, l’intersection de tous
les termes dans la filtration de Johnson alternative est triviale comme dans le cas de la filtration de
Johnson, mais ce n’est pas le cas pour la filtration de Johnson-Levine. Le deuxième but principal de
cette thèse est l’étude de la filtration de Johnson alternative (qui n’a jamais été étudiée) et de son
rapport avec les deux autres filtrations. La Proposition 4.9 et la Proposition 4.13 donnent le résultat
suivant.

Théorème 1. La filtration de Johnson alternative satisfait les propriétés suivantes.

(i)
⋂

m≥1 Ja
mM = {IdΣ}.

(ii) Pour tout k ≥ 1 le groupe Ja
kM est résiduellement nilpotent, i.e.

⋂

m

ΓmJa

kM = {IdΣ}.

D’autre part, pour tout m ≥ 1, on a

(iii) Ja
2mM ⊆ JmM, (iv) JmM ⊆ Ja

m−1M, (v) Ja
mM ⊆ JL

m+1M,

où Ja
0M = L. En particulier, la filtration de Johnson et la filtration de Johnson alternative sont

cofinales.

Homomorphismes de type Johnson. Chacun des termes de chaque filtration de type Johnson
est muni d’un homomorphisme dont le noyau est le terme suivant de la filtration. Nous les appelons
homomorphismes de type Johnson. Les homomorphismes de Johnson sont des outils importants pour
comprendre la structure du groupe de Torelli et la topologie des 3-sphères d’homologie [34, 49, 50, 52].

1Dans [66] nous utilisons la notation IL au lieu de I
L, et nous utilisons la terminologie groupe lagrangien fort au lieu

de groupe de Torelli lagrangien.
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Commençons par définir les espaces d’arrivée de ces homomorphismes. Pour un groupe abelien G, on
note par Lie(G) =

⊕
m≥1 Liem(G) l’algèbre de Lie graduée librement engendrée par G en degré 1.

Le m-ième homomorphisme de Johnson τm est défini sur JmM et il prend ses valeurs dans le
groupe Derm(Lie(H)) des dérivations de Lie(H) de degré m. Considérons l’élément Ω ∈ Lie2(H)
déterminé par la forme d’intersection ω : H ⊗ H → Z. Une dérivation symplectique de Lie(H) est
une dérivation d telle que d(Ω) = 0. Morita montre dans [51] que pour h ∈ JmM, la dérivation
τm(h) est symplectique. Le groupe des dérivations symplectiques de Lie(H) de degré m peut être
canoniquement identifié avec le noyau Dm(H) du crochet de Lie [ , ] : H ⊗Liem+1(H) → Liem+2(H).
Ainsi, pour m ≥ 1 nous avons les homomorphismes

τm : JmM −→ Dm(H).

Le m-ième homomorphisme de Johnson-Levine τL
m : JL

mM → Dm(B) est défini sur JL
mM et il

prend ses valeurs dans le noyau Dm(B) du crochet de Lie [ , ] : B ⊗ Liem+1(B) → Liem+2(B),
voir [43, 46].

Pour les homomorphismes de Johnson alternatifs [28], on considère l’algèbre de Lie graduée
Lie(B; A) librement engendrée par B en degré 1 et par A en degré 2. Le m-ième homomorphisme de
Johnson alternatif τ a

m : Ja
mM → Derm(Lie(B; A)) est défini sur Ja

mM et il prend ses valeurs dans le
groupe Derm(Lie(B; A)) des dérivations de Lie(B; A) de degré m. Comme dans le cas de Lie(H), nous
définissons une notion de dérivation symplectique de Lie(B; A) en utilisant l’élément Ω′ ∈ Lie3(B; A)
défini par la forme d’intersection du corps en anses V . Le Théorème 5.9 et la Proposition 5.11 im-
pliquent le résultat suivant.

Théorème 2. Soient m ≥ 1 et h ∈ Ja
mM. Alors

(i) Le morphisme τ a
m(h) définit une dérivation symplectique de Lie(B; A) de degré m.

(ii) Le morphisme τL
m+1(h) est déterminé par le morphisme τ a

m(h).

La propriété (ii) du Théorème 2 exprime la commutativité du diagramme

Ja
mM

⊂ !!

τa

m

""

JL
m+1M

τL
m+1

""
Dm(B; A)

ι∗ !! Dm+1(B),

pour tout m ≥ 1, où l’inclusion Ja
mM ⊆ JL

m+1M est donnée par le Théorème 1 (v). L’homomorphisme
ι∗ : Dm(B; A) → Dm+1(B) est induit par l’application ι∗ : H → B. La propriété (i) du Théorème 2
permet de définir une version diagrammatique des homomorphismes de Johnson alternatifs. Nous
pouvons ainsi étudier leurs relations avec le foncteur LMO.

Avant de poursuivre avec une description de nos résultats dans ce contexte, énonçons d’autres
résultats dans le contexte des homomorphismes de type Johnson. Dans [28], Habiro et Massuyeau
considèrent un homomorphisme de groupes

τ a

0 : L → Aut(Lie(B; A)),

que nous appelons ici le 0-ième homomorphisme de Johnson alternatif, et dont le noyau est le groupe
de Torelli alternatif Ia. Dans la section 5.3 du chapitre 2 nous montrons le résultat suivant.

Théorème 3. L’homomorphisme τ a
0 : L → Aut(Lie(B; A)) peut être décrit de manière équivalente

comme un homomorphisme de groupes τ a
0 : L → Aut(B) ⋉ Hom(A, Λ2B) pour une certaine action de

Aut(B) sur Hom(A, Λ2B). Le noyau de τ a
0 est le deuxième terme JL

2 M de la filtration de Johnson-
Levine. En particulier, nous avons Ia = Ja

1M = JL
2 M.

De plus, nous décrivons explicitement l’image G := τ a
0 (L). Nous obtenons ainsi la suite exacte

courte :
1 −→ Ia ⊂

−−→ L
τa

0−−→ G −→ 1. (1.5)
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Cette suite exacte courte a un rôle similaire, dans le contexte des homomorphismes de Johnson al-
ternatifs, à celui de la suite exacte courte (1.1) dans le contexte des homomorphismes de Johnson.
En effet, dans [28], les auteurs montrent que les homomorphismes de Johnson alternatifs satisfont
une propriété d’équivariance par rapport à l’homomorphisme τ a

0 , qui est l’analogue de la propriété
de Sp-équivariance satisfaite par les homomorphismes de Johnson. Par conséquent, la suite exacte
courte (1.5) peut se révéler importante pour une étude ultérieure de la filtration de Johnson alternative.

Cobordismes d’homologie. La filtration de Johnson et la filtration de Johnson-Levine, ainsi que
les homomorphismes respectifs se généralisent naturellement au monoïde de cobordismes d’homologie
de Σ = Σg,1, voir [16]. Un cobordisme d’homologie [26, 19] de Σ est la classe d’équivalence d’un couple
M = (M, m), où M est un cobordisme de Σ à Σ, et l’homéomorphisme m : ∂(Σ × [−1, 1]) → ∂M est
tel que les restrictions en bas et en haut m±(·) := m(·, ±1) : Σ → M induisent des isomorphismes
en homologie. Ici, deux couples (M, m) et (M ′, m′) sont équivalents s’il existe un homéomorphisme
ϕ : M → M ′ tel que ϕ ◦ m = m′.

La composée (M, m) ◦ (M ′, m′) de deux cobordismes d’homologie (M, m) et (M ′, m′) de Σ est la
classe d’équivalence du couple (M̃, m− ∪m′

+), où M̃ est obtenue à partir de M et M ′ en les collant via
l’application m+ ◦ (m′

−)−1. Cette loi de composition est associative et elle a comme objet identité la
classe d’équivalence du cobordisme trivial (Σ×[−1, 1], Id). Notons C = Cg,1 le monoïde des cobordismes
d’homologie de Σ = Σg,1.

Comme nous l’avons évoqué précédemment, un élément h ∈ M définit un cobordisme c(h) de Σ

à Σ, et de plus c(h) ∈ C. Nous avons ainsi un morphisme (injectif) de monoïdes c : M → C qui s’appelle
application cylindre. De cette façon, nous pouvons considérer le monoïde C comme un généralisation
du groupe d’homéotopie M.

La représentation de Dehn-Nielsen-Baer ρ : M → Aut(π) ne peut pas être étendue à tout le
monoïde C. Cependant, grâce à un théorème de Stallings [63], les homomorphismes ρk : M →
Aut(π/Γk+1π) peuvent être étendus à C :

ρk : C −→ Aut(π/Γk+1π)

est l’homomorphisme qui envoie (M, m) ∈ C sur l’automorphisme m−1
−,∗ ◦ m+,∗, voir [16]. Ainsi, la

filtration de Johnson de C est la suite décroissante de sous-monoïdes :

C ⊇ IC = J1C ⊇ J2C ⊇ J3C ⊇ · · · (1.6)

où JkC := ker(ρk). Le premier terme IC = J1C de cette filtration s’appelle le monoïde de cylindres
d’homologie. Nous avons aussi les homomorphismes de Johnson :

τm : JmC −→ Dm(H). (1.7)

Le monoïde des cobordismes d’homologie lagrangiens LC et fortement lagrangiens2 ICL sont définis
par

LC = {(M, m) ∈ C | ρ1(M)(A) ⊆ A} = {(M, m) ∈ C | m+,∗(A) ⊆ m−,∗(A)},

et
ICL = {(M, m) ∈ LC | ρ1(M)|A = IdA} = {(M, m) ∈ LC | m+,∗|A = m−,∗|A}.

En utilisant l’application cylindre, nous obtenons c(I) ⊆ IC, c(IL) ⊆ ICL et c(L) ⊆ LC.

De façon analogue, nous pouvons définir la filtration de Johnson-Levine de C :

C ⊇ LC ⊇ ICL = JL
1 C ⊇ JL

2 C ⊇ JL
3 C ⊇ · · · (1.8)

ainsi que les homomorphismes de Johnson-Levine :

τL
m : JL

mC −→ Dm(B). (1.9)

2Dans [66] nous utilisons la notation ILC au lieu de IC
L.
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Levine a comparé les filtrations de Johnson et Johnson-Levine en petits degrés pour ce qui concerne
le groupe d’homéotopie. Il a montré dans [46] que pour m = 1 et m = 2 on a JL

mM = JmM· (H∩IL),
où le sous-groupe H = {h ∈ M | h#(A) ⊆ A} peut être identifié au groupe d’homéotopie du corps
en anses V . Levine a posé la question de la comparaison en tout degré. Dans le cas des cobordismes
d’homologie, nous avons une comparaison en tout degré à certaines relations chirurgicales près. Celles-
ci, notées Yk pour k ≥ 1, ont été introduites indépendamment par Goussarov dans [18, 19] et par Habiro
dans [26] en lien avec la théorie des invariants de type fini. Plus précisément, nous avons le résultat
suivant.

Théorème 4. Pour tous k, l ≥ 1, on a

JL
k C

Yk+l
=

JkC

Yk+l
· qk+l(HC ∩ ICL),

où qk+l : C → C/Yk+l désigne la projection canonique et · est le produit dans C/Yk+l.

Ici, le sous-monoïde HC est l’analogue du groupe H dans le contexte des cobordismes d’homologie.
Plus précisement HC est le sous-monoïde des cobordismes (M, m) ∈ C tels que M ◦ V = V comme
cobordismes, où nous considérons V comme un cobordisme de la surface Σ au disque D et ◦ est
défini comme dans le cas de C. Le Théorème 4 est un des points-clés pour montrer le lien entre les
homomorphismes de Johnson-Levine et le foncteur LMO.

1.2 Homomorphismes du type Johnson et le foncteur LMO

Donnons une brève description du foncteur LMO Z̃ : LCobq → tsA. Les objets de la catégorie de
départ sont des mots non associatifs dans le symbole •. Soient u et v deux mots non associatifs formés
du symbole •, de longueurs g et f respectivement. Un élément de LCobq(u, v) est un cobordisme
de Σg,1 à Σf,1 qui satisfait en plus quelques conditions homologiques (propriété lagrangienne [8]). En
particulier, si on munit les éléments de LC = LCg,1 avec le mot non associatif ug = (• · · · (•(••)) · · · )
de longueur g en haut et en bas, nous avons LCg,1 ⊆ LCobq(ug, ug).

Nous passons maintenant à la définition de la catégorie d’arrivée tsA du foncteur LMO. Un dia-
gramme de Jacobi est un graphe fini unitrivalent tel que les sommets trivalents sont orientés, c’est-
à-dire que les arêtes incidentes sont ordonnées cycliquement. Soit C un ensemble fini, on dit qu’un
diagramme de Jacobi est C-colorié si les sommets univalents sont coloriés par le Q-espace vectoriel
engendré par C. Le degré interne d’un diagramme de Jacobi est le nombre de sommets trivalents,
noté i-deg. Le diagramme de Jacobi connexe de i-deg = 0 est appelé strut. On renvoie à la Figure 1.7
pour quelques exemples.

Figure 1.7: Diagrammes de Jacobi C-coloriés de i-deg 0, 1, 2 et 2, respectivement. Ici C = {a, b, c}.

L’espace de diagrammes de Jacobi C-coloriés est alors défini par

A(C) :=
VectQ{Diagrammes de Jacobi C-coloriés}

AS, IHX, Q-multilinéarité
,

où les relations AS, IHX et multilinéarité sont décrites dans la Figure 1.8.

Pour un entier non négatif g, on note ⌊g⌉∗ l’ensemble {1∗, . . . , g∗}, où ∗ est un symbole décoratif
comme par exemple +, − ou ∗ lui-même. Les objets de la catégorie tsA sont les entiers naturels.
L’ensemble des morphismes de g à f est le sous-espace tsA(g, f) des diagrammes dans A(⌊g⌉+ ⊔ ⌊f⌉−)
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Figure 1.8: Relations dans A(C).

sans struts dont les deux extrémités sont coloriées par des éléments de l’ensemble ⌊g⌉+. Pour D ∈
tsA(g, f) et E ∈ tsA(h, g), la composée D ◦ E est l’élément dans tsA(h, f) défini comme la somme
de diagrammes de Jacobi obtenus en considérant toutes les façons possibles de coller les sommets
univalents ⌊g⌉+-coloriés de D sur les sommets univalents ⌊g⌉−-coloriés de E. Par exemple :

Le morphisme identité de tsA(g, g) est

La catégorie tsA est appelée catégorie de diagrammes de Jacobi de type “top-substantial”.
Voyons maintenant l’idée de la définition de Z̃. On fixe un système de méridiens et de parallèles

{αi, βi} de Σg,1 comme dans la Figure 1.9.

Figure 1.9: Système de méridians et de parallèles {αi, βi}.

Soit (M, m) un cobordisme lagrangien, disons (M, m) ∈ LCg,1. On attache g anses (d’indice 2)
D2 × [0, 1] sur la surface du bas de M en envoyant les âmes des anses sur les courbes m−(αi). De
façon similaire, on attache g anses (d’indice 2) sur la surface du haut de M en envoyant les âmes des
anses sur les courbes m+(βi). Ainsi, on obtient une 3-variété B dont le bord est homéomorphe au
bord du cube [−1, 1]3 et les co-âmes des anses définissent un objet noué γ′ dans B, voir la Figure 1.10.
Le couple (B, γ′) est appelé présentation par enchevêtrement bas-haut de M .

Ensuite, on considère une présentation chirurgicale du couple (B, γ′), c’est-à-dire, un entrelacs
framé L ⊆ int([−1, 1]3) et un objet noué γ ⊆ [−1, 1]3 \ L, tel que la chirurgie le long de L transforme
le couple ([−1, 1]3, γ) en le couple (B, γ′), voir la Figure 1.11.

Puis nous considérons l’intégrale de Kontsevich du couple ([−1, 1]3, L ∪ γ) pour obtenir une série
de diagrammes de Jacobi d’un certain type. Pour lever l’ambiguïté de la présentation chirurgicale, il
est nécessaire d’effectuer des opérations combinatoires sur les diagrammes. Finalement, nous allons
obtenir une série de diagrammes de Jacobi Z̃(M) dans tsA(g, g), voir la Figure 1.12.

Les homomorphismes de type Johnson peuvent être décrits en termes de diagrammes de Jacobi où,
parmi tous les graphes, seuls les arbres sont autorisés. Par conséquent, il est naturel de s’interroger
sur la relation entre la version diagrammatique des homomorphismes de type Johnson et la réduction
arborée du foncteur LMO. Cheptea, Habiro et Massuyeau montrent dans [8] que les homomorphismes
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Figure 1.10: Passage de (M, m) à (B, γ′).

Figure 1.11: Passage de (B, γ′) à ([−1, 1]3, L ∪ γ).

Figure 1.12: Passage de ([−1, 1]3, L ∪ γ) à Z̃(M) ∈ tsA(g, g).

de Johnson peuvent être lus dans la réduction arborée du foncteur LMO. Nous montrons le résultat
suivant.

Théorème 5. Les homomorphismes de Johnson-Levine peuvent être lus dans la réduction arborée du
foncteur LMO.

Plus précisément, pour M ∈ JL
mC nous montrons que les termes du type arbre, de degré interne m

et avec sommets univalents uniquement coloriés par l’ensemble ⌊g⌉+ de Z̃(M) coïncident avec la
version diagrammatique de τL

m(M), après les changements i− 0→ ai et i+ 0→ bi, où {ai, bi} est une base
symplectique de H1(Σ) telle que {ai} est une base de A = ker(H1(Σ)

ι∗−−→ B) et B = H1(V ).
Les homomorphismes de Johnson alternatifs motivent la définition du degré alternatif, noté a-deg,

pour les diagrammes Jacobi connexes du type arbre. Si T est un diagramme de Jacobi connexe du
type arbre colorié par B ⊕ A, alors

a-deg(T ) = 2|TA| + |TB| − 3,

où |TA| (respectivement |TB|) désigne le nombre de sommets univalents de T coloriés par A (respec-
tivement par B). Voir la Figure 1.13 (a) et (b) pour quelques exemples.



xvi

Figure 1.13: Diagrammes de Jacobi du type arbre de a-deg = 3 dans (a) et de a-deg = 1 dans (b) et
(c) diagramme de Jacobi avec boucle. Ici a, a′ ∈ A et b, b′, b1, . . . , b4 ∈ B.

Le tableau suivant met en regard degré alternatif et degré interne pour les diagrammes de Jacobi
les plus simples. Nous colorions un sommet univalent avec le signe + si la couleur correspondante
appartient à B et avec − si la couleur correspondante appartient à A.

Notons par T Y,a
m (B ⊕ A) l’espace engendré par les diagrammes de Jacobi connexes du type arbre,

coloriés par B ⊕ A, avec au moins un sommet trivalent et de a-degré égal à m. Pour un cobordisme
lagrangien M notons Z̃t(M) la réduction de Z̃(M) modulo les diagrammes de Jacobi avec boucles,
c’est-à-dire, les diagrammes avec une composante connexe non contractile. Voir la Figure 1.13 (c)
pour un exemple. Ainsi, Z̃t(M) est uniquement composé de diagrammes de Jacobi du type arbre.
La première étape pour relier les homomorphismes de Johnson alternatifs avec le foncteur LMO est
donnée par le Théorème 6.5 qui énonce le résultat suivant.

Théorème 6. Le degré alternatif induit une filtration {Fa
mC}m≥1 de C par des sous-monoïdes. De

plus, considérons l’application
Z̃Y,a

m : Fa

mC −→ T Y,a
m (B ⊕ A),

où Z̃Y,a
m (M) est défini comme les diagrammes de Jacobi dans Z̃t(M) avec au moins un sommet trivalent

et de a-deg = m, pour M ∈ Fa
mC. Alors, Z̃Y,a

m est un morphisme de monoïdes.

Dans le Théorème 6.14 et le Théorème 6.16 nous montrons le résultat suivant.

Théorème 7. Les homomorphismes de Johnson alternatifs peuvent être lus dans la réduction arborée
du foncteur LMO.
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Plus précisément, nous montrons que pour h ∈ Ja
mM avec m ≥ 2, la valeur Z̃Y,a

m (c(h)) coïncide avec
la version diagrammatique de τ a

m(h). Pour h ∈ Ja
1M, nous montrons que τ a

1 (h) est donné par Z̃Y,a
1 (c(h))

et par les diagrammes de Jacobi sans sommets trivalents de a-deg= 1 dans Z̃(c(h)). Les techniques
utilisées dans la preuve du Théorème 7 dans le cas m = 1 (Théorème 6.14) et m ≥ 2 (Théorème 6.16)
sont différentes. Pour m = 1, nous devons faire des calculs explicites du foncteur LMO et une
comparaison entre le premier homomorphisme de Johnson alternatif et le premier homomorphisme
de Johnson. Pour m ≥ 2, le point clé est le fait que le foncteur LMO définit un développement
symplectique alternatif de π. Pour montrer cela, nous utilisons un résultat de Massuyeau [47] qui
montre que le foncteur LMO définit un développement symplectique de π.

Le Théorème 6 et le Théorème 7 fournissent une nouvelle grille de lecture de la réduction arborée
du foncteur LMO par le degré alternatif. Remarquons que le Théorème 6 est valide dans le contexte des
cobordismes d’homologie, ainsi que les résultats que nous utilisons dans la preuve du Théorème 7. Cela
suggère que les homomorphismes de Johnson alternatifs et le Théorème 7 pourraient être généralisés
aux cobordismes d’homologie, mais nous n’avons pas encore exploré cette question.

1.3 Organisation de la thèse

Le présent mémoire se compose des deux prépublications suivantes :

1. Johnson-Levine homomorphisms and the tree reduction of the LMO functor.

arXiv : 1712.00073, 2017.

2. Alternative versions of the Johnson homomorphisms and the LMO functor.

arXiv : 1902.10012, 2019.

Chacune de ces deux parties peut être lue indépendamment et chacune a une introduction plus
détaillée. En particulier les théorèmes 4 et 5 sont démontrés dans la première partie et les théorèmes
1, 2 ,3, 6 et 7 le sont dans la deuxième partie.

2 Introduction (in English)

This thesis lies in the framework of quantum topology, a domain at the crossroads of algebra, topology
and mathematical physics that has its origins in the 1980s. Quantum topology is mainly concerned
with two types of objects: objects of topological nature and invariants of these objects. Let us start
with a brief and intuitive description of the objects of topological nature we are interested in. In
dimension one, we are interested in knots, links, and other similar knotted objects. In dimension two,
we are interested in surfaces and their “symmetry groups”. In dimension three, we are interested in
3-dimensional manifolds. In fact, knots (or links) and the “symmetries” of surfaces can be seen as
3-dimensional manifolds.

Knot theory. We consider one dimensional objects embedded in a three dimensional space. For
instance knots, links, tangles, etc. See Figure 2.1 for some examples.

Figure 2.1: (a) Knots, (b) links and (c) a tangle.

Two knotted objects are said to be equivalent if one can be deformed (by stretching, entangling,
detangling but without cutting) into the other. For instance, the knots K1 and K2 in Figure 2.1 (a)
are equivalent. We can deform K1 into K2 as shown in Figure 2.2.
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Figure 2.2: Equivalence between K1 and K2.

Mapping class group. Let Σg,1 be a compact connected oriented surface of genus g with one
boundary component. See Figure 2.3.

Figure 2.3: Surface Σg,1.

The classification of compact surfaces is well known. Therefore, the object we are interested in
is the “symmetry group” of the surface. More precisely, the group of isotopy classes of orientation-
preserving homeomorphisms h : Σg,1 → Σg,1 that fix ∂Σg,1. From now on, this group will be denoted
by Mg,1.

3-manifolds. We are interested in compact oriented connected 3-manifolds (possibly with boundary).
In particular we are interested in cobordisms from Σg,1 to Σf,1, that is, 3-manifolds M whose boundary
decomposes as the union of a copy of Σg,1 (on top), a copy of Σf,1 (on bottom) and the cylinder
S1 × [−1, 1] (lateral boundary). Hence, we have embeddings m+ : Σg,1 → ∂M ⊆ M and m− : Σf,1 →
∂M ⊆ M . Schematically:

For instance, Figure 2.4 (a) shows a cobordism from Σ2,1 to Σ3,1.

Figure 2.4: (a) Cobordism from Σ2,1 to Σ3,1 (b) bottom-top tangle presentation of the cobordism on
the left.
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Another example of 3-manifold is the genus g handlebody, that is, the 3-manifold obtained from a
closed 3-ball by gluing g 1-handles [0, 1] × D2 on its boundary. The obtained 3-manifold is denoted
by Vg. Notice that the boundary of Vg decomposes as the union of the surface Σg,1 together with a
disk D, see Figure 2.5.

Figure 2.5: Handlebody Vg and decomposition ∂Vg = Σg,1 ∪ D.

From now on, by “3-manifold” we mean “compact oriented connected 3-manifold”.
The three families of topological objects described above are closely related:

1. Every 3-manifold without boundary can be obtained as a surgery along a link in S3. Such a link
is called surgery presentation of the 3-manifold.

2. Let i : ∂Vg → ∂Vg be the involution which exchanges the meridians and (preferred) longi-
tudes of ∂Vg. Every 3-manifold without boundary can be obtained by gluing two copies of the
handlebody Vg by using a homeomorphism ih, where h (the gluing element) is an element in
the mapping class group of ∂Vg. Such a decomposition is called a Heegaard splitting of the
3-manifold. It is interesting to notice that some topological properties of the 3-manifold ob-
tained from a Heegaard splitting are reflected in the algebraic properties of the gluing element
and reciprocally. For instance, a 3-manifold with a Heegaard spliting whose gluing element acts
trivially in homology, is a homology sphere (3-manifold with the same homology groups as S3).

3. Every cobordism from Σg,1 to Σf,1 can be represented (after surgery) as a knotted object
in [−1, 1]3. Such a presentation is called bottom-top tangle presentation. For example, the
tangle in Figure 2.4 (b) is a bottom-top tangle presentation of the cobordism from Σ2,1 to Σ3,1

shown in Figure 2.4 (a).

4. Every element h in the group Mg,1 allows to define a cobordism from Σg,1 to Σg,1 as follows.
Consider the cylinder Σg,1 × [−1, 1] with embeddings m± : Σg,1 → ∂(Σg,1 × [−1, 1]) given
by m+(x) = (h(x), 1) and m−(x) = (x, −1). This cobordism is called the mapping cylinder of h
and it is denoted by c(h).

The above relations between these objects make it possible to interpret a problem in a particular
family of objects (for instance 3-manifolds) in terms of another family (for instance knots or mapping
class groups). It is a very fruitful way to approach the study of these families of objects and we will
use it throughout this work.

A fundamental question that arises in topology is: how to distinguish two objects of the same
nature (two knots, two 3-manifolds or two elements in Mg,1)? For example, Figure 2.2 shows that
the two knots K1 and K2 in Figure 2.1 (a) are equivalent by describing a way of deforming one into
the other. However, suppose we consider the two links from Figure 2.1 (b). We would like to know
if they are equivalent or not. We can start by trying to deform one into the other. Assuming we do
not succeed, it does not mean that it can not be done. Hence, we need another way to approach the
problem. One possible approach to this task is the construction of invariants, that is, “quantities”
(numbers, polynomials, groups among others) which are equal for equivalent objects. For example, an
invariant for oriented links is the linking number which admits the following definition. Let K be an
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oriented link and consider a regular projection of K onto a plane. Let Ki and Kj be two connected
components of K. The linking number Lk(Ki, Kj) between Ki and Kj is defined by

Lk(Ki, Kj) =
1

2

∑

c

sgn(c),

where c runs over the set of crossing between Ki and Kj in the regular projection and sgn(c) is the
sign of the crossing c defined according to the rule given in Figure 2.6. Consider for example the

Figure 2.6: Positive and negative crossing.

link K1 ∪ K2 from Figure 2.1 (b). We have Lk(K1, K2) = 0 while for the link K ′
1 ∪ K ′

2 in the same
figure, we have Lk(K ′

1, K ′
2) = −1. Thus, we can conclude that the links K1 ∪ K2 and K ′

1 ∪ K ′
2 are not

equivalent.

Until the 1980s, algebraic topology was the main source for the construction of invariants for links
and 3-manifolds. An important event occurred in 1984 with Jones’ discovery of a new invariant of
links, which is currently known as the Jones Polynomial [35]. Some of the remarkable facts about
this invariant is that, in its original construction, algebraic topology is not used and that there are
ideas that come from statistical mechanics. In 1989, Witten gave a physical interpretation of this
invariant [67]. This interpretation allowed him to propose, in a heuristic way, the definition of new
invariants of 3-manifolds. These two historical moments are generally considered as the origins of
quantum topology. The ideas of Jones and Witten have been, and continue to be, a great source of
inspiration for research in topology. These discoveries paved the way for multiple connections between
low-dimensional topology and other areas of mathematics and physics.

A rigorous definition of the 3-manifold invariants inspired by these new ideas was obtained by
Reshetikhin and Turaev by using quantum groups and their representations [59]. This approach is
sometimes called the non-perturbative approach. This led to the advent of many new invariants, called
quantum invariants, since the method of Reshetikhin and Turaev allows to construct an invariant
from the quantization of a semi-simple Lie algebra. Therefore, we have at least as many invariants
as semi-simple Lie algebras. This way, quantum invariants are not only interesting tools for trying to
distinguish two different topological objects, but they become a subject of study in their own right.
For instance, a fundamental question is: is it possible to organize (or hierarchize) these invariants
in a certain way? It turns out that this is possible thanks to the theory of finite-type invariants
(Vassiliev-Goussarov) in the case of links [65, 17, 6] and to the theory finite-type invariants (Ohtsuki-
Goussarov-Habiro) in the case of 3-manifolds [55, 26, 18].

An important success was obtained with the introduction of the Kontsevich integral for links [36, 1]
and the universal perturbative invariant of Le-Murakami-Ohtsuki (LMO invariant) for 3-manifolds [38].
Here the word “perturbative” refers to the perturbative methods in physics. The importance of these
invariants lies in the fact that they are universal with respect to Q-valued finite-type invariants.
Roughly speaking, this property says that each Q-valued finite-type invariant (in particular each suit-
ably “developed” Reshetikhin-Turaev invariant) is completely determined by the Kontsevich integral
in the case of links or by the LMO invariant in the case of homology 3-spheres.

Originally, the LMO invariant was defined for closed 3-manifolds. Bar-Natan, Garoufalidis, Rozan-
sky and Thurston gave a new construction using a kind of diagrammatic Gaussian integral [4, 5]. Their
definition is only valid for homology spheres. But this is the most interesting context for the LMO
invariant.
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The LMO invariant was generalized to 3-manifolds with boundary in the form of a Topological
Quantum Field Theory (TQFT), called LMO functor, by Cheptea, Habiro and Massuyeau [9] (other
generalizations of the LMO invariant for 3-manifolds with boundary have been previously obtained
in [8, 53]). The source category LCobq of the LMO functor Z̃ : LCobq → tsA is the category of
Lagrangian cobordisms (cobordisms satisfying a homological condition) between bordered surfaces.
The target of the LMO functor is the category tsA of top-substantial Jacobi diagrams (uni-trivalent
graphs up to certain relations). See Figure 2.13 for some examples of Jacobi diagrams.

The construction of the LMO functor is quite sophisticated: it uses surgery presentations of cobor-
disms, a combinatorial version of the Kontsevich integral (which depends on the choice of a Drinfeld
associator) and in order to remove the ambiguity in the surgery presentation, it is necessary to perform
several combinatorial operations in the space of Jacobi diagrams. Thus, an important question arises:

• Which topological information is encoded by the LMO functor? In particular, is it possible to
give interpretations of the LMO functor in terms of classical invariants?

The main purpose of this thesis is to provide some partial answers to this question. To approach it
we use the interaction described above between cobordisms, mapping class groups and knotted objects.
In particular, this leads us to a detailed study of some decreasing sequences of subgroups of the group
Mg,1, which we call here Johnson-type filtrations, and homomorphisms defined on each of the terms
of the filtrations which we call Johnson-type homomorphisms. Thus, the two main protagonists of
this dissertation are “the LMO functor” and “the Johnson-type homomorphisms”. Part of our main
results can be summarized by saying that certain reductions of the LMO functor can be interpreted
by means of the Johnson-type homomorphisms.

Below, we give a more detailed description of our results.

2.1 Johnson-Morita theory

To simplify we denote by Σ := Σg,1 and M := Mg,1. A natural way to study M is to analyse the
way it acts on other objects. For instance, we can consider the action on the first homology group
H := H1(Σ;Z) of Σ. This action gives rise to the so-called symplectic representation

σ : M −→ Sp(H, ω),

where ω : H ⊗ H → Z is the intersection form of Σ and Sp(H, ω) is the group of automorphisms of H
preserving ω. The homomorphism σ is surjective but it is far from being injective. Its kernel is known
as the Torelli group of Σ, denoted by I. Hence we have the short exact sequence

1 −→ I
⊂

−−→ M
σ

−−→ Sp(H, ω) −→ 1. (2.1)

We can see that, in order to understand the algebraic structure of M, the Torelli group I deserves
significant attention because, in a certain way, it is the part of M that is beyond linear algebra (at
least with respect to the symplectic representation).

More interestingly, we can consider the action of M on the fundamental group π := π1(Σ, ∗) for a
fixed point ∗ ∈ ∂Σ. This way we obtain an injective homomorphism

ρ : M −→ Aut(π),

which is known as the Dehn-Nielsen-Baer representation and whose image is the subgroup of auto-
morphisms of π that fix the homotopy class of the boundary of Σ.

Johnson-type filtrations. As stepwise approximations of the representation ρ, we can consider the
action of M on the nilpotent quotients of π:

ρm : M −→ Aut(π/Γm+1π),
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where Γ1π := π and Γm+1π := [π, Γmπ] for m ≥ 1, define the lower central series of π. This is
the approach pursued by Johnson [32] and Morita [51]. This approach allows to define the Johnson
filtration

M ⊇ I = J1M ⊇ J2M ⊇ J3M ⊇ · · · (2.2)

where JmM := ker(ρm). In particular, ρ1 = σ and J1M = I.
Recall the deep interaction between the mapping class group and the study of 3-manifolds men-

tioned above. In this setting, it is natural to consider the surface Σ as being part of the boundary
of the handlebody V := Vg, see Figure 2.4. Let ι : Σ →֒ V denote the induced inclusion and let

B := H1(V ;Z) and π′ := π1(V, ι(∗)). Let A and A be the subgroups ker(H ι∗−→ B) and ker(π
ι#

−→ π′),
where ι∗ and ι# are the induced maps by ι in homology and homotopy, respectively. The Lagrangian
mapping class group of Σ is the group

L = {f ∈ M | f∗(A) ⊆ A}.

By considering a descending series (Km)m≥1 of normal subgroups of π (different from the lower
central series) Habiro and Massuyeau introduced in [28] a filtration of the Lagrangian mapping class
group L:

L ⊇ Ia = Ja

1M ⊇ Ja

2M ⊇ Ja

3M ⊇ · · · (2.3)

that we call here the alternative Johnson filtration. We call the first term Ia := Ja
1M of this filtration

the alternative Torelli group. Notice that Ia is a normal subgroup of L but it is not normal in M.
Roughly speaking, the group Km consists of commutators of π of weight m, where the elements of A
are considered to have weight 2. For instance K1 = π, K2 = A · Γ2π, K3 = [A, π] · Γ3π and so on. The
alternative Johnson filtration will be our main object of study in Section 4 of Chapter 2.

Besides, in [43, 46] Levine defined a different filtration of L by considering the lower central series
of π′, and whose first term is the Lagrangian Torelli group3 IL = {f ∈ L | f∗|A = IdA}:

L ⊇ IL = JL
1 M ⊇ JL

2 M ⊇ JL
3 M ⊇ · · · (2.4)

we call this filtration the Johnson-Levine filtration. The group IL is normal in L but not in M.
We refer to the Johnson filtration, the alternative Johnson filtration and the Johnson-Levine

filtration as Johnson-type filtrations.
Notice that, unlike the Johnson filtration, the alternative Johnson filtration and the Johnson-

Levine filtration take into account a handlebody bounded by the surface. Besides, the intersection
of all terms in the alternative Johnson filtration is the identity of M as in the case of the Johnson
filtration. But this is not the case for the Johnson-Levine filtration. The second main purpose of this
dissertation is the study of the alternative Johnson filtration (which has not been studied previously)
and its relation with the other two filtrations. Proposition 4.9 and Proposition 4.13 give the following
result.

Theorem 1. The alternative Johnson filtration satisfies the following properties.

(i)
⋂

m≥1 Ja
mM = {IdΣ}.

(ii) For all k ≥ 1 the group Ja
kM is residually nilpotent, that is,

⋂

m

ΓmJa

kM = {IdΣ}.

Besides, for every m ≥ 1, we have

(iii) Ja
2mM ⊆ JmM, (iv) JmM ⊆ Ja

m−1M, (v) Ja
mM ⊆ JL

m+1M,

3In [66] we use the notation IL instead of I
L and we use the term strongly Lagrangian mapping class group instead

of Lagrangian Torelli group.
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where Ja
0M = L. In particular, the Johnson filtration and the alternative Johnson filtration are cofinal.

Johnson-type homomorphisms. Each term of the Johnson-type filtrations comes with a homo-
morphism whose kernel is the next subgroup in the filtration. We refer to these homomorphisms as
Johnson-type homomorphisms. The Johnson homomorphisms are important tools to understand the
structure of the Torelli group and the topology of homology 3-spheres [34, 49, 50, 52]. Let us review the
target spaces of these homomorphisms. For an abelian group G, we denote by Lie(G) =

⊕
m≥1 Liem(G)

the graded Lie algebra freely generated by G in degree 1.
The m-th Johnson homomorphism τm is defined on JmM and it takes values in the group

Derm(Lie(H)) of degree m derivations of Lie(H). Consider the element Ω ∈ Lie2(H) determined
by the intersection form ω : H ⊗H → Z. A symplectic derivation d of Lie(H) is a derivation satisfying
d(Ω) = 0. Morita shows in [51] that for h ∈ JmM, the derivation τm(h) is symplectic. The group of
symplectic degree m derivations of Lie(H) can be canonically identified with the kernel Dm(H) of the
Lie bracket [ , ] : H ⊗ Liem+1(H) → Liem+2(H). This way, for m ≥ 1 we have homomorphisms

τm : JmM −→ Dm(H).

The m-th Johnson-Levine homomorphism τL
m : JL

mM → Dm(B) is defined on JL
mM and it takes

values in the kernel Dm(B) of the Lie bracket [ , ] : B ⊗ Liem+1(B) → Liem+2(B), see [43, 46].
For the alternative Johnson homomorphisms [28], consider the graded Lie algebra Lie(B; A) freely

generated by B in degree 1 and A in degree 2. The m-th alternative Johnson homomorphism τ a
m :

Ja
mM → Derm(Lie(B; A)) is defined on Ja

mM and it takes values in the group Derm(Lie(B; A)) of
degree m derivations of Lie(B; A). Similarly to the case of Lie(H), we define a notion of symplectic
derivation of Lie(B; A) by considering the element Ω′ ∈ Lie3(B; A) defined by the intersection form of
the handlebody V . Theorem 5.9 and Proposition 5.11 give the following result.

Theorem 2. Let m ≥ 1 and h ∈ Ja
mM. Then

(i) The morphism τ a
m(h) defines a degree m symplectic derivation of Lie(B; A).

(ii) The morphism τL
m+1(h) is determined by the morphism τ a

m(h).

Property (ii) in Theorem 2 can be expressed more precisely by the commutativity of the diagram

Ja
mM

⊂ !!

τa

m

""

JL
m+1M

τL
m+1

""
Dm(B; A)

ι∗ !! Dm+1(B),

for m ≥ 1, where the inclusion Ja
mM ⊆ JL

m+1M is assured by Theorem 1 (v). The homomorphism
ι∗ : Dm(B; A) → Dm+1(B) is induced by the map ι∗ : H → B. Property (i) in Theorem 2 allows
to define a diagrammatic version of the alternative Johnson homomorphisms so that we are able to
study their relation to the LMO functor.

Before we proceed with a description of our results in this setting, let us state another result in
the context of the alternative Johnson homomorphisms. In [28], Habiro and Massuyeau consider a
group homomorphism τ a

0 : L → Aut(Lie(B; A)), to which we refer as the 0-th alternative Johnson
homomorphism, and whose kernel is the alternative Torelli group Ia. In subsection 5.3 of Chapter 2
we prove the following.

Theorem 3. The homomorphism τ a
0 : L → Aut(Lie(B; A)) can be equivalently described as a group

homomorphism τ a
0 : L → Aut(B) ⋉ Hom(A, Λ2B) for a certain action of Aut(B) on Hom(A, Λ2B).

The kernel of τ a
0 is the second term JL

2 M of the Johnson-Levine filtration. In particular we have
Ia = Ja

1M = JL
2 M.

Moreover, we explicitly describe the image G := τ a
0 (L) and then we obtain the short exact sequence

1 −→ Ia ⊂
−−→ L

τa

0−−→ G −→ 1. (2.5)
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This short exact sequence has a similar role, in the context of the alternative Johnson homomor-
phisms, to that of the short exact sequence (2.1) in the context of the Johnson homomorphisms. This
is because in [28] the authors prove that the alternative Johnson homomorphisms satisfy an equiv-
ariant property with respect to the homomorphism τ a

0 , which is the analogue of the Sp-equivariant
property of the Johnson homomorphisms. Hence the short exact sequence (2.5) can be important for
a further development of the study of the alternative Johnson filtration.

Homology cobordisms. The Johnson filtration and the Johnson-Levine filtration as well as the
respective Johnson-type homomorphisms generalize in a natural way to the monoid of homology cobor-
disms of Σ, see [16]. A homology cobordism [26, 19] is a homeomorphism class of pairs (M, m), where M
is a cobordism from Σ to Σ and m : ∂(Σ × [−1, 1]) → ∂M is an orientation-preserving homeomor-
phism such that the top and bottom restrictions m±(·) := m(·, ±1) : Σ → M induce isomorphisms in
homology. Here, two pairs (M, m) and (M ′, m′) are said to be equivalent if there is a homeomorphism
φ : M → M ′ such that φ ◦ m = m′.

The composition (M, m) ◦ (M ′, m′) of two homology cobordisms (M, m) and (M ′, m′) of Σ is the
equivalence class of the pair (M̃, m− ∪ m′

+), where the 3-manifold M̃ is obtained by gluing the two
3-manifolds M and M ′ by using the map m+ ◦ (m′

−)−1. This composition is associative and has as
identity element the equivalence class of the trivial cobordism (Σ × [−1, 1], Id). Let us denote by C
(or by Cg,1 if there is ambiguity) the monoid of homology cobordisms of Σ.

As we previously mentioned, an element h ∈ M defines a cobordism c(h) from Σ to Σ. More-
over c(h) is a homology cobordism, that is c(h) ∈ C. Therefore, we have an (injective) monoid
homomorphism c : M → C which is called the mapping cylinder construction. This way, we can
consider the monoid C as a generalization of the mapping class group M.

The Dehn-Nielsen-Baer representation ρ : M → Aut(π) can not be extended to the whole
monoid C. However, by a theorem of Stallings [63], the homomorphisms ρk : M → Aut(π/Γk+1π) can
be extended to C:

ρk : C −→ Aut(π/Γk+1π)

is the homomorphism which sends (M, m) ∈ C to the automorphism m−1
−,∗ ◦ m+,∗, see [16]. Hence, the

Johnson filtration of C is the descending chain of submonoids

C ⊇ IC = J1C ⊇ J2C ⊇ J3C ⊇ · · · (2.6)

where JkC := ker(ρk). The first term IC = J1C in this filtration is called the monoid of homology
cylinders. We also have the Johnson homomorphisms for homology cobordisms

τm : JmC −→ Dm(H). (2.7)

The monoid of Lagrangian homology cobordisms LC is defined as

LC = {(M, m) ∈ C | ρ1(M)(A) ⊆ A} = {(M, m) ∈ C | m+,∗(A) ⊆ m−,∗(A)},

and the monoid of strongly Lagrangian homology cobordisms4 ICL is defined as

ICL = {(M, m) ∈ LC | ρ1(M)|A = IdA} = {(M, m) ∈ LC | m+,∗|A = m−,∗|A}.

Using the mapping cylinder construction we obtain c(I) ⊆ IC, c(IL) ⊆ ICL and c(L) ⊆ LC.

Similarly, we can define the Johnson-Levine filtration of C:

C ⊇ LC ⊇ ICL = JL
1 C ⊇ JL

2 C ⊇ JL
3 C ⊇ · · · (2.8)

as well as the Johnson-Levine homomorphisms:

τL
m : JL

mC −→ Dm(B). (2.9)

4In [66] we use the notation ILC instead of IC
L.
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Levine compared the Johnson and Johnson-Levine filtrations in lower degree for the mapping
class group. He proved in [46] that for m = 1 and m = 2, we have JL

mM = JmM · (H ∩ IL),
where the subgroup H = {h ∈ M | h#(A) ⊆ A} can be identified with the mapping class group of the
handlebody V . Levine asked about the comparison in any degree. In the case of homology cobordisms
we have a comparison in any degree up to some surgery relations. These relations, denoted by Yk for
k ≥ 1, were introduced independently by Goussarov in [18, 19] and by Habiro in [26] in connection
with the theory of finite-type invariants. More precisely, we have the following result.

Theorem 4. For every k, l ≥ 1, we have

JL
k C

Yk+l
=

JkC

Yk+l
· qk+l(HC ∩ ICL),

where qk+l : C → C/Yk+l is the canonical projection and · denotes the product in C/Yk+l.

Here, the submonoid HC is the analogue of the group H in the context of homology cobordisms.
More precisely HC is the submonoid of (M, m) ∈ C such that M ◦ V = V as cobordisms, where
we consider V as a cobordism from the surface Σ to the disc D and ◦ is defined as in the case
of C. Theorem 4 is one of the key points to understand the relation between the Johnson-Levine
homomorphisms and the LMO functor.

2.2 Johnson-type homomorphisms and the LMO functor

Let us give a brief description of the LMO functor Z̃ : LCobq → tsA. The objects of the source category
are non-associative words in the symbol •. Let u and v be two non-associative words in the symbol • of
lengths g and f , respectively. An element of LCobq(u, v) is a cobordism of Σg,1 to Σf,1 which satisfies
in addition certain homological condition (Lagrangian property [8]). In particular, if we equip the
elements of LC = LCg,1 on the top and bottom with the non-associative word ug = (• · · · (•(••)) · · · )
of length g, we have LCg,1 ⊆ LCobq(ug, ug).

We now turn to the definition of the target category tsA of the LMO functor. A Jacobi diagram is
a finite unitrivalent graph such that the trivalent vertices are oriented, that is, the incident edges are
ordered cyclically. Let C be a finite set, we say that a Jacobi diagram is C-colored if the univalent
vertices are colored by the Q-vector space generated by C. The internal degree of a Jacobi diagram
is the number of trivalent vertices, denoted i-deg. A connected Jacobi diagram of i-deg = 0 is called
a strut. We refer to Figure 2.7 for some examples.

Figure 2.7: C-colored Jacobi diagrams of i-deg 0, 1, 2 and 2, respectively. Here C = {a, b, c}.

The space of C-colored Jacobi diagrams is defined by

A(C) :=
VectQ{C-colored Jacobi diagrams}

AS, IHX, Q-multilinearity
,

where the relations AS, IHX and multilinearity are described in Figure 2.8.

For a non-negative integer g, denote by ⌊g⌉∗ the set {1∗, . . . , g∗}, where ∗ is a decorative symbol like
+, − or ∗ itself. The objects of the category tsA are the non-negative integers. The set of morphisms
from g to f is the subspace tsA(g, f) of diagrams in A(⌊g⌉+ ⊔ ⌊f⌉−) without struts whose both ends
are colored by elements of ⌊g⌉+. If D ∈ tsA(g, f) and E ∈ tsA(h, g) the composition D ◦ E is the
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Figure 2.8: Relations in A(C).

element in tsA(h, f) given by the sum of Jacobi diagrams obtained by considering all the possible ways
of gluing the ⌊g⌉+-colored legs of D with the ⌊g⌉−-colored legs of E. For example

The identity morphism in tsA(g, g) is given by

The category tsA is called the category of top-substantial Jacobi diagrams.
Let us now turn to a brief sketch of the definition of Z̃. We fix a system of meridians and parallels

{αi, βi} of Σg,1 as in Figure 2.9.

Figure 2.9: System of meridians and parallels {αi, βi}.

Let (M, m) be a Lagrangian cobordism, for instance (M, m) ∈ LCg,1. Let us attach g 2-handles
D2 × [0, 1] on the bottom surface of M by sending the cores of the 2-handles to the curves m−(αi).
In the same way, attach g 2-handles on the top surface of M by sending the cores to the curves
m+(βi). This way, we obtain a compact connected oriented 3-manifold B and an orientation-preserving
homeomorphism b : ∂([−1, 1]3) → ∂B. The pair B = (B, b) together with the cocores of the 2-handles,
determine a tangle γ′ in B, see Figure 2.10. The pair (B, γ′) is called bottom-top tangle presentation
of (M, m).

Next, take a surgery presentation of (B, γ′), that is, a framed link L ⊆ int([−1, 1]3) and a tangle
γ in [−1, 1]3 \ L such that surgery along L carries ([−1, 1]3, γ) to (B, γ′), see Figure 2.11.

Then, we consider the Kontsevich integral of the pair ([−1, 1]3, L ∪ γ), which gives a series of a
kind of Jacobi diagrams. To get rid of the ambiguity in the surgery presentation, it is necessary to
use some combinatorial operations on the space of diagrams. Finally, we obtain a series of Jacobi
diagrams Z̃(M) in tsA(g, g), see Figure 2.12.

Johnson-type homomorphisms can be described in terms of Jacobi diagrams where, among all the
graphs, only trees are allowed. Therefore, it is natural to wonder about the relationship between the
diagrammatic version of Johnson-type homomorphisms and the tree reduction of the LMO functor.
Cheptea, Habiro and Massuyeau proved in [8] that Johnson homomorphisms can be read in the tree
reduction of the LMO functor. We show the following result.

Theorem 5. Johnson-Levine homomorphisms can be read in the tree reduction of the LMO functor.
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Figure 2.10: From (M, m) to (B, γ′).

Figure 2.11: From (B, γ′) to ([−1, 1]3, L ∪ γ).

Figure 2.12: From ([−1, 1]3, L ∪ γ) to Z̃(M) ∈ tsA(g, g).

More precisely, we show that for M ∈ JL
mC the tree-type terms of internal degree m and with

univalent vertices only colored by the set ⌊g⌉+ in Z̃(M) coincide with the diagrammatic version of
τL

m(M), after the replacements i− 0→ ai and i+ 0→ bi, where {ai, bi} is a symplectic basis of H1(Σ)
such that {ai} is a basis of A = ker(H1(Σ)

ι∗−−→ B) and B = H1(V ).

The alternative Johnson homomorphisms motivate the definition of the alternative degree, denoted
a-deg, for connected tree-like Jacobi diagrams. If T is a tree-like Jacobi diagram colored by B ⊕ A,
then

a-deg(T ) = 2|TA| + |TB| − 3,

where |TA| (respectively |TB|) denotes the number of univalent vertices of T colored by A (respectively
by B). See Figure 2.13 (a) and (b) for some examples.

The following table compares alternative degree and internal degree for the simplest Jacobi dia-
grams. We color a univalent vertex with the sign + if the corresponding color belongs to B and with
− if the corresponding color belongs to A.
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Figure 2.13: Tree-like Jacobi diagrams of a-deg = 3 in (a) and of a-deg = 1 in (b) and (c) looped
Jacobi diagram. Here a, a′ ∈ A and b, b′, b1, . . . , b4 ∈ B.

Denote by T Y,a
m (B ⊕ A) the space generated by tree-like Jacobi diagrams colored by B ⊕ A with

at least one trivalent vertex and with a-deg = m. For a Lagrangian cobordism M let Z̃t(M) denote
the reduction of Z̃(M) modulo looped diagrams, that is, diagrams with a non-contractible connected
component. See Figure 2.13 (c) for an example of a looped diagram. This way, Z̃t(M) consists only of
tree-like Jacobi diagrams. The first step to relate the alternative Johnson homomorphisms with the
LMO functor is given in Theorem 6.5 where we prove the following.

Theorem 6. The alternative degree induces a filtration {Fa
mC}m≥1 of C by submonoids. Consider the

map
Z̃Y,a

m : Fa

mC −→ T Y,a
m (B ⊕ A),

where Z̃Y,a
m (M) (for M ∈ Fa

mC) is defined as the terms in Z̃t(M) with at least one trivalent vertex and
of a-deg = m. Then Z̃Y,a

m is a monoid homomorphism.

In Theorem 6.14 and Theorem 6.16 we prove the following.

Theorem 7. The alternative Johnson homomorphisms can be read in the tree-reduction of the LMO
functor.

More precisely, we prove that for h ∈ Ja
mM with m ≥ 2, the value Z̃Y,a

m (c(h)) coincides with the
diagrammatic version of τ a

m(h). For h ∈ Ja
1M, we show that τ a

1 (h) is given by Z̃Y,a
1 (c(h)) together

with the diagrams without trivalent vertices in Z̃(c(h)) of a-deg= 1. The strategies for the proof in
the case m = 1 (Theorem 6.14) and m ≥ 2 (Theorem 6.16) are different. For m = 1 we need to
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do some explicit computations of the LMO functor and a comparison between the first alternative
Johnson homomorphism and the first Johnson homomorphism. For m ≥ 2, the key point is the fact
that the LMO functor defines an alternative symplectic expansion of π. To show this, we use a result
of Massuyeau [47] where he proves that the LMO functor defines a symplectic expansion of π.

Theorem 6 and Theorem 7 provide a new reading grid of the tree reduction of the LMO functor by
the alternative degree. Notice that Theorem 6 holds in the context of homology cobordisms, as do the
results that we use to prove Theorem 7. This suggests that the alernative Johnson homomorphisms
and Theorem 7 could be generalized to the setting of homology cobordisms, but we have not explored
this issue so far.

2.3 Contents of this manuscript

This dissertation consists of the following two prepublications:

1. Johnson-Levine homomorphisms and the tree reduction of the LMO functor.

arXiv : 1712.00073, 2017.

2. Alternative versions of the Johnson homomorphisms and the LMO functor.

arXiv : 1902.10012, 2019.

Each one of these two parts can be read independently and each one has a more detailed intro-
duction. In particular, theorems 4 and 5 are proved in the first part and theorems 1, 2, 3, 6 and 7 are
proved in the second part.





Chapter 1

Johnson-Levine homomorphisms and
the tree reduction of the LMO functor

Abstract. Let M denote the mapping class group of Σ, a compact connected oriented surface with
one boundary component. The action of M on the nilpotent quotients of π1(Σ) allows to define the
so-called Johnson filtration and the Johnson homomorphisms. J. Levine introduced a new filtration
of M, called the Lagrangian filtration. He also introduced a version of the Johnson homomorphisms for
this new filtration. The first term of the Lagrangian filtration is the Lagrangian mapping class group,
whose definition involves a handlebody bounded by Σ, and which contains the Torelli group. These
constructions extend in a natural way to the monoid of homology cobordisms. Besides, D. Cheptea,
K. Habiro and G. Massuyeau constructed a functorial extension of the LMO invariant, called the LMO
functor, which takes values in a category of diagrams. In this paper we give a topological interpretation
of the upper part of the tree reduction of the LMO functor in terms of the homomorphisms defined by
J. Levine for the Lagrangian mapping class group. We also compare the Johnson filtration with the
filtration introduced by J. Levine.

1 Introduction

Let Σ be a compact connected oriented surface with one boundary component and let M denote
the mapping class group of Σ. The interaction between the study of 3-manifolds and that of the
mapping class group is well known. In some sense, the algebraic structure of M and of its subgroups
is reflected in the topology of 3-manifolds. For instance, the subgroup of homeomorphisms acting
trivially in homology, known as the Torelli group and denoted by I, is tied to homology 3-spheres.
In this direction, D. Johnson [32] and S. Morita [51] studied the mapping class group by using its
action on the nilpotent quotients of the fundamental group of Σ. This action allows to define the
Johnson filtration of M; the k-th term JkM of this filtration consists of the elements in M acting
trivially on the k-th nilpotent quotient of π1(Σ). On the Johnson filtration it is possible to define
the Johnson homomorphisms which play an important role in the structure of the Torelli group. For
instance, the first Johnson homomorphism appears in the computation of the abelianization of I [34].
S. Morita also discovered the strong relation between the structure of the Torelli group and some
properties of the Casson invariant of homology 3-spheres [49, 50, 52]. The Johnson homomorphisms
take values in a Lie subalgebra of the derivation Lie algebra of a free Lie algebra constructed from the
first homology group of Σ; this Lie subalgebra admits a diagrammatic description in terms of tree-like
Jacobi diagrams.

The Johnson filtration and the Johnson homomorphisms generalize in a natural way to the monoid
of homology cobordisms C of Σ, that is, homeomorphism classes of pairs (M, m), where M is a compact
oriented 3-manifold and m : ∂(Σ × [−1, 1]) → ∂M is an orientation-preserving homeomorphism such
that the top and bottom restrictions of m induce isomorphisms in homology [16]. In particular,
the mapping class group of Σ embeds into the monoid of homology cobordisms by associating to

1
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each h ∈ M the cobordism (Σ × [−1, 1] , mh) where mh is the orientation-preserving homeomorphism
defined on the top surface Σ × {1} by h and the identity elsewhere. Under this embedding, the Torelli
group is mapped into the monoid of homology cobordisms (M, m) such that the top and bottom
restrictions of m induce the same isomorphisms in homology. This class of cobordisms is denoted
by IC and they are called homology cylinders.

On the other hand, T. Le, J. Murakami and T. Ohtsuki defined in [38] a universal finite type in-
variant for homology 3-spheres called the LMO invariant. This invariant was extended by D. Cheptea,
K. Habiro and G. Massuyeau in [8] to a functor Z̃ : LCobq → tsA, called the LMO functor, from a
category of cobordisms (with a homological condition) between bordered surfaces to a category of Ja-
cobi diagrams. In particular, the monoid of homology cylinders IC is a subset of morphisms in LCobq.
The construction of the LMO functor is sophisticated: it uses the Kontsevich integral, which requires
the choice of a Drinfeld associator, and it also uses several combinatorial operations in the space of
Jacobi diagrams. In consequence, it is not clear which topological information is encoded by the LMO
functor.

In [24], N. Habegger and G. Masbaum gave a topological interpretation of the tree reduction of the
Kontsevich integral in terms of Milnor invariants. Following the same spirit, D. Cheptea, K. Habiro
and G. Massuyeau gave in [8] a topological interpretation of the leading term of the tree reduction of
the LMO functor in terms of the first non-vanishing Johnson homomorphism. This was improved by
G. Massuyeau in [47], where he gave an interpretation of the full tree reduction of the LMO functor
on IC.

In [43, 46], J. Levine introduced a different filtration of the mapping class group as follows. Let V
be a handlebody of genus g and fix a disk D on the boundary of V so that ∂V = Σ ∪ D, where D
and Σ are glued along their boundaries. Denote by ι the inclusion of Σ into ∂V ⊆ V . Let us
denote by A and A the subgroups ker(H1(Σ)

ι∗−→ H1(V )) and ker(π1(Σ)
ι#

−→ π1(V )), respectively (we
use the subscripts ∗ and # to indicate the induced maps in homology and homotopy, respectively).
The Lagrangian mapping class group of Σ, denoted by L, consists of the elements in M preserving
the subgroup A. The strongly Lagrangian mapping class group of Σ, denoted by IL, consists of
the elements in L which are the identity on A. The k-th term JL

k M of the Lagrangian filtration
of M, which we shall call here the Johnson-Levine filtration, consists of the elements h in IL such
that ι#h#(A) is contained in the (k + 1)-st term of the lower central series of π1(V ).

J. Levine also defined a version of the Johnson homomorphisms for this filtration, that we shall
call here the Johnson-Levine homomorphisms, which take values in an abelian group that can be
described in terms of H1(V ). This abelian group also admits a diagrammatic description in terms
of tree-like Jacobi diagrams. One of J. Levine’s main motivations was to understand the relation
between the Johnson-Levine homomorphisms and finite type invariants of homology spheres. The
first Johnson-Levine homomorphism comes up in the computation of the abelianization of IL, found
by T. Sakasai in [61]. It also appears in the work of N. Broaddus, B. Farb and A. Putman [7] to
compute the distortion of IL as a subgroup of M.

The Johnson-Levine filtration and the Johnson-Levine homomorphisms generalize in a natural
way to the monoid of homology cobordisms. Thus, it is natural to wonder about the relation of these
homomorphisms with the LMO functor. The aim of this paper is to make explicit this relation. The
main result is a topological interpretation of the leading term in the upper part of the tree reduction of
the LMO functor in terms of the first non-vanishing Johnson-Levine homomorphism. This sheds some
new light on the topological information encoded by the LMO functor. One key point in the proof of
this result is to compare the Johnson filtration and the Johnson-Levine filtration. This comparison
was already carried out by J. Levine in degrees 1 and 2 for the mapping class group in [46]. In
this direction, a second main result of this paper is a comparison of the two filtrations in all degrees
for homology cobordisms up to some surgery equivalence relations. These equivalence relations were
introduced independently by M. Goussarov in [18, 19] and by K. Habiro in [26] in connection with the
theory of finite type invariants.

The organization of the paper is as follows. In Section 2 we review the definitions of the Johnson
filtration and Johnson homomorphisms in the mapping class group case, as well as in the case of
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homology cobordisms. We also explain the bottom-top tangle presentation of homology cobordisms,
which is a way to present homology cobordisms by using a kind of knotted objects. Finally, in this
section, we review the Milnor-Johnson correspondence which relates the Milnor invariants with the
Johnson homomorphisms. Section 3 deals with the Johnson-Levine filtration and Johnson-Levine ho-
momorphisms in the mapping class group case, as well as in the case of homology cobordisms. Section
4 provides a detailed exposition of important properties of the Johnson-Levine homomorphisms, and a
comparison of the Johnson filtration with the Johnson-Levine filtration. Finally, Section 5 is devoted
to the topological interpretation of the upper part of the tree reduction of the LMO functor.

Notation. For a group G, the lower central series is the descending chain of subgroups {ΓkG}k≥1

defined by Γ1G := G and Γk+1G := [G, ΓkG]. If x ∈ G we denote the nilpotent class of x in G/ΓkG
interchangeably by {x}k or xΓkG. If f : (X, x) → (Y, y) is a continuous map between two pointed
topological spaces (X, x) and (Y, y), we denote by f# : π1(X, x) → π1(Y, y) and f∗ : H1(X;Z) →
H1(Y ;Z) the induced maps in homotopy and homology, respectively. Finally, when we draw framed
knotted objects we use the blackboard framing convention.

Acknowledgements. I am deeply grateful to my advisor Gwénaël Massuyeau for his encouragement,
helpful advice and careful reading.

2 Johnson homomorphisms

For every non-negative integer g denote by Σ (or by Σg,1 if there is ambiguity) a compact connected
oriented surface of genus g with one boundary component. Let us fix a base point ∗ ∈ ∂Σ and set
π := π1(Σ, ∗) and H := H1(Σ;Z).

2.1 Mapping class group

Denote by M (or by Mg,1 if there is ambiguity) the mapping class group of Σ, that is, the group
of isotopy classes of orientation-preserving diffeomorphisms of Σ fixing ∂Σ point-wise. The isotopy
class of h in M is still denoted by h. The Dehn-Nielsen-Baer representation is the injective group
homomorphism

ρ : M −→ Aut(π),

that maps the isotopy class h ∈ M to the induced map in homotopy h# ∈ Aut(π).
Consider the lower central series {Γkπ}k≥1 of π. The nilpotent version of the Dehn-Nielsen-Baer

representation, ρk : M → Aut(π/Γk+1π), is defined as the composition

M
ρ

−→ Aut(π) −→ Aut(π/Γk+1π). (2.1)

The Johnson filtration is the descending chain of subgroups {JkM}k≥1 of M where JkM is the
kernel of ρk. In particular, J1M is the set of elements in M acting trivially in homology. This
subgroup is denoted by I (or Ig,1) and it is called the Torelli group.

Associated to the Johnson filtration, there is a family of group homomorphisms called the Johnson
homomorphisms. These homomorphisms are of great importance in the study of the structure of
the mapping class group and its subgroups. They were introduced by D. Johnson in [30, 32] and
extensively studied by S. Morita in [50, 51]. We refer to [62] for a survey on this subject.

For every positive integer k, the k-th Johnson homomorphism

τk : JkM −→ Hom(H, Γk+1π/Γk+2π) ∼= H∗ ⊗ Γk+1π/Γk+2π ∼= H ⊗ Lk+1(H), (2.2)

is defined by sending the isotopy class h ∈ JkM to the map

{x}2 0−→ ρk+1(h)({x}){x}−1
k+1 ∈

Γk+1π

Γk+2π
,
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for all x ∈ π. The second isomorphism in (2.2) is given by the identification H
∼

−→ H∗ that maps x to
ω(x, ·) where ω : H ⊗H → Z is the intersection form, together with the identification of Γk+1π/Γk+2π

with the term of degree k + 1 in the free Lie algebra

L(H) =
⊕

k≥1

Lk(H)

generated by the Z-module H. Moreover, S. Morita proved in [51, Corollary 3.2] that the k-th Johnson
homomorphism takes values in the kernel Dk(H) of the Lie bracket [ , ] : H ⊗ Lk+1(H) → Lk+2(H).

2.2 Homology cobordisms and bottom-top tangles

In this subsection we recall from [8] the definition of the monoid of homology cobordisms and their
presentation by bottom-top tangles, that is, a presentation by a special kind of knotted objects. The
bottom-top tangle presentation is also used in the definition of the LMO functor as we will see in
Section 5.

The notion of homology cobordism was introduced independently by M. Goussarov in [19] and by
K. Habiro in [26] in connection with the theory of finite type invariants. A homology cobordism of Σ

is the equivalence class of a pair M = (M, m), where M is a compact connected oriented 3-manifold
and m : ∂(Σ × [−1, 1]) → ∂M is an orientation-preserving homeomorphism, such that the bottom and
top inclusions m±(·) := m(·, ±1) : Σ → M induce isomorphisms in homology. Two pairs (M, m) and
(M ′, m′) are equivalent if there exists an orientation-preserving homeomorphism ϕ : M → M ′ such
that ϕ ◦ m = m′.

The composition (M, m) ◦ (M ′, m′) of two homology cobordisms (M, m) and (M ′, m′) of Σ is the
equivalence class of the pair (M̃, m− ∪ m′

+), where M̃ is obtained by gluing the two 3-manifolds M
and M ′ by using the map m+ ◦ (m′

−)−1. This composition is associative and has as identity element
the equivalence class of the trivial cobordism (Σ × [−1, 1], Id). Let us denote by C (or by Cg,1 if there
is ambiguity) the monoid of homology cobordisms of Σ.

Example 2.1. The mapping class group M can be embedded into C by associating to any h ∈ M
the equivalence class of the pair (Σ × [−1, 1], mh), where mh : ∂(Σ × [−1, 1]) → ∂(Σ × [−1, 1]) is
the orientation-preserving homeomorphism defined by mh(x, 1) = (h(x), 1) and mh(x, t) = (x, t) for
t 3= 1. The submonoid obtained in this way is precisely the group of invertible elements of C, see [27,
Proposition 2.4].

Let us now turn to the definition of bottom-top tangles. Consider the square [−1, 1]2. For all g ≥ 1,
fix g pairs of different points (p1, q1), . . ., (pg, qg) in [−1, 1]2 distributed uniformly along the horizontal
axis {(x, 0) | x ∈ [−1, 1]}, see Figure 2.1(a). A bottom-top tangle of type (g, g) is an equivalence
class of pairs (B, γ), where B = (B, b) consists of a compact connected oriented 3-manifold B and an
orientation-preserving homeomorphism b : ∂([−1, 1]3) → ∂B; and γ = (γ+, γ−) is a framed oriented
tangle with g top components γ+

1 , . . . , γ+
g and g bottom components γ−

1 , . . . , γ−
g such that

• each γ+
j runs from pj × 1 to qj × 1,

• each γ−
j runs from qj × (−1) to pj × (−1).

Two such pairs (B, γ) and (B′, γ′) are equivalent if there is an orientation-preserving homeomorphism
ϕ : B → B′ such that ϕ ◦ b = b′ and ϕ(γ) = γ′. See Figure 2.1(b) for an example.

Let (M, m) be a homology cobordism of Σg,1. We associate a bottom-top tangle of type (g, g) to
(M, m) as follows. Let us fix a system of meridians and parallels {α1, . . . , αg, β1, . . . , βg} of Σg,1 as in
Figure 2.2.
Then attach g 2-handles on the bottom surface of M by sending the cores of the 2-handles to the curves
m−(αi). In the same way, attach g 2-handles on the top surface of M by sending the cores to the
curves m+(βi). This way we obtain a compact connected oriented 3-manifold B and an orientation-
preserving homeomorphism b : ∂([−1, 1]3) → ∂B. The pair B = (B, b) together with the cocores
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...

Figure 2.1: (b) bottom-top tangle of type (2, 2) in [−1, 1]3.

Figure 2.2: System of meridians and parallels.

Figure 2.3: From homology cobordisms to bottom-top tangles.

of the 2-handles, determine a bottom-top tangle (B, γ) of type (g, g). We call (B, γ) the bottom-top
tangle presentation of (M, m). See Figure 2.3 for an example.

We emphasize that the bottom-top tangle presentation of homology cobordisms depends on the
choice of a system of meridians and parallels of Σ. From now on, when we say “the bottom-top tangle
presentation” of a homology cobordism we mean the bottom-top tangle presentation associated to the
choice of meridians and parallels of Σ as in Figure 2.2.

We are mainly interested in bottom-top tangles in homology cubes. A homology cube is a homology
cobordism of Σ0,1. In particular, if (B, b) is such a cobordism we have H∗(B;Z) ∼= H∗([−1, 1]3;Z).

Definition 2.2. Let (B, γ) be a bottom-top tangle of type (g, g) with B a homology cube. Let us
label its connected components by {1+, . . . , g+} ∪ {1−, . . . , g−} =: ⌊g⌉+ ∪ ⌊g⌉−, where the label k±

is assigned to the component γ±
k . The linking matrix of (B, γ) is the matrix, with rows and columns

indexed by ⌊g⌉+ ∪ ⌊g⌉−, defined by

LkB(γ) := LkB̂(γ̂), (2.3)

where B̂ is the homology sphere B ∪b (S3 \ [−1, 1]3) and γ̂ is the framed oriented link in B̂ whose
component γ̂±

j is obtained from γ±
j by connecting pj × (±1) with qj × (±1) with a small arc, and

LkB̂(γ̂) denotes the usual linking matrix of γ̂ in the homology sphere B̂.
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Let (M, m) ∈ C and let (B, γ) be its bottom-top tangle presentation. If B is a homology cube, we
define the linking matrix Lk(M) of (M, m) as the linking matrix of its bottom-top tangle presentation.

2.3 Johnson homomorphisms for homology cobordisms

The Johnson filtration and the Johnson homomorphisms of M extend in a natural way to the monoid
of homology cobordisms, see [16]. Given M = (M, m) in C, since m+ and m− induce isomorphisms
in homology in all degrees, by Stallings’ theorem [63, Theorem 3.4], the maps m±,∗ : π/Γkπ →
π1(M, ∗)/Γkπ1(M, ∗) are isomorphisms for all k ≥ 2. Hence, the nilpotent version of the Dehn-
Nielsen-Baer representation of the mapping class group can be extended to C. For every positive
integer k define

ρk : C −→ Aut(π/Γk+1π), (2.4)

by sending (M, m) ∈ C to the automorphism m−1
−,∗ ◦ m+,∗.

The Johnson filtration {JkC}k≥1 of C is the descending chain of submonoids

C ⊇ J1C ⊇ J2C ⊇ · · · ⊇ JkC ⊇ Jk+1C ⊇ · · ·

where JkC := ker(ρk) for all k ≥ 1. The submonoid J1C is denoted by IC and it is called the monoid
of homology cylinders. Notice that under the embedding described in Example 2.1, the Torelli group
I is mapped into IC. Let M = (M, m) ∈ Cg,1 and (B, γ) be its bottom-tangle presentation. We have

that M belongs to IC if and only if B is a homology cube and Lk(M) =
(

0 Idg

Idg 0

)
, see Lemma 3.7.

For k ≥ 1 the k-th Johnson homomorphism for homology cobordisms

τk : JkC −→ H ⊗ Lk+1(H), (2.5)

is defined as in the mapping class group case. In this case we also have that τk takes values in Dk(H).
We refer to [16] for further details.

It was shown by S. Morita that the Johnson homomorphism τk : JkM → Dk(H) is not surjective in
general (see [51, Section 6]). The situation changes if we enlarge the mapping class group to the monoid
of homology cobordisms. S. Garoufalidis and J. Levine proved in [16, Theorem 3, Proposition 2.5] the
following.

Theorem 2.3 (S. Garoufalidis, J. Levine). For every positive integer k, the k-th Johnson homomor-
phism τk : JkC → Dk(H) is surjective.

Their proof uses obstruction theory and surgery techniques. N. Habegger gave in [21] a different
proof of this theorem based on the surjectivity of Milnor invariants. We shall recall his proof in the
next subsection, since it will be useful to us later.

2.4 Milnor invariants and the Milnor-Johnson correspondence

In this subsection we recall the Milnor invariants for string links and the Milnor-Johnson correspon-
dence, which relates the Johnson homomorphisms with the Milnor invariants. We refer to [22, 23]
for more details about Milnor invariants and to [21, 8] for more details about the Milnor-Johnson
correspondence.

String links and Milnor invariants

We start by introducing the definition of a string link in a homology cube. Denote by Dl the sur-
face Σ0,1 together with l fixed different points p1, . . . , pl distributed uniformly along the horizontal
axis {(x, 0) | x ∈ [−1, 1]}, see Figure 2.4(a). A string link on l strands is an equivalence class of
pairs (B, σ), where B = (B, b) is a homology cube and σ = (σ1, . . . , σl) : [−1, 1]l → B is an oriented
framed embedding such that σi(±1) = b(pi, ±1), see Figure 2.4(b). Two pairs (B, σ) and (B′, σ′) are
equivalent if there exists an equivalence of homology cobordisms sending σ to σ′.
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The linking matrix of a string link (B, σ) on l strands is the matrix, with rows and columns indexed
by the components of σ, defined by

LkB(σ) := LkB̂(σ̂),

where B̂ is the homology sphere B ∪b (S3 \ [−1, 1]3) and σ̂ is the braid closure of σ, see Figure 2.4(c).

Figure 2.4: (a) Dl, (b) a string link σ on 2 strands in [−1, 1]2 × [−1, 1] and (c) braid closure of σ.

By using the composition of homology cobordisms we can compose string links on l strands. The
equivalence class of ([−1, 1]3, Idl), where Idl is the trivial string link, is the identity for this composition.
Denote this monoid by Sl.

We now turn to the definition of the Milnor invariants. Let N({p1, . . . , pl}) be a tubular neighbor-
hood of the fixed points in Dl. Let Do

l denote Dl \ int(N(p1, . . . , pl)) and denote by Fl the fundamental
group π1(Do

l , ∗) where ∗ ∈ ∂Dl. We identify Fl with the free group on {u1, . . . , ul}, where ui is the
homotopy class of a loop encircling the i-th hole of Do

g in the counterclockwise sense. Let (B, σ) be
a string link on l strands. Set S := B \ int(N(σ)), where N(σ) is a tubular neighborhood of σ. The
homeomorphism b : ∂([−1, 1]3) → ∂B and the framing of σ determine an orientation-preserving home-
omorphism s : ∂(Do

l × [−1, 1]) → ∂S. Denote by s± : Do
l ×{±1} → ∂S the top and bottom restrictions

of s. Since B is a homology cube, the induced maps in homology s±,∗ : H∗(Do
l ;Z) → H∗(S;Z) are

isomorphisms. It follows from Stallings’ theorem [63, Theorem 3.4] that s±,∗ induce isomorphisms on
the nilpotent quotients of the fundamental groups. Thus we can define for every positive integer k,
the k-th Artin representation as the monoid homomorphism

Ak : Sl −→ Aut
(

Fl

Γk+1Fl

)
, (2.6)

that sends (B, σ) to the automorphism s−1
−,∗ ◦ s+,∗. The Milnor filtration of Sl is the descending chain

of submonoids
Sl = Sl[1] ⊇ Sl[2] ⊇ · · · ⊇ Sl[k] ⊇ Sl[k + 1] ⊇ · · ·

where Sl[k] := ker(Ak). Notice that Sl[2] is the submonoid of string links with trivial linking matrix.
Let (B, σ) ∈ Sl[k] and let λi be the i-th longitude determined by the framing of the component σi.

Since (B, σ) ∈ Sl[k], the homotopy class of the loop determined by λi becomes trivial in π1(S)/Γkπ1(S).
Therefore we can define the monoid homomorphism

µk : Sl[k] −→
Fl

Γ2Fl
⊗

ΓkFl

Γk+1Fl

by the formula

µk(B, σ) =
l∑

i=1

ui ⊗ s−1
−,∗(λi). (2.7)

Let us identify Fl/Γ2Fl with H̃ := H1(Do
l ;Z) and (ΓkFl)/(Γk+1Fl) with the k-th term Lk(H̃) of the

free Lie algebra generated by H̃. The fact that the Artin representation fixes the homotopy class of ∂Dl

implies that µk takes values in the kernel Dk−1(H̃) of the Lie bracket [ , ] : H̃ ⊗ Lk(H̃) → Lk+1(H̃).
From the above discussion, for all k ≥ 2 we can write

µk : Sl[k] −→ Dk−1(H̃). (2.8)
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The monoid homomorphism µk is called the k-th Milnor map. Notice that ker(µk) = Sl[k + 1]. In
[23, Section 1] N. Habegger and X. Lin proved that for all k ≥ 1 the k-th Milnor map µk is surjective.
The idea of their proof was adapted from the work of K. Orr in [57], where he studied which Milnor
invariants are realizable. There is a more geometric approach to the realizability of Milnor invariants
developed by T. Cochran in [12, 13], which we will need and sketch briefly in subsection 4.4.

The Milnor-Johnson correspondence

In [21], N. Habegger defined a bijection between homology cylinders and string links with trivial
linking matrix. We follow the construction in [8] which can be described schematically as follows:

homology cylinder ! bottom-top tangle ! string link. (2.9)

More precisely, let (M, m) be a homology cylinder over Σg,1 and consider its bottom-top tangle
presentation. Next, from a bottom-top tangle of type (g, g) we can obtain a string on 2g strands by
the method illustrated in Figure 2.5.

Figure 2.5: From bottom-top tangles to string links.

In this way we transform a homology cylinder (M, m) ∈ ICg,1 into a string link MJ(M) ∈ S2g. N.
Habegger proved in [21] that MJ defines a bijection between ICg,1 and the submonoid S2g[2] of string
links with trivial linking matrix. Moreover, for all k ≥ 1 the following diagram is commutative (see
[8, Claim 8.16]).

JkCg,1
MJ
∼=

!!

τk

""

S2g[k + 1]

µk+1

""

Dk(H)
∼= !! Dk(H̃),

(2.10)

where the bottom isomorphism is induced by the identification π ∼= F2g described as follows. Consider
a free basis {α1, . . . , αg, β1, . . . , βg} of π induced by basing at ∗ the system of meridians and parallels
in Figure 2.2. Identify αi with u−1

2i−1 and βi with u2i.
In this way, from the surjectivity of µk+1 and diagram (2.10), it follows that τk : JkC → Dk(H) is

surjective. This is the proof of Theorem 2.3 by N. Habegger [21].

2.5 Diagrammatic version of the Johnson homomorphisms

In order to relate the Kontsevich integral with the Milnor invariants, N. Habegger and G. Masbaum
gave in [24] a diagrammatic version of the Milnor map. This was also done for Johnson homomorphisms
by S. Garoufalidis and J. Levine in [16]. Let us recall this description.

By a tree-like Jacobi diagram we mean a finite contractible unitrivalent graph such that the trivalent
vertices are oriented, that is, each set of incident edges to a trivalent vertex is endowed with a cyclic
order. The internal degree of such a diagram is the number of trivalent vertices; we denote it by i-deg.
Let C be a finite set. We say that a tree-like Jacobi diagram T is C-colored if there is a map from
the set of univalent vertices (legs) of T to the free abelian group generated by C. We use dashed lines
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to represent tree-like Jacobi diagrams and, when we draw them, we assume that the orientation of
trivalent vertices is counterclockwise.

Consider the abelian group

T (C) :=
Z{C-colored tree-like Jacobi diagrams}

AS, IHX, Z-multilinearity
,

where the relations AS, IHX are local and the multilinearity relation applies to the C-colored legs, see
Figure 2.6.

Figure 2.6: Relations in T (C). Here a, b ∈ Z · C.

Notice that T (C) is graded by the internal degree: for k ≥ 1, Tk(C) is the subspace of T (C) generated
by tree-like Jacobi diagrams of i-deg = k. We can define T (G) for any finitely generated free abelian
group G by T (G) = T (C) where C is any set of free generators of G.

Consider the abelian group H = H1(Σg,1;Z). We have seen that the k-th Johnson homomorphism
takes values in Dk(H) ⊆ H ⊗ Lk+1(H). Observe that a rooted tree of i-deg = k with H-colored legs
determines a Lie commutator in Lk+1(H). Let us consider the map

ηZ
k : Tk(H) −→ Dk(H), T 0−→

∑

v

color(v) ⊗ (T rooted at v), (2.11)

where the sum ranges over the set of univalent vertices of T , and the rooted trees are identified with
Lie commutators. For instance,

Consider the rational version of ηZ
k :

ηk : Tk(H) ⊗ Q −→ Dk(H) ⊗ Q. (2.12)

This map is an isomorphism, see [44, Corollary 3.2]. In this way, for M ∈ JkCg,1 we define the
diagrammatic version of the k-th Johnson homomorphism by

η−1
k (τk(M)) ∈ Tk(H) ⊗ Q.

3 Lagrangian version of the Johnson homomorphisms

In [43, 46], J. Levine introduced a different filtration of the mapping class group by considering a
handlebody bounded by Σ. The induced inclusion determines a Lagrangian subgroup of the first
homology group of the surface. This Lagrangian subgroup, together with the lower central series of
the fundamental group of the handlebody, allow to define the new filtration.

3.1 Preliminaries

Let V (or Vg if there is ambiguity) be a handlebody of genus g. Fix a disk D on the boundary of V
such that ∂V = Σ ∪ D, where D and Σ are glued along their boundaries. Denote by ι the inclusion
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of Σ into ∂V ⊆ V , see Figure 3.1. Set H ′ := H1(V ;Z) and π′ := π1(V, ι(∗)). Denote by A the kernel
of the induced map ι∗ : H → H ′ in homology and by A the kernel of the induced map ι# : π → π′

in homotopy. Notice that A is a Lagrangian subgroup of H with respect to the intersection form
ω : H ⊗ H → Z.

Let us denote by ab : π → H and ab′ : π′ → H ′ the abelianization maps. The equality ι∗ ◦ ab =
ab′ ◦ ι# implies that ab−1(A) = A · Γ2π. Thus, we have

A
∼=

←−
ab

(A · Γ2π)/Γ2π ∼= A/(Γ2π ∩ A).

By Hopf’s formula, we obtain (Γ2π ∩ A)/[π,A] ∼= H2(π/A) ∼= H2(π′), and since π′ is a free group,
H2(π′) = 0. Hence Γ2π ∩ A = [π,A]. To sum up, we have the short exact sequence

1 −→ [π,A] −→ A
ab

−→ A −→ 1. (3.1)

Finally, let us recall the symplectic representation. Since the elements in M are orientation-
preserving, their induced maps on H preserve the intersection form. Therefore we have a map

M −→ Sp(H) = {f ∈ Aut(H) | ∀x, y ∈ H, ω(f(x), f(y)) = ω(x, y)},

that sends h ∈ M to the induced map h∗ on H. We will often need to consider bases to perform
some computations. On this purpose, we fix a free basis {α1, . . . , αg, β1, . . . , βg} of π induced by
basing at ∗ the fixed system of meridians and parallels in Figure 2.2. We also fix the symplectic
basis {a1, . . . , ag, b1, . . . , bg} of H, induced by {α1, . . . , αg, β1, . . . , βg}. Here we assume that the curves
ι(αi)’s bound disks in V , see Figure 3.1. This way, {a1, . . . , ag} is a basis for A, and {b1+A, . . . , bg +A}
is a basis for H/A.

Figure 3.1: The inclusion Σ
ι

−֒→ V .

We use the above symplectic basis of H to identify Sp(H) with the group Sp(2g,Z) of (2g) × (2g)
matrices Λ with integer entries such that ΛT JΛ = J , where J is the standard invertible skew-symmetric
matrix

(
0 Idg

−Idg 0

)
. Denote this identification by ψ : Sp(H) → Sp(2g,Z).

3.2 The Lagrangian mapping class group

Let us define two important subgroups of the mapping class group associated to the Lagrangian
subgroup A. Set

L := {f ∈ M | f∗(A) ⊆ A} and IL := {f ∈ L | f∗|A = IdA}. (3.2)

The subgroup L is called the Lagrangian mapping class group of Σ, and IL is called the strongly
Lagrangian mapping class group of Σ.

Example 3.1. The Torelli group I is contained in IL. Also, any Dehn twist along a meridian αi (see
Figure 2.2) belongs to IL. This shows that I is strictly contained in IL.
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Example 3.2. Let g ≥ 2. Consider the orientation-preserving homeomorphism h : Σ → Σ that
interchanges the first and second handle in Figure 2.2. This homeomorphism can be extended to the
handlebody V (this extension is known in the literature as interchanging two knobs, see [64, Section 3]
for a detailed description). We have that h belongs to L but not to IL, hence IL is strictly contained
in L.

Let us give some equivalent formulations of the strongly Lagrangian mapping class group. If h
belongs to L, then it induces a well defined isomorphism ĥ∗ : H/A → H/A by sending x + A to
h∗(x) + A. By means of the isomorphism H/A

ι∗−→ H ′, we have an isomorphism h′
∗ : H ′ → H ′ defined

by h′
∗ := ι∗ ◦ ĥ∗ ◦ ι−1

∗ .

Lemma 3.3. Let h be an element in L. The following assertions are equivalent:

(i) h belongs to IL.

(ii) The induced isomorphism h′
∗ : H ′ → H ′ is the identity.

(iii) ι∗ ◦ h∗ = ι∗.

Proof. We use the symplectic basis {a1, . . . , ag, b1, . . . , bg} and the identification ψ : Sp(H) → Sp(2g,Z)
described in subsection 3.1. Let h ∈ L, then there exist integers λkj , δkj and ǫkj such that for 1 ≤ j ≤ g,

h∗(aj) =
g∑

k=1

λkjak and h∗(bj) =
g∑

k=1

δkjak +
g∑

k=1

ǫkjbk. (3.3)

Hence ψ(h∗) =
(

P Q
0 R

)
, where P = (λij), Q = (δij) and R = (ǫij). The symplectic condition on h∗

becomes
P T R = Idg and QT R = RT Q. (3.4)

Recall that {a1, . . . , ag} is a basis for A, and {b1 + A, . . . , bg + A} is a basis for H/A. The matrices of
h∗|A : A → A and ĥ∗ : H/A → H/A in these bases are P and R respectively. The first condition in
(3.4) implies that P = Idg if and only if R = Idg. Therefore we have the equivalence (i)⇔(ii). Now,
from the definition of h′

∗ it follows that h′
∗ = IdH′ if and only if ι∗ ◦ ĥ∗ = ι∗ on H/A if and only if

ι∗ ◦ h∗ = ι∗ on H. Hence we have (ii)⇔(iii).

We now describe the filtration introduced by J. Levine in [43, 46].

Definition 3.4. The Lagrangian filtration or Johnson-Levine filtration {JL
k M}k≥1 of M is defined as

JL
k M := {h ∈ M | ι#h#(A) ⊆ Γk+1π′, h∗|A = IdA}.

Notice that the condition ι#h#(A) ⊆ Γk+1π′ implies that h∗(A) ⊆ A. Besides, J. Levine also
defined and studied in [43, 46] a version of the Johnson homomorphisms for the above filtration. In
order to define them, let us first identify H/A with A∗ by sending x + A ∈ H/A to ω(x, ·) ∈ A∗. We
also identify H/A with H ′ via the isomorphism ι∗.

Proposition 3.5. (J. Levine) For every non-negative integer k, the k-th term JL
k M of the Johnson-

Levine filtration is a subgroup of M. Let

τL
k : JL

k M → Hom(A, Γk+1π′/Γk+2π′) ∼= A∗ ⊗ Γk+1π′/Γk+2π′ ∼= H ′ ⊗ Lk+1(H ′), (3.5)

be the map that sends h ∈ JL
k M to the map a ∈ A 0→ {ι#h#(α)}k+2, where α ∈ A is such that ab(α) =

a. Then τL
k is a group homomorphism which we shall call the k-th Johnson-Levine homomorphism.

For the sake of completeness let us see the proof.
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Proof. The argument is by induction on k. From Definition 3.4, it follows that JL
1 M = IL which

is indeed a subgroup of M. Now suppose that JL
k M is a subgroup. Let us verify that τL

k is well
defined and it is a group homomorphism. Let h ∈ JL

k M, a ∈ A and α1, α2 ∈ A such that ab(α1) =
ab(α2) = a. The short exact sequence (3.1) implies α1α−1

2 = [x1, y1] · · · [xn, yn] with x1, . . . , xn ∈ π

and y1, . . . , yn ∈ A. Since for every j, we have that [ι#h#(xj), ι#h#(yj)] is in [π′, Γk+1π′] = Γk+2π′,
then ι#h#(α1α−1

2 ) belongs to Γk+2π′, so τL
k (h) is well defined as a map from A to Γk+1π′/Γk+2π′.

Clearly τL
k (h) belongs to Hom(A, Γk+1π′/Γk+2π′). Let us see that τL

k is a group homomorphism.
Let h, h̃ ∈ JL

k M, a ∈ A and α ∈ A with ab(α) = a. The splittable short exact sequence

1 −→ A −→ π
ι#

−→ π′ −→ 1, (3.6)

and the fact that h̃ ∈ JL
k M, allow us to write h̃#(α) = βy with β ∈ A and y ∈ Γk+1π. Notice that

a = h̃∗(a) = ab(h̃#(α)) = ab(βy) = ab(β).
On the other hand, suppose that y is a group commutator of length k + 1, say in the ele-

ments y1, . . . , yk+1 ∈ π (if y is a product of such commutators, the reasoning is similar). Then
ι#(h#(y)) and ι#(y) are commutators of length k + 1 in the elements ι#(h#(y1)),. . ., ι#(h#(yk+1))
and ι#(y1), . . . , ι#(yk+1) respectively. Notice that y, ι#(y) and ι#(h#(y)) have the same commutator
structure, that is, they have the same bracketing structure.
Under the identification Γk+1π′/Γk+2π′ ∼= Lk+1(H ′), the elements ι#(h#(y))Γk+2π′ and ι#(y)Γk+2π′

correspond to Lie commutators, with the same structure as y, in the elements ab′(ι#(h#(y1))),. . .,
ab′(ι#(h#(yk+1))) and ab′(ι#(y1)), . . . , ab′(ι#(yk+1)) respectively. The identity ι∗ ◦ ab = ab′ ◦ ι# and
Lemma 3.3(iii) imply that

ab′(ι#h#(yj)) = ι∗h∗(ab(yj)) = ι∗(ab(yj)) = ab′(ι#(yj)),

thus ι#h#(y)Γk+2π′ = ι#(y)Γk+2π′. From the above discussion, it follows that

τL
k (h ◦ h̃)(a) = ι#(h#(h̃#(α)))Γk+2π′

= ι#(h#(β))Γk+2π′ + ι#(h#(y))Γk+2π′

= τL
k (h)(ab(β)) + ι#(h#(y))Γk+2π′

= τL
k (h)(a) + ι#(y)Γk+2π′

= τL
k (h)(a) + τL

k (h̃)(a),

(3.7)

which shows that τL
k is a group homomorphism. From the definition of τL

k it follows that ker(τL
k ) =

JL
k+1M, and so JL

k+1M is a subgroup of M. This completes the proof.

A similar argument to the one used to show that τk takes values in Dk(H) [51, Remark 3.3], works
to show that τL

k takes values in

Dk(H ′) := ker
(
[ , ] : H ′ ⊗ Lk+1(H ′) −→ Lk+2(H ′)

)
. (3.8)

This was already remarked by J. Levine [43, Proposition 4.3]. Let us recall the argument. Consider
the bases fixed in subsection 3.1. Then, for h ∈ JL

k M the k-th Johnson-Levine homomorphism can
be written

τL
k (h) = −

g∑

j=1

ι∗(bj) ⊗ {ι#(h#(αj))}k+2 = −
g∑

j=1

ι∗(h∗(bj)) ⊗ {ι#(h#(αj))}k+2, (3.9)

where the second equality follows from Lemma 3.3(iii).
The Lie bracket [ , ] : H ′ ⊗ Lk+1(H ′) −→ Lk+2(H ′) corresponds to the commutator map

Ψ :
π′

Γ2π′
⊗

Γk+1π′

Γk+2π′
−→

Γk+2π′

Γk+3π′
, (3.10)
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that sends {x′}2 ⊗ {y′}k+2 to [x′, y′]Γk+3π′. Thus

Ψ(τL
k (h)) =

g∑

j=1

Ψ

(
ι∗(h∗(−bj)) ⊗ ι#(h#(αj))Γk+2π′

)

=
g∑

j=1

Ψ

(
{ι#h#(β−1

j )}2 ⊗ {ι#h#(αj)}k+2

)

= ι#h#

( g∏

j=1

[
β−1

j , αj

] )
Γk+3π′

= Γk+3π′,

where the last equality holds because
∏g

j=1

[
β−1

j , αj

]
represents the inverse of the homotopy class

of ∂Σ (see Figure 3.1), and this element is fixed by h#. Hence τL
k (h) ∈ Dk(H ′). To sum up, we have

a descending chain of subgroups

M ⊇ L ⊇ IL = JL
1 M ⊇ JL

2 M ⊇ · · · (3.11)

and a family of group homomorphisms

τL
k : JL

k M → Dk(H ′). (3.12)

Remark 3.6. Let H (or Hg,1) be the subgroup of M consisting of the elements that can be extended
to the handlebody V . The subgroup H is called the handlebody group and is contained in L. By
virtue of Dehn’s lemma H = {h ∈ M | h#(A) ⊆ A}, see [20, Theorem 10.1]. J. Levine showed in [43,
Proposition 4.1] that ⋂

k≥1

JL
k M = H ∩ IL.

The inclusion H ∩ IL ⊆
⋂

k≥1 JL
k M is clear. Now, let h ∈

⋂
k≥1 JL

k M and α ∈ A, thus ι#h#(α) ∈
Γk+1π′ for all k ≥ 1. Since π′ is residually nilpotent we have ι#h#(α) = 1, that is, h#(α) ∈ A.
Hence

⋂
k≥1 JL

k M ⊆ H ∩ IL.

3.3 The monoid of Lagrangian homology cobordisms

The Johnson-Levine filtration can be defined similarly on the monoid C of homology cobordisms. Let
us start by defining the analogues to the Lagrangian and strongly Lagrangian mapping class groups.

The monoid of Lagrangian homology cobordisms is defined as

LC := {(M, m) ∈ C | ρ1(M)(A) ⊆ A} = {(M, m) ∈ C | m+,∗(A) ⊆ m−,∗(A)}, (3.13)

and the monoid of strongly Lagrangian homology cobordisms is defined as

ILC := {(M, m) ∈ LC | ρ1(M)|A = IdA} = {(M, m) ∈ LC | m+,∗|A = m−,∗|A}. (3.14)

Notice that we have the inclusions IC ⊆ ILC ⊆ LC. Let us see how these monoids are characterized
in terms of the linking matrix.

Lemma 3.7. Let M ∈ Cg,1 and let (B, γ) be its bottom-top tangle presentation. Then

(i) M belongs to LCg,1 if and only if B is a homology cube and Lk(M) =
(

0 Λ

ΛT ∆

)
,

(ii) M belongs to ILCg,1 if and only if B is a homology cube and Lk(M) =
(

0 Idg

Idg ∆

)
,

(iii) M belongs to ICg,1 if and only if B is a homology cube and Lk(M) =
(

0 Idg

Idg 0

)
,
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where Λ and ∆ are g × g matrices and ∆ is symmetric.

Proof. The proof is similar to the proof of [8, Lemma 2.12]. Consider the bases fixed in subsection 3.1.
A Mayer-Vietoris argument shows that H1(B;Z) is isomorphic to the quotient of H1(M ;Z) by the
subgroup spanned by S = {m+,∗(b1), . . . , m+,∗(bg), m+,∗(a1), . . . , m+,∗(ag)}. Hence B is a homology
cube if and only if S is a basis for H1(M ;Z).

If S is a basis for H1(M ;Z), then for 1 ≤ j ≤ g,

m+,∗(aj) =
g∑

k=1

χkjm+,∗(bk) + λkjm−,∗(ak) and m−,∗(bj) =
g∑

k=1

ǫkjm+,∗(bk) + δkjm−,∗(ak), (3.15)

where the χ’s, λ’s, ǫ’s and δ’s are integer coefficients. We observe that m−(βk) and m−(αk) are the
oriented longitude and oriented meridian of γ−

k , respectively. Similarly m+(αk) and m+(βk) are the
oriented longitude and oriented meridian of γ+

k , respectively, see Figure 2.3. Now, the columns of
Lk(B, γ) express how the oriented longitudes m+(α1), . . ., m+(αk), m−(β1), . . ., m−(βg) expand in

the basis S. So we have χij = χji, λij = ǫji, δij = δji and Lk(M) =
(

X ΛT

Λ ∆

)
, where X = (χij),

Λ = (λij) and ∆ = (δij).
If M ∈ LCg,1, then m+,∗(A) ⊆ m−,∗(A) so S is a basis for H1(M ;Z) and all the coefficients χij in

equation (3.15) are zero. Thus B is a homology cube and X = 0. Conversely, if B is a homology cube
and X = 0, then M ∈ LCg,1. Therefore we have (i).

Now assuming that B is a homology cube, we have that M ∈ ILC if and only if X = 0 and
Λ = Idg, thus we have (ii). Similarly, M ∈ IC if and only if X = ∆ = 0 and Λ = Idg, so we have
(iii).

Using Lemma 3.7 let us now see that the inclusions IC ⊆ ILC and ILC ⊆ LC are strict.

Example 3.8. Let g ≥ 2. Consider the identity cobordism M = Σg,1 × [−1, 1] and embed two framed
Hopf links L1 and L2 as in Figure 3.2(a). Perform surgery along L1 and L2. The resulting cobordism
ML1∪L2

belongs to LC but not to ILC. This follows from Lemma 3.7: in Figure 3.2(b) we show the
bottom-top tangle presentation of ML1∪L2

, which allows to compute its linking matrix.

Figure 3.2: (a) Embedding of L1 and L2 in M and (b) bottom-top tangle presentation of ML1∪L2
.

Example 3.9. Let g ≥ 2. Consider M = Σg,1 × [−1, 1] and embed a framed Hopf link L as in
Figure 3.3(a). The resulting cobordism ML, obtained after surgery along L, belongs to ILC but not
to IC. In Figure 3.3(b) we show the bottom-top tangle presentation of ML, which allows to compute
its linking matrix.

Definition 3.10. The Lagrangian filtration or Johnson-Levine filtration of C is the descending chain
of submonoids {JL

k C}k≥1 defined as

JL
k C := {(M, m) ∈ ILC | ∀α ∈ A, ιk+1ρk(M)({α}k+1) = 1 ∈ π′/Γk+1π′},

where ιk+1 : π/Γk+1π → π′/Γk+1π′ is induced by ι# : π → π′.
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Figure 3.3: (a) Embedding of L in M and (b) bottom-top tangle presentation of ML.

Notice that JL
1 C = ILC. To summarize, we have a descending chain of submonoids

C ⊇ LC ⊇ ILC = JL
1 C ⊇ JL

2 C ⊇ · · · (3.16)

Definition 3.11. Let k ≥ 1. The k-th Johnson-Levine homomorphism

τL
k : JL

k C → Hom(A, Γk+1π′/Γk+2π′) ∼= A∗ ⊗ Lk+1(H ′) ∼= H ′ ⊗ Lk+1(H ′), (3.17)

is the map that sends (M, m) ∈ JL
k C to the map a ∈ A 0→ {ιk+2ρk+1(M)({α})}k+2, where α ∈ A is

such that ab(α) = a.

Notice that ker(τL
k ) = JL

k+1C. The same arguments as those used in the case of the mapping
class group, work to show that JL

k C is a submonoid of C and that τL
k is well defined, it is a monoid

homomorphism, and that it takes values in Dk(H ′).

4 Properties of the Johnson-Levine homomorphisms

In this section we study some properties of the Johnson-Levine homomorphisms and we compare the
Johnson-Levine filtration to the Johnson filtration.

4.1 Surjectivity of the Johnson-Levine homomorphisms

Let us start by the compatibility between the Johnson and Johnson-Levine homomorphisms. The
surjective homomorphism ι∗ : H → H ′ induces surjective homomorphisms Lk(H) → Lk(H ′) which
are compatible with the Lie bracket.

Lemma 4.1. The map ι∗ : Dk(H) → Dk(H ′) induced by ι∗ : H → H ′ is surjective.

Proof. The result follows from the existence of a group section s : H ′ → H of the surjective homo-
morphism ι∗ : H → H ′ and the commutative diagram

H ⊗ Lk+1(H)
[ , ] !!

ι∗⊗ι∗

""

Lk+2(H)

ι∗

""
H ′ ⊗ Lk+1(H ′)

[ , ] !! Lk+2(H ′).

(4.1)

More precisely, denote by Ψ and Ψ′ the Lie brackets [ , ] : H ⊗ Lk+1(H) → Lk+2(H) and [ , ] :
H ′ ⊗ Lk+1(H ′) → Lk+2(H ′), respectively. Let y ∈ Dk(H ′) ⊆ H ′ ⊗ Lk+1(H ′). The group section s
allows us to lift y to s(y) ∈ H ⊗ Lk+1(H) such that ι∗(s(y)) = y. We deduce Ψ(s(y)) = sΨ′(y) = 0,
hence s(y) ∈ Dk(H).

As pointed out by J. Levine in [46, Section 4], in the mapping class group case, the Johnson
homomorphisms and the Johnson-Levine homomorphisms are compatible. This also holds for the
monoid of homology cobordisms.
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Proposition 4.2. For every positive integer k, the diagram

JkC
⊂ !!

τk

""

JL
k C

τL
k

""
Dk(H)

ι∗ !! Dk(H ′)

(4.2)

is commutative.

Proof. From the definitions, it is clear that JkC ⊆ JL
k C for all k ≥ 1. Consider the free basis

{α1, . . . , αg, β1, . . . , βg} of π and the symplectic basis {a1, . . . , ag, b1, . . . , bg} of H fixed in subsec-
tion 3.1. Let M = (M, m) ∈ JkC ⊆ JL

k C. In these bases, the k-th Johnson homomorphism is given by
the formula

τk(M) =
g∑

j=1

aj ⊗
(
ρk+1(M)({βj}) · {β−1

j }k+2

)
−

g∑

j=1

bj ⊗
(
ρk+1(M)({αj})) · {α−1

j }k+2

)
. (4.3)

Similarly, the k-th Johnson-Levine homomorphism is given by the formula

τL
k (M) = −

g∑

j=1

ι∗(bj) ⊗ (ιk+2ρk+1(M)({αj})) . (4.4)

Thus by applying ι∗ : Dk(H) → Dk(H ′) to equation (4.3) we obtain ι∗τk(M) = τL
k (M).

From Proposition 4.2 and Theorem 2.3 we obtain the following corollary.

Corollary 4.3. For every positive integer k, we have

ker(Dk(H)
ι∗−→ Dk(H ′)) = τk(JkC ∩ JL

k+1C). (4.5)

According to Lemma 4.1, Proposition 4.2 and Theorem 2.3, we have the following.

Corollary 4.4 (J. Levine [43] Theorem 8). For all k ≥ 1, the Johnson-Levine homomorphism τL
k :

JL
k C → Dk(H ′) is surjective.

The proof of J. Levine does not use Theorem 2.3, instead, it uses the Oda embedding [54] and the
surjectivity of Milnor invariants. More precisely, by choosing an embedding of the disk Do

g with g holes
into Σ, we obtain the so-called Oda embedding O : Sg −→ Cg,1, see [43, Section 3.2]. This embedding
relates the Milnor filtration with the Johnson filtration and it is compatible with the Milnor maps and
the Johnson-Levine homomorphisms. These properties of the Oda embedding imply the surjectivity
of the Johnson-Levine homomorphisms, for further details see [43, Theorem 8].

4.2 Invariance under the Yk-equivalence relation

In order to compare the Johnson filtration and the Johnson-Levine filtration, from our approach,
we need to take some quotients of JkC and JL

k C by some equivalence relations to obtain a group
structure compatible with the Johnson and Johnson-Levine homomorphisms. There are at least two
ways to obtain a group from the monoid of homology cobordisms. One way is to consider homology
cobordisms up to 4-dimensional homology bordism, see [43, 16]. Another way is to consider homology
cobordisms up to Yk-equivalence. We follow the latter approach. The notion of Yk-equivalence was
introduced independently by M. Goussarov in [19, 18] and by K. Habiro in [26] in their study of finite
type invariants. Here, we follow the terminology of [26].

Let G be a graph that can be decomposed into two subgraphs, say G = G′ ∪ Go, where G′ is
a unitrivalent graph and Go is a union of looped edges of G such that each univalent vertex of G′

is attached to a looped edge in Go. Moreover, we suppose that there are no free looped edges, i.e.
every looped edge is connected to G′. The subgraph G′ is called the shape of G. Let us consider a
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pair (M, γ), where M is a compact oriented 3-manifold (possibly with boundary) and γ is a framed
oriented tangle (possibly empty) in M such that ∂γ (if any) are fixed points in ∂M . A graph clasper
in (M, γ) is an embedding G →֒ int(M \ γ) of a thickening G of G, see Figure 4.1. We still denote
the image of the embedding by G. In particular, if the shape of G is simply connected, we call it a
tree clasper. The degree of a graph clasper is the number of trivalent vertices of its shape. If G has
degree 1 we call it a Y -clasper. From now on, we assume that the degree of graph claspers is greater
than or equal to 1.

Figure 4.1: (a) Graph G. (b) Thickening G. (c) Embedding G →֒ M .

A graph clasper G in (M, γ) carries surgery instructions for modifying this pair as follows. Suppose
that G has degree 1. Consider a regular neighborhood N(G) of G in int(M \ γ). Perform surgery
in N(G) along the framed six-component link L illustrated in Figure 4.2.

Figure 4.2: Framed link associated to a Y -clasper.

Denote the result by N(G)L. We obtain a new pair (MG, γG) by setting

MG := (M \ N(G)) ∪ N(G)L,

and γG is equal to the trace of γ under the surgery. If G is of degree > 1 we apply the fission rule,
illustrated in Figure 4.3, until obtaining a disjoint union of Y -claspers. Then (MG, γG) is defined by
performing surgery as before along each Y -clasper. We say that (MG, γG) is obtained from (M, γ) by
a Yk-surgery, where k is the degree of G.

Figure 4.3: Fission rule.

The Yk-equivalence is the equivalence relation among pairs (M, γ) generated by Yk-surgeries and
orientation-preserving homeomorphisms. For l ≥ k, Yl-equivalence implies Yk-equivalence (this follows
from Move 2 and Move 9 in [26, Section 2.4]).

Let us restrict to the monoid of homology cobordisms. K. Habiro proved in [26, Theorem 5.4]
that IC/Yr is a group. His proof is done in the setting of string links but the arguments are the same
for IC, see also [19, Theorem 9.2]. From the short exact sequence

1 −→ IC/Yr
⊂

−→ C/Yr
ρ1

−→ Sp(H) −→ 1,
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it follows that C/Yr is also a group. From [48, Lemma 6.1] it follows that the homomorphism ρk+1 :
C → Aut(π/Γk+2π) is invariant under Yk+1-equivalence. Therefore, the Johnson homomorphism τk

and the Johnson-Levine homomorphism τL
k are invariant under Yk+l-equivalence for all l ≥ 1.

Lemma 4.5. For r ≥ k ≥ 1, the group C/Yr contains JkC/Yr and JL
k C/Yr as subgroups.

Proof. It is enough to show that JkC/Yr and JL
k C/Yr are closed under inverses. Let {M} ∈ JkC/Yr,

then there exists {N} ∈ C/Yr such that {N}{M} = {Σ × [−1, 1]} in C/Yr. By the invariance of ρk

under Yr-equivalence, we have

Idπ/Γk+1π = ρk(N) ◦ ρk(M) = ρk(N),

hence {N} ∈ JkC/Yr.
Now, let us show by induction on k that JL

k C/Yr is closed under inverses. Suppose that k = 1
and let {M} ∈ JL

1 C/Yr. Consider {N} ∈ C/Yr such that {N}{M} = {Σ × [−1, 1]} in C/Yr. By the
invariance of ρ1 under Yr-equivalence, we have IdH = ρ1(N) ◦ ρ1(M). Let a ∈ A, thus ρ1(N)(a) =
ρ1(N)(ρ1(M)(a)) = a. Therefore {N} ∈ JL

1 C/Yr. Next, suppose that k ≥ 2 and let {M} ∈ JL
k C/Yr.

Since JL
k C ⊆ JL

k−1C, by induction there exists {N} ∈ JL
k−1C/Yr such that {N}{M} = {Σ × [−1, 1]} in

JL
k−1C/Yr. On the other hand τL

k−1(M) = 0, so we have

τL
k−1(N) = τL

k−1(N) + τL
k−1(M) = 0.

Hence {N} ∈ JL
k C/Yr.

4.3 Comparison of the Johnson and Johnson-Levine filtrations

Consider the handlebody V as in subsection 3.1, seeing it as a cobordism from Σ to Σ0,1 = D, the
fixed disk on ∂V , see Figure 4.4.

Figure 4.4: The handlebody V as a cobordism from Σ to Σ0,1.

Denote by HC the submonoid of C consisting of the cobordisms (M, m) such that M ∪m−
V is

equal to V as cobordisms. Notice that HC ∩ M is the handlebody group H defined in Remark 3.6.

Lemma 4.6. We have the inclusion HC ∩ ILC ⊆
⋂

k≥1 JL
k C.

Proof. Consider the system of meridians and parallels {α1, . . . , αg, β1, . . . , βg} of Σ and denote in the

same way an induced system of generators of π. Notice that A = ker(π1(Σ)
ι#

−→ π1(V )) is the normal
closure of {α1, . . . , αg}. Let (M, m) ∈ HC ∩ ILC. It is enough to show that, for all 1 ≤ i ≤ g and for
all k ≥ 1, we have ρk(M)({αi}) ∈ (A · Γk+1π)/Γk+1π. Indeed, since M ∪m−

V ∼= V , the curve m+(αi)
bounds a disk Di in M ∪m−

V . Now, some of the curves m−(βj) intersect Di in a transversal way.
Hence m+,#(αi) can be written as a product of homotopy classes of meridians associated to those
curves m−(βj) intersecting Di. Since all the meridians are conjugates, we conclude that m+,#(αi)
can be written as a product of conjugates of the homotopy classes of the curves m−(αj). Hence
ρk(M)({αi}) belongs to (A · Γk+1π)/Γk+1π. Therefore M belongs to

⋂
k≥1 JL

k C.
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The other inclusion does not hold. To see this, consider any homology sphere P not homeomorphic
to S3. The connected sum M = (Σ × [−1, 1])#P is a homology cobordism, which by construction,
belongs to

⋂
k≥1 JL

k C and does not belong to HC. This contrasts with the mapping class group case
where the respective equality holds, see Remark 3.6.

Proposition 4.7. For all k ≥ 1, we have ker (Dk(H) → Dk(H ′)) = τk (HC ∩ JkC).

We postpone the proof of this proposition to subsection 4.4.

Lemma 4.8. For all k, l ≥ 1, we have

τk (HC ∩ JkC) = τk

(
JkC ∩ JL

k+1C
)

, (4.6)

and
JkC ∩ JL

k+1C

Yk+1+l
=

Jk+1C

Yk+1+l
· qk+1+l (HC ∩ JkC) (4.7)

in C/Yk+1+l, where qk+1+l : C → C/Yk+1+l is the canonical projection.

Proof. Equality (4.6) follows from Proposition 4.7 and Corollary 4.3. Let us show equality (4.7). The
inclusion “⊇” follows from Lemma 4.6. Let M ∈ JkC ∩ JL

k+1C, thus by (4.6), τk(M) = τk(U) for some
element U ∈ HC ∩ JkC. But we can consider the inverse of {U} in C/Yk+1+l, then {M}{U}−1 ∈

ker(JkC/Yk+1+l
τk−→ Dk(H)). Thus {M} = {X}{U} with X ∈ ker(τk) = Jk+1C.

In [46, Proposition 6.1], J. Levine showed that JL
k M = JkM · (H ∩ IL) for k = 1, 2 and he asked

if this holds for all k. In the case of homology cobordisms we have the following result.

Theorem 4.9. For all k, l ≥ 1,

JL
k C

Yk+l
=

JkC

Yk+l
· qk+l (HC ∩ ILC) , (4.8)

where qk+l : C → C/Yk+l is the canonical projection.

Proof. By Lemma 4.6, (JkC/Yk+l) · qk+l (HC ∩ ILC) is contained in JL
k C/Yk+l . Let us show the other

inclusion by induction on k. The argument for the case k = 1 is similar to the one used by J. Levine in
[46, Proposition 6.1]. Indeed, let M ∈ ILC/Y1+l with ρ1(M) ∈ Sp(H). Identify Sp(H) with Sp(2g,Z)

as in subsection 3.1 . Now, every matrix
(

Idg Λ

0 Idg

)
in Sp(H) can be realized as the image by ρ1 of

an element in H ∩ IL, see [46, Lemma 6.3]. Let P ∈ H ∩ IL that realizes the matrix ρ1(M) and
consider the inverse {P}−1 of {P} in C/Y1+l (this is actually the class of the inverse of P in M).
Hence {M}{P}−1 acts trivially in homology, that is, {M}{P}−1 = {N} ∈ IC = J1C. Therefore

{M} = {N}{P} ∈
J1C

Y1+l
· q1+l (HC ∩ ILC) .

Suppose that the inclusion “⊆” in (4.8) is true for k. Thus we have

JL
k+1C

Yk+1+l
⊆

JL
k C

Yk+1+l
⊆

JkC

Yk+1+l
· qk+1+l (HC ∩ ILC) . (4.9)

Let M ∈ JL
k+1C. By the above inclusion we can write {M} = {N}{P} with N ∈ JkC and P ∈

HC ∩ ILC. Notice that τL
k (P ) = 0 by Lemma 4.6. Since τL

k is invariant under Yk+1+l-surgery (see
subsection 4.2), we have

0 = τL
k (M) = τL

k (N) + τL
k (P ) = τL

k (N),

therefore N ∈ ker(τL
k ) = JL

k+1C. Hence N ∈ JkC ∩ JL
k+1C.

From equality (4.7) in Lemma 4.8, it follows that {N} ∈ (Jk+1C/Yk+1+l) · qk+1+l (HC ∩ JkC). Hence

{M} = {N}{P} ∈

(
Jk+1C

Yk+1+l
· qk+1+l (HC ∩ JkC)

)
· qk+1+l (HC ∩ ILC)

⊆
Jk+1C

Yk+1+l
· qk+1+l (HC ∩ ILC) ,

which completes the proof.
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4.4 Proof of Proposition 4.7

Let us start by reviewing some preliminaries, we follow [45]. Consider the free quasi-Lie algebra

L
q(H) =

⊕

k≥1

L
q
k(H)

generated by the Z-module H, that is, instead of the relation [x, x] = 0 in L(H) we have the an-
tisymmetry relation [x, y] + [y, x] = 0. Let Dq

k(H) denote the kernel of the quasi-Lie bracket map
[ , ] : H ⊗ L

q
k+1(H) → L

q
k+2(H). There is a canonical map L

q(H) → L(H), which induces a homo-
morphism Dq(H) =

⊕
k≥1 Dq

k(H) → D(H) =
⊕

k≥1 Dk(H).
We can define a homomorphism

η
q
k : Tk(H) −→ Dq

k(H) (4.10)

in the same way that we defined the homomorphism ηZ
k : Tk(H) → Dk(H) in subsection 2.5: the

composition of η
q
k with the canonical map Dq

k(H) → Dk(H) is exactly ηZ
k . Recall that we denote by

ηk : Tk(H) ⊗ Q → Dk(H) ⊗ Q the rationalization of ηZ
k . J. Levine carried in [45] a detailed study of

the homomorphism η
q
k. In particular, he obtained ([45, Corollary 2.3]) for all j ≥ 1 the following short

exact sequences
0 −→ H ⊗ Lj(H) ⊗ Z/2

s
−→ Dq

2j−1(H) −→ D2j−1(H) −→ 0 (4.11)

where s(h ⊗ u ⊗ 1) = h ⊗ [u, u] for h ∈ H and u ∈ Lj(H), and

0 −→ Dq
2j(H) −→ D2j(H)

p
−→ Lj+1(H) ⊗ Z/2 −→ 0. (4.12)

To describe the map p in (4.12) let us first recall from [45, Remark 2.4] some elements of D2j(H)
which do not come from Dq

2j(H). Let u ∈ Lj+1(H) and denote by tr(u) the associated rooted tree.
Let tr(u) ⊙ tr(u) be the Jacobi diagram obtained by joining the roots of two copies of tr(u). The
element η2j(1

2tr(u) ⊙ tr(u)) belongs to D2j(H) and does not belong to Dq
2j(H). The map p sends

η2j(1
2tr(u) ⊙ tr(u)) to u ⊗ 1.
J. Levine also proved [44, Theorem 1] that the map η

q
k is surjective and that (k + 2)ker(ηq

k) = 0.
(These results imply, in particular, that ηk is an isomorphism, as we recalled at the end of subsection
2.5). From the exact sequences (4.11) and (4.12) together with the surjectivity of η

q
k we deduce the

following.

Corollary 4.10. For all j ≥ 1,

(i) D2j−1(H) is generated by the elements ηZ
2j−1(v) with v ∈ T2j−1(H).

(ii) D2j(H) is generated by the elements ηZ
2j(v) with v ∈ T2j(H) and η2j(1

2tr(u) ⊙ tr(u)) with u ∈
Lj+1(H).

Lemma 4.11. Let S = {a1, . . . , ag, b1, . . . , bg} be the fixed symplectic basis of H. For all j ≥ 1,

(i) ker(D2j−1(H) → D2j−1(H ′)) is generated by the elements ηZ
2j−1(v) with v a tree-like Jacobi

diagram with legs colored by S and at least one leg colored by some ai.

(ii) ker (D2j(H) → D2j(H ′)) is generated by the elements ηZ
2j(v) with v a tree-like Jacobi diagram

with legs colored by S, with at least one leg colored by some ai; and the elements η2j(1
2tr(u)⊙tr(u))

with u ∈ Lj+1(H) a Lie commutator which has at least one ai as one of its components.

Proof. Let k ≥ 1 and let x ∈ ker(Dk(H) → Dk(H ′)). By Corollary 4.10, we have

x =
∑

i

ηZ
k (vi) +

∑

l

ηk

(
1

2
tr(ul) ⊙ tr(ul)

)
(4.13)

with vi ∈ Tk(H), and ul ∈ Lj+1(H) if k = 2j. Notice that if k is odd, the second sum in equation (4.13)
does not appear. By the linearity relation we can suppose that all the vi’s have legs colored by S and
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that all the ul’s are Lie commutators on S. Let y =
∑

i vi +
∑

l
1
2tr(ul) ⊙ tr(ul) ∈ Tk(H) ⊗ Q and

consider the commutative diagram

Tk(H) ⊗ Q
ηk

∼=
!!

ϕ

""

Dk(H) ⊗ Q

ϕ′

""
Tk(H ′) ⊗ Q ηk

∼= !! Dk(H ′) ⊗ Q

(4.14)

where ϕ and ϕ′ are induced by the homomorphism ι∗ : H → H ′. We have that ϕ′ηk(y) = 0,
so ηkϕ(y) = 0. Since ηk is an isomorphism, ϕ(y) = 0. Let us write

y =
∑

i

vi +
∑

l

1

2
tr(ul) ⊙ tr(ul) = y′ + y′′,

such that all the diagrams appearing in y′ have at least one leg colored by some ai, and all the diagrams
appearing in y′′ have legs colored only by {b1, . . . , bg}. Hence

0 = ϕ(y) = ϕ(y′) + ϕ(y′′) = ϕ(y′′).

Now, ϕ(y′′) = y′′ because all terms of y′′ only have legs colored by {b1, . . . , bg}. Thus y′′ = 0, so y = y′.
In other words, the diagrams appearing in y whose legs are colored only by {b1, . . . , bg} can be grouped
and they cancel out by IHX and antisymmetry relations.

Let us now turn to the proof of Proposition 4.7. Recall that we want to show that

ker(Dk(H)
ι∗→ Dk(H ′)) = τk(HC ∩ JkC).

Let us first see the inclusion “⊇”. Since HC∩ILC ⊆
⋂

JL
k C (Lemma 4.6), we have that τL

k (HC∩ILC) =
0 for all k ≥ 1. Therefore, if M ∈ HC ∩ JkC ⊆ HC ∩ ILC, then τL

k (M) = 0, so by Proposition 4.2 we
have that ι∗(τk(M)) = τL

k (M) = 0, that is, τk(M) ∈ ker(Dk(H)
ι∗→ Dk(H ′)).

We now show the inclusion “⊆”. According to Lemma 4.11, it is enough to prove for all j ≥ 1 that

(i) ηZ
2j−1(v) ∈ τ2j−1(HC ∩ J2j−1C) for v as in Lemma 4.11(i), and

(ii) ηZ
2j(v) ∈ τ2j(HC ∩ J2jC) and η2j(1

2tr(u) ⊙ tr(u)) ∈ τ2j(HC ∩ J2jC) for v and u as in Lemma
4.11(ii).

Let Sodd
2g be the submonoid of string links σ on 2g strands in homology cubes, with trivial linking

matrix and satisfying the property that if we forget all the odd components of σ, the obtained string
link is trivial. The Milnor-Johnson correspondence, described in subsection 2.4, sends HC ∩ IC to
Sodd

2g . Hence by diagram (2.10), proving (i) and (ii) above is equivalent to show

(iii) v ∈ η−1
k µk+1(Sodd

2g ∩ S2g[k + 1]) for k odd and v as in Lemma 4.11(i), and

(iv) v, 1
2tr(u) ⊙ tr(u) ∈ η−1

k µk+1(Sodd
2g ∩ S2g[k + 1]) for k even and v and u as in Lemma 4.11(ii).

This can be done by using a string link version of Cochran’s realization theorems for Milnor invariants
[12, Theorem 7.2] and [13, Theorem 3.3]: here we develop [24, Remark 8.2]. This process is called
antidifferentiation and it is very close to surgery along tree claspers, see [26, Section 7]. We sketch
this process below.

Let S be as in Lemma 4.11. Suppose that k = 2j. Consider u ∈ Lj+1(H) a Lie commutator which
has at least one ai as one of its components. From the rooted tree tr(u) we are going to recursively
construct a string link L(1

2u) which realizes the diagram 1
2tr(u) ⊙ tr(u).

Starting step. Suppose that u = [u1, u2]. Consider the oriented Whitehead link and label its
components by u1 and u2 respectively, see Figure 4.5(a).
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Figure 4.5: (a) Starting step and (b) recursive step.

Recursive step. Suppose for example that u1 ∈ L≥2(H), say u1 = [u11, u12]. Perform a 0-
twisted Bing doubling to the component labeled by u1 and label the two new components u11 and u12

respectively. See Figure 4.5(b).
Banding step. After finishing the above process we obtain a (j + 1)-component link whose

components are labeled with elements of S. Now, if two components have the same label, we perform
an interior band sum between the two components, see [12, Section 7] for more details. If necessary,
add trivial components to the resulting link in order to obtain a 2g-component link with components,
each one, labeled by a unique element of S. Denote this link by l(1

2u). Since u is a Lie commutator
with at least one ai as one of its components, the construction implies that the link l(1

2u) becomes
the trivial g-component link if we forget all the components with labels a1, . . . , ag.

Final step. Open the link l(1
2u) to obtain a string link l′(1

2u) on 2g-strands, each one labeled
by a unique element of S, satisfying the property that if we forget all the components with labels
a1, . . . , ag then it becomes the trivial g-component string link. Now, by conjugating with the generators
σ1, . . . , σ2g−1 of the braid group on 2g-strands, we arrange the components of l′(1

2u) in a such way that
the (2i)-th component is labeled by bi and the (2i − 1)-st component is labeled by ai, for i = 1, . . . , g.
Denote the resulting string link by L(1

2u). We have that L(1
2u) ∈ Sodd

2g ∩S2g[k +1] and µk+1(L(1
2u)) =

µk+1(l′(1
2u)) = ±ηk(1

2tr(u) ⊙ tr(u)), see [14, Corollary 7] or [24, Remark 8.2], the sign depending on
the clasp of the Whitehead link in the starting step.

Example 4.12. Let us illustrate the above process in a particular case. Suppose that g = 2 and
u = [[a1, b1], a1]. We show in Figure 4.6(i) the starting step, in Figure 4.6(ii) the recursive step. In
Figure 4.6(iii) we perform an interior band sum and add trivial components. Finally in Figure 4.7 we
show one associated string link and the arrangement of its components.

Figure 4.6: (i) Starting step, (ii) recursive step and (iii) link l(1
2u) for u = [[a1, b1], a1].

Now if v is a tree-like Jacobi diagram as in Lemma 4.11, of i-deg ≥ 2 (the case i-deg = 1 is realized
by a string link version of the Borromean rings), then chose any internal edge of v (edge connecting
two trivalent vertices) and cut it in half to obtain two rooted trivalent trees. Let u1 and u2 be the Lie
commutators associated to these rooted trees. Notice that v = tr(u1) ⊙ tr(u2). Consider the oriented
Hopf link and label its components by u1 and u2 respectively, see Figure 4.8.
Then continue the antidifferentiation process by performing the recursive step, banding step and final
step. At the end we obtain a string link L(v) ∈ Sodd

2g ∩ S2g[k + 1] such that µk+1(L(v)) = ±ηZ
k (v), see
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Figure 4.7: String link L(1
2u) for u = [[a1, b1], a1].

Figure 4.8: Starting the antidifferentiation process to realize v.

[14, Corollary 7] or [24, Remark 8.2], the sign depending on the clasp of the Hopf link that we started
with to realize v.

5 The LMO functor and the Johnson-Levine homomorphisms

This section is devoted to the relation between the Johnson-Levine homomorphisms and the LMO
functor. We refer to [56, 4, 5] for an introduction to the LMO invariant and to [8] for its functorial
extension.

5.1 Jacobi diagrams

In subsection 2.5 we reviewed the notion of tree-like Jacobi diagram. In this subsection we consider
more general Jacobi diagrams.

A Jacobi diagram is a finite unitrivalent graph such that the trivalent vertices are oriented, that
is, its incident edges are endowed with a cyclic order. Let C be a finite set. We call a Jacobi diagram
C-colored if its univalent vertices (or legs) are colored with elements of the Q-vector space spanned
by C. The internal degree of a Jacobi diagram is the number of trivalent vertices, we denote it by i-deg.
The connected Jacobi diagram of i-deg = 0 is called a strut. As for tree-like Jacobi diagrams, we use
dashed lines to represent Jacobi diagrams and, when we draw them, we assume that the orientation
of trivalent vertices is counterclockwise. See Figure 5.1 for some examples.

Figure 5.1: C-colored Jacobi diagrams of i-deg 0, 1, 2 and 2, respectively. Here C = {a, b, c}

The space of C-colored Jacobi diagrams is defined as

A(C) :=
VectQ{C-colored Jacobi diagrams}

AS, IHX, Q-multilinearity
,
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where the relations AS, IHX are local and the multilinearity relation applies to the C-colored legs, see
Figure 2.6 in subsection 2.5.

The vector space A(C) is graded by the internal degree, thus we can consider the degree completion
which we still denote by A(C), in other words, we also consider formal series of Jacobi diagrams.
There is a product in A(C) given by disjoint union, and a coproduct defined by ∆(D) :=

∑
D′ ⊗ D′′

where the sum ranges over pairs of subdiagrams D′, D′′ of D such that D′ ⊔ D′′ = D. With these
structures, A(C) is a complete Hopf algebra. Its primitive part is the subspace Ac(C) spanned by
connected Jacobi diagrams. We denote by AY (C) the subspace of Jacobi diagrams such that all of
their connected components have at least one trivalent vertex. A Jacobi diagram in A(C) is looped
if it has a non-contractible component, for instance the third diagram in Figure 5.1 is looped. The
subspace generated by looped diagrams is an ideal. We denote by AY,t(C) the quotient of AY (C) by
this ideal.

For k ≥ 1 denote by AY,t,c
k (C) the subspace of AY,t(C) generated by connected diagrams of i-deg

= k. If G is a finitely generated free abelian group, we define the space A(G) of G-colored Jacobi
diagrams by A(G) = A(C) where C is any set of free generators of G. In particular for the abelian
group H = H1(Σg,1;Z) we have

AY,t,c
k (H) = Tk(H) ⊗ Q,

where T (H) =
⊕

k≥1 Tk(H) is the group of tree-like Jacobi diagrams defined in subsection 2.5.

5.2 The LMO functor

Let us start by the definition of the target category tsA of the LMO functor. For a non-negative
integer g, denote by ⌊g⌉∗ the set {1∗, . . . , g∗}, where ∗ is a symbol like +, − or ∗ itself. The objects of
the category tsA are non-negative integers. The set of morphisms from g to f is the subspace tsA(g, f)
of diagrams in A(⌊g⌉+ ⊔ ⌊f⌉−) without struts whose both ends are colored by elements of ⌊g⌉+.
If D ∈ tsA(g, f) and E ∈ tsA(h, g) the composition D ◦ E is the element in tsA(h, f) given by the sum
of Jacobi diagrams obtained by considering all the possible ways of gluing the ⌊g⌉+-colored legs of D
with the ⌊g⌉−-colored legs of E. Schematically

For example,

where the last equality follows from the IHX relation. The identity morphism in tsA(g, g) is given by

The category tsA is called the category of top-substantial Jacobi diagrams.
Now, let us define the source category LCob of the LMO functor, which is called the category of

Lagrangian cobordisms. The objects of LCob are non-negative integers. For all g ≥ 1, let us fix the
handlebody Vg and the inclusion ι : Σg,1 →֒ Vg as in subsection 3.1. A cobordism (M, m) over Σg,1

belongs to LCob(g, g) if it satisfies H1(M) = m−,∗(Ag)+m+,∗(H1(Σg,1;Z)) and m+,∗(Ag) ⊆ m−,∗(Ag).
Recall that Ag denotes the kernel of H1(Σg,1;Z)

ι∗−→ H1(Vg;Z). In particular we have that the monoid
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of Lagrangian homology cobordisms LCg,1 is contained in LCob(g, g). More generally, the set LCob(g, f)
is defined in a similar way by considering cobordisms from Σg,1 to Σf,1.

For the definition of the LMO functor we need to use the Kontsevich integral, because of this,
it is necessary to change the objects of LCob to obtain the category LCobq: instead of non-negative
integers, the objects of LCobq are non-associative words in the single letter •. We refer to [8] for more
details.

Roughly speaking, the LMO functor Z̃ : LCobq → tsA is defined as follows. Let M be a Lagrangian
cobordism (for example M ∈ LCg,1) and consider its bottom-top tangle presentation (B, γ′). Next,
take a surgery presentation of (B, γ′), that is, a framed link L ⊆ int([−1, 1]3) and a bottom-top
tangle γ in [−1, 1]3 such that surgery along L carries ([−1, 1]3, γ) to (B, γ′). Then take the Kontsevich
integral of the pair ([−1, 1]3, L ∪ γ), which gives a series of a kind of Jacobi diagrams. To get rid of
the ambiguity in the surgery presentation, it is necessary to use some combinatorial operations on
the space of diagrams. Among these operations, the so-called Aarhus integral (see [4, 5]), which is a
kind of formal Gaussian integration on the space of diagrams. In this way we arrive to tsA. Finally,
to obtain the functoriality, it is necessary to do a normalization.

We emphasize that the definition of the Kontsevich integral requires the choice of a Drinfeld
associator, and the bottom-top tangle presentation requires the choice of a system of meridians and
parallels. Thus the LMO functor also depends on these choices.

Example 5.1. In [8, Section 5.3] the value of the LMO functor was calculated in low degrees for
the generators of LCob, when the chosen Drinfeld associator is even. For instance, for the Lagrangian
cobordisms ψ1,1 with bottom-top tangle presentation given in Figure 5.2, we have

Figure 5.2: Bottom-top tangle presentation of ψ1,1.

For a matrix Λ = (lij) with entries indexed by a finite set C, we define the element [Λ] in A(C) by

It was proved in [8, Lemma 4.12] that the LMO functor takes group-like values, and that if w and u
are non-associative words in • of lengths g and f respectively, then for M ∈ LCobq(w, u), Z̃(M) splits
as Z̃(M) = Z̃s(M) ⊔ Z̃Y (M), where Z̃Y (M) belongs to AY (⌊g⌉+ ⊔ ⌊f⌉−) and Z̃s(M) only contains
struts. Moreover Z̃s(M) is given by

Z̃s(M) =

[
Lk(M)

2

]
, (5.1)

where Lk(M) has been defined in subsection 2.2, see for instance Example 5.1. The colors 1+, . . . , g+

and 1−, . . . , f− in the series of Jacobi diagrams Z̃(M) refer to the curves m+(β1),. . ., m+(βg) and
m−(α1), . . . , m−(αf ) on the top and bottom surfaces of M respectively.

5.3 Diagrammatic version of the Johnson-Levine homomorphisms

In subsection 2.5 we recalled the diagrammatic version of the Johnson homomorphisms. The same
idea applies to the Johnson-Levine homomorphisms. We have seen in Section 3 that the k-th Johnson-
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Levine homomorphism takes values in Dk(H ′). Let us consider the space AY,t,c
k (H ′) = Tk(H ′) ⊗ Q of

connected tree-like Jacobi diagrams of i-deg = k with H ′-colored legs. We have the isomorphism

ηk : AY,t,c
k (H ′) −→ Dk(H ′) ⊗ Q, T 0−→

∑
color(v) ⊗ (T rooted at v), (5.2)

as in subsection 2.5. Define the diagrammatic version of the k-th Johnson-Levine homomorphism by

η−1
k (τL

k (M)) ∈ AY,t,c
k (H ′).

Moreover, if we consider the symplectic basis {a1, . . . , ag, b1 . . . , bg} of H fixed in subsection 3.1,
we have that

η−1
k (τL

k (M))|ι∗(bj) )→j+ ∈ AY,t,c
k (⌊g⌉+),

where the expression ι∗(bj) 0→ j+ means to replace the color ι∗(bj) by the color j+ for j = 1, . . . , g.
We still denote the diagrammatic version by τL

k .

5.4 Relating the LMO functor and the Johnson-Levine homomorphisms

We have seen that for M ∈ JL
k C, the homomorphism τL

k (M) can be seen as taking values in the
space AY,t,c

k (⌊g⌉+) of connected tree-like Jacobi diagrams with ⌊g⌉+-colored legs of i-deg = k. While
the value Z̃(M) of the LMO functor takes values in tsA(g, g). Now, AY,t,c

k (⌊g⌉+) is contained in tsA(g, g).
In this subsection we show an explicit relation between the Johnson-Levine homomorphisms and
the LMO functor. Let us first start by the strut part of the LMO functor. Consider the monoid
homomorphism

ϑ : LC −→ Hom(A, A), M 0−→ ρ1(M)|A. (5.3)

Notice that ILC = ker(ϑ). We have the following.

Proposition 5.2. For (M, m) ∈ LC, the homomorphism ϑ(M) is essentially the strut part Z̃s(M) of
the LMO functor not considering struts whose both ends are colored by ⌊g⌉−.

Proof. Consider the same bases of H, A and H1(M ;Z) as in the proof of Lemma 3.7. In these bases the
matrix of ϑ(M) is given by Λ = (λij), where λij are integer coefficients as in equation (3.15). Besides,

Z̃s(M) =
[

Lk(M)
2

]
and we have seen in the proof of Lemma 3.7 that Lk(M) =

(
0 ΛT

Λ ∆

)
. In other words,

the homomorphism (5.3) is tantamount to the strut part of the LMO functor not considering struts
whose both ends are colored by ⌊g⌉−.

We now turn to the trivalent part of the LMO functor. For M ∈ LC denote by Z̃Y,t,+(M) the
element in AY,t(⌊g⌉+) obtained from Z̃Y (M) by sending all terms with loops or with i−-colored legs
to 0. Let us consider the filtration of C induced by Z̃Y,t,+. Specifically, we set

FkC := {(M, m) ∈ ILC | Z̃Y,t,+(M) = ∅ + (terms of i-deg ≥ k)}.

We call {FkC}k≥1 the upper tree filtration of C.

Proposition 5.3. Let M, N ∈ FkC and write Z̃Y,t,+(M) = ∅ + Dk + (i-deg > k) and Z̃Y,t,+(N) =
∅ + D′

k + (i-deg > k), where Dk and D′
k are linear combinations of connected Jacobi diagrams in

AY,t(⌊g⌉+) of i-deg = k. Then

Z̃Y,t,+(M ◦ N) = ∅ + (Dk + D′
k) + (i-deg > k). (5.4)

Proof. For simplicity of notation, we write D(·) instead of Z̃Y,t,+(·) and D̂(·) instead Z̃Y (·). Suppose
that

Lk(M) =
(

0 Idg

Idg ∆

)
.



27

It follows from Lemma 4.5 in [8] that

D̂(M ◦ N) =

〈(
D̂(M)|j+ )→j∗+j++∆·j−

)
,
(

[∆/2]|j− )→j∗

)
⊔

(
D̂(N)|j− )→j∗+j−

)〉

⌊g⌉∗

, (5.5)

where ∆·j− =
∑g

p=1 lpjp− with ∆ = (lpq), and for E, F ∈ tsA(⌊g⌉∗⊔C), the element 〈E, F 〉⌊g⌉∗ ∈ tsA(C)
is defined as the linear combination of Jacobi diagrams obtained from E and F by considering all
possible ways of gluing all the ⌊g⌉∗-colored legs of E with all the ⌊g⌉∗-colored legs of F , see [4, 5] for
details about this operation.
It is possible for D̂(M) and D̂(N) to have diagrams of i-deg < k but with some ⌊g⌉−-colored legs or
with loops, thus we need to check that this kind of diagrams do not contribute any terms of i-deg ≤ k
to

(D̂(M ◦ N))|j−, loops )→ 0 = D(M ◦ N).

The diagrams with loops remain with loops after the pairing (5.5), so they do not contribute any
term to D(M ◦ N). Let E be a diagram of i-deg < k without loops and having ⌊g⌉−-colored legs,
suppose that E appears in D̂(M), hence all terms in E′ := E|j+ )→j∗+j++∆·j− still has ⌊g⌉−-colored legs.
Therefore all the diagrams obtained from E′ after the pairing (5.5) still have ⌊g⌉−-colored legs, so they
do not appear in D(M ◦ N). Now suppose that E appears in D̂(N). In this case E′′ := E|j− )→j∗+j−

can be written as E′′ = E1 + E2, where E1 is a linear combination of diagrams with ⌊g⌉−-colored
legs and E2 is a linear combination of diagrams without ⌊g⌉−-colored legs. The diagrams of E1

do not contribute to D(M ◦ N) as in the previous case. The diagrams obtained from E2 after the
pairing (5.5) could only contribute diagrams of i-deg > k to D(M ◦ N). Summarizing, we have shown
that D(M ◦ N) = ∅ + (i-deg ≥ k). It remains to show that the terms of i-deg = k are exactly those
given by Dk + D′

k. This can be easily checked by using formula (5.5).

The above proposition shows that FkC is a monoid and that we can define homomorphisms

Z̃Y,t,+
k : FkC −→ AY,t,c

k (⌊g⌉+),

for all k ≥ 1, where Z̃Y,t,+
k (M) denotes the terms of i-deg = k in Z̃Y,t,+(M) for M ∈ JL

k C. The
following theorem shows that the upper tree filtration coincides with the Johnson-Levine filtration,
and makes explicit the relation between the LMO functor and the Johnson-Levine homomorphisms.

Theorem 5.4. For all k ≥ 1,
FkC = JL

k C. (5.6)

Moreover, if M ∈ JL
k C then

Z̃Y,t,+(M) = ∅ − τL
k (M) + (i-deg > k). (5.7)

Proof. Notice that if equality (5.7) holds then Fk+1C = JL
k+1C. From the definitions, F1C = ILC =

JL
1 C. Therefore, it is enough to show that equality (5.6) implies equality (5.7) for all k ≥ 1.

Let M ∈ JL
k C = FkC. Theorem 4.9 allows us to write

{M}Yk+1
= {N}Yk+1

{P}Yk+1
,

with N ∈ JkC and P ∈ HC∩ILC. From Lemma 4.6 it follows that τL
k (P ) = 0. Hence by the invariance

of τL
k under Yk+1-surgery (see subsection 4.2), we have

τL
k (M) = τL

k (N) + τL
k (P ) = τL

k (N).

By Proposition 4.2, we conclude that τL
k (M) is equal to the reduction of τk(N) under the map

ι∗ : Dk(H) → Dk(H ′).
Besides, by the invariance under Yk+1-surgery of the i-deg = k part of the LMO functor and Proposi-
tion 5.3, we have

Z̃Y,t,+
k (M) = Z̃Y,t,+

k (N) + Z̃Y,t,+
k (P ).
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The monoid HC is contained in the category of special Lagrangian cobordisms introduced in [8]. For
every cobordism Q of this kind, it was proved in [8, Corollary 5.4] that (Z̃(Q))|j− )→0 = ∅. Now

P ∈ HC ∩ ILC, so we have Z̃Y,t,+
k (P ) = 0. It follows from Theorem 8.19 in [8] that Z̃Y,t,+

k (N) is the
reduction of −τk(N) under the map ι∗ : Dk(H) → Dk(H ′), and so it is for Z̃Y,t,+

k (M). Hence the
theorem follows.

As an immediate consequence of the above theorem we have the following corollary.

Corollary 5.5. For M ∈ JL
k C, the upper tree reduction of the LMO functor of internal degree k,

Z̃Y,t,+
k (M), is independent of the choice of a Drinfeld associator. Moreover,

(
Z̃Y,t,+

k (M)
)

|j+ )→ι∗(bj)
∈ Tk(H ′) ⊗ Q

is also independent of the choice of the system of meridians and parallels used in the definition of the
LMO functor.



Chapter 2

Alternative versions of the Johnson
homomorphisms and the LMO functor

Abstract. Let Σ be a compact connected oriented surface with one boundary component and let M
denote the mapping class group of Σ. By considering the action of M on the fundamental group of
Σ it is possible to define different filtrations of M together with some homomorphisms on each term
of the filtration. The aim of this paper is twofold. Firstly we study a filtration of M introduced
recently by Habiro and Massuyeau, whose definition involves a handlebody bounded by Σ. We shall
call it the “alternative Johnson filtration”, and the corresponding homomorphisms are referred to as
“alternative Johnson homomorphisms”. We provide a comparison between the alternative Johnson
filtration and two previously known filtrations: the original Johnson filtration and the Johnson-Levine
filtration. Secondly, we study the relationship between the alternative Johnson homomorphisms and
the functorial extension of the Le-Murakami-Ohtsuki invariant of 3-manifolds. We prove that these
homomorphisms can be read in the tree reduction of the LMO functor. In particular, this provides a
new reading grid for the tree reduction of the LMO functor.

1 Introduction

Let Σ be a compact connected oriented surface with one boundary component and let M denote
the mapping class group of Σ, that is, the group of isotopy classes of orientation-preserving self-
homeomorphisms of Σ fixing the boundary pointwise. The group M is not only an important object
in the study of the topology of surfaces but also plays an important role in the study of 3-manifolds,
Teichmüller spaces, topological quantum field theories, among other branches of mathematics.

A natural way to study M is to analyse the way it acts on other objects. For instance, we can
consider the action on the first homology group H := H1(Σ;Z) of Σ. This action gives rise to the
so-called symplectic representation

σ : M −→ Sp(H, ω),

where ω : H ⊗ H → Z is the intersection form of Σ and Sp(H, ω) is the group of automorphisms of H
preserving ω. The homomorphism σ is surjective but it is far from being injective. Its kernel is known
as the Torelli group of Σ, denoted by I. Hence we have the short exact sequence

1 −→ I
⊂

−−→ M
σ

−−→ Sp(H, ω) −→ 1. (1.1)

We can see that, in order to understand the algebraic structure of M, the Torelli group I deserves
significant attention because, in a certain way, it is the part of M that is beyond linear algebra (at
least with respect to the symplectic representation).

More interestingly, we can consider the action of M on the fundamental group π := π1(Σ, ∗) for a
fixed point ∗ ∈ ∂Σ. This way we obtain an injective homomorphism

ρ : M −→ Aut(π),

29
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which is known as the Dehn-Nielsen-Baer representation and whose image is the subgroup of auto-
morphisms of π that fix the homotopy class of the boundary of Σ.

Johnson-type filtrations. As stepwise approximations of ρ, we can consider the action of M on
the nilpotent quotients of π

ρm : M −→ Aut(π/Γm+1π),

where Γ1π := π and Γm+1π := [π, Γmπ] for m ≥ 1, define the lower central series of π. This is the
approach pursued by D. Johnson [32] and S. Morita [51]. This approach allows to define the Johnson
filtration

M ⊇ I = J1M ⊇ J2M ⊇ J3M ⊇ · · · (1.2)

where JmM := ker(ρm).
Now, there is a deep interaction between the study of 3-manifolds and that of the mapping class

group. For instance through Heegaard splittings, that is, by gluing two handlebodies via an element
of the mapping class group of their common boundary. Thus, if we are interested in this interaction,
it is natural to consider the surface Σ as the boundary of a handlebody V . Let ι : Σ →֒ V denote
the induced inclusion and let B := H1(V ;Z) and π′ := π1(V, ι(∗)). Let A and A be the subgroups
ker(H ι∗−→ B) and ker(π

ι#
−→ π′), where ι∗ and ι# are the induced maps by ι in homology and

homotopy, respectively. The Lagrangian mapping class group of Σ is the group

L = {f ∈ M | f∗(A) ⊆ A}.

By considering a descending series (Km)m≥1 of normal subgroups of π (different from the lower
central series) K. Habiro and G. Massuyeau introduced in [28] a filtration of the Lagrangian mapping
class group L:

L ⊇ Ia = Ja

1M ⊇ Ja

2M ⊇ Ja

3M ⊇ · · · (1.3)

that we call the alternative Johnson filtration. We call the first term Ia := Ja
1M of this filtration

the alternative Torelli group. Notice that Ia is a normal subgroup of L but it is not normal in M.
Roughly speaking, the group Km consists of commutators of π of weight m, where the elements of A
are considered to have weight 2, for instance K1 = π, K2 = A · Γ2π, K3 = [A, π] · Γ3π and so on. The
alternative Johnson filtration will be our main object of study in Section 4.

Besides, in [43, 46] J. Levine defined a different filtration of L by considering the lower central
series of π′, and whose first term is the Lagrangian Torelli group IL = {f ∈ L | f∗|A = IdA}:

L ⊇ IL = JL
1 M ⊇ JL

2 M ⊇ JL
3 M ⊇ · · · (1.4)

we call this filtration the Johnson-Levine filtration. The group IL is normal in L but not in M.
We refer to the Johnson filtration, the alternative Johnson filtration and the Johnson-Levine

filtration as Johnson-type filtrations. Notice that unlike the Johnson filtration the alternative Johnson
filtration takes into account a handlebody. Besides, the intersection of all terms in the alternative
Johnson filtration is the identity of M as in the case of the Johnson filtration. But this is not the case
for the Johnson-Levine filtration. One of the main purposes of this paper is the study of the alternative
Johnson filtration and its relation with the other two filtrations. Proposition 4.9 and Proposition 4.13
give the following result.

Theorem A. The alternative Johnson filtration satisfies the following properties.

(i)
⋂

m≥1 Ja
mM = {IdΣ}.

(ii) For all k ≥ 1 the group Ja
kM is residually nilpotent, that is,

⋂
m ΓmJa

kM = {IdΣ}.

Besides, for every m ≥ 1, we have

(iii) Ja
2mM ⊆ JmM, (iv) JmM ⊆ Ja

m−1M, (v) Ja
mM ⊆ JL

m+1M,
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where Ja
0M = L. In particular, the Johnson filtration and the alternative Johnson filtration are cofinal.

Johnson-type homomorphisms. Each term of the Johnson-type filtrations comes with a homo-
morphism whose kernel is the next subgroup in the filtration. We refer to these homomorphisms as
Johnson-type homomorphisms. The Johnson homomorphisms are important tools to understand the
structure of the Torelli group and the topology of homology 3-spheres [34, 49, 50, 52]. Let us review the
target spaces of these homomorphisms. For an abelian group G, we denote by Lie(G) =

⊕
m≥1 Liem(G)

the graded Lie algebra freely generated by G in degree 1.
The m-th Johnson homomorphism τm is defined on JmM and it takes values in the group

Derm(Lie(H)) of degree m derivations of Lie(H). Consider the element Ω ∈ Lie2(H) determined
by the intersection form ω : H ⊗H → Z. A symplectic derivation d of Lie(H) is a derivation satisfying
d(Ω) = 0. S. Morita shows in [51] that for h ∈ JmM, the morphism τm(h) defines a symplectic deriva-
tion of Lie(H). The group of symplectic degree m derivations of Lie(H) can be canonically identified
with the kernel Dm(H) of the Lie bracket [ , ] : H ⊗ Liem+1(H) → Liem+2(H). This way, for m ≥ 1
we have homomorphisms

τm : JmM −→ Dm(H).

The m-th Johnson-Levine homomorphism τL
m : JL

mM → Dm(B) is defined on JL
mM and it takes

values in the kernel Dm(B) of the Lie bracket [ , ] : B ⊗ Liem+1(B) → Liem+2(B).
For the alternative Johnson homomorphisms [28], consider the graded Lie algebra Lie(B; A) freely

generated by B in degree 1 and A in degree 2. The m-th alternative Johnson homomorphism τ a
m :

Ja
mM → Derm(Lie(B; A)) is defined on Ja

mM and it takes values in the group Derm(Lie(B; A)) of
degree m derivations of Lie(B; A). Similarly to the case of Lie(H), we define a notion of symplectic
derivation of Lie(B; A) by considering the element Ω′ ∈ Lie3(B; A) defined by the intersection form of
the handlebody V . Theorem 5.9 and Proposition 5.11 give the following result.

Theorem B. Let m ≥ 1 and h ∈ Ja
mM. Then

(i) The morphism τ a
m(h) defines a degree m symplectic derivation of Lie(B; A).

(ii) The morphism τL
m+1(h) is determined by the morphism τ a

m(h).

Property (ii) in Theorem B can be expressed more precisely by the commutativity of the diagram

Ja
mM

⊂ !!

τa

m

""

JL
m+1M

τL
m+1

""
Dm(B; A)

ι∗ !! Dm+1(B),

for m ≥ 1, where the inclusion Ja
mM ⊆ JL

m+1M is assured by Theorem A (v). The homomorphism
ι∗ : Dm(B; A) → Dm+1(B) is induced by the map ι∗ : H → B. Property (i) in Theorem B allows
to define a diagrammatic version of the alternative Johnson homomorphisms so that we are able to
study their relation to the LMO functor. This is the second main purpose of this paper. Before we
proceed with a description of our results in this setting, let us state another result in the context
of the alternative Johnson homomorphisms. In [28], K. Habiro and G. Massuyeau consider a group
homomorphism τ a

0 : L → Aut(Lie(B; A)), which we call the 0-th alternative Johnson homomorphism,
and whose kernel is the alternative Torelli group Ia. In subsection 5.3 we prove the following.

Theorem C. The homomorphism τ a
0 : L → Aut(Lie(B; A)) can be equivalently described as a group

homomorphism τ a
0 : L −→ Aut(B) ⋉ Hom(A, Λ2B) for a certain action of Aut(B) on Hom(A, Λ2B).

The kernel of τ a
0 is the second term JL

2 M of the Johnson-Levine filtration. In particular we have
Ia = Ja

1M = JL
2 M.

Moreover, we explicitly describe the image G := τ a
0 (L) and then we obtain the short exact sequence

1 −→ Ia ⊂
−−→ L

τa

0−−→ G −→ 1. (1.5)
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This short exact sequence has a similar role, in the context of the alternative Johnson homomor-
phisms, to that of the short exact sequence (1.1) in the context of the Johnson homomorphisms. This
is because in [28] the authors prove that the alternative Johnson homomorphisms satisfy an equiv-
ariant property with respect to the homomorphism τ a

0 , which is the analogue of the Sp-equivariant
property of the Johnson homomorphisms. Hence the short exact sequence (1.5) can be important for
a further development of the study of the alternative Johnson filtration.

Relation with the LMO functor. After the discovery of the Jones polynomial and the advent of
many new invariants, the so-called quantum invariants, of links and 3-manifolds, it became necessary
to “organize” these invariants. The theory of finite-type (Vassiliev-Goussarov) invariants in the case of
links and the theory of finite-type (Goussarov-Habiro) invariants in the case of 3-manifolds, provide an
efficient way to do this task. An important success was achieved with the introduction of the Kontsevich
integral for links [36, 1] and the Le-Murakami-Othsuki invariant for 3-manifolds [38], because they
are universal among rational finite-type invariants. Roughly speaking, this property says that every
Q-valued finite-type invariant is determined by the Kontsevich integral in the case of links or by the
LMO invariant in the case of homology 3-spheres.

The LMO invariant was extended to a TQFT (Topological quantum field theory) in [53, 9, 8].
We follow the work of D. Cheptea, K. Habiro and G. Massuyeau in [8], where they extend the LMO
invariant to a functor Z̃ : LCobq → tsA, called the LMO functor, from the category of Lagrangian
cobordisms (cobordisms satisfying a homological condition) between bordered surfaces to a category
of Jacobi diagrams (uni-trivalent graphs up to some relations). See Figure 1.1 for some examples of
Jacobi diagrams. There is still a lack of understanding of the topological information encoded by the
LMO functor. One reason for this is that the construction of the LMO functor takes several steps and
also uses several combinatorial operations on the space of Jacobi diagrams. This motivates the search
of topological interpretations of some reductions of the LMO functor through known invariants, some
results in this direction were obtained in [8, 47, 66]. The second main purpose of this paper is to give
a topological interpretation of the tree reduction of the LMO functor through the alternative Johnson
homomorphisms.

A homology cobordism of Σ is a homeomorphism class of pairs (M, m) where M is a compact
oriented 3-manifold and m : ∂(Σ × [−1, 1]) → ∂M is an orientation-preserving homeomorphism such
that the top and bottom restrictions m±|Σ×{±1} : Σ × {±1} → M of m induce isomorphisms in
homology. Denote by C the monoid of homology cobordims of Σ (or Cg,1 where g is the genus of Σ).
In particular, if h ∈ M, we can consider the homology cobordism c(h) := (Σ × [−1, 1], mh) where
mh is such that mh

+ = h and mh
− = IdΣ. Moreover, h ∈ L if and only if the cobordism c(h) is a

Lagrangian cobordism. Thus c(h) belongs to the source category of the LMO functor and therefore
we can compute Z̃(c(h)).

The alternative Johnson homomorphisms motivate the definition of the alternative degree, denoted
a-deg, for connected tree-like Jacobi diagrams. If T is a tree-like Jacobi diagram colored by B ⊕ A,
then

a-deg(T ) = 2|TA| + |TB| − 3,

where |TA| (respectively |TB|) denotes the number of univalent vertices of T colored by A (respectively
by B). See Figure 1.1 (a) and (b) for some examples.

Denote by T Y,a
m (B ⊕ A) the space generated by tree-like Jacobi diagrams colored by B ⊕ A with

at least one trivalent vertex and with a-deg = m. For a Lagrangian cobordism M let Z̃t(M) denote
the reduction of Z̃(M) modulo looped diagrams, that is, diagrams with a non-contractible connected
component. See Figure 1.1 (c) for an example of a looped diagram. This way, Z̃t(M) consists only of
tree-like Jacobi diagrams. The first step to relate the alternative Johnson homomorphisms with the
LMO functor is given in Theorem 6.5 where we prove the following.

Theorem D. The alternative degree induces a filtration {Fa
mC}m≥1 of C by submonoids. Consider

the map

Z̃Y,a
m : Fa

mC −→ T Y,a
m (B ⊕ A),
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Figure 1.1: Tree-like Jacobi diagrams of a-deg = 3 in (a) and of a-deg = 1 in (b). (c) Looped Jacobi
diagram. Here a, a′ ∈ A and b, b′, b1, . . . , b4 ∈ B.

where Z̃Y,a
m (M) is defined as the Jacobi diagrams with at least one trivalent vertex and of a-deg = m

in Z̃t(M) for M ∈ Fa
mC. Then Z̃Y,a

m is a monoid homomorphism.

In Theorem 6.14 and Theorem 6.16 we prove the following.

Theorem E. The alternative Johnson homomorphisms can be read in the tree-reduction of the LMO
functor.

More precisely, we prove that for h ∈ Ja
mM with m ≥ 2, the value Z̃Y,a

m (c(h)) coincides (up to a
sign) with the diagrammatic version of τ a

m(h). For h ∈ Ja
1M, we show that τ a

1 (h) is given by Z̃Y,a
1 (c(h))

together with the diagrams without trivalent vertices in Z̃(c(h)) of a-deg= 1. The techniques for the
proof of Theorem E in the case m = 1 (Theorem 6.14) and m ≥ 2 (Theorem 6.16) are different. For
m = 1 we need to do some explicit computations of the LMO functor and a comparison between the
first alternative Johnson homomorphism and the first Johnson homomorphism. For m ≥ 2, the key
point is the fact that the LMO functor defines an alternative symplectic expansion of π. To show
this, we use a result of Massuyeau [47] where he proves that the LMO functor defines a symplectic
expansion of π.

Theorem D and Theorem E provide a new reading grid of the tree reduction of the LMO functor
by the alternative degree. Theorem E follows the same spirit of a result of D. Cheptea, K. Habiro
and G. Massuyeau in [8] and of the author in [66] where they prove that the Johnson homomorphisms
and the Johnson-Levine homormophisms, respectively, can be read in the tree-reduction of the LMO
functor.

Notice that Theorem D holds in the context of homology cobordisms, as do the results that we
use to prove Theorem E. This suggests that the alternative Johnson homomorphisms and Theorem
E could be generalized to the setting of homology cobordisms, but we have not explored this issue so
far.

The organization of the paper is as follows. In Section 2 we review the definition of several spaces of
Jacobi diagrams and some operations on them as well as some explicit computations. Section 3 deals
with the Kontsevich integral and the LMO functor, in particular we do some explicit computations
that are needed in the following sections. Section 4 and Section 5 provide a detailed exposition of
the alternative Johnson filtration and the alternative Johnson homomorphisms, in particular we prove
Theorem A, B and C. Finally, Section 6 is devoted to the topological interpretation of the LMO
functor through the alternative Johnson homomorphisms, in particular we prove Theorem D and E.

Reading guide. The reader more interested in the mapping class group could skip Section 2 and
Section 3 and go directly to Section 4 and Section 5 (skipping subsection 5.4) referring to the previous
sections only when needed. The reader familiar with the LMO functor and more interested in the
topological interpretation of its tree reduction through the alternative Johnson homomorphisms can
go directly to Section 3. Then go to subsection 4.3 and subsection 5.2 to the necessary definitions to
read Section 6.

Notations and conventions. All subscripts appearing in this work are non-negative integers. When
we write m ≥ 0 or m ≥ 1 we always mean that m is an integer. We use the blackboard framing
convention on all drawings of knotted objects. We usually abbreviate simple closed curve as scc. By
a Dehn twist we mean a left-handed Dehn twist.
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2 Spaces of Jacobi diagrams and their operations

In this section we review several spaces of diagrams which are the target spaces of the Kontsevich
integral, LMO functor and Jonhson-type homomorphisms. We refer to [1, 56] for a detailed discussion
on the subject. Throughout this section let X denote a compact oriented 1-manifold (possibly empty)
whose connected components are ordered and let C denote a finite set (possibly empty).

2.1 Generalities

A vertex-oriented unitrivalent graph is a finite graph whose vertices are univalent (legs) or trivalent,
and such that for each trivalent vertex the set of half-edges incident to it is cyclically ordered.

A Jacobi diagram on (X, C) is a vertex-oriented unitrivalent graph whose legs are either embedded
in the interior of X or are colored by the Q-vector space generated by C. Two Jacobi diagrams
are considered to be the same if there is an orientation-preserving homeomorphism between them
respecting the order of the connected components, the vertex orientation of the trivalent vertices and
the colorings of the legs. For drawings of Jacobi diagrams we use solid lines to represent X, dashed
lines to represent the unitrivalent graph and we assume that the orientation of trivalent vertices is
counterclockwise. See Figure 2.1 for some examples.

Figure 2.1: Jacobi diagrams with X = " in (a), X = ↓ ↓ in (b) and X = ∅ in (c). Here C = {1, 2, 3}.

The space of Jacobi diagrams on (X, C) is the Q-vector space:

A(X, C) =
VectQ{Jacobi diagrams on (X, C)}

STU, AS, IHX, Q-multilinearity
,

where the relations STU, AS, IHX are local and the multilinearity relation applies to the colored legs.
See Figure 2.2.

Figure 2.2: Relations on Jacobi diagrams.

If X is not empty, it is well known that, for diagrams D ∈ A(X, C) such that every connected
component of D has at least one leg attached to X, the STU relation implies the AS and IHX
relations, see [1, Theorem 6]. We can also define the space A(X, G) for any finitely generated free
abelian group G as A(X, G) = A(X, C), where C is any finite set of free generators of G. If X or C
is empty we drop it from the notation. For D ∈ A(X, C) we define the internal degree, the external
degree and total degree; denoted i-deg(D), e-deg(D) and deg(D) respectively, as

i-deg(D) := number of trivalent vertices of D,
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e-deg(D) := number of legs of D,

deg(D) :=
1

2
(i-deg(D) + e-deg(D)).

This way, the space A(X, C) is graded with the total degree. We still denote by A(X, C) its degree
completion.

Example 2.1. A connected Jacobi diagram in A(C) without trivalent vertices is called a strut. See
Figure 2.3 (a). For a matrix Λ = (lij) with entries indexed by a finite set C, we define the element [Λ]
in A(C) by

Example 2.2. For a positive integer n, denote by ⌊n⌉∗ the set {1∗, . . . , , n∗}, where ∗ is one of the
symbols +, − or ∗ itself. For instance the morphisms in the target category of the LMO functor are
subspaces of the spaces A(⌊g⌉+ ⊔ ⌊f⌉−) for g and f positive integers. See Figure 2.3 (b).

Example 2.3. A Jacobi diagram in A(C) is looped if it has a non-contractible component, see Fig-
ure 2.3 (b). The space of tree-like Jacobi diagrams colored by C, denoted by At(C), is the quotient
of A(C) by the subspace generated by looped diagrams. The space of connected tree-like Jacobi di-
agrams colored by C, denoted by At,c(C), is the subspace of At(C) spanned by connected Jacobi
diagrams in At(C). For instance the spaces At,c(G), for G some particular abelian groups, are the
target of the diagrammatic versions of the Johnson-type homomorphisms. See Figure 2.3 (c) for an
example of a connected tree-like Jacobi digram.

Figure 2.3: (a) Strut, (b) Jacobi diagram in A(⌊4⌉+ ⊔ ⌊3⌉−), (c) Tree-like Jacobi diagram. Here
a, b, c, d ∈ C where C is any finite set.

2.2 Operations on Jacobi diagrams

Let us recall some operations on the spaces of Jacobi diagrams.

Hopf algebra structure. There is a product in A(C) given by disjoint union, with unit the empty
diagram, and a coproduct defined by ∆(D) =

∑
D′ ⊗ D′′ where the sum ranges over pairs of subdia-

grams D′, D′′ of D such that D′ ⊔ D′′ = D. For instance:

With these structures A(C) is a co-commutative Hopf algebra with counit the linear map ǫ : A(C) → Q

defined by ǫ(∅) = 1 and ǫ(D) = 0 for D ∈ A(C) \ {∅} and with antipode the linear map S :
A(C) → A(C) defined by S(D) = (−1)kD D where kD denotes the number of connected components
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of D ∈ A(C). It follows from the definition of the coproduct that the primitive part of A(C) is the
subspace Ac(C) spanned by connected Jacobi diagrams.

Doubling and orientation-reversal operations. Suppose that we can decompose the 1-manifold X
as X =↓ ⊔X ′ =↓ X ′, here X ′ can be empty. Then given a Jacobi diagram D on ↓ X ′ it is possible to
obtain new Jacobi diagrams ∆(D) on ↓ ⊔X =↓↓ X ′ and S(D) on ↑ X ′. Let us represent the Jacobi
diagram D as

Then ∆(D) is defined in Figure 2.4, where we use the box notation to denote the sum over all the
possible ways of gluing the legs of D attached to the grey box to the two intervals involved in the grey
box, in particular if there are k legs attached to the grey box, there will be 2k terms in the sum.

Figure 2.4: Definition of the doubling map and box notation.

Besides, the Jacobi digram S(D) is given in Figure 2.5.

Figure 2.5: Definition of orientation-reversal map. Here we suppose that there are k legs attached to
the chosen interval.

To sum up, we have maps

∆ : A(↓ X ′) −→ A(↓↓ X ′) and S : A(↓ X ′) −→ A(↑ X ′), (2.1)

called doubling map and orientation reversal map, respectively. Observe that even if we use the same
notation for the doubling map and the coproduct, the respective meaning can be deduced from the
context.

Symmetrization map. Let us recall the diagrammatic version of the Poincaré-Birkhoff-Witt iso-
morphism. We follow [1, 10] in our exposition. Let D be a Jacobi diagram on (X, C ⊔ {s}), we could
glue all the s-colored legs of D to an interval ↑s (labelled by s) in order to obtain a Jacobi diagram
on (X ↑s, C), i.e. there would not be any s-colored leg left. But there are many ways of doing this
gluing, so we consider the arithmetic mean of all the possible ways of gluing the s-colored legs of D
to the interval ↑s. This way we obtain a well defined vector space isomorphism

χs : A(X, C ⊔ {s}) −→ A(X ↑s, C), (2.2)

called symmetrization map. It is not difficult to show that the map (2.2) is well defined, but it is more
laborious to show that it is bijective, see [1, Theorem 8]. If S = {s1, . . . , sl}, it is possible to define,
in a similar way, a vector space isomorphism

χS : A(X, C ⊔ S) −→ A(X ↑S , C),

where ↑S=↑s1
· · · ↑sl

. More precisely, χS = χsl
◦ · · · ◦ χs1

.

Example 2.4. Fix r ∈ S. Denote by H(r) the subspace of A(S) generated by Jacobi diagrams with
at least one component that is looped or that possesses at least two r-colored legs. Similarly, denote
by H(↑r) the subspace of A(↑S) generated by Jacobi diagrams with at least one dashed component
that is looped or that possesses at least two legs attached to ↑r. Bar-Natan shows in [2, Theorem 1]
that χ(H(r)) = H(↑r).
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The inverse of the symmetrization map is constructed recursively. Since we will use this inverse,
let us review the definition. Let D be a Jacobi diagram on (X ↑s, C) with n legs attached to ↑s. Label
these legs from 1 to n following the orientation of ↑s. For a permutation ς ∈ Sn, there is a way of
obtaining a Jacobi digram ςD on (X ↑s, C) by acting on the legs. For instance if ς = (123) we have:

Theorem 2.5. [1, Theorem 8] Let n ≥ 1 and let D be a Jacobi diagram on (X ↑s, C) with at most
l ≤ n legs attached to ↑s. Denote by D̃ the Jacobi diagram on (X, C ⊔ {s}) obtained from D by
erasing ↑s and coloring with s all the legs that were attached to ↑s. Set σ1(D) = D̃ and for n > 1

σn(D) =





D̃ + 1
n!

∑
ς∈Sn

σn−1(D − ςD), if l = n,

σn−1(D), if l < n.

Then the map
σs : A(X ↑s, C) −→ A(X, C ⊔ {s}),

defined by σs(D) = σn(D) is well-defined and it is the inverse of the symmetrization map: σs = χ−1
s .

Example 2.6.

Example 2.7.

Example 2.8.

In the last equality we used Example 2.7.

Example 2.9. We are usually interested in the reduction modulo looped diagrams. We use the
symbol ≡ to indicate an equality modulo looped diagrams. Using the previous examples, it is possible
to show

Here the square brackets stand for an exponential, more precisely
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3 The Kontsevich integral and the LMO functor

In this section we review the combinatorial definition of the Kontsevich integral from [56, 39]. We also
recall the construction of the LMO functor following [8]. We focus on particular examples, which will
play an important role in the next sections, rather that in a detailed exposition on the subject.

3.1 Kontsevich Integral

Let us start by recalling some basic notions. Consider the cube [−1, 1]3 ⊆ R3 with coordinates (x, y, z).
A framed tangle in [−1, 1]3 is a compact oriented framed 1-manifold T properly embedded in [−1, 1]3

such that the boundary ∂T (the endpoints of T ) is uniformly distributed along {0} × [−1, 1] × {±1}
and the framing on the endpoints of T is the vector (0, 1, 0). We draw diagrams of framed tangles
using the blackboard framing convention. Let T be a framed tangle. Denote by ∂tT the endpoints
of T lying in {0} × [−1, 1] × {+1}, we call ∂tT the top boundary of T . Similarly, ∂bT of T denotes the
bottom boundary.

We can associate words wt(T ) and wb(T ) on {+, −} to ∂tT and ∂bT as follows. To an endpoint of T
we associate + if the orientation of T goes downwards at that endpoint, and − if the orientation of T
goes upwards at that endpoint. The words wt(T ) and wb(T ) are obtained by reading the corresponding
signs in the positive direction of the y coordinate. See Figure (3.1) (a) for an example of a tangle with
its corresponding words.

We consider non-associative words on {+, −}, that is, words on {+, −} together with a parenthe-
sization (formally an element of the free magma generated by {+, −}). For instance ((+−)+) and
(+(−+)) are the two possible non-associative words obtained from the word + − +. From now on we
omit the outer parentheses. A q-tangle is a framed tangle whose top and bottom words are endowed
with a parenthesization. See Figure (3.1) (b) and (c) for two different parenthesizations of the same
framed tangle.

Figure 3.1: A framed tangle and two different q-tangles obtained from it.

To define the Kontsevich integral it is necessary to fix a particular element Φ ∈ A(↓↓↓) called an
associator. The element Φ is an exponential series of Jacobi diagrams satisfying several conditions,
among these, one “pentagon” and two “hexagon” equations; see [56, (6.11)–(6.13)]. From now on we
fix an even Drinfeld associator Φ, see [3, Corollary 4.2] for the definition and existence. In low degree
we have:

Here 1 means ↓↓↓. The Kontsevich integral is defined so that:

Z(T1 ◦ T2) = Z(T1) ◦ Z(T2),

Z(T1 ⊗ T2) = Z(T1) ⊗ Z(T2);
(3.1)

where the composites T1 ◦T2 and Z(T1)◦Z(T2) and the tensor products T1 ⊗T2 and Z(T1)⊗Z(T2) are
defined by vertical and horizontal juxtaposition of q-tangles and Jacobi diagrams, respectively. Now
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every q-tangle can be expressed as the composition of tensor products of some elementary q-tangles,
so it is enough to define the Kontsevich integral on these q-tangles. Set

where S2 is the orientation-reversal map applied to the second interval. The Kontsevich integral is
defined on the elementary q-tangles as follows:

and for elementary q-tangles of the form

where the thick lines represent a trivial tangle and the black dots some non-associative words on
{+, −}, the Kontsevich integral is defined by using the doubling and orientation reversal maps, see
subsection 2.2, for instance

Here the subscripts indicate the interval to which the operation is applied. It is known that Z is well
defined and is an isotopy invariant of q-tangles, see [40, 41]. For a q-tangle T , we denote by Zt(T ) the
reduction of Z(T ) modulo looped diagrams, see Example 2.3.

Example 3.1.
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Example 3.2.

Example 3.3. Using Examples 3.1, 3.2 and Equations (3.1) we have

Example 3.4. Recall the space H(↑r) defined in Example 2.4. We have

3.2 The LMO functor

This subsection is devoted to a brief description of the LMO functor Z̃ : LCobq → tsA and principally
to explicit computations which will be useful in the following sections. We refer to [8] for more details.
Throughout this subsection we denote by Σg,1 a compact connected oriented surface of genus g with
one boundary component for each non-negative integer g, see Figure 3.2.

Homology cobordisms and their bottom-top tangle presentation. Let us start with some
preliminaries. A homology cobordism of Σg,1 is the equivalence class of a pair M = (M, m), where
M is a compact connected oriented 3-manifold and m : ∂(Σg,1 × [−1, 1]) → ∂M is an orientation-
preserving homeomorphism, such that the bottom and top inclusions m±(·) := m(·, ±1) : Σg,1 → M
induce isomorphisms in homology. Two pairs (M, m) and (M ′, m′) are equivalent if there exists
an orientation-preserving homeomorphism ϕ : M → M ′ such that ϕ ◦ m = m′. The composition
(M, m) ◦ (M ′, m′) of two homology cobordisms (M, m) and (M ′, m′) of Σg,1 is the equivalence class of
the pair (M̃, m− ∪ m′

+), where M̃ is obtained by gluing the two 3-manifolds M and M ′ by using the
map m+ ◦ (m′

−)−1. This composition is associative and has as identity element the equivalence class
of the trivial cobordism (Σg,1 × [−1, 1], Id). Denote by Cg,1 the monoid of homology cobordisms of Σg,1.
This notion plays an important role in the theory of finite-type invariants as shown independently by
M. Goussarov in [19] and K. Habiro in [26].
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Example 3.5. Denote by Mg,1 the mapping class group of Σg,1, i.e. the group of isotopy classes of
orientation-preserving homeomorphisms of Σg,1 that fix the boundary ∂Σg,1 pointwise. This group
can be embedded into Cg,1 by associating to any h ∈ Mg,1 the homology cobordism, called mapping
cylinder, c(h) = (Σg,1 × [−1, 1], mh), where mh : ∂(Σg,1 × [−1, 1]) → ∂(Σg,1 × [−1, 1]) is the orientation-
preserving homeomorphism defined by mh(x, 1) = (h(x), 1) and mh(x, t) = (x, t) for t 3= 1. This way
we have an injective map c : Mg,1 → Cg,1. The submonoid c(Mg,1) is precisely the group of invertible
elements of Cg,1, see [27, Proposition 2.4].

There is a more general notion of cobordism. For g, f ≥ 0 let Cg
f denote the compact oriented

3-manifold obtained from [−1, 1]3 by adding g (respectively f) 1-handles along [−1, 1]× [−1, 1]×{+1}
(respectively along [−1, 1] × [−1, 1] × {−1}), uniformly in the y direction. A cobordism from Σg,1

to Σf,1 is the homeomorphism class relative to the boundary of a pair (M, m), where M is a compact
connected oriented 3-manifold and m : ∂Cg

f → ∂M is an orientation-preserving homeomorphism.
Given a homology cobordism (M, m) of Σg,1; or more generally a cobordism from Σg,1 to Σf,1. We

can associate a particular kind of tangle whose components split in f bottom components and g top
components (they are called bottom-top tangles in [8]). The association is defined as follows. First
fix a system of meridians and parallels {αi, βi} on Σg,1 for each non-negative integer g as shown in
Figure 3.2.

Figure 3.2: System of meridians and parallels {αi, βi} on Σg,1.

Then attach g 2-handles (or f in the case of a cobordism from Σg,1 to Σf,1) on the bottom surface
of M by sending the cores of the 2-handles to the curves m−(αi). In the same way, attach g 2-handles
on the top surface of M by sending the cores to the curves m+(βi). This way we obtain a compact
connected oriented 3-manifold B and an orientation-preserving homeomorphism b : ∂([−1, 1]3) → ∂B.
The pair B = (B, b) together with the cocores of the 2-handles, determine a tangle γ in B. We call
the homeomorphism class relative to the boundary of the pair (B, γ), still denoted in the same way,
the bottom-top tangle presentation of (M, m). Following the positive direction of the y coordinate,
we label the bottom components of γ with 1−, . . ., f− and the top components with 1+, . . ., g+,
respectively. This procedure is sketched in Example 3.6.

Example 3.6. In Figure 3.3 we illustrate the procedure to obtain the bottom-top tangle presentation
of the trivial cobordism Σg,1 × [−1, 1].

Lagrangian Cobordisms. Let us now roughly describe the source category LCob of the LMO
functor. For each non-negative integer g, let Hg = H1(Σg,1;Z) be the first homology group of Σg,1

with integer coefficients, and ω : Hg ⊗Hg → Z the intersection form. Denote by Ag the subgroup of Hg

generated by the homology classes of the meridians {αi}. This is a Lagrangian subgroup of Hg with
respect to the intersection form. Let Vg be a handlebody of genus g obtained from Σg,1 by attaching g
2-handles by sending the cores of the 2-handles to the meridians αi’s, in particular the curves αi bound
pairwise disjoint disks in Vg. We also see Vg as a cobordism from Σg,1 to Σ0,1, see Figure 3.4. Thus
we can also see Ag as Ag = ker(Hg → H1(Vg;Z)).

Definition 3.7. [8, Definitions 2.4 and 2.6] A cobordism (M, m) from Σg,1 to Σf,1 is said to be
Lagrangian if it satisfies:

• H1(M ;Z) = m−,∗(Af ) + m+,∗(Hg),

• m+,∗(Ag) ⊆ m−,∗(Af ) in H1(M ;Z).
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Figure 3.3: Obtaining the bottom-top tangle presentation of the trivial cobordism Σg,1 × [−1, 1].

Figure 3.4: Handlebody Vg as a cobordism from Σg,1 to Σ0,1.

Moreover, (M, m) is said to be special Lagrangian if it additionally satisfies Vf ◦M = Vg as cobordisms.

Let M be a Lagrangian cobordism and (B, γ) its bottom-top tangle presentation. It follows, from
a Mayer-Vietoris argument, that B is a homology cube, i.e. B has the same homology groups as the
standard cube [−1, 1]3, see [8, Lemma 2.12]. Notice that the definition of q-tangle in [−1, 1]3 given in
subsection 3.1 extends naturally to q-tangles in homology cubes.

Let us now define the category LCob. The objects of LCob are the non-negative integers and the
set of morphisms LCob(g, f) from g to f are Lagrangian cobordisms from Σg,1 to Σf,1. Denote by
sLCob(g, f) the morphisms from g to f which are special Lagrangian.

Example 3.8. Let h ∈ Mg,1. Then the mapping cylinder c(h) is Lagrangian if and only if h(Ag) ⊆ Ag.
Moreover, c(h) is special Lagrangian if and only if h can be extended to a self-homeomorphism of the
handlebody Vg.

Let us consider some particular cases of the mapping cylinders described in Example 3.8. Let γ be
a simple closed curve on Σg,1 and denote by tγ the (left) Dehn twist along γ. Recall that the mapping
cylinder c(tγ) can be obtained from the trivial cobordism Σg,1 × [−1, 1] by performing a surgery along
a (−1)-framed knot in a neighbourhood of a push-off of the curve γ in Σg,1 × [−1, 1], see for instance
[56, Lemma 8.5]. In particular we can obtain the bottom-top tangle presentation of c(tγ) from that
of Σg,1 × [−1, 1], see Examples 3.9, 3.10 and 3.11.

Example 3.9. Let tαi
be the Dehn twist along a meridian curve αi. Then c(tαi

) ∈ sLCob(g, g).
Figure 3.5 (a) shows the bottom-top tangle presentation of the trivial cobordism Σg,1 × [−1, 1] (in thin
line) together with a (−1)-framed knot (in thick line) such that the surgery along this knot gives the
bottom-top tangle presentation of c(tαi

) showed in Figure 3.5 (b).

Example 3.10. Let α12 be the curve shown in Figure 3.6 (a) and let tα12
be the Dehn twist along α12.

We have c(tα12
) ∈ sLCob(g, g). As in Example 3.9, Figure 3.6 (c) shows the bottom-top tangle presen-

tation of c(tα12
) obtained by surgery along the thick component in Figure 3.6 (b).
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Figure 3.5: Bottom-top tangle presentation of c(tαi
).

Figure 3.6: (a) Curve α12 and (c) bottom-top tangle presentation of c(tα12
).

Example 3.11. Example 3.10 can be generalized. Consider two integers k and l with 1 ≤ k < l ≤ g.
Let αkl be the simple closed curve which turns around the k-th handle and the l-th handle as shown in
Figure 3.7 (a). Consider the Dehn twist tαkl

along αkl. We have c(tαkl
) ∈ sLCob(g, g). Figure 3.7 (b)

shows the bottom-top tangle presentation of c(tαkl
).

Figure 3.7: (a) Curve αkl and (b) bottom-top tangle presentation of c(tαkl
).

Example 3.12. Let Ni be the cobordism from Σg,1 to Σg+1,1 with the bottom-top tangle presentation
shown in Figure 3.8. Then Ni is a special Lagrangian cobordism. The label r on the first (from left to
right) bottom component stands for root. This is because from these cobordisms we will obtain, via the
LMO functor, rooted trees with root r that we will interpret as Lie commutators. See subsection 6.3.

Top-substantial Jacobi diagrams. Let us now describe the target category tsA of the LMO functor.
The objects of the category tsA are the non-negative integers. The set of morphisms from g to f is
the subspace tsA(g, f) of diagrams in A(⌊g⌉+ ⊔ ⌊f⌉−) (see Example 2.2) without struts whose both
ends are colored by elements of ⌊g⌉+. These kind of Jacobi diagrams are called top-substantial. If
D ∈ tsA(g, f) and E ∈ tsA(h, g) the composition

D ◦ E =
〈
D|j+ )→j∗ , E|j− )→j∗

〉
⌊g⌉∗

is the element in tsA(h, f) given by the sum of Jacobi diagrams obtained by considering all the possible
ways of gluing the ⌊g⌉+-colored legs of D with the ⌊g⌉−-colored legs of E. A schematic description is
shown in Figure 3.9 (a). The identity morphism in tsA(g, g) is shown in Figure 3.9 (b).
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Figure 3.8: Bottom-top tangle presentation of Ni ∈ sLCob(g, g + 1).

Figure 3.9: (a) Composition in tsA and (b) identity morphism in tsA(g, g).

Sketch of the construction of the LMO functor. The definition of the LMO functor uses the
Kontsevich integral which is defined for q-tangles. Because of this, it is necessary to modify the objects
of LCob to obtain the category LCobq: instead of non-negative integers, the objects of LCobq are non-
associative words in the single letter • and if u and v are non-associative words in • of length g and f
respectively, a morphism from u to v is a Lagrangian cobordism from Σg,1 to Σf,1.

Roughly speaking, the LMO functor Z̃ : LCobq → tsA is defined as follows. Let M ∈ LCobq(u, v),
where u and v are two non-associative words in •. Let (B, γ′) be the bottom-top tangle presentation
of M . By performing the change • 0→ (+−) in u and v we obtain words wt(γ

′) and wb(γ
′) on {+, −}

together with some parenthesizations. Hence γ′ is a q-tangle in the homology cube B. Next, take a
surgery presentation of (B, γ′), that is, a framed link L ⊆ int([−1, 1]3) and a tangle γ in [−1, 1]3 \ L
such that surgery along L carries ([−1, 1]3, γ) to (B, γ′). Set wt(γ) = wt(γ

′) and wb(γ) = wb(γ
′).

Hence L ∪ γ is a q-tangle in [−1, 1]3. Now, consider the Kontsevich integral of L ∪ γ, which gives
a series of a kind of Jacobi diagrams. To get rid of the ambiguity in the surgery presentation, it is
necessary to use some combinatorial operations on the space of diagrams. Among these operations
there is the so-called Aarhus integral (see [4, 5]), which is a kind of formal Gaussian integration on
the space of diagrams. We then arrive to tsA. Finally, to obtain the functoriality, it is necessary to do
a normalization.

Recall that the definition of the Kontsevich integral requires the choice of a Drinfeld associator,
and the bottom-top tangle presentation requires the choice of a system of meridians and parallels.
Thus, the LMO functor also depends on these choices.

We are especially interested in the LMO functor for special Lagrangian cobordisms. For these kind
of cobordisms the LMO functor can be computed from the Kontsevich integral and the symmetrization
map as is assured by a result of Cheptea, Habiro and Massuyeau. We state the result for our particular
case.

Convention 3.13. From now on, we endow Lagrangian cobordisms with the right-handed non-
associative word (• · · · (•(••)) · · · ) in the letter • unless we say otherwise. This way we will always be
in the context of the category LCobq.

Lemma 3.14. [8, Lemma 5.5] Let M ∈ LCobq(u, v), where u and v are non-associative words in the
letter • of length g and f , respectively. Suppose that the bottom-top tangle presentation of M is as in
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Figure 3.10: Bottom-top tangle presentation of M .

Figure 3.10, where T is a tangle in [−1, 1]3. Endow T with the non-associative words wt(T ) = u/• )→(+−)

and wb(T ) = v/• )→(+−). Then the value of the LMO functor Z̃(M) can be computed from the value of
the Kontsevich integral Z(T ) as shown in Figure 3.11.

Figure 3.11: Value of Z̃(M) in terms of Z(T ).

Let (M, m) be a homology cobordism and (B, γ) its bottom-top tangle presentation. Define the
linking matrix of (M, m), denoted Lk(M), as the linking matrix of the link γ̂ in B obtained from γ

by identifying the two endpoints on each of the top and bottom components of γ.
For any Lagrangian cobordism M , denote by Z̃s(M) the strut part of Z̃(M), that is, the reduction

of Z̃(M) modulo diagrams with at least one trivalent vertex. Denote by Z̃Y (M) the reduction of
Z̃(M) modulo struts. Denote by Z̃t(M) the reduction of Z̃(M) modulo looped diagrams. Finally
denote by Z̃Y,t(M) the reduction of Z̃t(M) modulo struts.

Lemma 3.15. [8, Lemma 4.12] Let M ∈ LCobq(u, v) where u and v are non-associative words in the
letter •. Then Z̃(M) is group-like. Moreover Z̃(M) = Z̃s(M) ⊔ Z̃Y (M) and

Z̃s(M) =

[
Lk(M)

2

]
. (3.2)

The colors 1+, . . . , g+ and 1−, . . . , f− in the series of Jacobi diagrams Z̃(M) refer to the curves
m+(β1),. . ., m+(βg) and m−(α1), . . . , m−(αf ) on the top and bottom surfaces of M respectively.

Example 3.16. Let us consider the special Lagrangian cobordism c(tαi
), from Example 3.9, equipped

with non-associative words as in Convention 3.13. By Lemma 3.14 and the functoriality of Z (see
Equation (3.1)), to compute Z̃t(c(tαi

)) in low degrees we need to first compute

in low degrees, which we already computed in Example 3.2. Therefore

From Example 2.9, we conclude
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which shows that there are no terms of i-deg = 1 in Z̃Y,t(c(tαi
)).

Example 3.17. Consider the special Lagrangian cobordism c(tα12
) from Example 3.10, equipped with

non-associative words as in Convention 3.13. By Lemma 3.14, to compute Z̃t(c(tα12
)) in low degrees,

we need to first compute the tree-like part in the Kontsevich integral of the q-tangle

by the functoriality of Z, see (3.1), we have to compute the low degree terms of

which was computed in Example 3.3. Now, by a straightforward but long computation we obtain

Example 3.18. Example 3.17 can be generalized to the cobordism c(tαkl
) from Example 3.11. In

this case we obtain

Example 3.19. Consider the special Lagrangian cobordism N1 from Example 3.12, equipped with
non-associative words as in Convention 3.13. Denote by w the right-handed non-associative word in •
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of length g − 1. Denote by P•,•,w the q-cobordism ((••)w) → (•(•w)) whose underlying cobordism is
the identity LCob(g + 1, g + 1). Thus we can decompose N1 as N1 = P•,•,w ◦ (T ⊗ Idw), where Idw

is the identity cobordism equipped with w on the top and bottom, and T is the special Lagrangian
cobordism whose bottom-top tangle presentation is shown in Figure 3.12.

Figure 3.12: Bottom top-tangle presentation of T .

Hence, Z̃t(N1) = Z̃t(P•,•,w) ◦ (Z̃t(T ) ⊗ Idg−1). Now, by the functoriality of Z̃ we have
(
Z̃(P•,•,w)|r )→0

)
= ∅ ⊗ Idg and

(
Z̃(P•,•,w)|1− )→0

)
= Id1 ⊗ ∅ ⊗ Idg−1,

therefore (
Z̃Y (P•,•,w)|r )→0

)
= ∅ and

(
Z̃Y (P•,•,w)|1− )→0

)
= ∅.

This way, each one of the connected diagrams appearing in Z̃Y (P•,•,w) has at least one r-colored leg
and at least one 1−-colored leg. Hence, each one of the connected diagrams in Z̃t(N1) coming from
Z̃Y (P•,•,w) has at least one r-colored leg and at least one 1−-colored leg.

We are interested in the low degree terms of Z̃t(N1) mod H(r). By Lemma 3.14, we need to
compute the low degree terms of

which we already computed in Example 3.4. Whence we obtain

We conclude that each of the terms with i-deg = 1 in Z̃(N1) mod H(r) has one r-colored and one
1−-colored leg. In a similar way, it can be shown for 1 ≤ i ≤ g that each of the terms with i-deg = 1
in Z̃(Ni) mod H(r) has one r-colored leg and one i−-colored leg.

4 Johnson-type filtrations

As in subsection 3.2, we denote by Σg,1 a compact connected oriented surface of genus g with one
boundary component. Let Mg,1 denote the mapping class group of Σg,1. We will often omit the
subscripts g and 1 of our notation unless there is ambiguity, then we will usually write Σ and M
instead of Σg,1 and Mg,1.

4.1 Preliminaries

Let us fix a base point ∗ ∈ ∂Σ and set π = π1(Σ, ∗) and H = H1(Σ,Z), finally denote by ab : π → H
the abelianization map. Notice that the intersection form ω : H ⊗ H → Z is a symplectic form on H.
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The elements of M preserve ∂Σ, in particular they preserve ∗, therefore we have a well defined group
homomorphism:

ρ : M −→ Aut(π), (4.1)

which sends h ∈ M to the induced map h# on π. It is well known that the map ρ is injective and it is
called the Dehn-Nielsen-Baer representation of M. On the other hand, since the elements of M are
orientation-preserving, their induced maps on H preserve the intersection form. This way we have a
well defined surjective group homomorphism:

σ : M −→ Sp(H) = {f ∈ Aut(H) | ∀x, y ∈ H, ω(f(x), f(y)) = ω(x, y)}, (4.2)

that sends h ∈ M to the induced map h∗ on H. The map σ is called the symplectic representation
of M and it is far from being injective, its kernel is known as the Torelli group of Σ, which is denoted
by I (or Ig,1), so

I = Ig,1 = ker(σ) = {h ∈ M | h∗ = IdH}. (4.3)

4.2 Alternative Torelli group

Let V (or Vg) be a handlebody of genus g. Consider a disk D on ∂V such that ∂V = Σ ∪ D, where
D and Σ are glued along their boundaries. Let ι : Σ →֒ V be the inclusion of Σ into ∂V ⊆ V , see
Figure 4.1.

Figure 4.1: The inclusion Σ
ι

−֒→ V .

Figure 4.1 also shows the fixed system of meridians and parallels of Σ used in subsection 3.2.
Moreover we suppose that the images ι(αi) of the meridians αi, under the embedding ι, bound pairwise
disjoint disks in V . Set H ′ = H1(V ;Z) and π′ = π1(V, ι(∗)) and denote by ab′ : π′ → H ′ the
abelianization map. Consider the following subgroups of π and H that arise when looking at the
induced maps by ι in homotopy and in homology:

A = ker(ι∗ : H → H ′) and A = ker(ι# : π → π′). (4.4)

We also consider the following subgroup of π:

K2 = ker(π
ι#

−→ π′ ab’
−→ H ′) = A · Γ2π. (4.5)

The subgroup A ≤ H is a Lagrangian subgroup of H with respect to the intersection form on H and
it is the group that appears in the definition of Lagrangian cobordisms in the previous section. We
may think of K2 as the subgroup of π generated by commutators of weight 2, where the elements of π

are considered to have weight 1 and the elements of A are considered to have weight 2. The subgroups
A, A and K2 allow us to define some important subgroups of the mapping class group M.

Definition 4.1. The Lagrangian mapping class group of Σ, denoted by L (or Lg,1) is defined as
follows:

L = Lg,1 = {f ∈ Mg,1 | f∗(A) ⊆ A}. (4.6)

We are mainly interested in three particular subgroups of L, one of these is the Torelli group, see
equation (4.3).
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Definition 4.2. The Lagrangian Torelli group of Σ, denoted by IL (or IL
g,1), is defined as follows:

IL = IL
g,1 = {h ∈ L | h∗|A = IdA}. (4.7)

The groups L and IL appear in the works [43, 46] of J. Levine in connection with the theory
of finite-type invariants of homology 3-spheres. From an algebraic point of view these groups were
studied by S. Hirose in [29], where he found a generating system for L and by T. Sakasai in [61], where
he computed H1(L;Z) and H1(IL;Z).

Definition 4.3. The alternative Torelli group of Σ, denoted by Ia (or Ia
g,1), is defined as follows:

Ia = Ia

g,1 =





for x ∈ π : h#(x)x−1 ∈ K2

h ∈ L and for y ∈ K2 :
h#(y)y−1 ∈ Γ3π · [π,A] =: K3





. (4.8)

Notice that the definition of Ia involves the group K3 = Γ3π · [π,A] = [[π, π], π] · [π,A], which
we see as the subgroup of π generated by commutators of weight 3. Like the Lagrangian Torelli
group, the group Ia appears in [43, 46, 15] in connection with the theory of finite-type invariants but
with a different definition: the second term of the Johnson-Levine filtration. Definition 4.3 comes
from [28], see Proposition 5.16 for the equivalence of the two definitions. J. Levine shows in [43,
Proposition 4.1] that Ia is generated by Dehn twists along simple closed curves (scc) whose homology
class belongs to A. Equivalently, Ia is generated by Dehn twists along scc’s which bound a surface in
the handlebody V . This is the definition of Ia given in [46, 15].

From the above definitions it follows that I ⊆ IL ⊆ L and Ia ⊆ IL ⊆ L. But Ia 3⊆ I and I 3⊆ Ia.
We shall call here the groups I, IL and Ia Torelli-type groups. In contrast with I, the groups IL

and Ia are not normal in M, but they are normal in L.

Example 4.4. The Dehn twists tαi
and tαkl

from Examples 3.9 and 3.11 are elements of the alternative
Torelli group which do not belong to the Torelli group.

Example 4.5. Consider the parallel β1 and the curve γ as shown in Figure 4.2. These curves form
a bounding pair. Consider the Dehn twists tβ1

and tγ along these curves. It can be shown that the
homeomorphism tγt−1

β1
belongs to I ∩ Ia.

Figure 4.2: Curves β1 and γ.

More generally we have the following lattice of subgroups:

Ia
!
"

##
I ∩ Ia

#

$

$$

%
&

%%

IL '

( !! L

I
)

*

&&

where all the inclusions are proper. Besides, J. Levine proved in [42, Theorem 2] that

I ∩ Ia = K · [I, Ia], (4.9)

where K is the Johnson kernel. D. Johnson proved in [33] that K is generated by BSCC maps (bounding
scc’s), that is, Dehn twists along scc’s which are null-homologous in Σ.
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4.3 Alternative Johnson filtration

This subsection is devoted to the study of a filtration of the alternative Torelli group introduced in [28]
which we shall call here the alternative Johnson filtration. We compare this filtration with the Johnson
filtration and the Johnson-Levine filtration. Let us start by recalling some terminology.

An N -series (Gm)m≥1 of a group G is a decreasing sequence

G = G1 ≥ G2 ≥ · · · ≥ Gm ≥ Gm+1 ≥ · · ·

of subgroups of G such that [Gi, Gj ] ⊆ Gi+j for i, j ≥ 1. We are interested in N -series of the group
π = π(Σ, ∗). A first example of an N -series of π is the lower central series (Γkπ)k≥1. We consider an
N -series of π in which the subgroup A plays a special role.

Set K1 = π and K2 = A · Γ2π as defined in Equation (4.5). Let (Km)m≥1 be the smallest N -series
of π starting with these K1 and K2, that is, if (Gi)m≥1 is any N -series of π with G1 = K1 and G2 = K2

then Km ⊆ Gm for every m ≥ 1. More precisely, for every m ≥ 3 we have

Km = [Km−1, K1] · [Km−2, K2]. (4.10)

In particular K3 = Γ3π · [π,A] is the group that we used in the definition of the alternative Torelli
group, see (4.8). We can think of Km as the subgroup of π generated by commutators of weight m,
where the elements of π have weight 1 and the elements of A have weight 2. By induction on m ≥ 1
we have

Γmπ ⊆ Km ⊆ Γ⌈m/2⌉π, (4.11)

where ⌈m/2⌉ denotes the least integer greater than or equal to m/2.
Restricting the Dehn-Nielsen-Baer representation (4.1) to the Lagrangian mapping class group we

get an action of L on K1 = π. We denote the action of h ∈ L on x ∈ π by hx. Hence hx = ρ(h)(x) =
h#(x).

Lemma 4.6. For every h ∈ L we have h(K2) = K2.

Proof. It is enough to show h(K2) ⊆ K2 for every h ∈ L. Let h ∈ L and x ∈ K2 = ker(ab′ι#). Hence
0 = ab′ι#(x) = ι∗(ab(x)), so ab(x) ∈ A and then h∗(ab(x)) ∈ A. Therefore

ab′ι#h#(x) = ι∗(ab(h#(x))) = ι∗(h∗(ab(x))) = 0,

that is, h#(x) ∈ K2.

It follows from Equality (4.10) and Lemma 4.6, by induction, that h(Km) = Km for every m ≥ 1
and h ∈ L. From the general setting in [28, Section 3.4 and Section 10.2] we have a decreasing sequence

L = Ja

0M ⊇ Ja

1M ⊇ Ja

2M ⊇ · · · ⊇ Ja

mM ⊇ Ja

m+1M ⊇ · · · (4.12)

of subgroups of M satisfying:

[Ja

l M, Ja

mM] ⊆ Ja

l+mM for all l, m ≥ 0. (4.13)

In our case, the m-th term in this decreasing sequence is given by

Ja

mM = Ja

mMg,1 =





for x ∈ π : h#(x)x−1 ∈ K1+m

h ∈ L and for y ∈ K2 :
h#(y)y−1 ∈ K2+m





. (4.14)

Definition 4.7. The alternative Johnson filtration of M is the descending chain {Ja
mM}m≥0 of

subgroups of M.
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Figure 4.3: Curves δ, ǫ and αg.

Example 4.8. Consider the curves δ, ǫ and the meridian αg as show in Figure 4.3. It can be show
that tδ and tǫt

−1
αg

belong to Ja
2M. We will show this explicitly in Examples 5.7 and 5.8. In particular tδ

and tǫt
−1
αg

belong to I ∩ Ia.

Proposition 4.9. The alternative Johnson filtration satisfies the following properties.

(i)
⋂

m≥0 Ja
mM = {IdΣ}.

(ii) For all k ≥ 1 the group Ja
kM is residually nilpotent, that is,

⋂
m ΓmJa

kM = {IdΣ}.

Proof. In order to prove (i), recall that Km ⊆ Γ⌈m/2⌉π for m ≥ 1. Consider h ∈ L such that h ∈ Ja
mM

for all m ≥ 0. Let x ∈ π, thus

∀m ≥ 1, h#(x)x−1 ∈ Km+1 ⊆ Γ⌈(m+1)/2⌉π.

Therefore h#(x)x−1 ∈ Γkπ for all k ≥ 1. Since π is residually nilpotent, we have that h# = ρ(h) =
Idπ. In view of the injectivity of the Dehn-Nielsen-Baer representation ρ we conclude that h = IdΣ,
so we have (i). Now, let us see (ii). Fix k ≥ 1, from (4.13) it follows, by induction on m, that
ΓmJa

kM ⊆ Ja
mM for all m ≥ 1. Therefore by (i) we obtain

⋂
m≥1 ΓmJa

kM = {IdΣ}.

The Johnson filtration satisfies similar properties to those stated in the above proposition. Let us
briefly recall the Johnson filtration and the Johnson-Levine filtration in order to compare them with
each other.

Johnson filtration. The lower central series of π is preserved by the Dehn-Nielsen-Baer representa-
tion ρ, so for every k ≥ 1 there is a group homomorphism

ρk : M −→ Aut(π/Γk+1π), (4.15)

defined as the composition
M

ρ
−→ Aut(π) −→ Aut(π/Γk+1π).

Notice that ker(ρ1) is the Torelli group I. The Johnson filtration of M is the descending chain of
subgroups

M ⊇ I = J1M ⊇ J2M ⊇ J3M ⊇ · · · (4.16)

defined by JkM := ker(ρk) for k ≥ 1. Equivalently for k ≥ 1,

JkM = {h ∈ M | for all x ∈ π : h#(x)x−1 ∈ Γk+1π}. (4.17)

Proposition 4.10. [50, Corollary 3.3] The Johnson filtration satisfies the following properties.

(i) [JkM, JmM] ⊆ Jk+mM for all k, m ≥ 1.

(ii)
⋂

k≥1 JkM = {IdΣ}.

(iii) For all k ≥ 1 the group JkM is residually nilpotent.
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Johnson-Levine filtration. J. Levine introduced in [43, 46] a different filtration of the mapping
class group by means of the embedding ι : Σ →֒ V , see Figure 4.1, and the lower central series of
π′ = π1(V, ι(∗)).

The Johnson-Levine filtration of M is the descending chain of subgroups

IL = JL
1 M ⊇ JL

2 M ⊇ JL
3 M ⊇ · · · (4.18)

defined by
JL

k M := {h ∈ IL | ι#h#(A) ⊆ Γk+1π′} (4.19)

for k ≥ 1.
Let H be the subgroup of M consisting of the elements that can be extended to the handlebody V .

In Example 3.8 we used these kind of homeomorphisms to give examples of special Lagrangian cobor-
disms. It is well known that

H = {h ∈ M | h#(A) ⊆ A}, (4.20)

see [20, Theorem 10.1]. The group H is called the handlebody group because it is isomorphic to the
mapping class group of V .

Proposition 4.11. (Levine [43, 46]) The Johnson-Levine filtration satisfies the following properties.

(i) For k ≥ 1, JL
k M is a subgroup of M.

(ii)
⋂

k≥1 JL
k M = H ∩ IL.

(iii) JkM ⊆ JL
k M for every k ≥ 1.

(iv) JL
2 M is generated by simple closed curves which bound in V , equivalently by scc’s whose homology

class belongs to A.

(v) IL = I · (H ∩ IL) and JL
2 M = J2M · (H ∩ IL).

We refer to the alternative Johnson filtration, the Johnson filtration and the Johnson-Levine
filtration as Johnson-type filtrations.

Comparison between Johnson-type filtrations. Proposition 4.11 gives a first comparison be-
tween the three filtrations. Let us give a more general comparison.

Lemma 4.12. For every m ≥ 1 there exists a normal subgroup Nm of A such that Km = Γmπ · Nm.

Proof. The argument is by strong induction on m. Taking N1 = {1} and N2 = A, clearly we have
K1 = Γ1π · N1 and K2 = Γ2π · N2. Suppose m ≥ 3 and let Nm−2, Nm−1 be normal subgroups of A
such that Km−1 = Γm−1π · Nm−1 and Km−2 = Γm−2π · Nm−2. Thus

Km = [Km−1, K1] · [Km−2, K2]

= [Γm−1π · Nm−1, π] · [Γm−2π · Nm−2, K2]

= [Γm−1π, π] · [Nm−1, π] · [Γm−2π, Γ2π · A] · [Nm−2, K2]

= Γmπ · [Nm−1, π] · [Γm−2π, Γ2π] · [Γm−2π,A] · [Nm−2, K2]

= Γmπ · Nm,

where Nm = [Nm−1, π] · [Γm−2π,A] · [Nm−2, K2] is a normal subgroup of A.

Proposition 4.13. For every m ≥ 1, we have

(i) Ja
2mM ⊆ JmM.

(ii) JmM ⊆ Ja
m−1M.
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(iii) Ja
mM ⊆ JL

m+1M.

In particular the Johnson filtration and the alternative Johnson filtration are cofinal.

Proof. Let m ≥ 1. Let h ∈ Ja
2mM, then for every x ∈ π we have

h#(x)x−1 ∈ K2m+1 ⊆ Γ⌈(2m+1)/2⌉π = Γm+1π,

that is, h ∈ JmM so (i) holds. Let h ∈ JmM, then for every x ∈ π we have

h#(x)x−1 ∈ Γm+1π ⊆ Km+1.

In particular, h#(x)x−1 ∈ Km for every x ∈ π and h#(y)y−1 ∈ Km+1 for every y ∈ K2. That is,
h ∈ Ja

m−1M, hence (ii). Finally for (iii) we use Lemma 4.12 to write Km+2 = Γm+2π · N with N a
normal subgroup of A. Let h ∈ Ja

mM. It follows that for every α ∈ A ⊆ K2, h#(α)α−1 ∈ Km+2.
Write h#(α)α−1 = xn with x ∈ Γm+2π and n ∈ N . Therefore

ι#(h#(α)) = ι#(h#(α)α−1) = ι#(x)ι#(n) = ι#(x) ∈ Γm+2π′,

whence ι#h#(A) ⊆ Γm+2π′. Hence h ∈ JL
m+1M.

Remark 4.14. We expect that the subscripts of the relations on Proposition 4.13 are the best pos-
sibles.

Remark 4.15. D. Johnson proved in [31] that the Torelli group Ig,1 is finitely generated for g ≥ 3.
This result together with the short exact sequence

1 −→ I −→ IL σ
−−→ σ(IL) −→ 0,

where σ is the symplectic representation, imply that the Lagrangian Torelli group IL
g,1 is finitely

generated for g ≥ 3. Notice that

σ(IL) = σ(Ia) =

{(
Idg ∆

0 Idg

)
∈ Sp(2g,Z)

∣∣∣∣ ∆ is symmetric
}

,

see Lemma 6.6 and Equation (6.10). Hence σ(IL) and σ(Ia) are finitely generated. Recently T.
Church, M. Ershov and A. Putnam proved in [11] several results concerning the finite generation of
the Johnson filtration. In particular they proved [11, Theorem A] that the Johnson kernel Kg,1 is
finitely generated for g ≥ 4. This result together with the short exact sequences

1 −→ K −→ I ∩ Ia τ1−−→ τ1(I ∩ Ia) −→ 0 and 1 −→ I ∩ Ia −→ Ia σ
−−→ σ(Ia) −→ 0,

where τ1 is the first Johnson homomorphism, imply that the alternative Torelli group Ia
g,1 is finitely

generated for g ≥ 4. Besides, it follows from the general result [11, Theorem B] that Ja
mMg,1 is finitely

generated for m ≥ 2 and g ≥ 2m + 1.

5 Johnson-type homomorphisms

Throughout this section we use the same notations and conventions from Section 4. The aim of this
section is the study of a sequence of group homomorphisms {τ a

m}m≥0 introduced in [28], which are
defined on each term of the alternative Johnson filtration and taking values in some abelian groups.
These abelian groups can be described by means of the first homology group H of the surface Σ, the
first homology group B := H ′ of the handlebody V and the subgroup A = ker(ι∗).
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5.1 Preliminaries

Since [Ja
l M, Ja

mM] ⊆ Ja
l+mM for all l, m ≥ 0, the quotient group Ja

mM/Ja
m+1M is an abelian group

for m ≥ 1 and we can endow

Gr(Ja

•M) =
⊕

m≥1

Ja
mM

Ja
m+1M

(5.1)

with a structure of graded Lie algebra with Lie bracket induced by the commutator operation.
K. Habiro and G. Massuyeau show in [28] that the Lie algebra (5.1) embeds into a Lie algebra of
derivations. To achieve this, they define group homomorphisms on each term of the alternative John-
son filtration, even on the 0-th term Ja

0M which is the Lagrangian mapping class group L. We shall
call these homomorphisms the alternative Johnson homomorphisms. In order to define them, let us
start with some preliminaries.

Free Lie algebra associated to the N-series (Km)m≥1. In the definition of the alternative Johnson
filtration we use the N -series (Km)m≥1 defined in Equation (4.10). The graded Lie algebra associated
to this N -series is given by

Gr(K•) =
⊕

m≥1

Km

Km+1
=

K1

K2
⊕

K2

K3
⊕ · · · (5.2)

It follows from [37, Proposition 1] that this graded Lie algebra is freely generated in degree 1 and 2,
see also [28, Lemma 10.9]. More precisely, by Hopf’s formula we have (Γ2π ∩ A)/[π,A] ∼= H2(π/A) ∼=
H2(π′) and H2(π′) = 0 because π′ is a free group. Hence [π,A] = Γ2π ∩ A. Consider the injective
homomorphism j : A → K2/K3 given by the composition

A
∼=

←−
ab

(A · Γ2π)/Γ2π ∼= A/(Γ2π ∩ A) = A/[π,A] −֒→
K2

K3
. (5.3)

Identify B = H ′ with K1/K2. Denote by Lie(B; A) the graded free Lie algebra (over Z) generated
by B in degree 1 and A in degree 2:

Lie(B; A) =
⊕

m≥1

Liem(B; A) = B ⊕ (Λ2B ⊕ A) ⊕ · · · (5.4)

Therefore we have
Gr(K•) ∼= Lie(B; A). (5.5)

Positive symplectic derivations of Lie(B; A). Recall that a derivation of Lie(B; A) is a linear map
d : Lie(B; A) → Lie(B; A) such that d([x, y]) = [d(x), y] + [x, d(y)] for every x, y ∈ Lie(B; A). The set
Der(Lie(B, A)) of derivations of Lie(B; A) is a Lie algebra with Lie bracket [d, d′] = dd′ − d′d.

From the long exact sequence associated to the pair (V, ∂V ) we obtain the short exact sequence

0 −→ H2(V, ∂V ;Z)
δ∗−−→ H

ι∗−−→ B −→ 0, (5.6)

whence H2(V, ∂V ;Z) ∼= A. Besides, by Poincaré-Lefschetz duality there is a canonical isomorphism
H2(V, ∂V ;Z) ∼= H1(V ;Z) which allows to define the intersection form of the handlebody

ω′ : B × H2(V, ∂V ;Z) −→ Z. (5.7)

Consider the identifications B ∼= A∗ given by the isomorphism H/A
ι∗−−→ B and by sending x + A ∈

H/A to ω(x, ·) ∈ A∗; and A ∼= B∗ given by the isomorphism H2(V, ∂V ;Z) ∼= A and by sending a ∈ A
to ω′(·, a) ∈ B∗. This way, the intersection form ω′ determines an element Ω′ ∈ Lie3(B; A). The
intersection form ω : H ⊗ H → Z determines an element Ω ∈ Lie2(H) ⊆ Lie(H), where Lie(H) is the
graded Lie algebra freely generated by H in degree 1. The relation between the intersection form ω

of Σ and ω′ of V is given by the commutativity of the diagram:

B × H2(V, ∂V )
ω′

!!

∼= δ∗

""

Z.

H/A × A

ι∗
∼=

''

ω

((
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Definition 5.1. Let d be a derivation of Lie(B; A).

(i) We say d is a positive derivation if d(B) ⊆ Lie≥2(B; A) and d(A) ⊆ Lie≥3(B; A).

(ii) Let m ≥ 1. We say that d is a derivation of degree m if d(B) ⊆ Liem+1(B; A) and d(A) ⊆
Liem+2(B; A).

(iii) We say that d is a symplectic derivation if d(Ω′) = 0.

Denote by Der+,ω(Lie(B; A)) the set of positive symplectic derivations of Lie(B; A). This set is a
Lie subalgebra of Der(Lie(B; A)). Let m ≥ 1, denote by Derm(Lie(B; A)) the subgroup of derivations
of Lie(B; A) of degree m. Notice that a derivation d of Lie(B; A) of degree m is a family d = (di)i≥1

of group homomorphisms
di : Liei(B; A) −→ Liei+m(B; A),

satisfying di+j [x, y] = [di(x), y] + [x, dj(y)] for x ∈ Liei(B; A) and y ∈ Liej(B; A). Set

Dm(Lie(B; A)) = HomZ(B,Liem+1(B; A)) ⊕ HomZ(A,Liem+2(B; A)). (5.8)

The following is a classical result, see for instance [60, Lemma 0.7].

Proposition 5.2. For every m ≥ 1, there is a bijection

Derm(Lie(B; A))
Ψ

−−→ Dm(Lie(B; A)),

defined by Ψ(d) = d|B + d|A for d ∈ Derm(Lie(B; A)).

By using the identifications B ∼= A∗ and A ∼= B∗, we have

Dm(Lie(B; A)) ∼= (B∗ ⊗ Liem+1(B; A)) ⊕ (A∗ ⊗ Liem+2(B; A))
∼= (A ⊗ Liem+1(B; A)) ⊕ (B ⊗ Liem+2(B; A)).

(5.9)

Hence we can see the map Ψ from Proposition 5.2 as taking values in the space on the left-hand side
of Equation (5.9). For m ≥ 1, consider the Lie bracket map

Ξm : (A ⊗ Liem+1(B; A)) ⊕ (B ⊗ Liem+2(B; A)) −→ Liem+3(B; A). (5.10)

Set Dm(B; A) := ker(Ξm). Denote by Der+
m(Lie(B; A)) (respectively by Der+,ω

m (Lie(B; A)) ) the
subgroup of positive (respectively positive symplectic) derivations of Lie(B; A) of degree m.

Proposition 5.3. Let d ∈ Der+
m(Lie(B; A)). Then ΞmΨ(d) = 0 if and only if d(Ω′) = 0. That is

Der+,ω
m (Lie(B; A)) ∼= Dm(B; A).

Proof. Consider the symplectic basis {ai, bi} induced by the systems of meridians and parallels {αi, βi}
on Σ shown in Figure 3.2 and identify ι∗(bi) ∈ B with bi ∈ H. Then, in this basis, the element Ω′ is
given by

Ω
′ =

g∑

i=1

[ai, bi] ∈ Lie3(B; A). (5.11)

Using the identification (5.9) we obtain

Ψ(d) =
g∑

i=1

b∗
i ⊗ d(bi) +

g∑

i=1

a∗
i ⊗ d(ai) =

g∑

i=1

ai ⊗ d(bi) −
g∑

i=1

bi ⊗ d(ai). (5.12)

Hence

ΞmΨ(d) =
g∑

i=1

[ai, d(bi)] −
g∑

i=1

[bi, d(ai)] = d

( g∑

i=1

[ai, bi]

)
= d(Ω′) = 0. (5.13)
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5.2 Alternative Johnson homomorphisms

Let m be a positive integer and consider the space Dm(Lie(B; A)) defined in (5.8).

Definition 5.4. The m-th alternative Johnson homomorphism is the group homomorphism

τ a

m : Ja

mM −→ Dm(Lie(B; A)), (5.14)

that maps h ∈ Ja
mM to τ a

m(h) = (τ a
m(h)1, τ a

m(h)2), where

τ a

m(h)1(xK2) = h#(x)x−1Km+2 and τ a

m(h)2(a) = h#(y)y−1Km+3

for all x ∈ π, a ∈ A, here y ∈ A ⊆ K2 is any lift of a, see (5.3).

We refer to [28, Proposition 6.2] for a proof of the homomorphism property. From the definition
of the alternative Johnson homomorphisms it follows that for m ≥ 1

ker(τ a

m) = Ja

m+1M. (5.15)

Consider the bases as in Proposition 5.3 of H and B and keep the notation {αi, βi} for a free
basis of π. Using the identification (5.9) we have that the m-th alternative Johnson homomorphism
of h ∈ Ja

mM is given by

τ a

m(h) =
g∑

i=1

ai ⊗ (τ a

m(h)1(βiK2)) −
g∑

i=1

bi ⊗ (τ a

m(h)2(ai))

=
g∑

i=1

ai ⊗
(
h#(βi)β

−1
i Km+2

)
−

g∑

i=1

bi ⊗
(
h#(αi)α

−1
i Km+3

)
.

(5.16)

Example 5.5. Consider the Dehn twist h = tαi
from Example 4.4, we know that h ∈ Ja

1M = Ia.
Let us compute its first alternative Johnson homomorphism. We have h#(αj) = αj for 1 ≤ j ≤ g,
h#(βj) = βj for 1 ≤ j ≤ g with j 3= i and h#(βi) = α−1

i βi. Hence

τ a

1 (tαi
) = −ai ⊗ ai.

Example 5.6. Consider the Dehn twist h = tα12
from Examples 4.4 and 3.10, which is an element

of Ia. The homotopy class of the curve α12 is represented by λ = α2α1 ∈ K2. We have h#(αj) = αj

and h#(βj) = βj for 3 ≤ j ≤ g and h#(α1) = λ−1α1λ, h#(α2) = λ−1α2λ, h#(β1) = λ−1β1 and
h#(β2) = λ−1β2. Hence

τ a

1 (tα12
) = −(a1 ⊗ a1) − (a2 ⊗ a2) − (a1 ⊗ a2) − (a2 ⊗ a1).

Similarly for the Dehn twist tαkl
from Example 3.11 we have

τ a

1 (tαkl
) = −(ak ⊗ ak) − (al ⊗ al) − (ak ⊗ al) − (al ⊗ ak).

Example 5.7. Consider the Dehn twist h = tδ, from Example 4.8. We have that tδ ∈ Ia. The
homotopy class of the curve δ is represented by the commutator λ = [α1, β−1

1 ] ∈ K3. We have
h#(αj) = αj and h#(βj) = βj for 2 ≤ j ≤ g and h#(α1) = λ−1α1λ and h#(β1) = λ−1β1λ. Hence

τ a

1 (tδ) = 0.

In particular tδ ∈ Ja
2M.

Example 5.8. Let h = tǫt
−1
αg

from Example 4.8. The homotopy class of the curve ǫ is represented by
λ = β−1

g α−1
g βg[αg−1, βg−1]. We have h#(αi) = αi and h#(βi) = βi for 1 ≤ i ≤ g −2, and h#(αg) = αg,

h#(αg−1) = λ−1αg−1λ, h#(βg−1) = λ−1βg−1λ and h#(βg) = αgβgλ. By a direct calculation we obtain

τ a

1 (tǫt
−1
αg

) = 0.

In particular tǫt
−1
αg

∈ Ja
2M.
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Notice that in Examples 5.5 and 5.6, we have Ξ1τ a
1 (tαi

) = 0 and Ξ1τ a
1 (tα12

) = 0. This is a more
general fact.

Theorem 5.9. Let m ≥ 1. For h ∈ Ja
mM we have Ξmτ a

m(h) = 0, that is

τ a

m(h) ∈ Dm(B; A) ∼= Der+,ω
m (Lie(B; A)).

In other words, τ a
m(h) is a positive symplectic derivation of Lie(B; A).

Proof. The proof is similar to the proof of [51, Corollary 3.2]. Consider the free basis {αi, βi} of π

induced by the system of meridians and parallels in Figure 3.2. Let h ∈ Ja
mM. Since h preserves the

boundary ∂Σ of Σ, then h# fixes the inverse of the homotopy class [∂Σ] of Σ. So h#([∂Σ]−1) = [∂Σ]−1,
that is,

h#

( g∏

i=1

[β−1
i , αi]

)
=

g∏

i=1

[β−1
i , αi]. (5.17)

For 1 ≤ i ≤ g we have

β−1
i h#(βi) = δi ∈ K1+m and h#(αi)α

−1
i = γi ∈ K2+m.

Whence h#(β−1
i ) = δ−1

i β−1
i . Hence

[h#(β−1
i ), h#(αi)] = [δ−1

i β−1
i , γiαi]

= δ−1
i β−1

i γiαiβiδiα
−1
i γ−1

i

=
(
δ−1

i [β−1
i , γi]δi

) (
δ−1

i γi[β
−1
i , αi]γ

−1
i δi

)
[δ−1

i , γi]
(
γi[δ

−1
i , αi]γ

−1
i

)
.

It follows from equation (5.17) that

g∏

i=1

[β−1
i , αi] =

g∏

i=1

(
δ−1

i [β−1
i , γi]δi

) (
δ−1

i γi[β
−1
i , αi]γ

−1
i δi

)
[δ−1

i , γi]
(
γi[δ

−1
i , αi]γ

−1
i

)
. (5.18)

Now [β−1
i , γi] ∈ K3+m, [δ−1

i , γi] ∈ K3+2m ⊆ Km+4 and [δ−1
i , αi] ∈ K3+m. Therefore, by considering

Equation (5.18) modulo Km+4 we obtain

g∏

i=1

[β−1
i , αi] ≡

g∏

i=1

(
δ−1

i [β−1
i , γi]δi

) (
δ−1

i γi[β
−1
i , αi]γ

−1
i δi

)
[δ−1

i , γi]
(
γi[δ

−1
i , αi]γ

−1
i

)

≡

( g∏

i=1

[β−1
i , αi]

) ( g∏

i=1

[β−1
i , γi][δ

−1
i , αi]

)
.

Thus
g∏

i=1

[β−1
i , γi][δ

−1
i , αi] ∈ Km+4. (5.19)

From (5.19), identification (5.9) and (5.16) we have

0 = Ξm

( g∑

i=1

(−bi) ⊗ (γiKm+3) +
g∑

i=1

ai ⊗ (δiKm+2)

)

=
g∑

i=1

[ai, h#(βi)β
−1
i Km+2] −

g∑

i=1

[bi, h#(αi)α
−1
i Km+3]

= Ξmτ a

m(h).

(5.20)

In the second equality of (5.20) we use δiKm+2 = βiδiβ
−1
i Km+2 = h#(βi)β

−1
i Km+2.
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Let us briefly recall the Johnson homomorphisms and the Johnson-Levine homomorphisms.

Johnson homomorphisms. To define the Johnson filtration we use the lower central series (Γmπ)m≥1

of π. The associated graded Lie algebra of this filtration is

Gr(Γ•π) =
⊕

m≥1

Γmπ

Γm+1π
∼=

⊕

m≥1

Liem(H) = Lie(H), (5.21)

where Lie(H) is the graded free Lie algebra on H. The m-th Johnson homomorphism

τm : JmM −→ Hom(H, Γm+1π/Γm+2π) ∼= H∗ ⊗ Γm+1π/Γm+2π ∼= H ⊗ Liem+1(H), (5.22)

sends the isotopy class h ∈ JmM to the map x 0→ h#(x̃)x̃−1Γm+2π for all x ∈ H, where x̃ ∈ π is any lift
of x. The second isomorphism in (5.22) is given by the identification H

∼
−→ H∗ that maps x to ω(x, ·).

These homomorphisms were introduced by D. Johnson in [30, 32] and extensively studied by S. Morita
in [50, 51]. In particular S. Morita proved in [51, Corollary 3.2] that the m-th Johnson homomorphism
takes values in the kernel Dm(H) of the Lie bracket [ , ] : H ⊗ Liem+1(H) → Liem+2(H). Compare
this with Theorem 5.9. From the definition it follows that ker(τm) = Jm+1M.

Johnson-Levine homomorphisms. J. Levine defined and studied in [43, 46] a version of the
Johnson homomorphisms for the Johnson-Levine filtration. Identify H/A with A∗ by sending x +
A ∈ H/A to ω(x, ·) ∈ A∗ and H/A with H ′ via the isomorphism ι∗. The m-th Johnson-Levine
homomorphism

τL
m : JL

mM → Hom(A, Γm+1π′/Γm+2π′) ∼= A∗ ⊗ Γm+1π′/Γm+2π′ ∼= H ′ ⊗ Liem+1(H ′),

is the group homomorphism that sends h ∈ JL
mM to the map a ∈ A 0→ ι#h#(α)Γm+2π′, where α ∈ A

is any lift of α. Notice that here we consider the graded free Lie algebra Lie(H ′) generated by H ′. J.
Levine showed in [43, Proposition 4.3] that τL

m takes values in the kernel Dm(H ′) of the Lie bracket
[ , ] : H ′ ⊗Liem+1(H ′) → Liem+2(H ′). Compare this with Theorem 5.9. From the definition it follows
that ker(τL

m) = JL
m+1M.

We refer to the alternative Johnson homomorphisms, the Johnson-Levine homomorphisms and the
Johnson homomorphisms as Johnson-type homomorphisms.

Alternative Johnson homomorphisms and Johnson-Levine homomorphisms. In view of
Proposition 4.13, for m ≥ 1 we have Ja

mM ⊆ JL
m+1M. We show that for Ja

mM the m-th alternative
Johnson homomorphism determines the (m + 1)-st Johnson-Levine homomorphism. Recall that B =
H ′.

Lemma 5.10. For m ≥ 1, there is a well defined homomomorphism

ι∗ : Dm(B; A) −→ Dm+1(H ′).

Proof. It follows from Lemma 4.12 that for m ≥ 1 the map ι# : π → π′ induces a well-defined
homomorphism

ι∗ : Liem+2(B; A) ∼=
Km+2

Km+3
−→

Γm+2π′

Γm+3π′
∼= Liem+2(H ′),

which sends xKm+3 to ι#(x)Γm+3π′ for all x ∈ Km+2. This map is compatible with the Lie bracket,
in particular, the following diagram is commutative

(A ⊗ Liem+1(B; A)) ⊕ (B ⊗ Liem+2(B; A))
[ , ] !!

ι∗⊗ι∗

""

Liem+3(B; A)

ι∗

""
H ′ ⊗ Liem+2(H ′)

[ , ] !! Liem+3(H ′).

Whence, we have a well-defined homomorphism ι∗ : Dm(B; A) → Dm+1(H ′).
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Proposition 5.11. For m ≥ 1, the diagram

Ja
mM

⊂ !!

τa

m

""

JL
m+1M

τL
m+1

""
Dm(B; A)

ι∗ !! Dm+1(H ′)

is commutative. In other words, for Ja
mM, the homomorphism τL

m+1 is determined by the homomor-
phism τ a

m.

Proof. Let h ∈ Ja
mM. By considering the free basis {αi, βi} of π and the induced symplectic basis

{ai, bi} of H, the (m + 1)-st Johnson-Levine homomorphism on h is given by

τL
m+1(h) = −

g∑

i=1

ι∗(bi) ⊗
(
ι#h#(αi)Γm+3π′) . (5.23)

Applying ι∗ : Dm(B; A) → Dm+1(H ′) to Equation (5.16) we obtain exactly the left-hand side of (5.23),
that is, ι∗τ a

m(h) = τL
m+1(h).

Remark 5.12. In general it is not easy to compare the alternative Johnson homomorphisms and the
Johnson homomorphisms. In Lemma 6.9 we carry out the comparison between τ a

1 (ψ) and τ1(ψ) for
ψ ∈ I ∩ Ia.

5.3 Alternative Johnson homomorphism on L

In [28], K. Habiro and G. Massuyeau defined, in a general context, a group homomorphism on L. In
this subsection we study in detail this homomorphism, which we shall call here the 0-th alternative
Johnson homomorphism.

An automorphism φ of Lie(B; A) is a family φ = (φi)i≥1 of group isomorphisms φi : Liei(B; A) →
Liei(B; A), such that φi+j([x, y]) = [φi(x), φj(y)] for x ∈ Liei(B; A) and y ∈ Liej(B; A). Let us denote
by Aut (Lie(B; A)) the group of automorphisms of Lie(B; A).

Recall that for the N -series (Ki)i≥1 defined in (4.10), we have from Lemma 4.6 that for h ∈ L,
h(Ki) ⊆ Ki for i ≥ 1. Here hx = h#(x) for x ∈ Ki.

Definition 5.13. The 0-th alternative Johnson homomorphism is the group homomorphism

τ a

0 : L −→ Aut (Lie(B; A)) (5.24)

which sends h ∈ L to the family τ a
0 (h) = (τ a

0 (h)i)i≥1 where

τ a

0 (h)i : Liei(B; A) ∼=
Ki

Ki+1
−→

Ki

Ki+1

∼= Liei(B; A)

is defined by τ a
0 (h)i(xKi+1) = h#(x)Ki+1 for x ∈ Ki.

From the definition it follows that ker(τ a
0 ) = Ja

1M = Ia. We refer to [28, Proposition 6.1] for a
proof of the homomorphism property with the above definition. We will see an equivalent definition
of τ a

0 in (5.31) and we prove the homomorphism property with the equivalent definition in Proposition
5.16.

Let us see how τ a
0 is related to the other alternative Johnson homomorphisms. First, for m ≥ 1 there

is an action of L on Ja
mM by conjugation, that is, for h ∈ L, and f ∈ Ja

mM, we set hf = hfh−1 ∈
Ja

mM. On the other hand, there is an action of Aut(Lie(B; A)) on the group Derm(Lie(B; A)) of
derivations of degree m of Lie(B; A). Let φ ∈ Aut(Lie(B; A)) and d ∈ Derm(Lie(B; A)), set

φd = φdφ−1. (5.25)

More precisely, (φd)i(x) = φm+idiφ
−1
i (x) for x ∈ Liei(B; A) and i ≥ 1. The following is an instance of

a part of [28, Theorem 6.4].
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Proposition 5.14. Let m ≥ 1 and h ∈ L. The m-th alternative Johnson homomorphism τ a
m :

Ja
mM → Derm(B; A) satisfies the following equivariant property: for every f ∈ Ja

mM we have

τ a

m(hf) = τa

0 (h)τ a

m(f).

Understanding the image of τ a
0 . Recall that Lie(B; A) is the free Lie algebra generated by B in

degree 1 and A in degree 2. For h ∈ L the automorphism τ a
0 (h) : Lie(B; A) → Lie(B; A) is completely

determined by its parts of degree 1 and degree 2:

τ a

0 (h)1 : Lie1(B; A) → Lie1(B; A) and τ a

0 (h)2 : Lie2(B; A) → Lie2(B; A), (5.26)

but Lie1(B; A) = B and Lie2(B; A) = Λ2B⊕A. Consider the subgroup P of Aut(B)×Aut(Lie2(B; A))
defined by

P = {(u, v) ∈ Aut(B) × Aut(Lie2(B; A)) | v ([x, y]) = [u(x), u(y)] ∀x, y ∈ B} .

Besides, consider the set

D =
{

(u, v) ∈ Aut(B) × Hom(A,Lie2(B; A))
∣∣∣ the map [x,y] + a )−→ [u(x),u(y)] + v(a)

is an automorphism of [B,B]⊕A = Lie2(B;A)

}
.

For (u, v) ∈ D, define ṽ : Lie2(B, A) → Lie2(B, A) on the summands by

ṽ ([x, y]) = [u(x), u(y)] and ṽ(a) = v(a),

for x, y ∈ B and a ∈ A.

Lemma 5.15. There is a bijective correspondence Φ : P → D, which sends (u, v) ∈ P to (u, v|A).
This way, D inherits a group structure from P, so that the the product in D is given by

(u1, v1)(u2, v2) = Φ ((u1, ṽ1)(u2, ṽ2)) = Φ(u1u2, ṽ1ṽ2) =
(
u1u2, (ṽ1ṽ2)|A

)
(5.27)

for (u1, v1), (u2, v2) ∈ D.

Proof. The inverse of Φ is defined by Φ−1(u, v) = (u, ṽ) for (u, v) ∈ D.

If h ∈ L we have
(
τ a

0 (h)1, (τ a
0 (h)2)|A

)
∈ D. Hence we can see the 0-th alternative Johnson

homomorphism τ a
0 as taking values in D.

We can still improve the target of τ a
0 . First, recall that if h ∈ L, the induced map h∗ : H → H

is symplectic, see (4.2). Denote by ĥ∗ : H/A → H/A the homomorphism induced by h∗. Hence
τ a

0 (h)1 = ι∗ĥ∗ι−1
∗ : H ′ → H ′. The symplectic condition on h∗ implies that there is some information

of (τ a
0 (h)2)|A which is already encoded in τ a

0 (h)1. More precisely, we have

(τ a

0 (h)2)|A = ι∗ (τ a

0 (h)2)|A + h∗|A ∈ Hom(A, Λ
2B ⊕ A) = Hom(A,Lie2(B; A)), (5.28)

where ι∗ : Λ2B ⊕ A → Λ2B denotes the projection on Λ2B. For the moment we have that τ a
0 (h) is

completely determined by the pair
(
τ a

0 (h)1, ι∗ (τ a

0 (h)2)|A

)
∈ Aut(B) × Hom(A, Λ

2B),

because h∗|A and τ a
0 (h)1 = ι∗ĥ∗ι−1

∗ determine each other by the symplectic condition on h∗. The set
Aut(B)×Hom(A, Λ2B) inherits the group structure (5.27) from D, which can be described explicitly as
follows. Let h ∈ Aut(B). Using the identification H ′ = B ∼= A∗, described in subsection 5.1, we obtain
h′′ ∈ Aut(A∗). Denote by h′ the automorphism of A such that (h′)∗ = h′′. Let µ ∈ Hom(A, Λ2B). We
consider the following actions of Aut(B) on Hom(A, Λ2B)

right action: µ · h := µ ◦ h′ ∈ Hom(A, Λ
2B),

left action: h · µ := Λ
2h ◦ µ ∈ Hom(A, Λ

2B).
(5.29)
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We have that the product in Aut(B) × Hom(A, Λ2B) inherited from (5.27) is given by

(h, µ)(f, ν) = (hf, h · ν + µ · f) (5.30)

for h, f ∈ Aut(B) and µ, ν ∈ Hom(A, Λ2B).
Let Aut(B)×̂Hom(A, Λ2B) denote the set Aut(B)×Hom(A, Λ2B) with the product given in (5.30).

Hence we can see the 0-th Johnson homomorphism (5.24) as the map

τ a

0 : L −→ Aut(B)×̂Hom(A, Λ
2B), (5.31)

which sends h ∈ L to the pair
(
τ a

0 (h)1, ι∗ (τ a
0 (h)2)|A

)
. Moreover, the homomorphism ι∗ (τ a

0 (h)2)|A

takes a ∈ A to ι#h#(α)Γ3π′ where α ∈ A is any lift of a, and we identify Γ2π′/Γ3π′ with Λ2H ′ = Λ2B.
In this context we can show the homomorphism property of τ a

0 .

Proposition 5.16. The map τ a
0 : L → Aut(B)×̂Hom(A, Λ2B) is a group homomorphism and its

kernel is the second term JL
2 M of the Johnson-Levine filtration. In particular we have Ia = Ja

1M =
JL

2 M.

Proof. Let h, f ∈ L. Clearly we have τ a
0 (hf)1 = τ a

0 (h)1τ a
0 (f)1. Identify Γ2π′/Γ3π′ with Λ2B. Set

µ = ι∗ (τ a
0 (h)2)|A, ν = ι∗ (τ a

0 (f)2)|A and κ = ι∗ (τ a
0 (hf)2)|A. Let us see that

κ = τ a

0 (h)1 · ν + µ · τ a

0 (f)1.

Let a ∈ A and α ∈ A with ab(α) = a. By Lemma 4.6 we can write f#(α) = βy with β ∈ A and
y ∈ Γ2π. We have

ab(β) = ab(βy) = ab(f#(α)) = f∗(ab(α)) = f∗(a).

Hence

κ = ι#(h#(f#(α)))Γ3π′

= ι#(h#(β))Γ3π′ + ι#(h#(y))Γ3π′

= µ(ab(β)) + ι#(h#(y))Γ3π′

= µ(f∗(a)) + Λ
2h(ν(a))

= (µ · τ a

0 (f)1)(a) + (τ0(h)1 · ν)(a)

= (τ0(h)1 · ν)(a) + (µ · τ a

0 (f)1)(a).

Whence κ = τ a
0 (h)1 ·ν +µ ·τ a

0 (f)1. Thus τ a
0 : L −→ Aut(B)×̂Hom(A, Λ2B) is a group homomorphism.

Now, let h ∈ ker(τ a
0 ), thus τ0(h)1 = IdH′ . From the symplectic condition we have h∗|A = IdA, so

h ∈ IL. Let α ∈ A, hence

ι#h#(α)Γ3π′ = ι∗ (τ a

0 (h)2) (ab(α)) = Γ3π′,

that is, ι#h#(α) ∈ Γ3π′ for all α ∈ A, so that h ∈ JL
2 M.

The next proposition follows from the definition (5.31) of τ a
0 and shows that for the elements of

IL, the 0-th alternative Johnson homomorphism determines the first Johnson-Levine homomorphism.

Proposition 5.17. Let q : Aut(B)×̂Hom(A, Λ2B) → Hom(A, Λ2B) denote the cartesian projection
(which is not a group homomorphism). Then, the diagram

IL ⊂ !!

τL
1
""

L

τa

0

""
Hom(A, Λ2B) Aut(B)×̂Hom(A, Λ2B)q

))

is commutative.
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Remark 5.18. There is a right split short exact sequence

0 Hom(A, Λ2B) Aut(B)×̂Hom(A, Λ2B) Aut(B) 1,
j p

s

where j(µ) = (IdB, µ), p(h, µ) = h and s(h) = (h, 0) for µ ∈ Hom(A, Λ2B) and h ∈ Aut(B). Therefore,
the group Aut(B)×̂Hom(A, Λ2B) is isomorphic to the semidirect product Aut(B) ⋉ Hom(A, Λ2B),
where the action of Aut(B) on Hom(A, Λ2B) is given by h ∗ µ = h · µ · h−1 for h ∈ Aut(B) and
µ ∈ Hom(A, Λ2B). Here the · means the left and right actions defined in (5.29). The explicit
isomorphism

Θ : Aut(B)×̂Hom(A, Λ
2B) −→ Aut(B) ⋉ Hom(A, Λ

2B),

is given by Θ(h, µ) = (h, µ · h−1) for h ∈ Aut(B) and µ ∈ Hom(A, Λ2B).

We can do yet another refinement of the target of τ a
0 . Considering the Definition 5.13 we have that

τ a
0 (h)3(Ω′) = Ω′ for h ∈ L, where Ω′ ∈ Lie3(B; A) is determined by the intersection form (5.7).

Notice that a pair (h, κ) ∈ Aut(B) × Hom(A,Lie2(B; A)) uniquely determines a morphism of Lie
algebras (h, κ) : Lie(B; A) → Lie(B; A).

Lemma 5.19. Let h ∈ Aut(B) and let h′ : A → A ⊆ Lie2(B; A) be the automorphism of A determined
by h. Then (h, h′)(Ω′) = Ω′.

Proof. Consider the bases of H and B as in Proposition 5.3 and identify ι∗(bi) with bi. Hence Ω′ is
given as in Equation (5.11). If R = (ǫkj) is the matrix of h in the basis {ι∗(bi)} and P = (λij) is the
the matrix of h′ in the basis {ai}, then P T R = Idg. Thus

(h, h′)(Ω′) =
g∑

j=1

[h′(aj), h(bj)] =
g∑

j=1

[ g∑

i=1

λijai,
g∑

k=1

ǫkjbk

]
=

g∑

i=1

g∑

k=1

g∑

j=1

λijǫkj [ai, bk]

=
g∑

j=1

[aj , bj ] = Ω
′.

Let (h, µ) ∈ Aut(B)×̂Hom(A, Λ2B). Let (hi)i≥1 be the associated automorphism of Lie(B; A).
Explicitly we have h1 = h and h2 = µ + h′ where h′ ∈ Aut(A) is determined by h.

Lemma 5.20. The condition h3(Ω′) = Ω′ holds if and only if (h, µ)(Ω′) = 0.

Proof. We use bases as in Lemma 5.19. We have

h3(Ω′) =
g∑

j=1

[h2(aj), h1(bj)] =
g∑

j=1

[µ(aj), h(bj)] +
g∑

j=1

[h′(aj), h(bj)]

= (h, µ)(Ω′) + (h, h′)(Ω′) = (h, µ)(Ω′) + Ω
′.

Last equality comes from Lemma 5.19. Whence the desired result.

Notice that a pair (h, µ) ∈ Aut(B)×̂Hom(A, Λ2B), determines an element µh ∈ B ⊗ Λ2B through
the identification

Hom(A, Λ
2B) ∼= A∗ ⊗ Λ

2B ∼= B ⊗ Λ
2B

h⊗Id
Λ2B−−−−−−−→ B ⊗ Λ

2B,

Thus µh := (h ⊗ IdΛ2B)(µ). Set

G :=
{

(h, µ) ∈ Aut(B)×̂Hom(A, Λ
2B) | Ξ3(µh) = 0

}
, (5.32)

where Ξ3 : B ⊗ Lie2(B) → Lie3(B) is the Lie bracket. Using bases as in Lemma 5.19 we have

G =



(h, µ) ∈ Aut(B)×̂Hom(A, Λ

2B) | Ξ3

( g∑

j=1

h(bj) ⊗ µ(aj)
)

= 0



 . (5.33)
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Proposition 5.21. The set G is a subgroup of Aut(B)×̂Hom(A, Λ2B).

Proof. The result can be deduced from Lemma 5.20 or from the description of G given in (5.33)
as follows. Let (h, µ), (f, ν) ∈ G. Let us see that (h, µ)(f, ν) = (hf, h · ν + µ · f) and (h, µ)−1 =
(h−1, −h−1 · µ · h−1) belong to G. We have

Ξ3

( g∑

j=1

hf(bj) ⊗ (h · ν + µ · f)(aj)
)

=
g∑

j=1

[
hf(bj), Λ

2h(ν(aj)) + µf ′(aj)
]

= Lie3(h)
( g∑

j=1

[f(bj), ν(aj)]
)

+
g∑

j=1

[h(f(bj)), µ(f ′(aj))]

=
g∑

j=1

[h(bj), µ(aj)]

= 0,

where Lie3(h) : Lie3(B) → Lie3(B) is the isomorphism induced by h. The equality

g∑

j=1

[h(f(bj)), µ(f ′(aj))] =
g∑

j=1

[h(bj), µ(aj)]

is deduced in a similar way as we did in the proof of Lemma 5.19. Therefore (h, µ)(f, ν) ∈ G. On the
other hand

Ξ3

( g∑

j=1

h−1(bj) ⊗ (−h−1 · µ · h−1)(aj)
)

=
g∑

j=1

[
h−1(bj), −Λ

2h−1(µ(h−1)′(aj))
]

= −Lie3(h−1)
( g∑

j=1

[h(h−1(bj)), µ(h−1)′(aj)]
)

= −Lie3(h−1)
( g∑

j=1

[h(bj), µ(aj)]
)

= 0.

Hence (h, µ)−1 ∈ G.

Lemma 5.22. The 0-th alternative Johnson homomorphism defined in (5.31) takes its values in G.

Proof. Let h ∈ L. Set µ = ι∗ (τ a
0 (h)2)|A. Hence

Ξ3

( g∑

j=1

τ a

0 (h)1(bj) ⊗ µ(aj)
)

= −
g∑

j=1

Ξ3

(
ι∗h∗(−bj) ⊗ ι#h#(αj)Γ3π′

)

= −
g∑

j=1

Ξ3

(
ι#h#(β−1

j )Γ2π′ ⊗ ι#h#(αj)Γ3π′
)

=


ι#h#

( g∏

j=1

[β−1
j , αj ]

)
Γ4π′




−1

= Γ4π′

= 0 ∈ Lie3(B).
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To sum up, we can write
τ a

0 : L −→ G. (5.34)

Theorem 5.23. The 0-th alternative Johnson homomorphism τ a
0 : L → G is surjective.

Proof. Notice that the diagram

I
⊂ !!

τ1

""

IL

τL
1

""
D1(H)

ι∗ !! D1(H ′)

is commutative, this can be shown by writing τ1 and τL
1 by using a symplectic basis as we did for

τL
m+1 in Equation 5.23, see [46, Section 4] for more details. The map ι∗ : D1(H) → D1(H ′) is induced

by ι∗ : H → H ′. It is easy to show that ι∗ : D1(H) → D1(H ′) is surjective and it is well known
that the first Johnson homomorphism τ1 is surjective [30, Theorem 1]. Hence τL

1 is surjective. Using
the symplectic basis {ai, bi} to identify Sp(H) with Sp(2g,Z) we have that the image of L under the
symplectic representation (4.2) is

σ(L) =

{(
P Q

0 (P T )−1

)
∈ Sp(2g,Z)

∣∣∣∣ P −1Q is symmetric
}

. (5.35)

Let (f, µ) ∈ G. From (5.35), it follows that there is h ∈ L such that τ a
0 (h)1 = f . Let ν = ι∗ (τ a

0 (h)2)|A ∈

Hom(A, Λ2B). Hence τ a
0 (h) = (f, ν) ∈ G.

Consider the element
µ′ = f−1 · (µ − ν) ∈ Hom(A, Λ

2H ′).

Recall that B = H ′. Let us see that µ′ ∈ D1(H ′). Indeed, if Ξ : H ′ ⊗ Lie2(H ′) → Lie3(H ′) denotes
the Lie bracket, we have

Ξ(µ′) = −Ξ

( g∑

j=1

bj ⊗ (f−1 · (µ − ν))(aj)
)

= −
g∑

j=1

[bj , Λ
2f−1µ(aj)] +

g∑

j=1

[bj , Λ
2f−1ν(aj)]

−
g∑

j=1

[f−1(f(bj)), Λ
2f−1µ(aj)] +

g∑

j=1

[f−1(f(bj)), Λ
2f−1ν(aj)]

= −Lie3(f−1)
( ∑

j=1

[f(bj), µ(aj)]
)

+ Lie3(f−1)
( g∑

j=1

[f(bj), ν(aj)]
)

= 0.

Whence µ′ ∈ D1(H ′). By the surjectivity of τL
1 and Proposition 5.17, there exists g ∈ IL such that

τ a
0 (g) = (IdH′ , µ′). Therefore

τ a

0 (hg) = τ a

0 (h)τ a

0 (g) = (f, ν)(IdH′ , µ′) = (f, ν)(IdH′ , f−1 · (µ − ν))

= (f, f · (f−1 · (µ − ν)) + ν) = (f, µ).

Hence we have the surjectivity of τ a
0 : L → G.

Corollary 5.24. We have the following short exact sequence

1 −→ Ia ⊂
−−→ L

τa

0−−−→ G −→ 1.
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5.4 Diagrammatic versions of the Johnson-type homomorphisms

In subsection 5.2 we have seen that for m ≥ 1, the m-th Johnson homomorphism, the m-th Johnson-
Levine homomorphism and the m-th alternative Johnson homomorphism take values in the abelian
groups Dm(H), Dm(H ′) = Dm(B) and Dm(B; A), respectively. These spaces were defined as

Dm(H) = ker
(
H ⊗ Liem+1(H)

[ , ]
−−−→ Liem+2(H)

)
,

Dm(H ′) = ker
(
H ′ ⊗ Liem+1(H ′)

[ , ]
−−−→ Liem+2(H ′)

)
and

Dm(B; A) = ker
(
(A ⊗ Liem+1(B; A)) ⊕ (B ⊗ Liem+2(B; A))

[ , ]
−−−→ Liem+3(B; A)

)
.

The rational versions Dm(H)⊗Q, Dm(H ′)⊗Q and Dm(B; A)⊗Q can be interpreted as subspaces
of the spaces of connected tree-like Jacobi diagrams At,c(H), At,c(H ′) and At,c(B ⊕ A), respectively.
See Example 2.3 for the definitions. Recall that these spaces are graded by the internal degree. Notice
that as spaces At,c(H) = At,c(B ⊕ A) but we would like to give a special role to A in the latter space,
which will be reflected in a different grading of the space At,c(B ⊕ A). Let us start by recalling this
interpretation.

For a connected tree-like Jacobi diagram T in At,c(H) = At,c(B ⊕ A) or in At,c(H ′), set

η(T ) =
∑

v

color(v) ⊗ (T rooted at v), (5.36)

where the sum ranges over the set of legs (univalent vertices) of T and we interpret a rooted tree as
a Lie commutator.

Example 5.25. Consider the tree

where a, a′ ∈ A and b, b′ ∈ B. Hence,

We have that η(T0) ∈ H ⊗Lie3(H) and η(T0) ∈
(
A⊗Lie4(B; A)

)
⊕

(
B ⊗Lie5(B; A)

)
. Moreover, by the

Jacobi identity, if we apply the Lie bracket Ξ to η(T0) we obtain Ξη(T0) = 0. Therefore η(T0) ∈ D2(H)
and η(T0) ∈ D3(B; A).

Denote by At,c
m (H) the subspace of At,c(H) generated by diagrams of internal degree m. So if

T ∈ At,c
m (H), then T has m + 2 legs and therefore by rooting T at one of its legs we obtain a rooted

tree with m + 1 leafs. To sum up, η(T ) ∈ H ⊗ Liem+1(H). Moreover if we apply the Lie bracket
Ξ : H ⊗ Liem+1(H) → Liem+2(H) to η(T ), we obtain Ξη(T ) = 0. This way η(T ) ∈ Dm(H), see [44,
Lemma 3.1] for the proof in the general case. The following result is well known.

Theorem 5.26. For m ≥ 1 the map

η : At,c
m (H) −→ Dm(H) ⊗ Q, (5.37)

defined as in Equation (5.36), is an isomorphism of Q-vector spaces.
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Table 2.1:

We refer to [44, Corollary 3.2] or [25, Theorem 1] for a proof of Theorem 5.26.
In particular we have an isomorphism of graded Q-vector spaces

η :
⊕

m≥1

At,c
m (H) −→

⊕

m≥1

Dm(H) ⊗ Q. (5.38)

The same statements hold replacing H by H ′. We define a degree for connected tree-like Jacobi
diagrams, which we call alternative degree and denote by a-deg, such that if T ∈ At,c(B ⊕ A) is such
that a-deg(T ) = m then η(T ) ∈ Dm(B; A) ⊗ Q. In Example 5.25, η(T0) ∈ D3(B; A), so we want
a-deg(T0) = 3.

Definition 5.27. Let T be a connected tree-like Jacobi diagram with legs colored by B ⊕ A. The
alternative degree of T , denoted a-deg(T ), is defined as

a-deg(T ) = 2#{A-colored legs of T} + #{B-colored legs of T} − 3.

Here #S denotes the cardinal of the set S.

In Table 2.1 we show some examples of tree-like Jacobi diagrams organized by their internal degree
in the columns and by the alternative degree in the rows. The legs colored by + (respectively by −)
in the diagrams represent legs colored by elements of B (respectively of A). Notice that a strut
diagram D whose both legs are colored by elements of B is such that a-deg(D) = −1.

For m ≥ 1, let T a
m(B ⊕A) denote the subspace of At,c(B ⊕A) generated by diagrams of alternative

degree m.

Proposition 5.28. For m ≥ 1 the map η defined in (5.36) induces an isomorphism

η : T a

m(B ⊕ A) −→ Dm(B; A) ⊗ Q (5.39)

of Q-vector spaces.
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Proof. Let T be a (B ⊕ A)-colored connected tree-like Jacobi diagram with a-deg(T ) = m. Let v be
a leg of T and denote by Tv the Lie commutator obtained from T rooted at v. If v is colored by an
element of B, then deg(Tv) = (a-deg(T ) + 3) − 1 = m + 2. Hence

color(v) ⊗ Tv ∈ B ⊗ Liem+2(B; A).

On the other hand, if v is colored by an element of A then deg(Tv) = (a-deg(T ) + 3) − 2 = m + 1.
Therefore

color(v) ⊗ Tv ∈ A ⊗ Liem+1(B; A).

To sum up
η(T ) ∈ (A ⊗ Liem+1(B; A)) ⊕ (B ⊗ Liem+2(B; A)).

The argument [44, Lemma 3.1] used in the proof of Theorem 5.26 to show that Ξη(T ) = 0 is still
valid. The only caveat is when a-deg(T ) = 1 and i-deg(T ) = 0. In this case T is a strut whose both
legs are colored by elements of A, say ai, aj . Then η(T ) = ai ⊗ aj + aj ⊗ ai, so Ξη(T ) = 0 by the
antisymmetry relation. This way for m ≥ 1 we have η

(
T a

m(B ⊕ A)
)

⊆ Dm(B; A) ⊗ Q and by (5.38),
the map η|T a

m(B⊕A) is injective (it is again necessary to consider the case m = 1 separately). For the
surjectivity, first consider the case m = 1. The elements in (A⊗A)∩D1(B; A) are linear combinations
of elements of the form ai ⊗ ai and ai ⊗ aj + aj ⊗ ai. Now if T is the strut whose both legs are
colored by ai, then (1/2)η(T ) = ai ⊗ ai and if T is the strut whose legs are colored by ai and aj , then
η(T ) = ai ⊗ aj + aj ⊗ ai.

Let m ≥ 1 and consider y ∈ Dm(B; A). In the case m = 1, by the previous paragraph, we can
suppose that there are no elements of (A ⊗ A) ∩ D1(B; A) appearing in y. This way we can see
y ∈

⊕
m≥1 Dm(H) ⊗ Q. By (5.38), there exists T ∈

⊕
m≥1 At,c

m (H) such that η(T ) = y. Consider the
decomposition of T by the alternative degree T =

∑
Ti with Ti ∈ T a

i (B⊕A). Thus η(T ) =
∑

η(Ti) = y,
but for i 3= m we know that η(Ti) 3∈ Dm(B; A) ⊗ Q. Hence η(Ti) = 0 for i 3= m. By the injectivity
of η, we obtain Ti = 0 for i 3= m. Therefore T = Tm ∈ T a

m(B ⊕ A) and η(T ) = y.

Theorem 5.26 and Proposition 5.28 allow to define diagrammatic versions of the Johnson-type
homomorphisms.

Definition 5.29. Let m ≥ 1. The diagrammatic version of the m-th alternative Johnson homomor-
phism is defined as the composition

Ja

mM
τa

m−−−→ Dm(B; A) ⊗ Q
η−1

−−−→ T a

m(B ⊕ A). (5.40)

Similarly, the diagrammatic versions of the m-th Johnson homomorphism and of the m-th Johnson-
Levine homomorphism are defined as the compositions

JmM
τm−−−→ Dm(H) ⊗ Q

η−1

−−−→ At,c
m (H) (5.41)

and

JL
mM

τL
m−−−→ Dm(H ′) ⊗ Q

η−1

−−−→ At,c
m (H ′), (5.42)

respectively.

Example 5.30. In Example 5.5 we calculated τ a
1 (tαi

) = −ai ⊗ ai, for the Dehn twist tαi
from

Example 4.4. Therefore

Example 5.31. In Example 5.6 we calculated

τ a

1 (tαkl
) = −(ak ⊗ ak) − (al ⊗ al) − (ak ⊗ al) − (al ⊗ ak),

for the Dehn twist tαkl
from Example 4.4. Hence
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Comparing these results with the low degree values of the LMO functor on the cobordisms c(tαi
)

and c(tαkl
) computed in Examples 3.16, 3.17 and 3.18, we can see that, for these examples, the

diagrammatic version of the first alternative Johnson homomorphism appears in the LMO functor
with an opposite sign. This is a more general fact which we develop in next section.

6 Alternative Johnson homomorphisms and the LMO functor

In this section we establish the relation between the LMO functor and the alternative Johnson homo-
morphisms. From Proposition 4.13, we know that for m ≥ 2, Ja

mM ⊆ I. Hence, we can use some
known results involving the Torelli group. Therefore we carry this out in two stages separately. First
we establish this relation for the alternative Johnson homomorphism τ a

1 . Then we consider τ a
m for

m ≥ 2. First of all let us start by defining the filtration on cobordisms induced by the alternative
degree.

6.1 The filtration on Lagrangian cobordisms induced by the alternative degree

Recall from subsection 3.2 that C = Cg,1 denotes the monoid of homology cobordisms of Σ =
Σg,1. If (M, m) ∈ C then, by Stallings’ theorem [63, Theorem 3.4], the maps m±,∗ : π/Γkπ →
π1(M, ∗)/Γkπ1(M, ∗) are isomorphisms for k ≥ 2. We can then define the nilpotent version of the
Dehn-Nielsen-Baer representation (4.15) for the monoid of homology cobordisms as the monoid ho-
momorphism

ρk : C −→ Aut(π/Γk+1π), (6.1)

that sends (M, m) ∈ C to the automorphism m−1
−,∗ ◦ m+,∗. Consider the following submonoids of C.

The monoid IC of homology cylinders of Σ is defined as IC = ker(ρ1). The monoid LC of Lagrangian
homology cobordisms of Σ is defined as

LC = {(M, m) ∈ C | ρ1(M)(A) ⊆ A} = {(M, m) ∈ C | m+,∗(A) ⊆ m−,∗(A)}, (6.2)

and the monoid ICL of strongly Lagrangian homology cobordisms of Σ is defined as

ICL = {(M, m) ∈ LC | ρ1(M)|A = IdA} = {(M, m) ∈ LC | m+,∗|A = m−,∗|A}. (6.3)

The monoids LC, ICL and IC are characterized in terms of the linking matrix as follows.

Lemma 6.1. Let M ∈ Cg,1 and let (B, γ) be its bottom-top tangle presentation. Then

(i) M belongs to LCg,1 if and only if B is a homology cube and Lk(M) =
(

0 Λ

ΛT ∆

)
,

(ii) M belongs to ICL
g,1 if and only if B is a homology cube and Lk(M) =

(
0 Idg

Idg ∆

)
,

(iii) M belongs to ICg,1 if and only if B is a homology cube and Lk(M) =
(

0 Idg

Idg 0

)
,

where Λ and ∆ are g × g matrices and ∆ is symmetric.

We refer to [66, Lemma 3.7] or [8, Lemma 2.12] for a proof.

Definition 6.2. The monoid ICa of alternative homology cylinders of Σ is defined as

ICa = {(M, m) ∈ ICL | ∀α ∈ A : ι#ρ2(M)(αΓ3π) = 1 ∈ π′/Γ3π′}.

Here ι# : π/Γ3π → π′/Γ3π′ is induced by ι# : π → π′.
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Notice that the given definition of ICa is motivated by the definition of JL
2 M. There is an

equivalent definition motivated by the definition of Ia, see Proposition 5.16.

Example 6.3. If c : M → C is the mapping cylinder monoid homomorphism, then c(L) ⊆ LC,
c(I) ⊆ IC, c(IL) ⊆ ICL and c(Ia) ⊆ ICa.

Recall that for M a Lagrangian cobordism, Z̃Y,t(M) denotes the reduction of the value Z̃(M)
modulo struts and looped diagrams.

Definition 6.4. The alternative tree filtration {Fa
mC}m≥1 of C is defined by

Fa

mC = {(M, m) ∈ ICa | Z̃Y,t(M) = ∅ + (terms of a-deg ≥ m)}.

Let T Y,a
m (⌊g⌉+⊔⌊g⌉−) denote the subspace of AY,t(⌊g⌉+⊔⌊g⌉−) generated by diagrams of a-deg = m.

Theorem 6.5. For m ≥ 1, the set Fa
mC is a submonoid of C. Consider the map

Z̃Y,a
m : Fa

mC −→ T Y,a
m (⌊g⌉+ ⊔ ⌊g⌉−),

where Z̃Y,a
m (M) is defined as the terms of a-deg = m in Z̃Y,t(M) for M ∈ Fa

mC. Then Z̃Y,a
m is a monoid

homomorphism.

Proof. Let M, N ∈ Fa
mC and write Z̃Y,t(M) = ∅+DM +(a-deg > m) and Z̃Y,t(N) = ∅+DN +(a-deg >

m), where DM and DN are linear combinations of connected Jacobi diagrams in AY,t(⌊g⌉+ ⊔ ⌊g⌉−) of
a-deg = m. We have to show that M ◦ N ∈ Fa

mC and that

Z̃Y,t(M ◦ N) = ∅ + (DM + DN ) + (a-deg > m). (6.4)

Suppose that Lk(M) =
(

0 Idg

Idg Λ

)
and Lk(N) =

(
0 Idg

Idg ∆

)
, where Λ = (mij) and ∆ = (nij) are

symmetric g × g matrices. We have

Z̃(M ◦ N) = Z̃(M) ◦ Z̃(N) =
〈
Z̃(M)|j+ )→j∗ , Z̃(N)|j− )→j∗

〉
⌊g⌉∗

. (6.5)

By Lemma 3.15 we can write

(6.6)
Recall that the square brackets denote an exponential. Let us write

Z̃Y,t(M ◦ N) = ∅ + E + (a-deg > m),

where E is a linear combination of connected Jacobi diagrams in AY,t(⌊g⌉+ ∪ ⌊g⌉−) with a-deg ≤ m.
We want to show that E only has diagrams with a-deg = m and moreover that E = DM + DN . Since
Z̃Y,t(M ◦N) is obtained by considering the reduction of Z̃(M ◦N) modulo struts and looped diagrams,
we need to carefully analyse the pairing (6.6).

• It is possible for Z̃Y (M) or Z̃Y (N) to have diagrams with loops. A diagram in Z̃(M ◦ N) coming
from the pairing of a diagram with loops, in Z̃Y (M) or in Z̃Y (N), with any other diagram will still
have loops. Hence the diagrams with loops in Z̃Y (M) or in Z̃Y (N) do no contribute any term to
Z̃Y,t(M ◦ N).
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• The diagrams of type

do not contribute any connected term to Z̃Y,t(M ◦N). Therefore, the diagrams (which are no struts)
with the lowest alternative degree contributed by the diagrams

(6.7)

after the pairing (6.6) are exactly the diagrams appearing in DN .

• The diagrams of type

(6.8)
can contribute looped diagrams to Z̃Y (M ◦ N) when we consider their pairing with connected
diagrams in Z̃Y,t(M), so at the end they do not appear in Z̃Y,t(M ◦ N). Or they can also contribute
connected diagrams to Z̃Y (M ◦N) after their pairing with disconnected diagrams T of Z̃t(M), where
at least one of the connected components of T has at least one trivalent vertex. In Figure 6.1 we
illustrate this situation with three examples of such a T .

Figure 6.1:

Let us see that in this case, the obtained connected tree-like Jacobi diagrams are of a-deg > m.
Let T be a disconnected diagram in Z̃t(M). Then the connected components of T can be struts or
diagrams with at least one trivalent vertex. If there are diagrams in T whose all legs are colored by
elements of ⌊g⌉−, then it is not possible to obtain a connected diagram from T after the pairing (6.6),
hence we can suppose that there is not this type of diagrams in T . Also note that if all the legs of
all the connected components of T are colored by elements of ⌊g⌉+, then after the pairing (6.6) with
the struts of type (6.8), we will obtain looped diagrams. This way we can suppose that there is at
least one connected component of T which has one leg colored by an element of ⌊g⌉−, and moreover
that all the struts appearing in T have one leg colored by ⌊g⌉+ and the other by ⌊g⌉−. Let T1 be
a connected component of T with at least one trivalent vertex, then a-deg(T1) ≥ m. Now, T1 has
legs colored by ⌊g⌉+ and when we do the pairing with the struts of the type (6.8), we connect such
legs either with struts which have legs colored by ⌊g⌉− or with other trees appearing in T . In either
case, we strictly increase the alternative degree of T1. To sum up, the connected tree-like Jacobi
diagrams which can appear in this case are of a-deg > m.

Therefore, the diagrams (which are not struts) with the lowest alternative degree contributed by
the diagrams

(6.9)
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after the pairing (6.6), are exactly the diagrams appearing in DM .

• Let S be a diagram appearing in Z̃t(N) and T be a diagram appearing in Z̃t(M). If all the
legs of every connected component of S are colored by ⌊g⌉+, then S does not intervene in the
pairing (6.6), except with the empty diagram. Similarly when all the legs of every connected
component of T are colored by ⌊g⌉−. Hence we can suppose that there is at least a connected
component of S (respectively in T ) with at least one trivalent vertex and with at least one ⌊g⌉−-
colored leg (respectively one ⌊g⌉+-colored leg). As in the previous case, the connected diagrams
without loops obtained from the pairing of S and T strictly increase the alternative degree. The
alternative degree only remains stable when we do the pairing with diagrams coming from

In conclusion, the lower alternative degree terms appearing in Z̃Y,t(M ◦ N) are exactly DM + DN ,
that is, E = DM + DN .

6.2 First alternative Johnson homomorphism and the LMO functor

From Definition 5.29, the diagrammatic version of the first alternative Johnson homomorphism of an
element in Ia is given by a linear combination of the diagrams shown in Figure 6.2. Recall that by
a − (respectively by a +) we mean that the color of the leg belongs to A (respectively to B).

Figure 6.2: Tree-like Jacobi diagrams of a-deg = 1.

Besides, the diagrammatic version of the first Johnson homomorphism of an element in I is given by
a linear combination of the diagrams shown in Figure 6.3 and the diagrammatic version of the second
Johnson-Levine homomorphism is given by a linear combination of diagrams of type (c) in Figure 6.2.

Figure 6.3: Tree-like Jacobi diagrams of i-deg = 1.

Let us start by identifying the elements in Ia whose first alternative Johnson homomorphism only
contains diagrams of the type (a) in Figure 6.2. Let N be the subgroup of Ia generated by the Dehn
twists tαi

and tαkl
with 1 ≤ i ≤ g and 1 ≤ k < l ≤ g. Here αi denotes the i-th meridional curve as in

Figure 3.2; and αkl is as shown in Figure 3.7 (a).
Using the symplectic basis {ai, bi} to identify Sp(H) with Sp(2g,Z) we have that the image of N

under the symplectic representation (4.2) is

σ(N ) =

{(
Idg ∆

0 Idg

)
∈ Sp(2g,Z)

∣∣∣∣ ∆ is symmetric
}

. (6.10)

Equality (6.10) is precisely [46, Lemma 6.3]. It also follows from the computations made in Exam-
ples 5.5 and 5.6. Notice that N is contained in the handlebody group H defined in (4.20).
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Lemma 6.6. We have the equality Ia = N · (I ∩ Ia).

Proof. Let h ∈ Ia. In the symplectic basis {ai, bi}, the matrix of σ(h) = h∗ is
(

Idg ∆

0 Idg

)
with ∆ a

symmetric matrix. From (6.10) there exists f ∈ N such that the matrix of σ(f) = f∗ is
(

Idg −∆

0 Idg

)
.

Therefore f ◦ h ∈ I. Let ψ = f ◦ h, we also have ψ = f ◦ h ∈ Ia. Thus h = f−1 ◦ ψ ∈ N · (I ∩ Ia).

We have already computed in Examples 5.5 and 5.6 the first alternative Johnson homomorphism
for the generators of N . These computations imply the following.

Proposition 6.7. For h ∈ N the first alternative Johnson homomorphism τ a
1 (h) can be computed

from the action of h in homology and reciprocally. More precisely, if the matrix of σ(h) = h∗ : H → H

in the symplectic basis {ai, bi} is
(

Idg ∆

0 Idg

)
with ∆ = (nij) a symmetric matrix, then

τ a

1 (h) =
∑

1≤i,j≤g

nijai ⊗ aj .

Proof. By Examples 5.5 and 5.6, the result holds for the generators tαi
and tαkl

of N . The general
result follows from the homomorphism property of τa

1 and the equality
(

Idg ∆

0 Idg

) (
Idg ∆′

0 Idg

)
=

(
Idg ∆+∆′

0 Idg

)
,

for all matrices ∆ and ∆′ of size g × g.

Proposition 6.8. For h ∈ N we have

Proof. From Examples 3.16, 3.17, 3.18 and Examples 5.30 and 5.31, we already have the result for the
generators of N . By Lemma 3.15, we know that the strut part in the LMO functor is encoded in the
linking matrix. Thus we need to know how the strut part, or equivalently the linking matrix, behaves
with respect to the composition of cobordisms, this was done in [8, Lemma 4.5]. For M, N ∈ ICL

with Lk(M) =
(

0 Idg

Idg ∆

)
and Lk(N) =

(
0 Idg

Idg ∆′

)
we have

Lk(M ◦ N) =
(

0 Idg

Idg ∆+∆′

)
. (6.11)

Whence we have the desired result from the homomorphism property of τ a
1 and η−1. (Equality (6.11)

can also be deduced from the description of the composition of cobordisms in terms of their bottom-top
tangle presentations).

At this point, we understand the first alternative Johnson homomorphism for the elements of N
and moreover we know that the diagrammatic version only contains diagrams of type (a) in Figure 6.2.
By Lemma 6.6, in order to understand τ a

1 for all Ia we need to understand it for the elements of I ∩Ia.
Recall that B = H ′.

Consider the projection

p : (A ⊗ Lie2(B; A)) ⊕ (B ⊗ Lie3(B; A)) −→ (A ⊗ Λ
2B) ⊕

(
B ⊗

Lie3(B; A)

Lie3(B)

)
, (6.12)

defined as IdA ⊗ι∗ on the first direct summand and by sending b⊗z ∈ B⊗Lie3(B; A) to b⊗(zLie3(B)).
Let ψ ∈ I ∩ Ia. Then, τ a

1 (ψ) ∈ (A ⊗ Lie2(B; A)) ⊕ (B ⊗ Lie3(B; A)). Thus, we can apply p to τ a
1 (ψ).

Diagrammatically, when we apply p we kill the diagrams in η−1(τ a
1 (ψ)) of type (c) in Figure 6.2.

Besides, by Proposition 5.11, we have that ι∗(τ a
1 (ψ)) = τL

2 (ψ). Here the map ι∗ is the map appearing
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in Proposition 5.11. Diagrammatically we are killing all the diagrams in η−1(τ a
1 (ψ)) with at least one

leg colored by an element of A. This way, we have

τ a

1 (ψ) = p(τ a

1 (ψ)) + ι∗(τ a

1 (ψ)) = p(τ a

1 (ψ)) + τL
2 (ψ). (6.13)

On the other hand we can also consider the first Johnson homomorphism τ1(ψ) of ψ. Hence,
the diagrammatic version of τ1(ψ) is a linear of the diagrams shown in Figure 6.3. We want to
compare τ1(ψ) and τ a

1 (ψ). Thus, we need to kill the diagrams of type (a), (c) and (d) in Figure 6.3
from η−1τ1(ψ). For this, consider the projection

q : (B ⊗ Λ
2H) ⊕ (A ⊗ Λ

2H) −→

(
B ⊗

Λ2H

〈Λ2A + Λ2B〉

)
⊕

(
A ⊗ Λ

2H ′
)

, (6.14)

which in the first direct summand is given by the IdB tensored with the projection, and in the second
direct summand is given by IdA ⊗ Λ2ι∗, where Λ2ι∗ : Λ2H → Λ2H ′ is induced by ι∗ : H → H ′.

Lemma 6.9. Via the canonical isomorphism

Lie3(B; A)

Lie3(B)
∼= A ∧ B ∼=

Λ2H

〈Λ2A + Λ2B〉
,

we have p(τ a
1 (ψ)) = q(τ1(ψ)) for every ψ ∈ I ∩ Ia.

Proof. Let ψ ∈ I ∩ Ia. From equation (5.16) we can write

τ a

1 (ψ) =
g∑

i=1

ai ⊗
(
ψ#(βi)β

−1
i K3

)
−

g∑

i=1

bi ⊗
(
ψ#(αi)α

−1
i K4

)
, (6.15)

besides

τ1(ψ) =
g∑

i=1

ai ⊗
(
ψ#(βi)β

−1
i Γ3π

)
−

g∑

i=1

bi ⊗
(
ψ#(αi)α

−1
i Γ3π

)
. (6.16)

By applying p to (6.15) and q to (6.16) we obtain

pτ a

1 (ψ) =
g∑

i=1

ai ⊗
(
ι#(ψ#(βi)β

−1
i )Γ3π′

)
−

g∑

i=1

bi ⊗
((

ψ#(αi)α
−1
i K4

)
mod Lie3(B)

)
,

and

qτ1(ψ) =
g∑

i=1

ai ⊗
(
ι#(ψ#(βi)β

−1
i )Γ3π′

)
−

g∑

i=1

bi ⊗
((

ψ#(αi)α
−1
i Γ3π

)
mod (Λ2A + Λ

2B)
)

.

Thus we need to show that
(ψ#(αi)α

−1
i K4) mod Lie3(B)

and
(ψ#(αi)α

−1
i Γ3π) mod (Λ2A + Λ

2B)

define the same element in A∧B. By Lemma 4.12, we can write ψ#(αi)α
−1
i = yini with yi ∈ Γ3π ⊆ K3

and ni ∈ A. Since ψ#(αi)α
−1
i ∈ Γ2π, then ni ∈ Γ2π ∩ A = [π,A] ⊆ K3. Therefore

ψ#(αi)α
−1
i Γ3π = niΓ3π =

∑

k<l

λi
kl(ak ∧ al) +

∑

k<l

ǫi
kl(bk ∧ bl) +

∑

k,l

δi
kl(ak ∧ bl) ∈ Λ

2H,

where λi
kl, ǫi

kl, δi
kl ∈ Z. Thus

(ψ#(αi)α
−1
i Γ3π) mod (Λ2A + Λ

2B) =
∑

k,l

δi
kl(ak ∧ bl) ∈ A ∧ B.
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On the other hand ψ(αi)α
−1
i K4 = yiK4 + niK4, but yi ∈ Γ3π, hence yiK4 ∈ Lie3(B). Therefore we

also have

(ψ#(αi)α
−1
i K4) mod Lie3(B) = (yiK4) mod Lie3(B) + (niK4) mod Lie3(B)

=
∑

k,l

δi
kl(ak ∧ bl) ∈ A ∧ B.

The first alternative Johnson homomorphism and the LMO functor. In order to relate τ a
1

with the LMO functor we need particular cases of the two theorems that say how the Johnson ho-
momorphisms and the Johnson-Levine homomorphisms are related to the LMO functor. For h ∈ L
denote by Z̃Y,t,+(c(h)) the element in AY,t(⌊g⌉+) obtained from Z̃Y (c(h)) by sending all terms with
loops or with i−-colored legs to 0.

Theorem 6.10. [47, Corollary 5.11] Let m ≥ 1. If h ∈ JmM then

Z̃Y,t(c(h)) = ∅ −
(
η−1τm(c(h))

)
|aj )→j−,bj )→j+

+ (i-deg > m).

Theorem 6.11. [66, Theorem 5.4] Let m ≥ 1. If h ∈ JL
mM then

Z̃Y,t,+(c(h)) = ∅ −
(
η−1τL

m(c(h))
)

|bj )→j+
+ (i-deg > m).

Remark 6.12. We state Theorems 6.10 and 6.11 in the context of the mapping class group, but the
original versions are stated in the context of homology cobordisms.

Lemma 6.13. Let h ∈ N ⊆ Ja
1M. Then

Z̃Y,t(c(h)) = ∅ + (a-deg > 1),

equivalently, Z̃Y,a
1 (c(h)) = 0.

Proof. The diagrams with a-deg = 1 have i-deg between 0 and 2 included. In Examples 3.16, 3.17
and 3.18 we have seen that for the generators h ∈ N there are no diagrams of a-deg = 1 and i-deg = 1
in Z̃Y,t(c(h)). Now, the diagrams of a-deg = 1 and i-deg = 2 are of type (c) in Figure 6.2. Since N is
included in the handlebody group, this kind of diagrams do not appear in Z̃Y,t, see [8, Corollary 5.4].
Therefore we have the stated result for the generators of N and the general statement follows by
Theorem 6.5.

Theorem 6.14. Let f ∈ Ja
1M. Then

In particular Z̃Y,a
1 (c(f)) = −

(
η−1τ a

1 (f)
)Y

|aj )→j−,bj )→j+, where
(
η−1τ a

1 (f)
)Y

is the reduction of η−1τ a
1 (f)

modulo struts.

Proof. Let f ∈ Ja
1M. By Lemma 6.6 we can write f = hψ with h ∈ N and ψ ∈ I ∩ Ia. From (6.13)

and Lemma 6.9 we have

τ a

1 (f) = τ a

1 (h) + τ a

1 (ψ) = τ a

1 (h) + p(τ a

1 (ψ)) + τL
2 (ψ) = τ a

1 (h) + q(τ1(ψ)) + τL
2 (ψ).

Therefore
η−1τ a

1 (f) = η−1τ a

1 (h) + η−1q(τ1(ψ)) + η−1τL
2 (ψ). (6.17)

Notice that η−1τ a
1 (h) corresponds to the diagrams of i-deg = 0, η−1p(τ a

1 (ψ)) corresponds to the
diagrams of i-deg = 1 and η−1τL

2 (ψ) corresponds to the diagrams of i-deg = 2 appearing in η−1τ a
1 (f).

By Lemma 3.15 and Proposition 6.8 we have
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where
(
η−1τ a

1 (f)
)s is the reduction of η−1τ a

1 (f) modulo diagrams with i-deg ≥ 1.
On the other hand, by Theorem 6.10

−
(
η−1q(τ1(ψ))

)
|aj )→j−,bj )→j+

= −

((
η−1τ1(ψ)

)
|aj )→j−,bj )→j+

)

a-deg=1

=
(
Z̃Y,t(c(ψ))

)
a-deg=1,i-deg=1

,

(6.18)

and by Theorem 6.11

−
(
η−1τL

2 (ψ)
)

bj )→j+
=

(
Z̃Y,t,+(c(ψ))

)
|i-deg=2

=
(
Z̃Y,t(c(ψ))

)
|a-deg=1,i-deg=2

. (6.19)

Therefore

Z̃Y,a
1 (c(f)) = Z̃Y,a

1 (c(h)) + Z̃Y,a
1 (c(ψ))

=
(
Z̃Y,t(c(ψ))

)
a-deg=1,i-deg=1

+
(
Z̃Y,t(c(ψ))

)
|a-deg=1,i-deg=2

= −
(
η−1q(τ1(ψ))

)
|aj )→j−,bj )→j+

−
(
η−1τL

2 (ψ)
)

bj )→j+

= −
(
η−1(

pτ a

1 (ψ) + τL
2 (ψ)

))
|aj )→j−,bj )→j+

= −
(
η−1τ a

1 (ψ)
)

|aj )→j−,bj )→j+

= −
(
η−1τ a

1 (f)
)Y

|aj )→j−,bj )→j+

In the first equality we use Theorem 6.5, in the second we use Lemma 6.13, in the third we use (6.18)
and (6.19), in the fourth we use Lemma 6.9 and the homomorphism property of η−1, and in the fifth
we use (6.13). Finally in the sixth equality we use (6.17).

Remark 6.15. Theorems 6.10 and 6.11 are valid in the context of homology cobordisms. This suggests
that the first alternative Johnson homomorphism could be defined on ICa and that the statement of
Theorem 6.14 could be generalized to ICa. It is very likely possible to read the 0-th alternative Johnson
homomorphism τ a

0 (h) for h ∈ L in the a-deg = 0 part of Z̃t(c(h)).

6.3 Higher alternative Johnson homomorphisms and the LMO functor

The aim of this subsection is to prove an analogue of Theorem 6.14 for τ a
m with m ≥ 2. That is, we

want to prove the following.

Theorem 6.16. Let m ≥ 2. If f ∈ Ja
mM, then

Z̃Y,t(c(f)) = ∅ −
(
η−1τ a

m(f)
)

|aj )→j−,bj )→j+
+ (a-deg > m).

Or equivalently Z̃Y,a
m (c(f)) = −

(
η−1τ a

m(f)
)

|aj )→j−,bj )→j+.

An immediate consequence of the above theorem is the following.
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Corollary 6.17. For f ∈ Ja
mM the value

Z̃Y,a
m (c(f))j+ )→bj ,j− )→aj

∈ T a

m(B ⊕ A)

is independent of the choice of a Drinfeld associator.

One of the key points in the proof of Theorem 6.16 is to show that the LMO functor defines an
alternative symplectic expansion of π. We use several results and definitions from [47] and [28].

Alternative symplectic expansions. Let HQ be the Q-module H1(Σ,Q) = H ⊗ Q. Denote by
T (HQ) the free associative Q-algebra generated by HQ in degree 1, that is, T (HQ) is the tensor algebra
of HQ and let T̂ (HQ) denote its degree completion. Let AQ = A⊗Q and BQ = B ⊗Q. Let T (BQ; AQ)
be the free associative Q-algebra generated by BQ in degree 1 and AQ in degree 2. We call the induced
degree in T (BQ, AQ) the alternative degree. Hence

T (BQ; AQ) = Q ⊕ BQ ⊕ (AQ ⊕ (BQ ⊗ BQ)) ⊕ ((AQ ⊗ BQ) ⊕ (BQ ⊗ AQ) ⊕ (BQ ⊗ BQ ⊗ BQ)) ⊕ · · ·

Denote by T̂ (BQ; AQ) the completion of T (BQ; AQ) with respect to the alternative degree. Notice that
T̂ (HQ) and T̂ (BQ; AQ) are complete Hopf algebras.

Definition 6.18. An expansion of π is a multiplicative map θ : π → T̂ (HQ) such that θ(x) =
1 + {x} + (deg > 1) for all x ∈ π. Here {x} denotes xΓ2π ⊗ 1 ∈ HQ. Moreover, we say that an
expansion θ is group-like if it takes values in the group of group-like elements of T̂ (HQ).

Definition 6.19. An alternative expansion of π relative to A is a multiplicative map θ : π →
T̂ (BQ, AQ) which takes values in the group of group-like elements of T̂ (BQ; AQ) and such that:

• θ(x) = 1 + {x} + (a-deg > 1) for all x ∈ π and

• θ(α) = 1 + {α} + (a-deg > 2) for all α ∈ A.

Here {x} denotes xK2 ⊗ 1 ∈ BQ for x ∈ π, and {α} denotes αK3 ⊗ 1 ∈ (AQ ⊕ (BQ ⊗ BQ)) for α ∈ A.

Remark 6.20. Definition 6.19 implies that for i ≥ 1 and x ∈ Ki, θ(x) = 1+(xKi+1)⊗1+(a-deg > i).
Hence an alternative expansion of π relative to A is an expansion of the N -series (Ki)i≥1 in the sense
of [28, Section 12].

Notice that T (HQ) = T (BQ; AQ) as Q-algebras as soon as we have chosen a section of ι∗ : H → H ′

with isotropic image and identified B = H ′ to the image of this section. Thus if θ is an alternative
expansion of π relative to A, then, in particular, θ is a group-like expansion of π. We denote this
group-like expansion by θ′.

Example 6.21. Consider the free basis {αi, βi} of π defined by the system of meridians and parallels of
Figure 3.9 and let {ai, bi} be the induced symplectic basis of H. We identify H ′ = B with the subgroup
of H generated by {b1, . . . , bg}. Define θ : π → T̂ (B; A) by θ(αi) = exp(ai) and θ(βi) = exp(bi). Then θ

is an alternative expansion of π relative to A.

Recall that the intersection form ω : H ⊗ H → Z determines an element Ω′ ∈ Lie3(B; A), see
Equation (5.11).

Definition 6.22. [47, Definition 2.15] An expansion θ of π is said to be symplectic if it is group-like
and θ([∂Σ]) = exp(−Ω′).

Definition 6.23. An alternative expansion θ of π relative to A is said to be symplectic if θ([∂Σ]) =
exp(−Ω′).
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In [47, Lemma 2.16] Massuyeau shows that symplectic expansions exist by “deforming” the ex-
pansion of Example 6.21. It can be verified that the constructed symplectic expansion in that lemma
is actually an alternative symplectic expansion of π relative to A. We will see that the LMO functor
also gives an example of an alternative symplectic expansion of π relative to A.

Completions of the group algebra Q[π]. Let Q[π] be the group Q-algebra of π. We have considered
two N -series of π; the lower central series Γ+ = (Γmπ)m≥1 and the N -series K+ = (Km)m≥1 defined
in (4.10). Each one of these defines a filtration of Q[π], that is, a decreasing sequence Q[π] = F0 ⊇
F1 ⊇ F2 ⊇ · · · of additive subgroups of Q[π] indexed by non-negative integers such that FmFn ⊆ Fm+n

for m, n ≥ 0. Let I be the augmentation ideal of Q[π]. For m ≥ 1 it is well known that

Im =
〈
(x1 − 1) · · · (xp − 1) | p ≥ 1, xi ∈ Γmi

π and m1 + · · · + mp ≥ m
〉
,

where the angle brackets stand for the generated subspace of Q[π]. For m ≥ 1, set

Rm =
〈
(x1 − 1) · · · (xp − 1) | p ≥ 1, xi ∈ Kmi

and m1 + · · · + mp ≥ m
〉
.

This way we have the filtrations {Im}m≥0 and {Rm}m≥0 of Q[π] where we set I0 = R0 = Q[π]. These
filtrations define inverse systems {Q[π]/Im}m and {Q[π]/Rm}m.

Consider the I-adic and R-adic completions of Q[π], that is, the inverse limits

Q̂[Γ+] = lim
←−
m

(Q[π]/Im) and Q̂[K+] = lim
←−
m

(Q[π]/Rm).

Notice that Q̂[Γ+] and Q̂[K+] are filtered complete Hopf algebras, with filtrations {Îm}m≥0 and {R̂m}m≥0

defined by

Îm = lim
←−

l

(Im/I l) and R̂m = lim
←−

l

(Rm/Rl),

for m ≥ 0. From now on, let θ : π → T̂ (BQ; AQ) be an alternative expansion of π relative to A and
denote by θ′ : π → T̂ (HQ) the associated group-like expansion of π. The Quillen’s description [58]
of the associated graded of the filtered ring Q[π] with respect to {Im}m, can be generalized [28,
Theorem 11.2] to describe the associated graded of Q[π] with respect to {Rm}m. Moreover, we have
the following.

Proposition 6.24. [28, Proposition 12.2][47, Proposition 2.10] The maps θ and θ′ extend uniquely
to complete Hopf algebra isomorphisms

θ̂ : Q̂[K+] −→ T̂ (BQ; AQ) and θ̂′ : Q̂[Γ+] −→ T̂ (HQ),

which are the identity at the graded level.

Since Γmπ ⊆ Km ⊆ Γ⌈m/2⌉π for m ≥ 1, see (4.10), then Im ⊆ Rm and Rm ⊆ I⌈m/2⌉. Hence, the
identity automorphism of π induces a morphism of inverse systems

{um : Q[π]/Im −→ Q[π]/Rm}

which induces an isomorphism
U : Q̂[Γ+] −→ Q̂[K+]

of complete Hopf algebras. The following two results are straightforward.

Proposition 6.25. The diagram

Q̂[Γ+]
U
∼=

!!

θ̂′ ∼=
""

Q̂[K+]

θ̂∼=
""

T̂ (H) T̂ (B; A)

is commutative.
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For a complete Hopf algebra F denote by Aut(F ) the group of automorphisms of F .

Corollary 6.26. The diagram

Aut(Q̂[Γ+])
U(__)U−1

!!

θ̂′(__)θ̂′−1

""

Aut(Q̂[K+])

θ̂(__)θ̂−1

""

Aut(T̂ (H)) Aut(T̂ (B; A))

is commutative.

Recall that we can restrict the Dehn-Nielsen representation (4.1) to the Lagrangian mapping class
group L. Now, if h ∈ L, we have ρ(h)(Γmπ) = h#(Γmπ) ⊆ Γmπ and ρ(h)(Km) = h#(Km) ⊆ Km, see
Lemma 4.6. This way, we obtain representations

ρ̂′ : L −→ Aut(Q̂[Γ+])

and
ρ̂ : L −→ Aut(Q̂[K+]).

Notice that for h ∈ L, the diagram

Q̂[Γ+]
U !!

ρ̂′(h)
""

Q̂[K+]

ρ̂(h)
""

Q̂[Γ+]
U !! Q̂[K+]

(6.20)

is commutative. Besides, using Proposition 6.24, we define

ρθ̂′

: L −→ Aut(T̂ (HQ)) and ρθ̂ : L −→ Aut(T̂ (BQ; AQ)),

by ρθ̂′

(h) = θ̂′ρ̂′(h)θ̂′−1 and ρθ̂(h) = θ̂ρ̂(h)θ̂−1 for h ∈ L.

Proposition 6.27. The diagram

L
ρθ̂

′

!!

ρθ̂

""

Aut
(
T̂ (HQ)

)

Aut
(
T̂ (BQ; AQ)

)

(6.21)

is commutative.

Proof. Let h ∈ L, then

ρθ̂(h) = θ̂ρ̂(h)θ̂−1

= θ̂U ρ̂′(h)U−1θ̂−1

= θ̂′ρ̂′(h)θ̂′−1

= ρθ̂′

(h).

In the second equality we use (6.20), and in the third equality we use Proposition 6.25.

From Proposition 4.11 we have Ja
2M ⊆ J1M = I. Hence, by considering the restriction of ρθ̂′

to I

and the restriction of ρθ̂ to Ja
2M and using Proposition 6.27 we obtain the following.
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Corollary 6.28. The diagram

Ja
2M

⊂ !!

ρθ̂

""

I

ρθ̂
′

""

Aut
(
T̂ (BQ, AQ)

)
Aut

(
T̂ (HQ)

)

is commutative.

Notice that the maps ρθ̂′

and ρθ̂ can be defined on M and L, respectively. Hence, Corollary 6.28
still holds when replacing I by M and Ja

2M by L, but we are interested in taking the logarithm on
the images of ρθ̂′

and ρθ̂ and we can do this only if we restrict to the Torelli-type groups I and Ia,
see [28, Lemma 12.5]. The following is an instance of one of the main results in [28].

Theorem 6.29. [47, Theorem 3.5][28, Theorem 12.6, Remark 12.8] Consider the filtration-preserving
maps

̺θ : Ia −→ D̂er
+(

Lie(BQ; AQ)
)

and ̺θ′

: I −→ D̂er
+(

Lie(HQ)
)
,

defined by ̺θ(h) = log
(
ρθ̂(h)

)
and ̺θ′

(f) = log
(
ρθ̂′

(f)
)

for h ∈ Ia and f ∈ I. Then, ̺θ determines all

the alternative Johnson homomorphisms and ̺θ′

determines all the Johnson homomorphisms. That
is, for m ≥ 1, h ∈ Ja

mM and f ∈ JmM, we have

τ a

m(h) =
(
̺θ(h)|B⊕A

)
m

∈ Dm(Lie(BQ, AQ)), (6.22)

and

τm(f) =
(
̺θ′

(f)|H

)
m

∈ Hom(H,Liem+1(HQ)), (6.23)

where Dm(Lie(BQ, AQ)) is defined by considering the rational version of Equation (5.8). The subscripts
m in the right-hand side of the above equations denote the terms of degree m in ̺θ(h)|B⊕A and ̺θ′

(f)|H ,
respectively.

Remark 6.30. Notice that in the left-hand sides of (6.22) and (6.23) we are actually considering the
rationalization of the Johnson-type homomorphims, but there is no loss of information by doing this.

Furthermore, if θ is symplectic, then the maps ̺θ and ̺θ′

take values in the completions

D̂er
+,ω(

Lie(BQ; AQ)
)

and D̂er
+,ω(

Lie(HQ)
)

of positive symplectic derivations of Lie(BQ; AQ) and Lie(HQ), respectively. Now

D̂er
+,ω(

Lie(BQ; AQ)
) ∼=

∏

m

Dm(BQ; AQ) ∼= T a(B ⊕ A),

where the first isomorphism is given by Proposition 5.2 and the second by Proposition 5.28. Similarly

D̂er
+,ω(

Lie(HQ)
) ∼=

∏

m

Dm(HQ) ∼= At,c(H),

where the second isomorphism is given by Theorem 5.26. This way, with the hypothesis that θ is
symplectic, Theorem 6.29 can be restated by saying that for m ≥ 1 the diagrams

Ja
mM

⊂ !!

η−1τa

m

""

Ia

η−1̺θ

""
T a

m(B ⊕ A) )))) T a(B ⊕ A)

and JmM
⊂ !!

η−1τm

""

I

η−1̺θ
′

""
At,c

m (H) )))) At,c(H)

(6.24)
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are commutative. In the same way, if θ is symplectic, Corollary 6.28 can be restated by saying that
the diagram

Ja
2M

⊂ !!

η−1̺θ

""

I

η−1̺θ
′

""
T a(B ⊕ A) At,c(H)

(6.25)

is commutative.

The LMO functor defines a symplectic alternative expansion. We want to apply dia-
grams (6.24) and (6.25) with a particular symplectic alternative expansion of π relative to A. In [47,
Section 5], G. Massuyeau constructed a symplectic expansion of π from the LMO functor. It turns
out that this expansion is a symplectic alternative expansion of π relative to A. Let us recall this
construction.

Fix two points p, q ∈ int(Σ). A bottom knot in Σ × [−1, 1] is the isotopy class (relative to the
boundary) of a connected framed oriented tangle starting at q × {−1} and ending at p × {−1}, see
Figure 6.4 (a) for an example. Let B denote the set of bottom knots in Σ × [−1, 1]. There is a monoid
structure in B. If K, L ∈ B, then K ·L is the bottom knot obtained from K and L by joining K and L
as shown in Figure 6.4 (b).

Figure 6.4: (a) Bottom knot in Σ × [−1, 1] and (b) monoid structure in B.

Two bottom knots K, K ′ ∈ B are said to be homotopic, denoted K ≃ K ′, if K ′ can be obtained
from K by framing changes and a finite number of crossing changes. This relation is compatible with
the monoid structure, that is, if K, K ′, L, L′ ∈ B are such that K ≃ K ′ and L ≃ L′, then K ·L ≃ K ′ ·L′.
There is a canonical monoid morphism

ℓ : B/≃ −→ π, (6.26)

which assigns to the homotopy class of K ∈ B the based loop in Σ × [−1, 1] as shown in Figure 6.5.
Then identify π with π1(Σ × [−1, 1], ∗), see [47, Lemma 5.3].

Figure 6.5: The based loop ℓ(K).

Now, a bottom knot K ∈ B gives rise to an element in LCob(g, g + 1) by “digging” along K, more
precisely, let (MK , m) be the cobordism obtained from Σ×[−1, 1] by removing a tubular neighborhood
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of K and define the parametrization m on the first handle of the bottom surface of MK by using the
framing of K and as the identity elsewhere. We continue to denote the cobordism (MK , m) by K and
we endow its top and bottom with the right-handed non-associative words as in Convention 3.13.

This way we have K ∈ LCobq(g, g + 1) and we can apply the LMO functor to it, to obtain
Z̃(K) ∈ tsA(g, g + 1) ⊆ A(⌊g⌉+ ⊔ ⌊g + 1⌉−). Change the colors in Z̃(K) as follows

1− 0→ r and i− 0→ (i − 1)−, ∀i = 2, . . . , g + 1;

so that, the variable r refers to the bottom knot. Thus Z̃(K) ∈ A(⌊g⌉+ ⊔ ⌊g⌉− ⊔ {r}).

Example 6.31. In Example 3.12 we considered a cobordism Ni ∈ sLCob(g, g + 1), for i = 1, . . . , g,
with bottom-top tangle presentation shown in Figure 3.8. Analyzing carefully Figure 3.8 we see that
the cobordism Ni corresponds to the bottom knot, also denoted Ni, in Σ × [−1, 1] such that ℓ(Ni) is
the homotopy class of the meridian αi in Σ.

Recall the space H(r) defined in Example 2.4. Hence, Z̃(K) mod H(r) is an exponential series of
tree-like Jacobi diagrams with at most one r-colored leg and which only depends on the homotopy
class of K, see [47, Lemma 5.5]. Moreover, the series consisting of the terms without r-colored legs in
Z̃(K) mod H(r) is exactly the identity morphism in tsA(g, g). To sum up

is a series of connected tree-like Jacobi diagrams with legs colored by ⌊g⌉+ ⊔ ⌊g⌉− ⊔ {r} and with

exactly one r-colored leg. Hence, by considering the r-colored leg as a root, we can see SZ̃(K) as an
element in L̂ie(BQ, AQ) after the replacement of colors i+ 0→ bi and i− 0→ ai for i = 1, . . . , g. The map

θZ̃ : π −→ T̂ (BQ; AQ), (6.27)

defined by θZ̃(ℓ(K)) = exp⊗

(
SZ̃(K)

)
is a symplectic expansion of π, see [47, Proposition 5.6].

Proposition 6.32. The symplectic expansion θZ̃ : π → T̂ (BQ; AQ) satisfies

θZ̃(α) = 1 + {α} + (a-deg > 2)

for all α ∈ A. Therefore θZ̃ is a symplectic alternative expansion of π relative to A.

Proof. By [47, Proposition 5.6] we know that for every α ∈ A,

θZ̃(α) = 1 + {α} + (deg > 1).

First, notice that a tree of i-deg > 1 with one leg colored by r (the root) and the other legs colored
by elements of B ⊕ A gives rise to a Lie commutator in Lie(BQ, AQ) of a-deg > 2. Therefore, we only

need to calculate the terms of i-deg = 1 in SZ̃(K) for bottom knots K such that ℓ(K) ∈ A.
Now A is the normal closure of the subgroup 〈αi | i = 1, . . . , g〉 of π generated by the homotopy

classes of the meridians and by Example 6.31, the cobordism Ni is such that ℓ(Ni) is the homotopy
class of αi. Therefore, by the homomorphism property of Z̃i-deg =1, it is enough to calculate the terms
of i-deg = 1 in Z̃(Ni) mod H(r) and see whether they give rise to Lie commutators in Lie(BQ, AQ) of
a-deg = 1. In Example 3.19 we see that each of the terms with i-deg = 1 in Z̃(Ni) mod H(r) has one
r-colored leg and one i−-colored leg, thus the associated commutator has a-deg > 2 which completes
the proof.
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Proof of Theorem 6.16. Let θ denote the symplectic alternative expansion of π relative to A defined
by the LMO functor and denote by θ′ the associated symplectic expansion of π. In [47, Theorem 5.13]
G. Massuyeau proved that the diagram

I
c !!

η−1̺θ
′

""

LCobq(g, g)

−log Z̃Y,t**
At,c(H)

(6.28)

is commutative, where c denotes the cylinder map and for h ∈ I we endow the top and bottom of
c(h) with the right-handed non-associative words as in Convention 3.13. In order to see log

(
Z̃(c(h))

)

as an element of At,c(H) we consider the change of colors i+ 0→ bi and i− 0→ ai for i = 1, . . . , g. We
obtain the desired result by putting together the commutative diagrams (6.24), (6.25) and (6.28).

Remark 6.33. In fact [47, Theorem 5.13] is more general than the commutativity of diagram (6.28);
it says that for every homology cylinder M ∈ IC we have η−1̺θ′

(M) = −log
(
Z̃Y,t(M)

)
. Besides,

Theorem 6.5 is proved in the setting of homology cobordisms. This suggests that our results could
be generalized to the setting of homology cobordisms. More precisely, we expect that the alternative
Johnson filtration and the alternative Johnson homomorphisms extend to homology cobordisms and
that the diagrammatic version of such alternative Johnson homomorphisms can be read in the tree
reduction of the LMO functor.
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Homomorphismes de type 
Johnson pour les surfaces et 

invariant perturbatif universel des 
variétés de dimension trois 

 

 

Soit Σ une surface compacte connexe orientée avec une seule composante du bord. Notons par !" le groupe 

d’homéotopie de Σ. En considérant l’action de !"sur le groupe fondamental de Σ, il est possible de définir 

différentes filtrations de"!"ainsi que des homomorphismes sur chaque terme de ces filtrations. Le but de cette 

thèse es double. En premier lieu, nous étudions deux filtrations de"!": la « filtration de Johnson-Levine » 

introduite par Levine et la « filtration de Johnson alternative » introduite recémment par Habiro et Massuyeau. 

Les définitions de ces deux filtrations prennent en compte un corps en anses bordé par la surface. Nous nous 

référons à ces filtrations comme « filtrations de type Johson » et les homomorphismes correspondants sont 

appelés « homomorphismes de type Johnson » par leur analogie avec la filtration de Johnson originale et les 

homomorphismes de Johnson usuels.  Nous donnons une comparaison de la filtration de Johnson avec la 

filtration de Johnson-Levine au niveau du monoïde des cobordismes d’homologie de Σ. Nous donnons 

également une comparaison entre la filtration de Johnson alternative, la filtration Johnson-Levine et la filtration 

de Johnson au niveau du groupe d’homéotopie. Deuxièmement, nous étudions la relation entre les 

« homomorphismes de type Johnson » et l’extension fonctorielle de l’invariant perturbatif universel des 

variétés de dimension trois (l’invariant de Le-Murakami-Ohtsuki ou invariant LMO). Cette extension 

fonctorielle s'appelle le foncteur LMO et il prend ses valeurs dans une catégorie de diagrammes. Nous 

démontrons que les « homomorphismes de type Johnson » peuvent être lus dans la réduction arborée du 

foncteur LMO. En particulier, cela fournit une nouvelle grille de lecture de la réduction arborée du foncteur 

LMO. 

Mots-Clés : variétés de dimension trois, cobordismes d’homologie, groupe d’homéotopie, homomorphismes de 

Johnson, homomorphismes de Johnson-Levine, homomorphismes de Johnson alternatifs, invariant LMO, 

foncteur LMO. 

 

Let Σ be a compact oriented surface with one boundary component and let ! denote the mapping class group 

of Σ. By considering the action of !"on the fundamental group of Σ it is possible to define different filtrations 

of !" together with some homomorphisms on each term of the filtrations. The aim of this thesis is twofold. 

First, we study two filtrations of !" : the « Johnson-Levine filtration » introduced by Levine and « the 

alternative Johsnon filtration » introduced recently by Habiro and Massuyeau. The definition of both filtrations 

involve a handlebody bounded by Σ. We refer to these filtrations as « Johnson-type filtrations » and the 

corresponding homomorphisms are referred to as « Johnson-type homomorphisms » by their analogy with the 

original Johnson filtration and the usual Johnson homomorphisms. We provide a comparison of the Johnson 

filtration with the Johnson-Levine filtration at the level of the monoid of homology cobordisms of Σ. We also  

provide a comparison of the alternative Johnson filtration with the Johnson-Levine filtration and the Johnson 

filtration at the level of the mapping class group. Secondly, we study the relationship between the « Johnson-

type homomorphisms » and the functorial extension of the universal perturbative invariant of 3-manifolds (the 

Le-Murakami-Ohtsuki invariant or LMO invariant). This functorial extension is called the LMO functor and it 

takes values in a category of diagrams. We prove that the « Johnson-type homomorphisms » can be read in the 

tree reduction of the LMO functor. In particular, this provides a new reading grid of the tree reduction of the 

LMO functor. 

Keywords : 3-manifolds, homology cobordisms, mapping class group, Johnson homomorphisms, Johnson-

Levine homomorphisms, alternative Johnson homomorphisms, LMO invariant, LMO functor. 



Soit Σ une surface compacte connexe orientée avec une seule composante du bord.
Notons par M le groupe d’homéotopie de Σ. En considérant l’action de M sur le groupe
fondamental de Σ, il est possible de définir différentes filtrations de M ainsi que des
homomorphismes sur chaque terme de ces filtrations. Le but de cette thèse es double.
En premier lieu, nous étudions deux filtrations de M : la “filtration de Johnson-Levine”
introduite par Levine et la “filtration de Johnson alternative” introduite recémment par
Habiro et Massuyeau. Les définitions de ces deux filtrations prennent en compte un
corps en anses bordé par la surface. Nous nous référons à ces filtrations comme
“filtrations de type Johson” et les homomorphismes correspondants sont appelés
“homomorphismes de type Johnson” par leur analogie avec la filtration de Johnson
originale et les homomorphismes de Johnson usuels. Nous donnons une comparaison
de la filtration de Johnson avec la filtration de Johnson-Levine au niveau du monoïde
des cobordismes d’homologie de Σ. Nous donnons également une comparaison entre
la filtration de Johnson alternative, la filtration Johnson-Levine et la filtration de Johnson
au niveau du groupe d’homéotopie. Deuxièmement, nous étudions la relation entre les
“homomorphismes de type Johnson” et l’extension fonctorielle de l’invariant perturbatif
universel des variétés de dimension trois (l’invariant de Le-Murakami-Ohtsuki ou inva-
riant LMO). Cette extension fonctorielle s’appelle le foncteur LMO et il prend ses valeurs
dans une catégorie de diagrammes. Nous démontrons que les “homomorphismes de
type Johnson” peuvent être lus dans la réduction arborée du foncteur LMO. En par-
ticulier, cela fournit une nouvelle grille de lecture de la réduction arborée du foncteur LMO.
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