Elaboration of novel enzymatic immobilization matrices, based on Metal-Organic Frameworks for the catalytic degradation of environmental pollutants

par Effrosyni Gkaniatsou

Thèse de doctorat en Chimie

Sous la direction de Nathalie Steunou et de Rémy Ricoux.

Soutenue le 25-01-2019

à Paris Saclay , dans le cadre de École doctorale INTERFACES : approches interdisciplinaires / fondements, applications et innovation (Palaiseau, Essonne ; 2015-....) , en partenariat avec Institut Lavoisier de Versailles (laboratoire) , Université de Versailles-Saint-Quentin-en-Yvelines (établissement opérateur d'inscription) et de Institut Lavoisier de Versailles (laboratoire) .

Le président du jury était Thibaud Coradin.

Le jury était composé de Nathalie Steunou, Rémy Ricoux, Thibaud Coradin, Claude Jolivalt, Darren Bradshaw, Marco Daturi, Pierre Mialane, Clémence Sicard.

Les rapporteurs étaient Claude Jolivalt, Darren Bradshaw.

  • Titre traduit

    Elaboration de nouvelles matrices d’immobilisation enzymatique à base de Metal-Organic Frameworks pour la dégradation catalytique de polluants environnementaux


  • Résumé

    Les enzymes sont des biocatalyseurs de plus en plus utilisés pour la transformation de molécules organiques (chimie fine, bioconversions, dépollution, chimie du pétrole) car elles possèdent de très bonnes sélectivité et réactivité, générant rapidement de larges quantités de produit. Cependant, la fragilité des enzymes, notamment en solution, limite souvent leur utilisation. Il est donc crucial de les immobiliser et de les stabiliser dans des supports adaptés. Une grande variété de matrices d’immobilisation (organiques ou inorganiques) a déjà étudiée, mais aucune ne satisfait pleinement aux critères nécessaires pour le développement de bio-réacteurs (accessibilité au site actif de l’enzyme, relargage de l’enzyme, diffusion des réactifs, recyclabilité, stabilité..). En outre, la majorité de ces matrices présente une porosité désordonnée, inadaptée pour une immobilisation homogène. L’utilisation de matériaux hybrides, cristallins et poreux de type Metal-Organic Frameworks (MOFs) a été récemment proposée comme alternative avec des applications en biocatalyse et en biodétection.Le travail de cette thèse a consisté à associer des matériaux de type Metal-Organic Frameworks à une mini-enzyme, la microperoxidase 8 (MP8), afin d’obtenir des matériaux multifonctionnels. Dans une première partie, le MOF mésoporeux, MIL-101(Cr), a été utilisé pour encapsuler la MP8, ce qui a conduit à une amélioration de son activité catalytique dans des conditions qui ne sont pas adéquates pour l’activité enzymatique (conditions acides, forte concentration en H2O2), démontrant ainsi le rôle protecteur du MOF vis-à-vis de l’enzyme. De plus, il a été possible de recycler le biocatalyseur. Cette approche a également permis d’améliorer considérablement la sélectivité de la MP8 pour la dégradation d’un colorant organique toxique négativement chargé, le méthyl orange, grâce à son adsorption sélective par interaction électrostatique avec les particules de MIL-101(Cr). La seconde partie a été consacrée à l’utilisation de matériaux MIL-101(Cr) fonctionnalisés. Tout d’abord, l’influence de la fonctionnalisation du ligand (avec un groupement –NH2 ou –SO3H) sur l’encapsulation de la MP8 ainsi que sur son activité catalytique pour des réactions de sulfoxydation a été étudiée. Il a été montré que l’activité catalytique et la réactivité de la MP8 sont affectées par le microenvironnement spécifique des pores du MOF, notamment pour des réactions de sulfoxydation mettant en jeu des dérivés thioanisole. Ensuite, un MOF à métal mixte (MIL-101(Cr/Fe)) choisi pour ses propriétés catalytiques stables, a été synthétisé et caractérisé. Enfin, la dernière partie de cette thèse a été consacrée à la synthèse in-situ d’un MOF (le microporeux MIL-53(Al)-FA) en présence de biomolécules (BSA) dans des conditions compatibles avec la préservation de la structure protéique (en solution aqueuse à température ambiante). Les matériaux hybrides obtenus ont été caractérisés en couplant de nombreuses techniques. Cette méthode d’encapsulation a conduit à des taux d’immobilisation extrêmement élevés. Une étude préliminaire a été initiée avec l’enzyme, Horseradish Peroxidase , qui conserve son activité catalytique après immobilisation.


  • Résumé

    The use of enzymes in biocatalytic processes has been a challenging goal over the years. While enzymes present exceptional catalytic properties, their fragility hinders their industrial application. Their stabilization and protection are therefore of paramount importance. This can be effectively addressed through their immobilization within host solid matrices. Traditional materials (silica, clays, polymers, biopolymers, porous carbons…) have been widely studied as supports. Their pure organic or inorganic nature often requires a compromise between affinity with enzymes and robustness of the matrix. Besides, most of them have non-ordered porosity, with non-homogenous pore size distributions, unsuitable for homogeneous immobilization. Metal-Organic Frameworks (MOFs) have been recently introduced as alternative supports, thanks to their hybrid nature and their crystalline and highly porous structures.The aim of this PhD was to combine Metal-Organic Frameworks (highly porous and chemically stable polycarboxylate MOFs) and a mini-enzyme, microperoxidase 8 (MP8) to obtain multifunctional biocatalysts. In a first part, the mesoporous MIL-101(Cr) was used as a host matrix to encapsulate MP8. The encapsulation led to an increased catalytic activity under conditions (acidic conditions, high concentration of H2O2) detrimental to the catalytic activity of MP8, thereby demonstrating the protecting effect of MIL-101(Cr) matrix. The biocatalyst was also efficiently recycled. The selectivity of MP8 for the degradation of the harmful negatively charged organic dye methyl orange was also enhanced, thanks to the charged-based selective adsorption of the dye in MIL-101(Cr) porosity. A second part of the work was devoted to the use of functionalized MIL-101(Cr) analogs. First, functionalized ligands (bearing –NH2 and –SO3H groups) were used, and their influence on MP8 encapsulation was evaluated. The catalytic activity toward sulfoxidation reactions was also studied. The successful encapsulation of MP8 was strongly dependent on charge matching between the enzyme and the MOFs particles, while its catalytic activity was affected by the specific microenvironment of the pores. The MOF frameworks also modified the reactivity of MP8 toward different thioanisole derivatives. Then, a mixed metal MOF (MIL-101(Cr/Fe)), selected for its stable catalytic properties, was synthesized and characterized. Finally, the last part was devoted to the in-situ synthesis of MOFs (microporous MIL-53(Al)-FA) in presence of biomolecules (BSA) under compatible conditions with the preservation of the protein’s quaternary structure (aqueous media and room temperature). The resulting hybrid materials were thoroughly characterized and presented high loadings of BSA. A preliminarily study was performed with the enzyme, Horseradish Peroxidase, which retained its catalytic activity after immobilization.



Le texte intégral de cette thèse sera accessible librement à partir du 25-01-2020


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.