Study of Interface Effects on Magnetization Reversal in Magnetic Structures with Perpendicular Magnetic Anisotropy - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2019

Study of Interface Effects on Magnetization Reversal in Magnetic Structures with Perpendicular Magnetic Anisotropy

Etude des effets d'interfaces sur le retournement de l'aimantation dans des structures à anisotropie magnétique perpendiculaire

Résumé

Magnetic Random Access Memory (MRAM), as one of the emerging technologies, aims to be a “universal” memory device for a wide variety of applications. The combination of the spin orbit torque (SOT) resulting from the spin Hall effect (SHE) and the Dzyaloshinskii–Moriya interaction (DMI) at interfaces between heavy metals and ferromagnetic layers has been demonstrated to be a powerful mean to drive efficiently domain-wall (DW) motion, which are expected to be the promising next generation of information carriers owing to ultra-low driving currents and ultra fast DW motion. However, the crucial limitation of SOT induced domain wall motion results from the presence of pinning defects that can induce large threshold currents and stochastic behaviors. Such pinning defects are strongly related to structural inhomogeneities at the interfaces between the ultra-thin ferromagnetic layer and the other materials (insulator and/or heavy metals) that induce a spatial distribution of magnetic properties such as perpendicular magnetic anisotropy (PMA) or DMI. Therefore, understanding the role of the interface structure on DW motion and DMI is crucial for the design of future low power devices.It is under this innovative context that my Ph.D. research has focused on the manipulation of interface structure in ultra-thin magnetic films with perpendicular magnetic anisotropy. CoFeB-MgO structures have been used in order to understand the impact of interface structure on anisotropy, DMI, domain wall motion and SOT phenomena. The innovative approach we have used in this PhD research is based on light ion irradiation to control the degree of intermixing at interfaces. In W-CoFeB-MgO structures with high DMI, we have observed a large increase of the DW velocity in the creep regime upon He⁺ irradiation, which is attributed to the reduction of pinning centres induced by interface intermixing. Asymmetric in-plane field-driven domain expansion experiments show that the DMI value is slightly reduced upon irradiation, and a direct relationship between DMI and interface anisotropy is demonstrated. Using local irradiated Hall bars in SOT devices, we further demonstrate that the current density for SOT induced magnetization switching through DW motion can be significantly reduced by irradiation. Our finding provides novel insights into the development of low power spintronic-memory, logic as well as neuromorphic devices.
Les mémoires MRAM (Magnetic Random Access Memory) sont l’une des technologies émergentes visant à devenir un dispositif de mémoire «universelle» applicable à une grande variété d’applications. La combinaison du couple de spin-orbite (SOT) résultant de l’effet Hall de spin (SHE) et de l’interaction de Dzyaloshinskii – Moriya (DMI) aux interfaces entre un métal lourd et une couche ferromagnétique s’est révélée être un mécanisme efficace pour induire une propagation de parois magnétiques chirales à des faibles densité de courant. Les dispositifs à parois magnétiques devraient constituer la prochaine génération de supports d’information en raison de leur potentiel pour des densités de stockage très élevées. Cependant, une limitation cruciale est la présence de défauts structuraux qui piègent les parois magnétiques et induisent des courants de seuil élevés ainsi que des effets stochastiques importants. L’origine du piégeage résulte de la présence de défauts structuraux aux interfaces entre la couche magnétique ultra-mince et les autres couches (isolants et/ou métaux lourds) qui induisent une distribution spatiale des propriétés magnétiques comme l’anisotropie magnétique perpendiculaire (PMA) ou le DMI. Comprendre l’influence de la structure des interfaces sur la propagation de parois et sur le DMI en particulier est cruciale pour la conception de futurs dispositifs basse consommation. C’est dans ce contexte très novateur que mon doctorat s’est focalisé sur la manipulation de la structure des interfaces dans des couches ultra-minces à anisotropie magnétique perpendiculaire. Des structures de CoFeB-MgO ont été utilisées afin de mieux comprendre l'impact de la structure des interfaces sur l’anisotropie, le DMI, la propagation de parois et les phénomènes de SOT. L’approche innovante que nous avons utilisée est basée sur l’irradiation par des ions légers pour contrôler le degré de mélange aux interfaces. Sous l’effet du mélange induit par l’irradiation, nous avons observé dans des structures de W-CoFeB-MgO une forte augmentation de la vitesse de parois dans le régime de creep, compatible avec une réduction de la densité des centres de piégeage. Nous avons aussi démontré que l'anisotropie de l'interface Ki et le DMI mesuré par propagation asymétrique de parois se comportent de la même façon en fonction du mélange aux interfaces. Finalement, nous avons fabriqué des barres de Hall afin de mesurer la commutation de l’aimantation induite par SOT. Le centre des croix de Hall a été irradié afin de diminuer localement l’anisotropie. Nous avons observé une réduction de 60% de la densité de courant critique après l’irradiation correspondant au retournement des croix de Hall irradiés par propagation de parois. Notre étude fournit de nouvelles pistes concernant le développement de mémoires magnétiques à faible consommation, de dispositifs logiques et neuromorphiques.
Fichier principal
Vignette du fichier
94140_ZHAO_2019_archivage.pdf (7.05 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03088724 , version 1 (27-12-2020)

Identifiants

  • HAL Id : tel-03088724 , version 1

Citer

Xiaoxuan Zhao. Study of Interface Effects on Magnetization Reversal in Magnetic Structures with Perpendicular Magnetic Anisotropy. Condensed Matter [cond-mat]. Université Paris Saclay (COmUE); Beihang university (Pékin), 2019. English. ⟨NNT : 2019SACLS523⟩. ⟨tel-03088724⟩
321 Consultations
138 Téléchargements

Partager

Gmail Facebook X LinkedIn More