Thèse soutenue

Nouveaux composants spintroniques à base de matériaux antiferromagnétiques

FR  |  
EN
Auteur / Autrice : Théophile Chirac
Direction : Michel Viret
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 17/12/2019
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Physique en Île-de-France (Paris ; 2014-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Laboratoire : Laboratoire Nano-Magnétisme et Oxydes (Gif-sur-Yvette, Essonne)
Jury : Président / Présidente : Alexandra Mougin
Examinateurs / Examinatrices : Michel Viret, Alexandra Mougin, Manfred Fiebig, Vincent Baltz, Laurent Ranno, Pascal Ruello, André Thiaville
Rapporteurs / Rapporteuses : Manfred Fiebig, Vincent Baltz

Résumé

FR  |  
EN

Les mémoires magnétiques actuelles commencent à atteindre leurs limites physiques en terme de stabilité, vitesse et consommation énergétique, alors que la course à la miniaturisation s'intensifie. Le champ émergeant de la spintronique étudie le comportement collectif des spins dans la matière ainsi que leurs interactions aux interfaces, afin de trouver une solution en termes de matériaux, architectures et sources excitatrices. En particulier, les matériaux antiferromagnétiques sont particulièrement prometteurs. Ces matériaux ordonnées sont abondants, naturellement stables, robustes, ultra rapides et compatibles avec l'électronique des isolants. En effet, la plupart des oxydes à base de métaux de transition sont des isolants antiferromagnétiques ayant leur fréquence de résonance dans le terahertz et un champ de flop de quelques dizaines de teslas. Ils peuvent aussi être semi-métalliques, métalliques, semiconducteurs, supraconducteurs ou multiferroïques. Cette thèse s'intéresse aux deux antiferromagnétiques: oxyde de nickel (NiO) et ferrite de bismuth (BiFeO₃). NiO est un antiferromagnétique type à température ambiante, avec une structure cristalline simple. Une étude basée sur des simulations dynamiques atomiques montre que des courants de spin atteignables peuvent réaliser une mémoire à trois états avec ce composé, avec un temps de réponse de l'ordre de la picoseconde. La simulation explique aussi la formation de structures chirales dans BiFeO₃, un antiferromagnétique également ferroélectrique, présentant un couplage magnétoélectrique entre ses deux ordres. Dans une deuxième partie, les domaines antiferromagnétiques dans BiFeO₃ sont observés expérimentalement par génération de seconde harmonique optique, avec une résolution spatiale de un micron. Les domaines antiferromagnétiques de BiFeO₃ sont ensuite excités par une impulsion laser intense, et la dynamique des deux ordres couplés (antiferromagnétisme et ferroélectricité) est étudiée dans le régime picoseconde. Enfin, l'injection d'impulsions de spins dans dans un antiferromagnétique, tel que BiFeO₃ ou NiO est envisagée en utilisant la génération de courant de spin induite par la désaimantation ultrarapide de couches adjacentes magnétiques par des impulsions laser.