Contrôle, stabilisation et propagation des singularités pour des EDP dispersives

par Hui Zhu

Thèse de doctorat en Mathématiques fondamentales

Sous la direction de Nicolas Burq et de Thomas Alazard.

Soutenue le 27-03-2019

à Paris Saclay , dans le cadre de École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....) , en partenariat avec Laboratoire de mathématiques d'Orsay (1998-....) (laboratoire) et de Université Paris-Sud (établissement opérateur d'inscription) .

Le président du jury était David Lannes.

Le jury était composé de Nicolas Burq, Thomas Alazard, David Lannes, Jean-Marc Delort, Daniel Tataru, Gigliola Staffilani, Frédéric Rousset.

Les rapporteurs étaient Jean-Marc Delort, Daniel Tataru.


  • Résumé

    Dans cette thèse, nous étudions les théories étroitement liées du contrôle, de la stabilisation et de la propagation des singularités, pour des équations aux dérivées partielles dispersives linéaires et non-linéaires. Les résultats principaux proviennent des travaux de l’auteur:[1] Zhu, H., 2016. Stabilization of damped waves on spheres and Zoll surfaces of revolution. ESAIM : Control, Optimisation and Calculus of Variations (ESAIM: COCV), à paraître.[2] Zhu, H., 2017. Control of three dimensional water waves. arXiv preprint arXiv:1712.06130.[3] Zhu, H., 2018. Propagation of singularities for gravity-capillary water waves. arXiv preprint arXiv:1810.09339.Dans [1], nous avons étudié la stabilisation des ondes amorties sur les surfaces de révolution de Zoll. Nous avons donné un exemple où la région d’amortissement est à la limite de la condition du contrôle géométrique, alors que les ondes amorties présentent une décroissance exponentielle uniforme de l’énergie. Cet exemple généralise un résultat de Lebeau. Dans [2], nous avons étudié la contrôlabilité du système des ondes de surface avec tension superficielle. Nous avons démontré, en dimensions arbitraires, la contrôlabilité exacte pour des petites données spatialement périodiques à condition du contrôle géométriques. Ce résultat généralise le travail de Alazard, Baldi et Han-Kwan en dimension deux. Dans [3], nous avons étudié la propagation des singularités pour des ondes de surface avec tension superficielle. Nous avons défini le front d’onde quasi-homogène, généralisant le front d’onde de Hörmander et le front d’onde homogène de Nakamura et démontré des résultats de propagation des fronts d’onde quasi-homogènes par le système des ondes de surface avec tension superficielle. Comme corollaires, nous avons obtenu des effets régularisants locaux et micro-locaux pour les données initiales présentant une décroissance spatiale suffisante.

  • Titre traduit

    Control, Stabilization and Propagation of Singularities for dispersive PDEs


  • Résumé

    In this thesis, we study the closely related theories of control, stabilization and propagation of singularities for some linear and nonlinear dispersive partial differential equations. Main results come from the author’s works:[1] Zhu, H., 2016. Stabilization of damped waves on spheres and Zoll surfaces of revolution. ESAIM: Control, Optimisation and Calculus of Variations (ESAIM: COCV), to appear.[2] Zhu, H., 2017. Control of three dimensional water waves. arXiv preprint arXiv:1712.06130.[3] Zhu, H., 2018. Propagation of singularities for gravity-capillary water waves. arXiv preprint arXiv:1810.09339.In [1] we studied the stabilization of the damped wave equation on Zoll surfaces of revolution. We gave an example where the region of damping is at the borderline of the geometric control condition, yet the damped waves exhibit a uniform exponential decay of energy, generalizing an example of Lebeau.In [2] we studied the controllability of the gravity-capillary water wave equation. Under the geometric control condition, we proved in arbitrary spatial dimension the exact controllability for spatially periodic small data. This generalizes a result of Alazard, Baldi and Han-Kwan for the 2D gravity-capillary water wave equation.In [3] we studied the propagation of singularities for the gravity-capillary water wave equation. We defined the quasi-homogeneous wavefront set, generalizing the wavefront set of H¨ ormander and the homogeneous wavefront set of Nakamura, and proved propagation results for quasi-homogeneous wavefront sets by the gravity-capillary water wave equation. As corollaries, we obtained local and microlocal smoothing effects for gravity-capillary water waves with sufficient spatial decay.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.