Thèse soutenue

Développement de la fabrication additive directe par DED-CLAD : de la poudre à la mise en forme de pièces céramiques denses

FR  |  
EN
Auteur / Autrice : Julie Odinot
Direction : Marc Thomas
Type : Thèse de doctorat
Discipline(s) : Science des Matériaux
Date : Soutenance le 06/12/2019
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences mécaniques et énergétiques, matériaux et géosciences (Gif-sur-Yvette, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Paris-Saclay (2020-....)
Laboratoire : Office national d'études et recherches aérospatiales (France). Département Matériaux et Structures (DMAS)
Jury : Président / Présidente : Tiberiu Minea
Examinateurs / Examinatrices : Ghislaine Bertrand, Thierry Chartier, Marie-Hélène Berger, Didier Boisselier, Johan Petit, Aurélie Julian-Jankowiak
Rapporteurs / Rapporteuses : Ghislaine Bertrand, Thierry Chartier

Résumé

FR  |  
EN

Les techniques d’élaboration de matériaux par fabrication additive (FA) sont en plein essor [1]. Elles permettent de fabriquer des pièces par ajout de matière, en opposition avec les techniques traditionnelles par soustraction de matière (usinage). Il existe à l’heure actuelle de nombreux procédés de FA, adaptés à différentes applications : fusion ou frittage par faisceau d’électrons ou par laser, dépôt de matière direct ou en lit de poudre… Ces procédés ont été bien développés pour des matériaux polymères puis métalliques. Des techniques de FA de matériaux céramiques via des polymères chargés ont également vu le jour, mais celles-ci nécessitent des traitements postérieurs (cycles de déliantage, frittage) [2]. Les matériaux céramiques denses sont encore peu développés en fabrication additive en raison de la fissuration de ces matériaux lors de leur élaboration.La technologie CLAD (Construction Laser Additive Directe), développée par IREPA-LASER, permet la fabrication de pièces par dépôt de matière fondue. Le matériau sous forme de poudre est acheminé via une buse laser et projeté dans le faisceau. Il est ainsi porté à la température de fusion. La fusion successive de plusieurs couches permet l’obtention de la pièce. Cette technique, en plus de n’utiliser que la matière nécessaire (contrairement aux techniques de fabrication par lit de poudre), permet la fabrication de pièces de grandes dimensions, voire en multi-matériaux. Cette technologie est, pour l’heure, dédiée aux matériaux métalliques.L’objet de ce sujet de thèse, en partenariat entre l’ONERA et IREPA-LASER dans le cadre du projet inter-Carnot CLADIATOR, est d’étudier la FA de matériaux céramiques denses par le procédé CLAD®. Cette étude porte ainsi sur le procédé dans son ensemble, des matières premières aux pièces finales, en passant par l’adaptation du moyen de fabrication aux contraintes spécifiques liées aux matériaux céramiques.Les matières premières exigent d’être adaptées au procédé ; les deux principales difficultés étant la coulabilité de la poudre, nécessaire pour son acheminement dans la buse, et l’absorption de la source laser par le matériau pour sa montée en température. En parallèle de la caractérisation des matières premières (granulométrie, MEB, dilatométrie, DRX…), des essais d’atomisation par séchage seront effectués pour optimiser la coulabilité des poudres [3]. Ce procédé d’atomisation permet d’obtenir des poudres sous forme d’agglomérats sphériques de plus petites particules ; leur forme est régulière, mais elles restent poreuses. L’ajout de dopants sera étudié pour améliorer l’absorption du signal, en adéquation avec une éventuelle adaptation du laser. Les matériaux considérés sont l’alumine, la zircone ainsi que des compositions eutectiques d’alumine-zircone.La principale difficulté de ce sujet réside dans la sensibilité à la fissuration des matériaux céramiques, en raison du fort gradient thermique induit par le chauffage local du laser et le refroidissement de la pièce. Des solutions de chauffage de la pièce et/ou du matériau avant et après le dépôt seront étudiées pour limiter les contraintes thermomécaniques subies par le matériau [3,4].La machine devra également être modifiée pour supporter les températures élevées nécessaires à l’élaboration de céramiques (températures de fusion et dispositif de pré/post chauffage). L’étude et l’optimisation de ces solutions seront effectuées à l’aide de modélisations multi physiques sur le logiciel COMSOL en collaboration avec IREPA-LASER.Enfin, l’influence du procédé d’élaboration sur l’état des pièces réalisées sera étudiée grâce à des caractérisations microscopiques, mécaniques, thermiques…