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Introduction

The relationship between human capital accumulation and economic growth has
sparked a huge literature in theoretical research. In spite of the fact that the
literature on the different determinants of economic growth has shown powerful
results, this dissertation focuses only on investment in education as the main source

of human capital accumulation and consequently long-run economic growth.

According to Solow (1956), the contribution of the total factor productivity
(TFP) is around 80 percent for the US economic growth. Solow explains long-run
economic growth by considering capital accumulation, population growth and in-
creases in total productivity, commonly referred to as technological progress. The
Solow model uses the form of Cobb-Douglas production function: Y; = Ath’Nf ,
where A, is exogenous technical progress; K;, N; are the number of machines and
the number of workers, respectively. In this equation, the machines have the same
quality, also the workers have the same skill. However, the restrictive assumptions
of the contribution of Solow are the constant growth rate of savings and exoge-
nous technological change. Furthermore, the barrier to long-run economic growth
in the Solow model is the diminishing returns. Therefore, for long-run economic
growth to take place, there has to be a way to overcome the diminishing returns

so that the productive inputs accumulate over time.

Years after the study of Solow (1956), many works continue to introduce shocks
on the technological progress and study their impact on the economy (see e.g.,
Brock & Mirman, 1973; Kydland & Prescott, 1982; King, Plosser, & Rebelo,
1988; King, 1999). For example, King et al. (1988) state the implications of capital



2 INTRODUCTION

accumulation and economic fluctuations initiated by impulses to technology. They
show that substantial persistence in technological shocks is required if the economy
is to spread through periods of economic activity that persistently diverge from a

deterministic tendency.

Nevertheless, if the technological improvements over time still occur exoge-
nously, then this way is quite a restriction and its reexamination has given rise to
a new approach, i.e., the notion of effective inputs (physical and human capital).

This also opens the door to different directions of endogenous growth theory.

In another circumstance, Mankiw, Romer, and Weil (1992) rediscover the
seminal article of Solow (1956) and show that the exclusion of human capital ac-
cumulation from the model of Solow may potentially explain why the estimated
impacts of savings and population growth on income per capita are two large. Af-
ter introducing human capital accumulation as an additional explanatory variable
into their cross-country regressions, they show that human capital is in fact corre-
lated with the rate of savings and population growth. Particularly, they examine
that the number of 80 percent for economic growth of the Solow model is correct

if human capital formation is taken to account.

Inspired by Solow (1956) and Mankiw et al. (1992), among others, this the-
sis begins to introduce the notion of effective inputs (physical and labor). Let
k, h respectively denote by the average quality of the machines and the average
skill of labors then the output should depend on the effective inputs. It turns
out that the production output of Solow’s model may turn out to be the new
form: Y; = A(kK;)*(heN;)? = [A®R)]KON/. This opens the door to two ways
of endogenous growth. The first is to introduce technology as factor enhancing
the capital productivity (Romer, 1990). The second is to introduce education
and/or training to improve the productivity of labor and human capital (Romer,
1986; Lucas, 1988; Lucas, 2015; Krueger & Lindahl, 2001). These authors call for
more attention to raising labor productivity via enhancing human capital accu-

mulation. For instance, Lucas (1988) proves that human capital accumulation is
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determinant for economic growth with externalities. Interestingly, Lucas himself,
Lucas (2015) calls for the need of placing human capital formation at the center of
economic growth!, instead of the external source. Even though investment in both
new technology and human capital will provoke endogenous economic growth, the
dissertation, however, studies only on education investment in generating human

capital accumulation and ultimately economic growth.

Besides, this thesis also considers the two main following aspects: On the one
hand, it places at the center of the role of the human capital accumulation in
generating economic growth without an external source, such as new technology
(Lucas, 2015). This is also in line with the work of Le Van, Luong, Nguyen, and
Nguyen (2010), who suggest that a country needs to devote capitals to investment
in education and training for enhancing human capital stock in the last stage of
the economic development process. They explain the emergence of various devel-
opment stages consistent with unbounded growth. On the other hand, it considers
the impact of the interaction between physical capital and human capital on eco-
nomic growth (McGrattan & Prescott, 2009; Galor & Moav, 2004; Schoellman,
2012; Manuelli & Seshadri, 2014; Manuelli, 2015).

Human capital, according to Smith (1776) and Becker (1964), accounts for
labor productivity and depends on the worker’s state of health and level of educa-
tion. In equilibrium, when the labor market is perfect, human capital turns out to
be equivalent to the discounted value of life-span labor incomes. Since the seminal
Lucas’ contribution (1988), the accumulation of human capital is also recognized

as a crucial source of economic growth.

Investments in human capital (health and education) are either private or
public choices. While the household can decide the share of income, altruistic
investment and leisure devoted to schooling, nutrition, sports or medicines, a
government can also implement on education policies and/or improve the health

system via enhancing the accumulation of human capital. In this dissertation,

IThis is the key motivation for the dissertation.
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the first two chapters study the role of private investment in education in the
accumulation of human capital and consequently economic growth. The third
chapter considers this investment as a public choice, i.e., through government’s
expenditure on education, funded by taxation. The final chapter addresses an
important technical issue, namely the non-concave technology, by considering a

growth model with only human capital. The dissertation is constructed as follows.

The first chapter is co-authored with Cuong LE VAN, Thai HA-HUY, and Cao-
Tung PHAM. This chapter revisits the theoretical framework of endogenous eco-
nomic growth by considering models where human capital accumulation is placed
at the center of the process of economic growth. Our work is in accordance with
Lucas (2015) who calls for the need to avoid considering “too large a role to exoge-
nous technological change” (p. 86), while highlighting that “the contribution of
human capital accumulation to economic growth deserves a production function
of its own” (p. 87). The novelty of this chapter is that we build a bridge between
Ramsey (1928) and Lucas (1988, 2015).

In the second chapter, co-written with Cao-Tung PHAM, we study the dy-
namics of physical and human capital accumulation in a two-period overlapping
generations (OLG) model with heterogeneous agents. In this model, parents are
altruistic toward their children and invest in their offsprings’ human capital. We
suppose that there are two communities with distinct levels of altruism and pa-
tience. The former represents the parents’ preference for investment in human
capital, while the latter introduces their preference for investment in physical cap-
ital. In this study, we prove the existence and uniqueness of the balanced growth
path (BGP) of the economy and characterize the equilibria around this BGP. We
also study inequality in terms of labor income and consumption, by considering

the GINI coefficient.

The third chapter studies the importance of the public sector to highlight the
effect of public spending on the formation of human capital and economic growth

in the framework of an OLG economy. In this sense, investment in education is
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financed by the government’s expenditure through taxation on labor income and
capital returns. The accumulation of human and physical capital follows a solution
to a dynamic general equilibrium problem. The existence and uniqueness of the
BGP are studied. The impact of taxation policy on long-run economic growth
is studied both analytically and numerically. The intertemporal social welfare

problem is also considered.

In the last chapter, co-authored with Cuong LE VAN and Thai HA-HUY, we
consider an optimal growth model with non-concave technology to shed light on
the issue of sustained growth. The study first establishes a general mathemati-
cal model of non-concave technology. It then follows with an application for an
economy, where the instantaneous utility function is not concave in human capital
(no physical capital). We demonstrate the existence of the poverty trap and the
middle-income trap, and specify the conditions under which sustained growth is

possible.

1 Review of literature on human capital and eco-

nomic growth

In “The Wealth of Nations”, Smith (1776) notes that “The acquisition of ...
talents during ... education, study, or apprenticeship, costs a real expense, which
is capital in [a] person. Those talents [are] part of his fortune [and] likewise
that of society” (p. 32). Adam Smith also points out that one of the most
important source of human capital is experience gained thanks to specialization
via the division of labor. Moreover, another source is education, either in the form

of formal schooling or apprenticeship.

The role of human capital was re-awakened in the late 50s and early 60s of
the twentieth century primarily. Horvat (1958) introduces the concept of human
capital and the difference between investment in physical capital and the “hu-

man factor” (p. 748). He also indicates that a human being depends on four
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basic elements: “personal consumption, health, knowledge, and economic and po-
litical organization” (p. 751-752). In addition, the incorporation of the human
being into the concept of capital is explained by Fisher (1906), Kiker (1966), and
Spengler (1977). They also assert that the investment in human education raises

productivity and thus adds to national wealth.

To explore the different mechanisms for investment in education via enhanc-
ing human capital accumulation and consequently economic growth, I return to
mention the workhorse model of growth theory that is the model of Solow (1956).
Despite the valuable contributions, the main restrictive assumptions that underlie
the model of Solow are the diminishing returns in factors of production and a con-
stant growth rate of savings. This model predicts that because of the diminishing
returns, there may be no long-run economic growth. However, this growth will
take place if there exist technological improvements over time leading overcome
the diminishing returns to the producible inputs, i.e., the notion of effective labor

units coming from labor-augmenting technical change.

Although the limitation of diminishing returns is eliminated by the act of tech-
nical improvements, the drawback of the study of Solow (1956) that technological
progress still occurs exogenously. This quite a restrictive assumption and its re-
consideration has given rise to a new literature, known as endogenous growth
theory with two main directions. On the one hand, capital productivity is gener-
ated through the advancement of new technology. In this sense, human capital is
feature identified as a key to adoption of new technology. The technological dif-
fusion is connected to the accumulation of human capital due to human capital is
crucial for the effective use of new technology. For instance, Benhabib and Spiegel
(1994) approach (that is built on Nelson and Phelps (1966)) according to which
human capital does not enter into production process directly but it promotes
the adoption and advancement of new technology and ultimately determinant of
capital productivity. Especially, Romer (1990) asserts that human capital displays
a dual role: as an input in the final production, and also as the key element of

technical progress in the formulation of development of new product varieties, as



REVIEW OF LITERATURE ON HUMAN CAPITAL AND ECONOMIC GROWTH 7

well as a determinant of long-run growth. On the other hand, the labor produc-
tivity is improved through learning-by-doing (see Arrow, 1962; Romer, 1986), and
education investment via generating human capital accumulation (as shown in
Lucas, 1988; Lucas, 2015). Nevertheless, the dissertation only considers the latter
form, with the aim to highlight the central role of human capital accumulation

and consequently economic growth.

The benchmark of endogenous growth models is that the process of technologi-
cal change or the accumulation of human capital is not constant and predetermined
but is derived from model’s elements. The endogenous growth approach, therefore,
handle the drawback of the study of Solow (1956) and nco-classical models where
technology is assumed to grow at an exogenously constant rate. In other words,
the restrictive assumptions of the work of Solow (1956) and neo-classical models
will be relaxed in models of endogenous growth where all variables of production

progress are expressed in terms of effective inputs (physical and human capital).

In addition, another study also helps to open the door of different channels of
the endogenous growth theory that is the skeletal model of Mankiw et al. (1992).
In their work (that is built on the model of Solow (1956)), according to which
human capital enters into the production process. Following this setting, Mankiw
et al. (1992) show that if the main source of economic growth is again exogenous
technological change, then the results are qualitatively similar to the model with-
out human capital. Therefore, the only way that human capital formation may
act directly as the main engine of sustainable economic growth is to help overcome
the diminishing returns, which is achieved in the context of endogenous growth

models.

As mentioned above, the endogenous growth approach treats human capital
as an input in a manner symmetric to physical capital in production process.
Furthermore, the accumulation of human capital has to do with the two ways
of formation, as follows: the process of learning-by-doing and the investment in

education. The former is known as a way to reach a positive constant growth
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rate because the externality from human capital in production overcomes the
diminishing returns. In some sense, an individual’s higher degree of human capital
contributes to a rise in labor productivity for all workers in the economy (Lucas,
1988). Nonetheless, this dissertation studies only on the latter formation, where
the investment in education is one of the most popular formulations of human

capital accumulation within the endogenous growth models (Lucas, 2015).

Indeed, one of the most important channels for forming human capital is educa-
tion (Schultz, 1960; Temple, 1999). For example, Schultz (1960) identifies human
capital narrowly with investment in education and place forward the proposition
that “important increases in national income are a consequence of additions to
the stock of this form of [human]| capital” (p. 571). Besides, according to Becker
(1964), additional sources of the accumulation of human capital include both ed-
ucation? and other investments to improve “emotional and physical health”. The
numerous studies also support the view that human capital accumulation is gen-
erated by education investment (Barro, 1991; Barro, 2000; Mankiw et al., 1992;
Lucas, 1988; Lucas, 2015; Krueger & Lindahl, 2001).

Consequently, the investment in education and the accumulation of human
capital may help to eliminate the barrier of the diminishing returns and tend to
a positive constant growth even in the absence of technical progress in the short
run. However, in order to achieve a positive long-run growth without technological
change, the production process has to do continuous improvement through the

adoption of effective inputs.

Research on the role of human capital and its impacts on economic growth
really sheds light at the skeletal article of Lucas (1988). According to Lucas’s
contribution, human capital is considered as the reproducible nature of capital
and the attribute of externalities generated by human capital accumulation. In
particular, knowledge would have an effect on the productivity not only of the

individuals accumulating knowledge but also of their co-workers. Thenceforth,

2In my dissertation, I concentrate only on the education investment in generating the human
capital accumulation, and ultimately economic growth.
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education investment and human capital accumulation are placed at the center
of the economic growth process (Barro, 1991; Barro, 2000; Mankiw et al., 1992;
Krueger & Lindahl, 2001). More recently, Lucas (2015) again emphasizes the cen-
tral role of human capital and its impact on economic growth, instead of external

source, like new technology.

In fact, the main inspiration for the chapters of my dissertation is derived from
the seminal articles of Lucas (1988, 2015). However, I sidestep the issue of exter-
nalities but highlight the impact of human capital formation on economic growth
through the measurement of individuals’ labor productivity. Furthermore, in this
dissertation, I seck to understand the different channels of funding for investment
in education in generating human capital accumulation that are restricted to two
basic aspects as follows. First, it depends on private decisions, which are house-
holds’ savings and leisure devoted to investment in education process (Lucas, 1988;
Caballé & Santos, 1993; Galor & Moav, 2004). In addition, altruistic investment
also determines the children’s education in generating human capital accumulation
(Barro, 1974; Abel & Warshawsky, 1988; Michel & Vidal, 2000; Galor & Moav,
2004). Second, investment in education as apublic choice, i.e., through govern-
ment’s spending on public education coming from the tax revenues (Glomm &

Ravikumar, 1992; Bosi & Nourry, 2007).

As for the aspect of household investment decision, it returns to the expla-
nation by the early neoclassical model of Solow (1956). Although the drawback
of the Solow’s model is the case of exogenous technological progress, the contri-
bution of Solow’s model with the importance of savings plays a non-trivial role.
Moreover, many current studies continue to focus on the context of technological
improvements over time lead to overcoming diminishing returns as labor input

becomes more productive.

The relationship between the accumulation of human capital and the rate of
savings is also considered by Mankiw et al. (1992). They revisit the seminal article

of Solow (1956) by considering a large set of data of countries. They affirm that
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savings and population growth rates affect income in ways that Solow predicted.
Nevertheless, the prediction of the Solow model in the context of testing of Mankiw
et al. (1992) is roughly correct with more than half of the cross-country variation
in income per capita. It means that the Solow model predicts the ways of effects
of savings and population growth (the trend of growth), but it does not correctly
predict the magnitudes. After that Mankiw et al. (1992) introduce a proxy for
the accumulation of human capital as an additional explanatory variable into their
cross-country regressions. They then find two main results. First, human capital
accumulation is in fact correlated with savings and population growth. Second,
their results (account for 80 percent of the cross-country variation in income per
capita) are equivalent to the prediction of the study of Solow if human capital

accumulation is taken into account.

Arguably, Mankiw et al. (1992), using the production function with three
input factors (physical capital, human capital/the stock of knowledge and labor),
develop the model of Solow (1956), and give a sound of departure from which
endogenous growth models with the role of the share of savings and human capital

accumulation are performed.

As a matter of fact that household’s savings is a crucial source of funding
for investment in education in generating human capital formation. However,
the rate of savings is not necessary to ensure constant. It can be determined
endogenously through the optimizing behavior of households, which is the main
contribution of Ramsey (1928)3, Cass (1965) and Koopmans (1965). In other
words, an endogenous rate of savings comes from the context that consumers
maximize lifetime utility from consumption taking into account preferences for

consumption over time and trade-off between present and future consumption.

I now need to remind myself again of the siminal work of Lucas (1988), which

shows that human capital accumulation is determinant for economic growth by

3In chapter one, we bridge the model of Ramsey into the models of Lucas. This study will
divide individuals savings into two parts: one is devoted to physical capital and the rest is used
for investing in human capital through education spending.
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considering a constant return to scale production function with external effects
of human capital in output production®. Lucas also demonstrates that the rate
of economic growth is directly proportional to the investment in education and
learning time devoted to the accumulation of human capital and the efficiency of
human capital formation technology®. Therefore, the evolution of human capital
may rely on both learning time and the share of savings devoted to investment in

education process.

As mentioned at the begining of the introduction part, the interaction between
physical and human capital is also studied® in this thesis. The interplay between
two types of capital may lead to a large increase in productivity and consequently
income (Schultz, 1960; Weisborod, 1961). In addition, Schultz (1962) argues that
the investment in human beings and the formation of capital will change the usual
measures of savings. That leads to a change in the structure of earnings. Moreover,
the correlation among earnings, the returns on capital and aggregate investment
is examined by Becker (1962) and Becker and Chiswick (1966). In particular,
the contribution of Mankiw et al. (1992) also explain that the variation in cross-
country income per capita can be explained by their differences in the levels of

savings, education, and population growth.

This dissertation also considers the impact of the interaction between physical
and human capital on economic growth in the process of the economic develop-
ment. This is in accordance with the works of McGrattan and Prescott (2009),
Schoellman (2012), Manuelli and Seshadri (2014), and Galor and Moav (2004).
These authors use different ways to prove that the production factors have more

important impacts on economic growth than external sources, like technology.

4The production output is transformed in the discrete-time version: y; = Ak} (7.hy)1 =+ (ha)?,
where k; and h; are physical and human capital, respectively. The fraction of non-leisure time
7 is devoted to current production (as opposed to formal learning time), and h, is the average
human capital in economy.

5The production function of human capital accumulation of Lucas’s model is that h= 0(1 —
T)h, where 0 denotes the efficiency parameter. If we take dlog(h)/dt = (1 — 7) then sustained
growth arises because there are constant returns in production of human capital.

SBenhabib and Spiegel (1994), McGrattan and Prescott (2009), Schoellman (2012), Manuelli
and Seshadri (2014), and Lucas (2015) show that the production inputs have more important
impact on economic growth than the external effects.
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McGrattan and Prescott (2009), using the “technology capital” in production,
conclude that “there are gains to openness even for countries that do little or no
investment in technology capital” (p. 2474). Schoellman (2012), in the analysis
of schooling quality, suggests that “differences in education quality are roughly
as important as differences in year of schooling in accounting for the difference
in output per worker across countries” (p. 411). Manuelli and Seshadri (2014),
using data on schooling and age-earnings profile, find that differences in quality of
human capital rather than differences in levels of the total factor of productivity,

better explain differences between countries in average income.

These above authors also suggest that the input factors (physical and human
capital) may compete with each other in order to be the prime engine of economic
growth. In particular, Galor and Moav (2004) show that at some stages of eco-
nomic development process, human capital formation can surpass physical capital

accumulation as the main source of economic growth’.

Overall, the thesis literature begins with the workhorse model of Solow (1956)
that has afforded a convenient point of starting from which to investigate the
contribution of human capital in the context of endogenous growth. Next, this
literature offers a more detailed picture of mechanics that allow for human capital
enter explicitly as an input in production process. This has become known as
the human capital-estended Solow (1956) model as rediscovered by Mankiw et al.
(1992). This literature then introduces the benchmark of the seminal model of
Lucas (1988) to highlight one of the most popular formations of human capital
within the endogenous growth process. Finally, the dissertation literature arrives
at a unified picture where human capital can be turned into an important instru-
ment, and placed at the center of the role of sustained (endogenous) growth (as

shown in Lucas, 2015).

TGalor and Moav (2004) consider a kind of asymmetry of investment opportunity in the
physical and human capital. This asymmetry is characterized by the assumption that “human
capital is inherently embodied in humans and the existence of physiological constraints sub-
jects its accumulation at the individual level to diminishing returns” (p. 1002), preventing its
accumulation from being “widely spread among individuals in society” (p. 1004).
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2 Human capital accumulation: when Ramsey meets

Lucas

Among research that investigate the engine and mechanisms of economic growth,
as well as the causes of cross-country income differences, the model of Solow (1956)
has become a reference framework. Solow (1957) uses the theoretical model to
develop an empirical growth accounting study in which it is estimated that 87.5%
of the growth of per capita output is due to residual sources, which are usually
referred to as total factor productivity. Only 12.5% of the growth is accounted for
by the production factors.

Reconsidering seriously the work of Solow (1956, 1957), Mankiw et al. (1992)
conclude that the predictions of the Solow model are consistent with the evidence.
However, though savings and population growth affect the income in the directions
predicted by Solow, only a little more half of the cross-country variation in income
per capita can be explained by these two variables alone. They play too large a

role in accounting for growth.

In order to explain the magnitude of economic growth with more precision,
Mankiw et al. (1992) consider a Solow model including human capital beside
physical capital. Using a multi-country data set constructed for the period 1960-
1985, they find that the augmented Solow model provides a better description
of the cross-country data. Moreover, they argue that the “exclusion of human
capital” (p. 408) is the reason for which the impact of the exogenous variables on

economic growth in the original Solow model is too large.

Similarly to Solow, the work of Mankiw, Romer, and Weil (1992) consider
exogenous rates of saving for physical capital and for human capital. One of
the purposes of our paper is re-consider the works of these authors, by assuming
endogenous rates of saving for two types of capital, in a context of the Ramsey

(1928) and Lucas (1988) models with discrete time version.
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In chapter one, we first introduce simple two-period models to highlight the
role of human capital with or without physical capital. We then extend and
enrich these models, in a gradual manner, to account for a more complicated
setting where time and the interaction between human and physical capital play
important roles in generating economic growth. In other words, the goal is to walk

the audience from Ramsey (1928) to Lucas (1988, 2015).

In the first two-period model without physical capital, the formation of human
capital depends on the initial human capital stock and the total saving of the
first period. In this simplest setting, we find that given sufficiently high total
factor of production (TFP) and houscholds’ level of the initial human capital, as
well as efficiency in human capital formation technology, economic growth can
be sustained. This result is also in line with Lucas (2015) who argues that “any
model of sustained growth must assume that we will never run out of ideas” (p.
86).

Another purpose of our paper is discussing interactions between physical cap-
ital and human capital in different stages of the process of economic growth. For
instance, McGrattan and Prescott (2009), Schoellman (2012), and Manuelli and
Seshadri (2014) show that production factors like physical capital and human
capital play an more important role in enhancing economic growth than external
sources like technology. In this context, these factors will compete with each other

in order to be the prime engine of economic growth.

For this reason, in the second model, we introduce physical capital and allow
for an interaction between the two types of capital. The introduction of physical
capital highlights the importance of human capital in economic growth. In partic-
ular, we find that if the formation of human capital is sufficiently efficient, human
capital can surpass physical capital as the main source of economic growth. This
conclusion is in accordance with the study done by Galor and Moav (2004) in a

more complicated setting.®

8Galor and Moav (2004) considers a model with market imperfections caused by asymmetric
educational investment opportunities between individuals to show that at some later stages of
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From the third model, we relax the two-period assumption and allow time to
run to infinity. The third model is a direct extension of the first one in infinite
time, which is essentially Ramsey (1928) with physical capital replaced by human
capital. The fourth model is a simplified version of Lucas (1988) in the sense
that we restrict our attention to only human capital with depreciation but no
externalities. The conclusions from these two models are not too different from
the previous ones. In the fifth model, we again consider the interaction between
the two types of capital (human and physical capital) without the accumulation
of human capital. In this extended version of Ramsey (1928), we are able to
prove the existence of the optimal sequences of physical and human capital, and
their convergence to the steady states, which are also computed. Moreover, the
steady state values of both types of capital increase with respect to the efficiency

parameter of human capital formation technology.

The phrase “Ramsey meets Lucas” is justified in our last two models. In
particular, the sixth model extends the fourth one in two aspects. First, it brings
back physical capital but maintains that all savings go to investment in physical
capital. Second, it introduces time into production and learning process. This
model can be viewed as the discrete-time analog of Caballé and Santos (1993), but
with depreciation in human capital. We recover their main results regarding the
existence and uniqueness of a Balanced Growth Path (BGP) when the efficiency
of human capital formation is sufficiently high. Finally, the grande finale enriches
the sixth model by not only letting households determine the allocation of savings
between investment in human and physical capital, but also allowing for non-
linearity in the accumulation of human capital production function with respect
to both time and the share of savings devoted to investment in human capital. In
this much more complicated setting, we manange to establish the existence and
uniqueness of a BGP. Another interesting point of the last model is that if the

time factor is set to be a constant then this model becomes the special case of

development when the rate of return on investment in human capital is high enough, human
capital accumulation can challenge physical capital accumulation as prime factor that fuels
economic growth.
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social welfare problem, which is discovered, in the third chapter.

To sum up, the novelty of this chapter is that we bridge the gap between
Ramsey (1928) and Lucas (1988, 2015). By gradually adding different layers of
complexity to a model of only physical capital, we arrive at a more unified pic-
ture of different sources of economic growth, allowing for the interaction between

physical and human capital where time plays a non-trivial role.

Although this chapter has reached its aims, there is an unavoidable limitation.
We have placed the central role of human capital accumulation on economic growth
without the technological progress increasing the total factor productivity (TFP
is a constant). Therefore, to generalize a fulfilled picture of economic growth, the

chapter should have involved in the role of technological change.

3 From physical to human capital accumulation: Het-
erogenous intergenerational altruism and inequal-

ity

In order to construct the second chapter, we continue to follow the study of Lucas
(1988), who explains that the formation of human capital accumulation comes
from both “a private and a social activity”® (Michel & Vidal, 2000, p. 276). How-
ever, his view of the social activity is restricted by a population or a community or
a country. Our study complements Lucas (1988) in allowing for different cohabit-
ing communities in the same economy. In particular, in our model, one community
differs from the other by the patience coefficient for their investment in physical
capital and the degree of altruism for spending on their offspring’s education. In
our OLG economy, the future generation’s stock of human capital is formed by the
current generation’s level of human capital and altruistic investment. In this sense,

through the process of education, young people take into account their ability and

9The formation of human capital is a social activity, involving groups of people in a way that
has no counterpart in physical capital accumulation.
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altruistic investment to learn and develop skill and knowledge.

As mentioned by De la Croix (2001) that “each generation has more resources
at its commands on reaching adulthood” (p. 1415). These additional sources
come from both productivity connected to the accumulation of physical capital
and the formation of human capital as offsprings inherit an altruistic investment,
is devoted to children’s education. The second chapter considers a kind of forward
altruism and its impact on human capital accumulation. We hypothesize the
utility function of individuals depend on their own consumption and spending on
children’s education. Indeed, individuals may extract pleasure from altruism via
“joy of giving or warm glove” (Barro, 1974; Abel & Warshawsky, 1988; Michel &
Vidal, 2000; Galor & Moav, 2004).

As is well-known, the Ramsey model in a certain way is equivalent to an OLG
model with intergenerational altruism in the sense of Barro (1974). It is interesting
to study other forms of intergenerational altruism in presence of human capital
accumulation. The second chapter therefore considers the impact of paternalistic
altruism in the sense of Abel and Warshawsky (1988) in a heterogeneous economy
where the agents differ in their altruism degree, which is manifest in their manner

of investment in the education of their descendant.

Like similar framework included in the previous chapter, the second chapter
focuses also on the effect of the interaction between physical capital and human
capital on economic growth. In an altruistic economy, altruism also affects in-
dividuals’ choices, and thus entails the different impacts on the formation and
properties of physical and human capital accumulation, and consequently hetero-
geneity among individuals coming from the interplay between the two kinds of

capital (Galor & Moav, 2004; Turnovsky & Mitra, 2013).

In the first chapter, we have examined the role of human capital accumulation,
and the impact of the interaction between physical and human capital on economic
growth in an economy of homogeneous agents. In this chapter, we introduce, in the

simplest manner some degree of heterogeneity among indidivuals in an overlapping
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generations (OLG) economy by hypothesizing that there exists two communities
differing only in the degree of patience, and the degree of altruisim towards the
next generation. This setup helps us understand the role of altruistic investment
on the children’s accumulation of human capital and consequently on economic

growth and inequality.

In fact, the way we introduce heterogeneity can be best compared to that of
the Galor and Moav (2004)!°. In particular, while these authors hypothesize that
children themeselves also make a decision on how much to investment in their own
education, we assume that parents are the only decision-makers in children’s ed-
ucation. The difference arises from our intention to focus on heterogeneity in the
parents’ generation, while Galor and Moav (2004) focus on the offsprings’ gener-
ation. Overall, our study differs from Galor and Moav (2004) in two perpectives:
First, an additional source of heterogeneity hypothesis is the degree of altruism.
Second, an altruistic investment must be positive and totally devoted to finance

their offspring’s spending on education.

The setup of our model is directly inspired by Michel and Vidal (2000). Al-
though our modeling on heterogeneity is much simpler with no cross-community
externalities, we allow for non-linearity on the accumulation of human capital
with respect to the share of savings devoted to education. Essentially, this implies
decreasing marginal return on investment in education on human capital, which
we believe is a more reasonable assumption to make. Furthermore, we assume
that human capital can also depreciate to reflect the reality that knowledge could

become obsolete.

In this setting, we prove the existence and uniqueness of a BGP. We find that
in one community, the less altruistic the parents, the more they invest in physical

capital. For each community, a coefficient (named the coefficient of relative pref-

10The theoretical setup of the second chapter is motivated by Galor and Moav (2004). Galor’s
contribution is based on the heterogeneity hypothesis of the asymmetric investment opportunity
in the physical and human capital. They also assume that altruistic investment is allocated
between an immediate finance of their children’s spending on education and savings for the
future wealth of their children.
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erence in the paper) that is decreasing in the degree of altruism but increasing in
the patience parameter captures the relative preference between human and phys-
ical capital. More specifically, the lower this coefficient, the higher the relative
preference towards investment in human capital. At the steady state, the lower
the coefficient of relative preference a community (the rich one) has, the higher

its ratio of human capital relative to the other community (the poor one).

On the issue of inequality, we find that it is important for this economy not only
to consider income inequality but also inequality in terms of consumption levels.
We then describe the impact of this inequality of consumption on the interaction
between human and physical capital accumulation. The understanding of the
dynamics of inequality in the context of our model is limited since we have not

been able to account for the heterogeneity in initial human and physical capital.

Even though our study has the notable results, it still has the following limi-
tations. On the one hand, we can say little about the impact of the fundamental
parameters of the model on the growth rate of the economy. On the other hand,
our model does not take into account the mobility of households between commu-

nities.

4 Public investment in education, tax policy and en-

dogenous economic growth

The first two chapters of my dissertation have explained the role of private invest-
ment (household investment decisions) in education in promoting the accumulation
of human capital and economic growth. The third chapter considers this invest-
ment as a public choice, i.e., through government spending on education, financed

by tax revenues.

In fact, the role of government is essential to public education and social bene-
fits. According to Eckwert and Zilcha (2012), social benefits from public spending

on education encompass the direct benefits of higher salary enjoyed by individuals,
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as well as the indirect gains that economy derives from the human capital accu-
mulation produced via the education system. This social benefit, however, comes
with social costs. The social costs of acquiring skills include expenses incurred by
the society that performs the education and/or training (Viaene & Zilcha, 2013).
Furthermore, Garrat and Marshall (1994), Fernandez and Rogerson (1995), and
Gradstein and Justman (1995) assert that one of the contributors to the public
education budget is workers whose incomes are taxed to finance all parts of public

spending on education.

The third chapter is in the spirit of Bosi and Nourry (2007), who examine the
effect of public spendings on economic growth. In addition, our study is directly
related to the works by Garrat and Marshall (1994), Fernandez and Rogerson
(1995), and Gradstein and Justman (1995). The main conclusion of these authors
is that individuals who have more education would earn more income in the future
and hence pay more income taxes. They also emphasize the role of the govern-
ment, through investment in education, on reducing inequality and enhancing the

benefits of social welfare.

The main motivation of the third chapter is the work of Glomm and Raviku-
mar (1992), who study human capital investment through formal schooling in an
OLG economy with heterogeneous agents and twofold human capital accumula-
tion formation, i.e., public and private investment in education. This chapter
considers only the former of human capital accumulation through the govern-
ment’s investment in education, with the aim to highlight the importance of the
role of taxation in the formation of human capital accumulation and ultimately

on economic growth.

In order to understand the impact of taxation policies on economic growth
in separation from the decisions of the households, I assume that the households
only invest in physical capital. In addition, the government taxes both wage (labor
income) and capital return (physical capital) on the whole population (both young

and old). The government then uses tax revenues to finance all parts of public
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education.

This chapter is interesting in two aspects. Firstly, it allows having a general
equilibrium perspective. Secondly, it permits to study the dynamics associated
with the interaction between the accumulation of physical and human capital. In
particular, two effects of taxation are noteworthy. On the one hand, it reduces
the households’ total income, hence lowering their investment in physical capital,
which has a negative impact on production and output. On the other hand, it
raises public funding, raising the government’s expenditure on public education,
raising human capital accumulation and ultimately enhancing the labor produc-
tivity of the future generations. Consequently, the net impact on economic growth

is ambiguous.

This study also provides notable results regarding the BGP of the economy.
The existence and uniqueness of a BGP are established. The growth rate on
the BGP is also determined as a function of taxes. Based on these results, the
impact of taxes on the long-run growth rate is analysed under several taxation
policies. In addition, the issue of intertemporal social welfare is also explored. In
particular, given a discount rate for all future generations’ utilities, the existence
and uniqueness of a BGP, as well as the long-run growth rate of the economy are

again characterized.

The limitation of this chapter is that we consider only the government’s in-
vestment in public education in an OLG economy with homogencous agents. In
the near future, we will investigate this investment in both private and public
choice in generating human capital accumulation and economic growth. We will

also study the trade-off between the two options for the investment in education.
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5 Optimal growth with non-concave technology: Ap-

plication to human capital model

The standard convexity assumption leads to extensive use of the convex structure
in different domains of economic sciences. In fact, the large body of the literature
on dynamic programming, especially on optimal growth rely on key assumptions

of convexity, as follows.

Ramsey (1928), Cass (1965), and Koopmans (1965) show that the optimal in-
tertemporal growth tends to a unique steady state that is based on the convexity
technology. Benveniste and Scheinkman (1979) introduce the concave function to
the initial capital stock. Becker (1965), Ben-Porath (1967), and Mincer (1974),
using the concavity characteristic, study the investment in skills, including school-
ing (pre-labor investment) and training (on-the-job investment). Lucas (1988) and
Azariadis and Drazen (1990) emphasize the externalities of human capital in the
economic process. Benhabib and Spiegel (1994) and Foster and Rosenzweig (1995)
illustrate not only the role of human being in the productivity of existing tasks
but also the capacity of workers to cope with change, disruptions and especially
new technologies and technological adoption. Furthermore, the technique of con-
vex analysis is also discovered in a well-developed branch of applied mathematics

wherein an excellent treatment can be found by Stokey (1989).

Nevertheless, imposing certain convexity assumptions could be restrictive. This
calls for a need to develop a theoretical framework that tackles the class of prob-
lems where certain assumptions of convexity are violated. Ours is not the first

attempt in this direction. Previous works include.

Non-concave technology is used for both one-sector and multi-sector models.
Dechert and Nishimura (1983), focusing on one-sector of optimal programs, ex-
amine that the optimal paths are monotonic. Amir (1996), using multi-sector
of non-classical optimal growth and the characteristic of super-modularity, refers

that the optimal paths are monotonicity.
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In particular, Dechert and Nishimura (1983) consider a convex-concave model
with a S—shape production function. They prove that the optimal capital stock
is monotonic, and give a proof of the existence of a poverty trap. In addition,
the study of Dechert and Nishimura (1983) is revisited by Le Kama, Ha-Huy, Le
Van, and Schubert (2014), who consider a convex-concave production function

and show the explicitly determining a poverty trap.

Non-concave technology for a continuous time version is examined by Romer
(1983, 2011). This technology in the discrete-time framework is addressed by Di-
maria, Le Van, and Morhaim (2002). Both of them suppose that the technological
changes arc endogenous, and depend on capital. They assume that the production
function of knowledge is increasing, in order to ensure that economic growth tends

to infinity.

Hung, Le Van, and Michel (2009), using an aggregation of two separate concave
production technologies, show the existence of two steady states if the discount
rate is not too high or too low. They also prove that the convergence depends on

either the initial state or the discount rate.

Kamihigashi and Roy (2007), developing the analysis of Majumdar and Ner-
muth (1982) and Dechert and Nishimura (1983), impose neither convexity prop-
erties nor continuity properties on the production function, and characterize the
conditions for the neighborhood property and the existence of the poverty trap or
sustained growth to infinity. The work of Kamihigashi and Roy (2007) deals with
the classical situation of optimal growth with the separation of consumption and

capital investment.

Although the literature on non-concave technology has been applied by many
scholars, there has been a lack of application in the human capital research. More-
over, the convex structure may not be guaranteed when the instantaneous utility
function is no longer concave in a variable of interest. Consequently, interesting
results such as the policy functions (of physical and human capital), the existence

and uniqueness of the BGP, and equilibria around this BGP are not addressed
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when this assumption is violated. The final chapter hence builds a general math-
ematical model with non-concave programming and an application to a human

capital accumulation model.

In particular, we introduce non-concave technology to a growth model with
only human capital (no physical capital). In this case, we assume that the con-
cavity property of the utility function in human capital fails. We then attempt to
tackle this issue by making use of the characteristic of super-modularity (satisfied
for almost models). This means that the value function is twice differentiable and
strictly supermodular (see e.g., Amir, 1996). Furthermore, we also impose several
technical assumptions to ensure the convergence to infinity of the optimal path
of human capital and the convergence to the maximal value of the growth rate of

human capital.

In this setting, we find the poverty trap (the optimal path of human capital
convergence to zero), and the middle-income trap (the optimal path of human
capital bounded away from zero and infinity). In addition, we show that if the
initial level of human capital is greater than a threshold and the discount rate is
big enough, then the optimal path of human capital converges to infinity. Under
the same assumption, the optimal growth rate of human capital also tends to the

maximal value.

Besides the notable results, in this chapter, the non-concave technology ap-
plies to a growth model with only human capital accumulation. Therefore, this
technique should mention about the co-evolution of human and physical capital
accumulation. More importantly, the non-concave programming may apply in the
previous chapters, also in a wider class of problems such as public debts, interna-

tional aid, multi-sectors model.
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1 Introduction

The model of Solow (1956) is a seminal reference among the theories that seek to
understand the cause of economic growth. One year after, Solow (1957) uses the
theoretical model to develop an empirical growth accounting study in which it is
estimated that there is around 80 percent of the growth of per capita output is
due to residual sources, which are usually referred to as total factor productivity
(TFP). The remainder of the growth is thus accounted for by the production
factors (labor and physical capital).

While technological progress in the Solow model is exogenous, Mankiw et al.
(1992) observe that the rate of saving and the population growth rate, both are
also exogenous in the Solow model, play a too large role in accounting for growth.
They augment the original Solow model introducing human capital accumulation.
Using a multi-country data set constructed for the period 1960-1985, they find
that the augmented Solow model provides a better description of the cross-country
data. Moreover, they argue that the “exclusion of human capital” (see Mankiw
et al., 1992, p. 408) is the reason for which the impact of the exogenous variables

on economic growth in the original Solow model is too large.

Le Van et al. (2010), based on empirical data from countries like China, Korea,
and Taiwan, show that “when income is under a critical level, there is no demand
for investing in human capital” (p. 230). Only “when the country reaches this
critical level of income, it must invest not only in physical capital but also in new
technology and in higher education. Under some mild conditions on the quality
of the production of the new technology and on the supply of skilled workers, the
share of the investment in human capital and in new technology capital increases
when the country becomes rich” (p. 224). Especially, they also find that the share

of the investment in human capital can exceed the share in new technology capital
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in the long run.

Under these perspective, we understand why, in his recent paper Lucas (2015),
calls for the need of placing human capital accumulation at the center of economic
growth, instead of external channels like technology. In this work, Lucas, on the
one hand, argues that there may be “a misinterpretation of the evidence, especially
of census data on schooling and age-earnings profiles” (p. 85), that leads to re-
cent empirical results strongly emphasizing the role of differences in technological
productivity in explaining cross-country differences in growth rates. On the other
hand, he cites several alternative research directions, in which economists like
McGrattan and Prescott (2009), Schoellman (2012), and Manuelli and Seshadri
(2014) prove that production factors accumulation plays more central role in pro-
moting economic growth, compared to external sources like technology. Especially,
the later work of Manuelli and Seshadri provides new methods for measuring hu-
man capital based on data on schooling and age-earnings profile. They find that
differences in quality of human capital explain better differences between countries

in average income, than differences in levels of total factor of productivity do.

The analysis and discussions in Lucas (2015) are ended with conclusion that
“the contribution of human capital accumulation to economic growth deserves a
production function of its own” (p. 87). Responding to this appeal, we revisit
the endogenous growth problem in several models where human capital plays a
central role (without external effects), and is accumulated in different ways: new
stock of human capital may be made up of former stock of knowledge, devoted
effort in term of time, and investment in term of output. We start our analysis
by considering rather simple two-period models which actually provide very clear
insights on how important human capital accumulation is in enhancing economic
growth. We then generalize these findings into infinite-horizon economies, with or

without physical capital accumulation.

Beside the generalization of the original linear function of human capital for-

mation considered by Lucas (1988), one of our main contribution is proofs for ex-
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istence, uniqueness, and convergence of optimal balanced growth paths in several
economies. These facts are often ignored before characterizing optimal balanced
paths. In these aspects, we are in line with Caballé and Santos (1993) who provide
proofs for existence and convergence of balanced growth paths in a continuous time
infinite horizon model. However, we depart from their result in not only requiring
the technology for human capital formation to be linear with respect to h2. In
fact, our production function of human capital will be generalized throughout the
paper in order to encompass time as well as economic effort devoted to investment
in human capital, and also the role of knowledge of the past in the formation of

current human capital stock.

Another purpose of our paper is discussing interactions between physical cap-
ital and human capital in different stages of the process of economic growth. As
a matter of fact, since the works by McGrattan and Prescott (2009), Schoellman
(2012), and Manuelli and Seshadri (2014) suggest that production factors have
more important impacts on economic growth than external sources like technol-
ogy, it would be very valuable in this case to study how different production factors
compete each other in order to be the prime engine of economic growth. In this
aspect, our research is in line with Galor and Moav (2004) who show that at
some stages of the process of economic development, human capital formation can
outperform physical capital accumulation as the main source of economic growth.
Nonetheless, our approach differs from theirs in not considering any specific credit
constraint on investment in human capital. They actually consider a kind of
asymmetry between physical capital accumulation and human capital formation,
characterized by the assumption that “human capital is inherently embodied in
humans and the existence of physiological constraints subjects its accumulation
at the individual level to diminishing returns” (p. 1002), preventing its accumula-

tion from being “widely spread among individuals in society” (p. 1004). Whereas

2Caballé and Santos (1993) consider an non linear function of human capital accumulation.
However, associated to this function, they provide proofs of existence and local stability of
solutions. Moreover, in their human capital formation function, they consider an external effect
of current physical capital stock, omitting the role of the depreciation rate of human capital.
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we reach interesting results concerning the relationship between physical capital
and human capital and their relative roles in sustaining economic growth, without

considering any asymmetric hypothesis.

The rest of the chapter is organized as follows. Section 2 discusses the accu-
mulation of human capital and its impact on economic growth in models with and
without physical capital. Section 3 extends these discussions into infinite-horizon
models in several manners. In fact, we use the models of Section 3 as a bridge that
links our clear and intuitive findings in Section 2 to Section 4, where our main

results are located. Section 5 is conclusion.

2 Human capital in two-period models

In this section, we study the formation of human capital in two two-period mod-
els with and without physical capital. Our very first examination of how human
capital is accumulated across successive stages, without genuine surprise, basi-
cally relies on the way that households devote their saving to invest in education.
However, these intentionally simple setups help us to easily emphasize the human

capital accumulation process and its role as the key engine of economic growth.

Indeed, in the first model - without physical capital, we rediscover the basic
ideas of Lucas (2015) that human capital on its own can guarantee a sustained
economic growth under some conditions that he calls “enough new ideas out there

to keep the economy growing” (p. 86).

Whereas, in the second model we prove that, even with the presence of physical
capital, human capital can surpass physical capital to take the role of a prime
engine of growth. We thus rediscover the result by Galor and Moav (2004) (when
they consider a hypothesis of a fundamental asymmetry between human capital
and physical capital based on credit constraints on human capital investment that
do not exist with regard to physical capital investment) that physical capital can

be challenged by human capital when it comes to sustain the economic growth.
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2.1 Human capital accumulation in a two-period model with-

out physical capital

We consider a two periods economy with homogeneous agents each of whom is
endowed with a human capital stock denoted by h. This human capital h can
be interpreted as the effective labor. Moreover, we assume for simplicity that the
output is obtained by using only the effective labor through a production process
captured by a production function F', which is assumed to be concave and strictly

increasing.

For simplicity, we assume a constant and normalized population. At the period
0, the unique agent is endowed with an initial level of human capital hg to produce
an amount F'(hg) of output. She determines her current level of consumption ¢
and savings S in the first period, as well as her consumption ¢; of the next period,
where her effective labor supply is denoted by hq, in order to maximize her life

time utility u(co) + pfu(cq).

The total savings Sy will be devoted to the human capital formation according

to the following dynamics:

hy

h_O = ¢(07 SO)

where the function ¢ is supposed to be increasing in both variables. The parameter
0 represents the efficiency of human capital formation technology. It captures
several features such as quality and appropriateness of syllabus, quality of teaching

facilities, and so forth.

Moreover, we assume that the function ¢ also satisfies the following assump-

tion:

Assumption 2.1 There exists a critical value 6y such that when the efficiency of
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human capital formation technology 0 is larger than this critical value, we have:

»(0,0) =1-4,
¢(97 F(ho)) > 17

with 0 < § < 1.

Since ¢ represents the growth rate of human capital across eras, this assumption
means that, without investing in human capital, this one will be depreciated at
rate . In addition, since F'(hg) is the maximal level that Sy can reach, the second
condition ¢(#, F'(hg)) > 1 highlights the important role of the efficiency parameter
f and the initial human capital endowment hg: € is assumed to be high enough so
that when Sy reaches its maximal level F'(hy), the growth rate of human capital is
sustained (which means that the rate of growth is greater than 1). We thus only

focus on the case where 6 > 6.

The maximization program of the unique household can be re-written as follow:

max[u(cy) + Pu(cy)] (L.1)

with 0 < 8 < 1 represents the time preference parameter, subject to the con-

straints:

co + S() = F(ho), (12)
cr = F(hy). (1.3)

In order to explicitly resolve this program, we assume that u(c) = in(c), F(h) =
Ah* with 0 < p < 1, and ¢(6,5)) = 0S5 + (1 —¢), where 0 < o < 1. In

this setting, we can easily calculate the critical value of efficiency parameter?.

3The efficient threshold: 6, = W
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Furthermore, let us denote by

the rate of saving. We then obtain the following results:

Proposition 2.1

(a) The optimal rate of investment in human capital, s(A, hg,0)is increasing in
both variables which are: the initial human capital endowment hy, the total factor
productivity A, the efficiency parameter of the human capital formation 6, and
unsurprisingly the time preference parameter 3.

(b) The rate of growth between the two periods is higher when we invest in human
capital.

(c¢) The rate of growth is sustained only if the efficiency parameter 0 is high enough

and/or the initial human capital endowment is sufficiently large.

Proof: Appendix m

Comment: This result, although being derived from a rather simple model,
deserves to be commented on: by proving that the economic growth is sustained
if the efficiency parameter 6 is high enough and/or households are endowed with a

sufficiently large initial human capital hg, (by sustained growth, we simply mean

F(h1)

that the rate of economic growth Fho)

is greater than 1), we are in line with Lucas
(2015) who argues that “any model of sustained growth must assume that we will
never run out of ideas” (p. 86), considering in his model a parameter capturing

“the quality of the individual’s intellectual environment” (p.86).

2.2 A two-period model with human and physical capital

We introduce physical capital into the previous two-period model. Individual’s
saving Sy is therefore no longer totally devoted to improving human capital stock

but also to investment in physical capital.
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The production technology is summarized by a function denoted by f, de-
pending in both factors, so that at period date ¢t € {0, 1}, the output produced is
yy = f(k¢, hy), where k, and h, respectively denote physical capital and the human

capital.

The unique agent of the economy maximizes the following utility

max(u(co) + Bu(cr)] (L4)

subject to constraints:
Co + ]{71 + e < f(k’o, h()), (15)
C1 S f(k’l, hl), (16)

where the level of initial physical and human capital kg, hg are given, ¢y and ¢;
represent the consumption, while £ and e; respectively denote amounts of saving

used for investment in physical and human capital.

We assume that the production function of the economy f is concave and
increasing, with f(0) = 0. In addition, the utility function u is supposed to be
strictly concave, continuous and increasing, satisfying the Inada condition v (0) =

—+00.

The formation of human capital across stages is captured by a function ¢,
which now depends on economic effort (economic savings) spending on education

and/or training:

7 = ¢(97 61)' (17)

Assumption 2.2 The economy’s technology is represented by an augmented Cobb-
Douglas production function, f(ki, hy) = Aktl_”’hf, 0 < u < 1. Whereas the pro-
duction function of human capital from education expenditure is explicitly given

by ¢(0,e1) = bef + (1 —6),a € (0,1), where 8 and 6 are interpreted in the same
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way as in the previous model. We also assume u(c) = In(c).

Proposition 2.2

1. There is a unique optimal solution (ki,e;) given by

1-— 1 1—90 (1-— 1
f(ko, ho) = <1+—ﬂ+—> er+ < Ey )e%_a, (1.8)

ap afp 0 ap afp
1-— fed + (1 =6
by = “( e+ (1 )). (L9)
I Ocve]
2. When 0 tends to infinity, savings allocated to education e; and accumulated
physical capital ki respectively converge to finite values € = f(foTj:O) and
1_7”’%, (where x = 1(;—:“ + aLBu)’ while human capital stock hy, as well as

output yy, both tend to infinity. In other words, if the formation of human
capital 1s sufficiently efficient, human capital can surpass physical capital to

play the role as the main source of economic growth.

Proof: Appendix m

Comment: In our two-period model with physical and human capital, we
rediscover the result by Galor and Moav (2004) who prove that, at some later
stages of development when the rate of return to human capital investment is
high enough, human capital accumulation can challenge physical capital accumu-
lation as the prime factor that fucls economic growth. However, we reach this
result without considering market imperfection caused by asymmetric educational
investment opportunities between heterogeneous individuals, and in a rather sim-

ple economy setup.
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3 Human capital in infinite horizon models

The objective of this section is to introduce human capital into infinite horizon

models in as simple manners as possible.

One of these, which is in fact subject of the two first following subsections, is
considering infinite horizon economies without physical capital, but with human
capital accumulation functions depending not only on individuals’ saving decision
but also on the stock of ideas or knowledge that is already “out there” - according
to the terms used by (Lucas, 2015, p. 86). This saving decision can take the form
of economic savings (as in the subsection 3.1), or time effort devoted to enhancing

the effective labor (as in the subsection 3.2).

Whereas, in the last subsection 3.3, we consider a human capital formation
function which only depends on households’ saving decision, in a infinite horizon

model with physical capital accumulation @ la Ramsey.

3.1 Human capital accumulation as the main source of growth

As in the subsection 2.1, we assume that the rate of human capital formation
across stages th:l is dictated by a function ¢(S;, #) which depends on the agent’s
savings at t and satisfies Assumption 2.1, that is: ¢(S;, 0) = 1—35+60S;, where 1—0
and 0 respectively represent human capital depreciation rate and the efficiency of

human capital formation technology.

Rather than a two periods life-time utility, the unique agent of the economy

now maximizes an infinite intertemporal utility:

+oo
max Z Bru(cy)
t=0
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subject to the constrain:

ct + St = Ah?, (110)

where hg > 0 is given, and f(h;) = Ah}' represents the fact that the output is
assumed to be obtained by using only the effective labor through the production
function f, which is concave, increasing, continuous. In addition, as usual, the

utility function is supposed to be strictly increasing, concave and continuous.

From (I.11) we get:

Q=

S, = = {@ —(1- 5)] . (1.12)

Q=

—(1- 5)] . (1.13)

Since ¢; > 0, the equation (I.13) leads to the following condition:

h;:l <A +1—0. (1.14)

t

Taking into account (I1.13) and (I.14), the above problem becomes the following

1 [hea «
B _ _
Anf = [ -a 5)1 ])

program, denoted by (P1):

+o0
max E Blu
t=0

subject to the constraint:

(1= &)hy < heyr < [OARSH* + 1 — 6]hy. (1.15)

Lemma 3.1
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Let us define V.= u ([Ahf — 9% [hjl—:l —(1- 5)] “} ) Then the utility function

V' is twice differentiable and strictly super-modular, for any hy, hytr1, we have:

aQV(htv ht+1)

Via(ht, hugr) = OhOhy i1

> 0.

The set {(z,y) €RE : (1 =)z <y < [A2** + 1 — 8]z} is a sub-lattice. Hence,

we have the monotonicity of the solutions.

Resolving the problem (P1), we obtain that associated Euler’s equation is

given by:

i M2 (1-4))"
—(1- 5)] + Bu (1) | AR + (" : ) h;“
afa it

. u (ct) |:ht+1
Oéhteé ht

(1.16)
Proposition 3.1

1. If 6 = 0, which means human capital is not depreciated at all, then human
capital converges to infinity. Moreover the rate of growth of human capital

is unbounded from above if u(c) = In(c).

l ~ ~
2. If6 > 0, let us introduce h = [% ( ei A) (55_1] ", and h satisfies 0 A*h* =
aba

J, then, since the optimal sequence {h}} converges, there are only three cases
with regards to the convergence of human capital accumulation:
(a) If hg < h then hi — 0.

(b) Assume that hg > h > h. If hi > hq then the sequence {h}} converges

to infinity. If hi < ho then the sequence {h}} converges to 0.

(¢) In the case where h < h < hg. If ht > hg then hi — +oo. If bt < hy

then the sequence {h}} converges either to 0 or h.

Proof: Appendix. m
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Comment: Focusing on the point 2 (¢) of Proposition 3.1, where hg > h> h,
which means that the patience coefficient 3, the efficiency coefficient of human
capital technology 6, and especially the initial human capital stock hg are suffi-
ciently important with respect to human capital depreciation rate d, we under-
stand why Lucas (2015) requires an ideas stock to be always “out there” (p. 86)
so that human capital accumulation can carry on its own shoulders the growth of

cconomies.

3.2 A Lucas model without physical capital

In this subsection, we consider a discrete time version a la Lucas (1988) where
there is no physical capital and no externality. We normalize to 1 the number
of workers. We suppose therefore there is a single representative worker, who
disposes a total time normalized by 1. This time can be divided into two parts: a
working part, denoted by 7, and another part devoted to human capital formation

(as time for schooling, training, relaxing, leisure, etc).

Denote by h; the human capital stock at date t. Assume that the accumulation

of human capital over time is characterized by the equation

hisa
hy

=1-6+6(1—7), (1.17)

where 0 < § < 1, which represents the depreciation rate of human capital and ¢
the productivity of training (or of recovery). With respect to the original Lucas
function of human capital formation, we consider the depreciation rate of human

capital.

The production of the consumption good is given by f(L) where L is the
efficient labor given by L, = 7;h; and f is a production function. Assume that
f is concave, differentiable, f(0) = 0 and satisfies Inada condition f'(0) = +oo.
There is no physical capital accumulation and the consumption at date t is equal

to the production ¢; = f(L) = f(meht).
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The representative agent solves the following problem:

max f: Bru(cs)
t=0

subject to

G = f(Ttht)>
ht+1 = []. — (5 + 9(1 — Tt)]ht,

hg > 0 is given.

Assume that 0 < 8 < 1 and the uttility function wu is strictly concave satisfying

Inada condition u/(0) = +oc.

We can re-write the human capital formation equation as follow:

(1 =06+ 0)hy — iy
7 .

Tihy =

For any (1 —d)h < h' < (1 -6+ 0)h, let us define

Vi) :u(f<(1_5+69)h—h'>)_

The maximization problem becomes the following one, denoted by (P):

maXZ 5tv(ht7 hii1)

t=0

s.t (1 — (S)ht S ht+1 S (1 —0 + H)ht,
ho is given.
We can verify that the function V' is supermodular.
Proposition 3.2

1. There exists unique solution {h;}2, of Problem (P).
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2. If B(1—06+0) > 1 then {h}}2, is strictly increasing and converges to infinity.

3. If f(1—0+6) <1 then {hf}2, is strictly decreasing and converges to zero.
Proof: Appendix. m
Proposition 3.3 Assume u(c) =In(c), f(L)=L* a € (0,1),8(1+ ) >1—0.
1. Then there exists a unique solution
hi = u*hy, with u* = B(1 — 0+ 0).

1

*
2.ur>1e 0> 50

Proof: Appendix. m

Comment: Since the condition 5 > can be equivalently expressed as

1
1-6+0
1—0+60> %, one can argue that there is sustained economic growth in this Lucas
model if human capital formation technology is relatively efficient (large 6 and/or

low 0) with respect to household’s level of impatience (1//).

3.3 Adding human capital in a Ramsey model: a first attempt

We now introduce human capital into an infinite horizon economy a la Ramsey
(1928). While the population of infinite life-time households is normalized, each
household of the economy is assumed to be able to invest in both physical and
human capital by dividing her savings S; into physical capital investment and

education expenditure via enhancing human capital accumulation:

Sy = ki1 + e,

where S; is the savings at date t, and k1, e;11 are respectively the investments

in physical capital and human capital.
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We respectively consider the following output and human capital production

functions :

f ke, hy) = AKFR;T,
ht == (25(0, 625)7

where the effective labor is denoted by h;, and its formation is given by ¢(6,.),
which is an increasing concave function only depending on education investment

e, with ¢(0,0) =e > 0.

Considering a strictly concave, increasing utility function u, the maximization

program of the agent is written as follow:
+o00
max Z Bru(cy) (I.18)
=0
subject to the following constraints:

e+ ki + e < AP0, et)]l—u7 (I.19)

In order to solve this program, we assume that:
o(0,e;) =e+0ef, a€(0,1), §>0,e>0.
Lemma 3.2 Considering the following problem:
max{ Ak [e +0e*]' " : k> 0,6 >0,k +e < s}.

Let F(0,5) = max{ Ak [e+ 0e®]" ™ : k> 0,e > 0,k + e < s}, then we have:

1. The function F(0,.) is concave, increasing.
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2. The solution (k, &) is unique and satisfies:

pe €%+ [ud + (1 —p)balée = (1— p)bas, (I.21)

Oa(l — pk = ple+ 0ev)e' . (1.22)

The function F(6,.) is differentiable.

3. Ifs=0thené =0, k=0. Hence F(0,0) = 0. If s — 400 then é —

+00, k — 4o0.

4. If s increases then both é, k increase.

Proof: Appendix. m

Using the previous Lemma 3.2, we get the following results with regards to the

existence and uniqueness, as well as the convergence of the solution.
Proposition 3.4

1. The sequence {k;, |, €; 1 }i>0 solves the following problem denoted by P;:
+oo
max Z Sru(cy)
t=0
subject to the constraints:

i+ ken + e < ARF[0(0, e)] A,

¢t > 0,e, >0,k >0, ko >0, ey >0,
with

o(0,e) = e+0e, a€(0,1), §>0,e>0,
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if, and only if, it solves the following problem denoted by Po:

—+00
max Z Bru(cy)
t=0
subject to the constraints:

Co + S1 S Akg[¢(97 60)]1_lu7
¢t + St+1 S F(ev St): Vi Z 17

Ct Zoaet Zovkt 207k0>0760>07
with

o(0,e;) = e+0e, ae€(0,1), §>0,e>0.

2. The optimal human capital is hy = ¢(0,€f). The optimal capitals kf, hy

increase with the efficient parameter 6.

Proof: Appendix. m

Proposition 3.5

1. There exists a unique optimal sequence (kj, h})i>1.

2. This sequence is increasing and converges to a steady state.
Proof: Appendix m

Noticing that we can reach the previous Propositions 3.4 and 3.5 without any
specification of the utility function u, however, in order to compute explicitly the
steady state, we need more precise information on household’s utility. Therefore,

let us assume that u(c) = In(c). We then obtain:
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Proposition 3.6 Let &,k denote the values at the steady state of the investment

for human capital and for physical capital. They satisfy the following equations:

= [(uas)™s (1) o] T vk,
k= (HAB)™ [e+ 6e°].

The steady state human capital is
h = e+ 6&°].

The values of the variables of the steady state increase with respect to 0, the effi-

ciency parameter of the human capital formation.
Proof: Appendix m

Comment: In this economy where the function of human capital formation
only builds upon economic saving, we can easily see that the ratio physical capital
to human capital in steady state only depends on parameters that affect agent’s
portfolio choice between investment in physical capital and human capital: k/h =
(/,LAﬁ)ﬁ. The intuition behind this is that, in presence of physical capital, the
patience coefficient 3 represents the willingness of households to save, whereas
i represents physical capital’s share in output production; and in addition, in
the process of human capital formation, there is a part played by saving from

final /capital good.

4 Human capital accumulation: when Ramsey meets

Lucas

This section, generalizing the models discussed in the previous sections in several
ways, contains the main results of our study, responding to calls of Lucas (2015)

to place human capital at the center of economic growth, without the need for
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an external channel, like technology. Interestingly, it was Lucas, who earlier in
his very influential paper Lucas (1988), considers an economy with production
technology relies not only on the individual inputs of physical and human capital,
but also on an average level of skill or human capital, “calling external effects of
human capital” (p. 36). However, Lucas himself later on, citing the works by
Schoellman (2012) and Manuelli and Seshadri (2014), among others, argues that
we should avoid understanding the role of human capital accumulation as well as

giving “too large a role to exogenous technological change” (Lucas, 2015, p. 86).

In order to study human capital accumulation in the model of Ramsey (1928)
who considers identical infinitely-lived consumers that maximize an isoelastic in-
tertemporal utility function in an economy where production depends on the indi-
vidual inputs of physical capital (physical capital accumulation), we generalize the
human capital production function a la Lucas (1988) which is linear with respect
to individuals’ time effort devoted to education process. As a matter of fact, in
the first following subsection 4.1, we consider an affine generalization function of
human capital formation by adding to the previous one the depreciation rate of
human capital: h;T“:l =1—-0+6(1 —mn), with 1 — 7, denotes the level of time
effort devoted to human capital accumulation. Whereas, in the second following
subsection 4.2, we consider another generalization function of human capital ac-
cumulation, which is no longer linear with respect to neither the time effort spent
on education, nor the current level of human capital stock h;, and in addition,
also depends on households’ economic effort devoted to investment in education:
hisr = (1 — 8)hy + 0e]h; (1 — 7)°. This later function generalizes not only the
initial human capital production function considered by Lucas (1988)%, but also

all the human capital formation functions that we consider until then®.

To sum up, the novel idea of this section is that we bridge the model of Ramsey

4Tt is worthy to mention that, our latest human capital production function also generalizes
the human production function studied by Caballé and Santos (1993), which is “linearly homo-
geneous on h(t): G = h(t)G(1 —u(t)) where 1 —u(t) denotes non-leisure time devoted to human
capital accumulation” (p. 1046).

°In fact, the function of human capital production in the subsection 4.1 is a special case of
the one in the subsection 4.2 with v =0 and ¢ = 1.
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(1928) to the models of Lucas (1988, 2015) by considering (i) identical infinitely-
lived agents endowed with both physical and human capital; (ii) non-linear human
capital accumulation function taking into account both the depreciation rate of
human capital, the role of current human capital stock, and the level of time effort
as well as economic saving devoted to education; (iii) but without external effect so
that human capital accumulation plays a central role in contributing to economic

growth.

4.1 The first model (the linear human capital accumulation

function)

In this subsection, we study human capital accumulation in a Ramsey-like model.
We suppose the free disposal property for human capital. Namely, the represen-
tative agent has the choice to work with her maximum competence (measured in

terms of time effort) or not. Hence, she solves the following maximization problem:

max Z Bru(ct)
t=0

s.t Vit Z 0, c + kt—i—l S f(k:tv Ttht)7

Mt sy g1 - ),
hy

¢ >0,k >0, 20,057 <1,

ko > 0, hg > 0, are given.

In this program, ¢;, k; and h; respectively denote consumption, capital stock and
human capital stock; 7; and 1—7; are working time and learning time, respectively;
0 € (0,1) is the depreciation rate of the human capital; # > 0 represents the
learning ability parameter. We also assume that the output production function
and the utility function f and u are strictly increasing, strictly concave functions,

satisfying Inada conditions. In fact, we assume for simplicity u(c) = In(c).

As it will be shown later on in the proof of Proposition 4.3, if we denote by 1+ p
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the rate of growth along a balanced growth path (BGP), then Euler conditions
necessarily imply that 1+ p= (0 +1—9).

This fact motivates us to distinguish different cases depending on whether or
not (1 —d + 60) > 1, and firstly, analyze the case where (1 —d +6) > 1, or
equivalently 6 > % — 1 + ¢, which means the learning ability parameter is high
enough, or in terms used by Lucas (2015), requires “the quality of the individual’s

intellectual environment” (p. 86).

When learning ability is sufficiently high: 6 > % —1+6.
At the optimum, we have

ht+1 = (]. -0 + e)ht - eTtht,

which is equivalent to

(1= 6+ 0)h — heps
. .

For each (k,h) € R2, define I'(k, h) the set of 2/ = (K, h') € R2 such that:

Tihy =

0<h <(1-35+8)h,

(1—6+0)h—H
).

OSk’§f</<f,

For (K', 1) € I'(x) = I'(k, h), define:

V(k, b, K, 1) = u <f <k (1_5+9)h_h/> —k:’).

¢
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For each value 1 + p let us consider the following maximization problem, denoted

by P(1+ p):

max Z 6tv(kt7 I, K, ht—i—l)

t=0

s.t (kt+1, ht+1) S F(kta ht)7

(ko, ho) € R? given.

Lemma 4.1

1. The correspondence I' s compact convez.

2. Define by 11(ko, ho) the set of feasible sequences from (ko,ho). This set

[I(ko, ho) is convex compact in product topology.

3. Define W ko, ho) as value function. W is strictly concave.

4. There exists unique solution for the optimization problems. The solution is
in interior of (kg, ho).

Proof: Appendix m

Based on Lemma (4.1), it is well known that the value function is solution of

functional equation:

W(k07 hO) = (kl,hlr)Ié%:E(ko,ho) [V(kh? h‘()a kla h’l) + /BW(kl7 hl)] .

From the strictly concavity of function W, for any (ko, hy) € R2 ., there exists

unique (kq, hy) such that

(kl, hl) = arég ma,)x [V(k’g, ho, k’l, hl) + ﬁW(k’l, hl)] .
T'(ko,ho

Let us define
(k1. h1) = ¥ (ko, ho) = (Yr(ko, ho), ¥n(ko, ho)) -
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We then obtain the following result with respect to the convergence of solutions:

Proposition 4.1 For the general optimization problem P(1+ p) and the optimal
sequence {(kf, h})}:2,, there exist k* and h* such that

lim =
t=o0 (14 p)t
¢ .

li =
Fare (1+ p)t

*
Y

Proof: Appendix. m

Definition 4.1 A Balanced Growth Path (BGP) of the model is a sequence (ct, ki1, hi1, €, Tt )1>0

solution to the model which satisfies:

ko > 0, hg > 0 are given,

k
for allt 210,52 = bz = B,

for allt > 0,7, € [0,1] and is constant (denoted by 7).

Proposition 4.2 We assume that u(c) = In(c), f(ky, 7ehe) = AkY(1ehe)'™, u €
(0,1) and 6 > %—1—5— 1 (or equivalently p > 0). If the parameter A is large enough
then there exists a BGP : for allt > 0

o ki =ko(l4p)"*,

o hipy =ho(l+p)"",

o ¢ =co(l+p)tt,

o pf=p0+1-0]—-1>0,
* (1-0+0)(1-5)

o TF="77 """ <1,

o co = ARYT IR — k(1 + p*) > 0.

Proof: Appendix. m
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Comments:

1. When the learning ability parameter 6 increases, the rate of growth p* in-
creases. Also, the working time 7% decreases, because the labor is more

efficient and compensates the time for working.

2. VVhenQ—l—l—(5>%7

ter is high enough and the depreciation rate of the stock of ideas that are

or in other words when the learning ability parame-

already “out there” - according to the term used by (Lucas, 2015, p. 86) is
sufficiently low with respect to the impatience parameter (1/8), economic
growth is fueled by both physical capital accumulation and human capital
accumulation. We achieve this result with homogeneous agents, rather than

heterogeneous agents like in Galor and Moav (2004).

WhenQZ%—1+5

Secondly, we analysis the existence of steady states in the case p = 0, or equivalent
to B(1 — d + 6) = 1. This case is determinant for the proof in which in general
cases, the optimal solution converges to balance growth path. Now, we will prove
that if p = 0, there exist an infinite number of steady states, and the optimal
solution converges to a steady state, depending on the initial state (kg, ho). For

any (ko, ho), denote by {(k}, h;)}i2, the optimal sequence.

1

Proposition 4.3 Assume that p =0 and 8 = 1=575.

With the same functions u

and f as in the previous proposition:

1. There exists a continuum number of steady states. The set of steady states

is defined as the set of (k,h) € R2. satisfying:

! h<1 _6) _ 1
(557 =5
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which s equivalent to

_ ATETE (L= §)FT

k
h 0

2. The optimal sequence converges.

Proof: Appendix m

Comment:

1. A very simple comparative statics computation in steady state easily shows
that the optimal ratio of physical capital to human capital is increasing in
Total Factor Productivity (A) of output production and decreasing in the
efficiency parameter of education (#). Moreover, this ratio is increasing in
patience parameter () only if this parameter [ is smaller than the total

share of physical capital in ouput manufacturing (u).

2. As we have previously shown in a model without physical capital but with
the same technology of human capital formation (subsection 3.2), economic
growth is not sustained (or in other words, the gross rate of growth is less

than 1), if and only if 0 +1 — 6 < % Thus, we do not consider this case.

4.2 The second model (the non-linear human capital accumu-

lation function)

We now generalize the previous model by considering a function of human capital
accumulation which is no longer linear and also takes into account the role of
economic saving: A4y = (1 — 8)hy 4+ 0elh; 7(1 — 7,)°. Clearly, if the setting is
that v = 0 and ¢ = 1, we then return to the previous proposition’s human capital

formation function.

In addition, our definition of human capital accumulation rule is closely related

to the one considered by Caballé and Santos (1993) in their section VI (p. 1061).
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However, in a continuous time model of infinite horizon, they require that economic
effort devoted to the formation of the next period’s human capital stock to be
proportional to the current capital stock, omitting potential effect of human capital

depreciation.

In this economy, an infinite-lifetime representative agent chooses (¢, ¢, hy, kg1, €¢),5

in order to maximize her life-time utility:

“+oo
ma,xz Bru(cy)
t=0
subject to:
¢+ kt+1 + e S Ak’#(Ttht)l_'u, (123)
0<n <1, (1.24)
(1= 0)hy < hepa < (1= 0)hy + 0], (1= 7)°, (1.25)
ho > 0,ky > 0, (1.26)
with p <1,v< 1,0 < 1.
Assumption 4.1 We assume that u(c) = In(c).
Lemma 4.2 In equilibrium,
hosr = (1= 8)hy +0e]hy 7 (1 —7)°, (1.27)

and hyyq > (1= 0)hy. In addition, we also obtain that 1, is strictly less than 1. In
other words, households always devote their time to improve their human capital

stock.

Proof: Appendix. m
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Definition 4.2 A Balanced Growth Path (BGP) of the model is a sequence (ct, ki1,

hit1,et, Te)e>0 solution to the model which satisfies:

ko > 0, hg > 0 are given,

ce41 _ key1r . hep1 _ erga
foralltZO, o ke R T e

for allt > 0,7, € [0,1] and is constant.

Moreover, let us respectively define the rate of economic growth and the working

time along a BGP: 1+ p* = k;;t“l, T="T.

We then obtain the following result:

Proposition 4.4 For total factor productivity, A is large enough, there exists a

unique BGP determined by

L2 — Apkh™ Ry, (1.28)

(p* + 8)hd = Bel(1 — 7)°, (1.29)

(1 = 7)r ARy = ego, (1.30)

co = AkE(The)*™" — eg — ko(1 + p*), (1.31)

and co > 0.

Proof: Appendix m

Comment: A direct consequence of this result is that when the learning

ability parameter ¢ increases, the optimal rate of growth p* also increases.

More interestingly, when the agent’s economic effort is also taken into account
in the process of human capital formation, a high enough TFP of output produc-
tion is required to ensure that economic growth can rely on both physical capital
accumulation as well as human capital accumulation, regardless the level of learn-

ing ability parameter, in contrast with what we have found through Proposition
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4.2 of the previous section. In other words, only requiring a sufficiently efficient
technology of output production, we can prove that human capital plays a role as
central as physical capital in powering economic growth - an idea supported by

Lucas (2015), Manuelli and Seshadri (2014), and Galor and Moav (2004).

5 Conclusion

This chapter revisits the theoretical framework of endogenous economic growth in
order to respond to the contribution of Lucas (2015), calling for the necessity of
placing human capital accumulation at the center of economic growth, rather than
external sources like technology. Our starting point is the consideration of intuitive
two-period models which provide us very clear insights of what importance is the
role of human capital accumulation for economic growth, and how it competes

with physical capital accumulation in supporting economic growth.

We extend these discussions into infinite-horizon model in several ways, so that
our production function of human capital accumulation is generalized throughout
the paper, in order to encompass not only time and economic effort devoted to
investment in education, but also the role of knowledge of the past in the forma-
tion of current human capital stock. We provide proofs for existence, uniqueness,
and convergence of optimal balanced growth paths in several cases. Moreover,
we show that human capital accumulation can challenge physical capital accumu-
lation as a prime source of economic growth, without the hypothesis of market
imperfection caused by asymmetric educational investment opportunities between

heterogeneous households considered by Galor and Moav (2004).
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6 Appendix

Proof of Proposition 2.1

(a) Since
hy
h_o - (25(07 SO)
or equivalently
b _ 0S5 + (1 —9)
hy
We solve the following problem
H}S%X[U(F(ho) — So) + Pu(F (hoo(6, So)))]. (1.32)
The first order condition is
! = 5LF/(h )hofaSy
F(ho) — Sy " F(hy)  “ 770000
1 _ :uhlll_l a—1
F(ho) — SO = hf honéSO
1 ho —1
——— = Bu—0aSy
Flhg) =8y~ W1, 0o
1 faSgt

Flho)—So  "Fose+1-0
(1—0)Sy ™ +6Sy
Fho) = S = afub.

Let
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then the latter becomes

(1 —0)s'=*(F(ho))' = + 05F (ho)

= afub
F(ho) — sF(hy) B
(1—6)st—
-~ —afu(l —s)—s.
oF(h )
It would be the equivalent of
1— 11—
(Chul) i +s=apu(l—s). (1.33)

O[Ahf]>

The RHS of (1.33) is decreasing, while the LHS is concave increasing. The
solution is thus unique. In addition, we observe that LHS (1) > RHS (1) = 0.

Hence, the optimal value s(A, hg, #) is strictly smaller than 1.

Moreover, when 6 increases, the LHS decreases. Therefore, s(A,hg,6) in-
creases. Similarly when hy or A increase the LHS decreases and thus the optimal
value s(A, hg, 0) increases. Finally, when § increases, RHS moves upward (but we

still have RHS (1) = 0.), while LHS does not change. Hence, s(A, hg, #) increases.

(b) When we do not invest in human capital (Sy = 0), we have h; = ho(1 —§)
and F'(hy) = F(ho(1—4¢)). Whereas we invest in human capital, the optimal value
is hy = ho(¢(0,S;) + 1 —3d) > hy and hence F(h}) > F(hy). In other words,

(¢) The rate of GDP growth will be greater than 1, iff

[05(A, ho, 0)*(ARM)®] > 6. (1.34)

From (1.33), we see that the optimal value s(A, ho, #) tends to 1$§ 5, When [0 AhY]

tend to infinity. Hence, if § or/and A or/and hy is/are large enough or/and 3 is
close to 1, then condition (1.34) is fulfilled.H
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Proof of Proposition 2.2

(1) Taking the Lagrange equation from (I.4), (1.5), (1.6) and (I1.7) with the following
remark: ¢(0,e;) = fef + (1 — §). We then obtain

L =1(co) + BIn(cr) + NAE "hly — co — ky — eq] + n Ak *[ho(0eS + (1 — 8))]* — ¢

(1.35)
First order conditions are:
clo = A, (1.36)
cﬁi =, (1.37)
% = (1 — p) Ak, "hE[Oef + (1 — )", (1.38)
% = pAk; TP RE[AeS + (1 — 8))F 10aed L. (1.39)

Moreover, the budget constraints (I.5)and (I.6) are now binding (A > 0) and
(n>0).

From cquation (I.6), we have

% — Ak"BE0X + (1 — )™, (L40)
Combining (1.38) and (1.40), we get

% — (-t (L41)

Cop = —kl. (142)



APPENDIX 59

The equation (1.38) is divided by (1.39). We then have

1—,u><9€(f+(1—5)

a—1

! Oove]

Substituting (1.42) and (1.43) into equation (I.5), we will have (I.8). From

(I.8), we see that when § = 400 the equation becomes

(1+x)er = f(ko, ho),

1

remark y = %ﬂﬁ + o

(2) Therefore e; — &, = f((lfong)) when 6 — +oo. From (1.43), ky — 1_7“ X %1
Now, since hy = ho(fe§ + 1 — 0), we have hy — +00 when 6§ — +oo. The output

y1 converges to infinity too since y; = Ak “hY. W

Proof of Proposition 3.1

1. If 6 = 0 then from (I.11), hyyy > hy for every ¢ which implies h; must
converge. Suppose h; tends to h, with +00 > h > hy > 0 then h;—“:l tends to
1, and then from (I.13) ¢; — & = Ah*.
From (1.16), we obtain fu'(¢)uAh*~ = 0: a contradiction. Therefore h =
+00.

The Euler equation becomes

1 1\ [heis T
(Ahé‘—&) (a) { h _(1_5)] hE

1 h T he 1 1
- Ah“_1+<t+2—1—(5> ﬁ——l i
y (Ah/iLJrl - St+1) [,u o by ( ) hipq afa

Suppose the ratio h;—:l is uniformly bounded from above. Then one can check

that the term hé‘fllx LHS of the relation above is bounded while the term

hffllx RHS converges to infinity. Thus the ratio h;—tl cannot be uniformly
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bounded from above.

2. Consider the case § > 0. Observe that h verifies h = [JA*h** + 1 — §]h.
If the sequence {h}} converges, if its limit h is finite then this one equals

1
[% ( ell A) 55_1} " by Euler equation and since S; — 0.
afop

(a) The sequence {h;} satisfies the constraint h; , < [JA*h;*" + 1 — 0]h;.
In this case, we have: for any ¢, h;y < x; where the sequence {z:}
satisfies Vt, x4 = [0AY2,** + 1 — 0]y, 9 = ho. Since the function in
z, [JA“2z* +1 — 0]z is strictly convex, we can easily see that zy < h =
z; — 0. Hence hf — 0 if hy < h.

(b) Assume hg > h > h. If h¥ > hg then the sequence {h}} is increasing. It
cannot converge to a finite value because this one will be h and h < hy:
a contradiction. Hence the sequence will converge to infinity. Now, if
hi < hg then the sequence {h}} is decreasing. If it converges to a finite
limit then this limit will be k. Since h < h, there will be T such that

h% < h. From (1), it will converge to 0.

(c) Assume hg > h > h. If hi > hg then the sequence {h!} is increasing.
The same argument as in (2) gives the result A} — 4o00. If hf < hy

then the sequence {h!} is decreasing. It converges either to h or 0. B

Proof of Proposition 3.2

1. Uniqueness is a direct corollary of strictly concavity of u and f.

2. For the case (1 —§ +6) > 1. We can consider a variation of problem (P),
say (P'):

maxz Btv(h’t: ht+1)

t=0

st 0 S ht+1 S (]. -0 -+ G)ht,

hg is given.
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Now, we will prove that the optimal sequence of problem (P’) is feasible for

problem (P), hence it is also optimal for problem (P).

Consider the optimal sequence of problem (P’), {h;}$2,. From Inada condi-

tions, one has for any ¢:
0<hpr <(1—=09+0)h.

Consider the Euler equation which is the same for (P) or (P'):

%u’ (f ((1 —5-1—00)}1,;* —h;‘H)) I ((1 —5-1—00)}1,;* —h;‘H)

BU—-546) [ (154 O —hin\\ o ((1— 6+ 0)his, — i,
- <f( 6 ))f( 6 )

which is equivalent to

( (1—5+9h* h;+1)>f,((1—5+9)hf—hf+1)
0

=031 -6+ 60)u <f((1_6+6)h:+1_hr+2)> f/((1_5+6)h:+1_h:+2>'

0 0

Since 5(1 — 0 +60) > 1, the sequence {(1 — 6 + 8)h; — i, }22, is increasing
and converges to infinity. From the supermodularity property, the optimal
sequence {h;}$2 is monotonic. Since (1—6+4-0)h; —hy,, converges to infinity,

this implies that {h;};°, is strictly increasing and converges to infinity.

Since {h;}7°, is increasing, for any ¢ we have

hy <hiy <(1—=64+0)h;.

The first inequality is corollary of increasing property, the second one is

corollary of Inada conditions.

Hence {h}}:°, is feasible sequence of problem (P’). Obviously, this implies
that {h;}°, is solution of problem (P).
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3. For the case 5(1 —d 4+ 60) < 1, consider the optimal sequence {h;}{°, of

problem (P’). By super-modularity property, this sequence is monotonic.

By Inada condition, for any ¢, h; , < (1—=30+6)h;. If hy < 7, then {h;}2, is
strictly increasing and is an interior solution, which is in contradiction with
Euler equation. Hence the optimal sequence {h}}°, is strictly decreasing.
If there exists an infinite number of ¢ such that h;,, = (1 — )h;, then
lim o by = 0. Suppose that for ¢ sufficiently big, hy,; > (1 — 6)h;, then
by Euler equation, (1 — 0 + 0)h; — h;,, is decreasing. The limit of (1 — 4§ +
§)h; — hy,, cannot be strictly positive, since this case contradicts the Euler
equation. Hence limy_o(1—6+6)hf —h;,; = 0. This implies lim;_,o hf = 0.

Proof of Proposition 3.3

1. The proof of (1) is shown, as follows:

First, observe that v(f(L)) = aln(L). Let the sequence {h;} be defined by
hi = u**hy where u* = B(1 + )). It is easy to see that

e l—d<ur <1+,

e The sequence {h;} satisfies the Euler equation and the transversality

condition.

That proves this sequence is optimal.

2. The proof of (2) is obvious. B

Proof of Lemma 3.2

1. It is easy to check that F' is concave and increasing.

2. The FOCs are given by equations (1.21) and (1.22). The LHS of (I1.21) is

increasing, while the RHS is constant. Hence the solution is unique for e.
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Hence k is uniquely determined by (1.22).
We see from these equations that é, k are differentiable in s. Since F/(0,s) =

Ak e+ 0&7]'™*, it is differentiable in s.

3. When s = 0, from (1.21), we see that & = 0. From (1.22), one gets k = 0.
Hence F'(6,0) = 0.
From (I.21) we have & — +oo if s — +00. Equation (1.22) implies that &

goes to infinity too.

4. Obviously, from (I.21), one can deduce easily that é increases with s and

hence k is increasing by (1.22). B

Proof of Proposition 3.4

1. Let (kf, e} )>1 solve Py and let (¢f) be the associated sequence of consump-
tions. And let (k, &) solve P, with the associated consumptions {¢}. Define
st = k; + e, Vt > 1. Then obviously the sequence {s;} satisfies the con-

straints of Py. Hence,
Z Bru(cy) < Z Bru(é).
t=0 t=0

We have §; = k;+¢&;. Since F(6,3) = A%fgb(@, ét)l_a, the sequence {¢;, ky, )

satisfies the constraints of P;. Thercfore

> Bu(@) <) Bu(e)

t=0 t=0
Consequently,

> @) =) pulc).

t=0 t=0

Since the utility is concave, the constraints are convex, our claim is true.

2. The result is a consequence of the fact that ¢ > 6. It turns out that
F@,)>F(@,.). 1
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Proof of Proposition 3.5

1. The problem actually is

maXZﬁ u(F(0, 1) — S¢41)
st 0 S St11 S F(‘97 St)7

so > 0.

The utility function is strictly concave, the function F'(f,.) is also concave.
Hence there exists a unique solution {s;};>1. Furthermore, equations (I.21)

and (1.22) give the values of {k}, €} }1>1).

2. We will show that F!(0,0) = +o00. We have

F(0,s) Aptle + fer]erri=e)
s (1= p)ba + pbler + pe et

05)

Since e* — 0 when s — 0, then is equivalent to

Aptle + fer]err=2)
e e*l—a

= Apt'le + Qe*a]e*(“_l)(l_a) — 400,

since u—1 < 0 and e* — 0. Hence, the sequence {s;} is increasing. Moreover,

ky,e; are increasing with respect to sy, they increase too.

Observe that F'(0, s7,,) = Autle + Oe* t+1]€*f+11 * and
* * * 1 [
Siya S F(0,571) = Aplle + e le v

)

The RHS F (6, s;,,) is concave in s}, and £ converges to zero if s — +00.

The sequence {s;} is therefore bounded from above. Since it is increasing, it
will converge to a finite value. Similarly, the sequences {k;},{e;} converge

to finite values. W
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Proof of Proposition 3.6

At the steady state is, we have
F(0,s) = n%ax{Ak“[Q + e — Nk +e—3)}, A >0.

From the Envelop Theorem, we will have F'(6,5) = A.

Moreover, the first order conditions give

AR e + 0¥ = )\,

AR (1 — p)[e + 0e°] #hae* = .
We also have F’(0,5) = % Therefore,

,UIAE“_l[Q + ‘géfx]l—u, 1

(1=p)ba él_a[g + eéa] = E (145)

These equations yield
e=[(uAp)™7 (=) o] " o5, (1.46)
k= (WAB) T [e + 0c°). (1.47)

There are the steady state solutions. W

Proof of Lemma 4.1

1. Use the concavity of functions u and f.
2. Use the compact convex properties of correspondence I'.

3. The strictly concavity of W comes from the strictly concavity of v and f.
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4. We can prove that the sum Y~ 8V (ky, hy, ki1, hetr) is upper semicontin-
uous on II(kg, hg), which is compact in product topology. The uniqueness
comes from the strict concavity property. The interior property is conse-

quence of Inada conditions.ll

Proof Proposition 4.1

Consider the optimization problem with p # 0. We will prove that the opti-
mal sequence converges to balance growth path (BGP). For any feasible sequence

{ky, hy}o2, € Tl(ko, hyg), define the sequence {k;, 7 }32, as

Observe that for any ¢,

~ 1~
0<hy < Bht’
and
- ki1
ki = —1 T pt+1
f (kt, (1—5+9)9ht—ht+1)

1 + pt-i-l

< f kt (1—5+9)h1—ht+1
— 1+ pt+1’ 6’(1 + pt-i-l)

_ 1 - e — Bl
_f<1+pkt’ 36 )

Define f(k,h) = f (ﬁpk‘, h). For the optimal sequence {k;, h;}:2, of problem
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P(1+ p), and also define that

oK

~ h*

By =
1+ pt

for all ¢.

Obscrve that since u(c) = In(c), for any ¢, any feasible sequence {(k, he) }22,

u (f (k L0 = ht“) - km) _
—u <(1 i <1 i p];tv hy _ﬁﬂ@hHl) _(1+ pt+1)];t+1>

1 - hy— Bhes -
=u(l+p"! ft, ————= | — ks | -
It is easy to verify that {k, h¥}2°, is solution of problem:

> 1 - h,—ph -
t t t+1
maxgﬁ u (f (1 +pk:t, 2 ) - kt+1>
- 1-
0 < heyr < =hy,

/8 ~ ~
0<hk1<f (ét,}“_ﬁ—ihm> .

Using Proposition 4.3, the sequences {(k¥, h})}s2, converges to (k*, h*). Hence

k*
lim —— = k*,
t—oo | —+ pt

h*
lim L = p*.
t—oo 1 + pt
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Proof Proposition 4.2

The Lagrange is given by
Z {ﬁtU(Ct) + )\t[Ak#(Ttht)l_'u — Ct — kt+1] + 77,5[(]. - 5)ht + 0(1 - Tt)ht - ht+1 — Ct(Tt — 1)} .
t=0

The first oder conditions are

B, = A, (1.48)

Mes1Reir = M, (1.49)

MW Teor + e[l — 0+ 0(1 — 7)) = my, (1.50)
mOhy = Aewihy — G, (L.51)

hiy1 =h [1 =04+ 0(1 —7)], (1.52)

where Ry = “A(&)u_l) Gi(me—1) =0, and wyyy = (1 — M)A(_kt+1—)“.

Te+1ht41 Te1he4+1
Assume that 7; < 1 then (; = 0. Furthermore, if there are solutions of the form:

Cril kz_fl = 1+ p, Vt, then combining equations (I.48)and (1.49) we obtain:

Ct

py = D Bute)
o A1 B (erpn)
And then we get
1+
R = Tp =
WS REC TEAVIIR
Ter1hep P ,

A
wisr = (1= A0 = .

From equation (I.51), we have

= 2\ (L53)
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Substituting (I.53) into (1.50), we receive the steady state of growth, as follows:

1+p=p[0+1—4). (1.54)

From equation (1.52), we get

l4+p=1-56+6(1—1). (1.55)

Combining (I1.55) and (1.49), we receive

Sa— (1_(5—’_5)(1_5). (156)

It is easy to check that if we have 6 > [13 +d—1then p > 0 and 7 < 1. Observe

these values are independent of A, kg, hg. Now since

co = AKETYPRGTE — ko(1 + p).

It
ko “(1+ p)

A
> (hor)ir

then c¢o > 0. W

Proof Proposition 4.3

1. Since p = 0 then § = ;——;, the optimization problem becomes

maxZBtu (f <kt’ (1—0+ ee)h,t — ht+1> B km)
t=0

1
0<h < Bht’

ht - Bht—i-l)

0<kn<f (khT
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. Using the Euler equations, we will give an explicit form of the ratio

One can verify that any sequence {ki, h};2, satisfying k; = k and hy = h

(, PA=P)\ _ 1
157 =3

satisfies Euler equations and tranversality condition. For f(k, h) = Ak*h'=F,

with

one has

if and only if

AT (1= B)BTF
; .

k —_—
=
_k
Bhi=hii,’
Consider Euler equations, the first one for &, ; and the second one for hj ;.

Recall that u(c) = In(c) and f(k,h) = Ak*h'=* and B(1 —§ + 0) = 1.

| ; Ap(kg, gyt (U2t )
= [ x
oy (=60 —hy \H . (—6+0)hT —hr ,\F
A(ky ) (%) — ki A(kp,)m ( i1 +2) s
AL — @) (k) ((1 =040ty ht+1) Al — ) (kgq)H ((1—6+9)f§+1—h;‘+2)—#
* (1=0+0)hi—hi 1= * B 6(1 mo 6) 8 * (1=0+0)hy 1 —hi s 1= .
Ak ) ( z ) — iy A(kE )P ( 2 ) ke,

Divide the second equation by the first one, we get:

s oy (L)t

0 o <(1 O+0)hi 1 — t+2) (1 —o+ ‘9)
H 7
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This implies that

ki _ BA L ki :
(1—6+0)hf, —hf, 0r1—56+6 (1 =36+ 0)h; — hi,
_ pA 1 y A 1 K ki, .
el —646 gl=n1 —6+6 (1—38+0)ht , —ht

1—pttl t+1

(A1 e ki "
S \f el —646 (1—8+0)h; — ht

2

Hence, we obtain

1

lim Fips = pA L o
tooo (1 =84+ 0)hi, — hiy, O—r1—06+0 '

In addition, from the first Euler equation, we have

f?[ _ 1 « < k;-i-i . )1_M « fl—n
ciy pBA (1=504+0)h —hi,
1—pttt * (1-p)u
-1 noA X 0'7H x ko
BuA 1w (1—=50+0)hi—h}

gt ki (=t
~ (upAy <(1 =0+ 0)hg — hi) '

t+1

This refers

(#/BA)/'Lt+1
Qi+t ( kg >(1_”>“t+1

* _ *
Cy1 = X &

(1=6+0)hy—h;

12

pBAYN T 1 .
= <T) X o 1—/Lt+2 X Co.
(o=t

(T—5+0)hg—ht
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Let t tends to infinity, we obtain

e (@) NSl E ) |t
0 ki

t—o00

Proof of Lemma 4.2

At the optimum, the income at any ¢ must be at its maximal level. Hence, hy 1 =

(1 —06)hy +6€e]h; (1 —7,)7. We can remove the constraint hyq > (1 —

Lagrange associated with the optimization program is that
Z{ﬁtU(Ct) + )\t[Ak#(Ttht)l_'u — Ct — kt+1 - et] + T]t(l — Tt)+
t=0

+ Kg(—hepr + (1= 0)hy + e h, V(1 — 7))}

The necessary conditions are

U/(Ct) o >\t

BUI(CtH) B /\1t+17

— _ A
A/Lké+11(7_t+1ht+l)l H= )\ d )
t+1

y—171—v o __ >\t

vle] "h, (1 — 1) = —,

R

ridelh, Yo (1 — 1)  + = NAK (L — ) (rehe)

(1 = p) ARy (The) ™1 = K1 + Ry ((1 —7)B (_

M[AR (Tehe) ™ — ¢ — ki1 — €] = 0,
7775[1 - Tt] = 07

"it[_ht + (1 — 6)ht_1 + 662_1hz__iy(]. — Tt_l)a] = O

5)ht The
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From (1.57), we have A\; > 0, V¢. From (I.61) we have r; > 0, Vt. Consequently,
(I.59) implies that 7, < 1, V¢. B

Proof Proposition 4.4

Write ky = ko(1 + p)', he = ho(1 + p)tier = eo(1 + p)tye = co(1 4 p)t. We will
determine p, 7, eg, co.

Since u(c) = In(c), from (157 ) gives 2 = -4l — £. Combining with (L.58),

Aty1  Bul(cey1)

we get:

1
—gp — A/,Lkg_lh(]j_/l/’rl_'u,,

which is equation (I.28).

From (1.27), we have:
(p+0)hg = Oeg(1 —7)7,

which is (I.29).

Dividing (I.59 ) by (1.60), and since n; = 0, we obtain:
(1 = 7)77*(1 — p) AkERG T = ego,

which is (1.30).
Balance between demand and supply of good gives (1.31). Moreover, pludging

in (I.29) the value of p given by (1.28), we receive:

1BApkl " hy "t 46— 1
0 (1—m7)°

K. (L65)

i
€y =

Let A satisfy SApkl " hy *7' 1 46 — 1 = 0.

Assume that
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Let 7 satisfy ﬁAuk’g_lhé_“%l_“ +0—-1=0.
If A> A then 7 < 1.

Equations (1.30) and (1.65) will give the equilibrium values of (ej, 7).

Consider (1.65). This gives a function e}(7) which is increasing. When 7 = 7,

ej(7) = 0. And when 7 =1, ej(7) = +o00.
Consider (1.30). Tt gives a function e3(7) which is decreasing. It equals +o0

when 7 = 0 and equals 0 when 7 = 1.

The equilibrium value 7 solves ej(7*) = e€3(7*). It is unique.

It remains to show with the values of 7%, e, the consumption ¢ in (1.31) is

positive. We claim that when A is large, it will be true.

Observe that when A goes to infinity, then 7* goes to 1. Tedious computations

give
1—7*

7-*

i = AklhyFretoe [<1 - g (1-— ,u)) - B,u} .

When A — +o0, Wehavel—g-l;—f*(l—u)—ﬁ,u%1—ﬁ,u>0. Hence ¢ > 0
when A is large enough.

When 6 increases, the graph of the function e} moves downward while the

graph of €3 does not change. Hence 7* increases. From (I1.28), p* increases.ll
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1 Introduction

There is an extensive literature in both the area of development economics and the
endogenous growth theory which relies on overlapping generation (OLG) model.
More recently, scholars agree that education is understood as a key somechow
evoking human capital, allow individuals to accumulate human capital at the
beginning of the life cycle and is crucially related to inter-generational matters.
In spite of the large body of current studies on education and human capital
in OLG model, this research area still leaves many dimensions, such as inter-
generational culture transmission, diversity of communities, heterogeneous agents

and integration between two communities/countries.

In his influential work, Lucas (1988) shows that the economic growth rate
depends on the rate of growth of human capital stock. Nonetheless, the question
whether or not human capital accumulation plays a central role in supporting
economic growth is still opened up to debate. Recently, Lucas (2015) himself
later raises on doubt that we consider “too large a role to exogenous technological
change” (p. 86). In fact, as it is proved in Manuelli and Seshadri (2014), with
alternative methods for measuring human capital based on data on schooling and
age-earnings profile, differences between countries in average wealth are better
explained by differences in levels of the accumulation of human capital, rather
than levels of total factor productivity. This is the reason why Lucas (2015)
argues that “the contribution of human capital accumulation to economic growth
deserves a production function of its own” (p. 87). In line with these works,
we consider a human capital accumulation function that captures the idea that,
future generation’s stock of human capital is formed by current generation’s level

of human capital and altruistic investment in education.
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Together with Manuelli and Seshadri (2014), the works by McGrattan and
Prescott (2009) and Schoellman (2012) show that production factors like physical
capital and human capital play an more important role in enhancing economic
growth than external sources like technology. In this context, the question that
should be posed is whether or not human capital accumulation can compete with
physical capital accumulation in the process of economic growth, if externalities
arc ignored?. By considering a credit constraint on investment in human capital,
Galor and Moav (2004) not only show that human capital can compete with
physical capital in this process, but also find out that at some stages, human
capital can surpass physical capital in supporting economic growth. Our study
differs from theirs in many points: rather than a heterogeneity hypothesis based
on asymmetric investment opportunities, our heterogeneity hypothesis is based on
differences in levels of altruism. Moreover, our form of paternalistic altruism is also
different from theirs. We actually require that altruistic investment from parents
must be positive and totally devoted to finance their offspring’s expenditure on

education.

This idea that parents are also concern about their children’s education is
far from new. In this aspect, our work are in line with Galor and Moav (2004)
who suppose that altruistic investment from parents “are allocated between an
immediate finance of their offspring’s expenditure on education and saving for
the future wealth of their offspring” (p. 1006), and Michel and Vidal (2000) who
introduce in parents’ utility function their children’s human capital level. However,
Michel and Vidal (2000) discuss “endogenous growth in a two-country overlapping-
generations world” (p. 275) by exploring “the influence of cross-border external
effects in human capital on growth” (p. 275), whereas we consider an economy
with heterogeneous agents and study interactions between different production
factors in the process of economic growth. Moreover, our form of altruism is closer

(compared to theirs) to the original form of paternalistic altruism developed by

2The interaction between physical capital and human capital is also studied by Turnovsky
and Mitra (2013) in a two-sector growth model, but unlike their work, ours does not consider
any external source like technology.
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Abel and Warshawsky (1988), who integrate the level of altruistic investment from
parents into their utility function. In our overlapping generations model, the link
between parents and their offspring is twofold. Firstly, children’s education is
financed by their parents’ altruistic investment. Secondly, through an educational

link, young people take control of the stock of knowledge of their ascendants.

In such a context, we study the dynamic of physical capital and human capital
accumulation in an overlapping generations economy with heterogeneous agents.
In this economy, there are two different communities, denoted by 1 and 2, cohabit.
Each type of household i € {1,2} differs from the other by the patience degree
0 < B; < 1, as well as the parameter of intergenerational altruism 0 < ~; <
1. These communities share the same technology of human capital formation.
However, since they do not share the same degree of altruism (with respect to
their willingness to invest in physical capital), it turns out that people of each
community has their own level of human capital accumulation, and therefore,
workers issued form different communities provide different levels of effective labor
supply.

Our first result is that, we study the dynamic of physical and human capital
accumulation, and prove the existence of a balanced growth path. We then find
out that, along this steady growth path, human capital formation can play an as
important role as physical capital accumulation in supporting growth. Another
one of our findings is that, along this balanced growth path, if an agent’s own
intertemporal consumption is weighted more importantly than the amount of ed-
ucational altruism that she intends to give to her children, then this agent invests
more in physical capital. Furthermore, considering for example an agent of type 1,
if her relative weigh assigned to her own intertemporal consumption (with respect
to her educational altruism) is lower compared to an agent of type 2’s one, then

the relative ratio of human capital intensities Z—; increases.

As to the issue of inequality, we find out that it is important in this economy

to not only consider inequality of labor income, but also inequality in terms of
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consumption levels. We then describe the impact of this inequality of consumption

on the interaction between human and physical capital accumulation.

The remainder of this chapter is organized as follows, section 2 presents the
fundamentals of our model. In section 3, we reveal the descriptions of global
equilibrium dynamics. In section 4, we analyze the steady-growth path. In section
5, we study inequality of incomes as well as consumption levels. Conclusion is the

section 6. The proofs are gathered in Appendix.

2 Fundamentals

We consider a two-period OLG model with physical and human capital accumu-

lation, as follows:

Firms. The economy’s technology is represented by an augmented Cobb-

Douglas production function:
F(Ki, Lig, Loy) = AKtl_a_"L‘itLg,t, (IL.1)

where K; denotes the aggregate capital, and for i € {1,2}, L;, is the labor force
of type 1.

A representative firm chooses Ky, Ly, and Lo, to maximize its profits:

F(Ku Ll,t7 Lz,t) - R Ky — thLl,t - wz,tL2,t~

The firm’s profit maximization implies:

Ry=(1—-a—0)AK;* 7L}, L3, (IL.2)
wyy = cAK LS LY (11.3)
Wy = o AK} 7L, L, (IL.4)

where R; represents the return on capital, while, for i € {1,2}, w;; denotes the
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wage rate on labor force of type 7.

Generations. In this model, agents live for two periods, young and old. At

time ¢, the young people’s population is denoted by /V;, while the demographic

Nt
Ny

growth factor is supposed to be a greater-than-one constant n: n =
Workers. Each individual, as usual, is supposed to work only when young,
and when old, he only consumes. For i € {1,2}, a worker of type i born at time ¢

provides service flow h; ;.

Young workers born at of each type i learn and develop their skill through an

education process, and thanks to help from paternalistic parents:

hige1 = Bhi%el, + (1 — 0)hiy, (IL5)

where 0 < 6 < 1 denotes by the depreciation rate of human capital, e;; rep-
resents the paternalistic investment intensity from parents born at time ¢ to their

offspring, and 0 < 6 < 1.

It turns out that, in this economy with paternalistic altruism and human capi-
tal accumulation, the link between generations is twofold. Firstly, parents finance
their children’s education by leaving an educational fund. Secondly, through the
process of education, not only young people learn and develop their skill, but also

take control of the stock of knowledge of their ascendants.

Consumers. Taking the price of consumption good as given, each household
of type 7 determines her saving portfolio (s; ., €;+) of investment in physical capital
and her children’s education, as well as her intertemporal consumption choice

(¢it,dis41), in order to maximize his intertemporal utility:

max u (Ci,t7 d,’7t+1) + v (6,#) =In Cit + Bl In di,t—i—l + Yi In €it (116)
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subject to the following budget constraints:

Cit + Sit + € Jwithiy, (IL.7)

digr1 < Riqi1siy. (IL.8)

It turns out that, each type of household i € {1,2} differs from the other by
the patience parameter 0 < 3; < 1, as well as the degree of paternalistic altruism
0 < v; < 1. We suppose that, at each date ¢, the proportion in total population
of households of type 1 is w, and 1 — 7 represents that of type 2.

Different communities share the same function of human capital accumulation.
Nonetheless, since the degrees of altruism are different from each other, agents of
different communities do not share the same level of human capital accumulation,

and therefore, workers of type 1 and 2 provide different levels of effective labor
supply.

Markets clearing conditions are given by:

Ly = mNthyg, (I1.9)
Loy = (1 —m)Nihoy, (I1.10)
nka_l = TS14 -+ (1 — 7T>827t, (IIl].)
AKl_a_o'L(]itLg’t = Nt(Ct + S + et) + Nt—ldt7 (1112)
where k; = % denotes the capital intensity at each date t.

Definition 2.1 A positive list (w14, Wz, R, C14, Cot, d1t41, dogt1, S1ts S2ts €14, €245
hit, hoy, k1) s said to be an equilibrium for the economy if: (1) the allocations
(C1t, Cotydipr1, Aoty Sty Sos €14, €21) mazimize (11.6), given (wyy, wayt, Riv1, by,
hat), subject to constraints (I1.7) and (I1.8); (2) the markets clearing conditions
(I11.9), (11.10), (I1.11) and the formation equation of human capital (I1.5) are
satisfied.
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3 Equilibrium dynamics

Let us introduce the income intensity of the economy at date ¢, y, = F(KTZL") In

equilibrium, we obtain:

Y = Ak'tl_a_a (Whl,t)a ((1 — W)hg)t)a (1113)

= f(k’t, hl,u h2,t)-

Furthermore, at equilibrium, individuals’ level of consumption ¢;;, value of
transfer to offspring e;; and savings in physical capital s,; are proportional to the

income intensity y;:

Lemma 3.1 For each agent of type i, we have:

1

Cip = —————w; thiy, 11.14

T TT B 1 et (IL.14)
Vi

ey = — b, I1.15

7t 1 +B@ _I_,yl 7t 7t ( )
Bi

)t 1+Bz+’71 bt ( )

Moreover, individual labor income, w; h;; can be expressed in term of the output

intensity, y; as follows:

«

wythye = ;yt, (I1.17)
o

wathet = 1= ﬂ_yt- (I1.18)

Proof: Appendix m

Remark 3.1 We can equivalently refer to the sequence (hyy, hoy, k:t+1)t>0 as an

equilibrium.
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Proposition 3.1 The dynamic system of the economy is given by:

kt-l—l - nf(kt7 hl,t7 hQ,t)’ (1119)
! « ’
hl,t-{-l =B [m;f(kt, hl,t, h/Z,t):| h%;g + (]. — (5>h1,t, (1120)

ag
hos1 = B [ 72

6
[T B+ L= (R P ’W] e+ (1= 0)hay,  (IL21)

B1 + B2

a”ﬁ”“na“ﬁ?”z can be interpreted as the propensity to save of the

where n =

economy.

a Proof: Appendix m

Remark 3.2 This propensity to save of the economy increases with individuals’
patience parameters [3;, and decreases with the degrees of altruism ;. At a constant
level of B;, the more altruistic parents are, the more altruistic investment in their
children they are, and consequently, the less they are concerned about their future

level of consumption.

Furthermore, if we consider individuals’ ratios of human capital to physical

capital, u; = %t and v, = ’%t then the above three-dimensional global dynamic

system can be reduced into the following two-dimensional dynamic system:

Corollary 3.1 Let us define C, = <°‘ =t )6 and C, = (LLY.

nm 14+B1+m n(1—m) 1+B2+72
Then the system (11.19)- (11.21) becomes:

1 'UJ%_OC 1-6 1 uz—a
=Bt 1-9 . (122
" [nAﬂa(l —m)7 vf } o )nAw“(l —m)7 f (1L.22)
1 e 1 oo
=BG : 1-6 : 11.23
Vi1 {nAwa(l — 7T)0’ u } + ( >77A7T°‘(1 _ T)g o ( )
where u; = %“ and v, = %f

Proof: Appendix m
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4 Steady-growth path analysis

In this section, we focus on the balanced-growth paths (BGP) along which long-

run physical capital and human capital grow at the same positive constant rate:

_ kiy1 _ hiagr _ hogta

p= ki hig hoyt °

Proposition 4.1 There exists an unique balanced-growth path, and the rate of

growth of the economy s given by:

1
ado fyl a 72 g l—-a—0o
AB%?" (a—1 2
7)( < 1+51+71> (01+52+’V2) )

where p (p) = p(p—1+9) Paro) , which is an increasing function in p.

p=p"

] , (I1.24)

Proof: Appendix m

For the intuition, we present the numerical solution of the BGP growth rate of
the economy which the following parameters are fixed: A =1, B = 1.05, n = 1.05,
0=0.050=06a=0.3,0=0.3, 5 =0.95 B =095~ =0.5, o =0.5.

Figure 2.1. The growth rate of economy on the balanced-growth path

-

7 093e-05
1086
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The growth factor of economy on the BGP is approximately 1.056 (it turns
out that the growth rate is equal to 5.6%), as shown in Figure 2.1 above.

Furthermore, noticing that the propensity to save of the economy is given by

B1 B2
« to . . . .
n= 158111 C B2 72 , we are interested in the impact of the patience parameters

B; as well as the altruisms degrees 7; on economic growth. For this purpose, we

assume homogeneous agents, that is §; = o = 5 and 71 = 75 = . We then have:
Proposition 4.2

1. For a given parameter of patience, there exists a critical degree of altruism,
under which the growth rate is increasing with respect to the altruism degree,

otherwise it is decreasing.

2. For a given degree of altruism, there exists a critical level of patience, under
which the growth rate is increasing with respect to the patience parameter,

otherwise it is decreasing.
Proof: Appendix m

To illustrate Proposition 4.2, let us proceed with a numerical exercise with
A=1 B=1.05n=1.05 6=0.0560=06a=0.3 06=0.3,5=0.95 In the
first case, we assume that these parameters remain unchanged, whereas we let the

parameter of altruism degree, 7 increase from 0.28 to 0.47.

With reference to the above setting, we see that in this case, the growth rate
of economy, p increases from 0.33 to 0.36 when the parameter of altruism degree
respectively is equal to 0.28 and 0.34 (as shown in Figure 2.2 (a) and 2.2 (b)).
Nevertheless, when the degree of altruism approximately reaches at 0.42 then the
rate of growth of economy, p is only reduced to 0.32 (see Figure 2.2 (c)). And
then this growth rate of economy, p is only about 1.030 if the degree altruism

parameter is arround 0.47 (see Figure 2.2 (d)).
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Figure 2.2 (a). The BGP growth rate of economy with the role of altruism
degree (y = 0.28, the growth factor: 1.033).
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Figure 2.2 (b). The BGP growth rate of economy with the role of altruism
degree (v = 0.34, the growth factor: 1.036).
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Figure 2.2 (¢). The BGP growth rate of economy with the role of altruism
degree (y = 0.42, the growth factor: 1.032).
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Figure 2.2 (d). The BGP growth rate of economy with the role of altruism
degree (v = 0.47, the growth factor: 1.030).
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Figure 2.2 (a,b,c,d) show that the importance of parameter of altruism degree,

~ on the growth of the economy.

By contrast, in the second case, we let the patience parameter § increase from

0.65 to 1.75 while the degree of altruism parameter is fixed at the value of 0.35 with
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the unchanged parameters as in the first case. As illustrated in Figure 2.3 (a) and
2.3 (b), if the patience parameter, /5 increases from 0.65 to 0.95 then the growth
rate of economy, p attains at 0.35 and 0.37, respectively. While if S continue
to increase to 1.25 then p decreases to 0.33 (see Figure 2.3 (c)).

of economic growth rate is around 0.30 when (3 continues to increase to 1.75 (as

shown in Figure 2.3 (d)).

Figure 2.3 (a). The BGP growth rate of economy with the role of patience
degree (8 = 0.65, the growth factor: 1.035).
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Figure 2.3 (b). The BGP growth rate of economy with the role of patience

degree (8 = 0.95, the growth factor: 1.037).
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Figure 2.3 (¢). The BGP growth rate of economy with the role of patience
degree (8 = 1.25, the growth factor: 1.033).
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Figure 2.3 (d). The BGP growth rate of economy with the role of patience
degree (8 = 1.75, the growth factor: 1.030).
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Figure 2.3 (a,b,c,d) exhibits the importance of parameter of patience, 3 on the

growth of the economy.
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4.1 Comparative statics

h1

Corollary 4.1 The steady state ratio of human capital stocks e Us guwen by:

hy gl—ﬂl+[(1+ﬁz)/%]

— = ) 11.25
h 0w 1[0+ A (129
Meanwhile, the ratios physical capital to human capital are given by:
b o1+ [(1+B)/m]] 7
— = m(nA)V/ e+ {— 11.26
T QT B (120
k o 1+[(1+B)/0]]
— = (1 —7)(nA)'/(eto) {— : 11.27
R S CEND (120

Proof: Appendix m

Moreover, for each type of agent i € {1,2}, let us introduce the following

parameter:

_ 1+ 8+
T i

1 .
14 +52'
Vi

The parameter x; captures the relation between the patience parameter 3; and
the altruism degree ~; of an agent 7. Noticing that 1 and ; are the weights as-
signed to current period’s consumption and future consumption, while altruistic
investment is weighted by ~; in parents’ utility, therefore k; can be considered as
a relative ratio between one’s own consumption and one’s altruistic investment to
offspring. An increase in x; may mean that the agent ¢ become more concerned
about her future consumption, or less altruistic toward her children, and inversely.
Therefore, it would be valuable to compare different behaviors of agents by com-
paring 1 with ks. That’s why we will measure the impact of the ratio k1/ky to

the relative ratio hy/hs.
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Definition 4.1 Let us define:

A
€khi = .

A/{Z‘/HZ’

the elasticity of physical capital to human capital of an agent i with respect to her

willingness in physical capital saving and altruistic investment, and

o _AGH/
"TA(E)/R

the elasticity of human capital of type 1 to human capital of type 2 with respect to

different levels of willingness in physical capital saving and altruistic investment.

Proposition 4.3 We obtain that:

g
— 11.28
by =~ (I1.28)
«
— 11.29
Ckhz = +o’ ( )
€Epp = —1. (1130)

Proof: Appendix m

Comment: An increase in k; leads to a raise in the relative ratio physical -
human capital, hﬁ If one weights her own consumption more than the altruistic
investment to her offspring then one invests more in physical capital. In another
hand, since €, is negative, if an agent of type 1’s relative ratio of consumption to

altruistic investment is lower compared to the other type’s one, then the relative

h1

” mncreases.
12

ratio of human capital levels
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4.2 Local dynamics

Proposition 4.4 The equilibrium dynamics are approrimated around the steady

state by the linear system

e (1-a)a —oa | |2 s
dos | —ab (1 —o)b| |2 ’
v v
1—a\1-0 1-o\1-6
where a =1 — 0 (gt ") andb=1— 0BCy (et o)

u v

Proof: Appendix m

As proven in Appendix, 0 < a,b < 1, and moreover we have:

Proposition 4.5 The steady state is locally determinate.

Proof: Appendix m

Figure 2.4. The local dynamic system of the economy.
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Remark 4.1 As proved by the proof of Proposition 4.5 (see Appendiz), if we
denote the characteristic polynomial of system I1.31 by P(\) = X2 —TA+ D, then

we always have:

D <1,
P(-1)=1+T+D >0,

P(1)=1-T+D > 0.

5 Inequality and the interaction between physical

capital and human capital

5.1 Inequality in terms of wage incomes

Wage incomes of the two types of agent are respectively wi hi; = 2y, and
wahoy = 17-y;. We suppose that an agent of type 1 has a higher wage income

than that of an agent of type 2, or equivalently:

Assumption 5.1 Assume that the share of labor income of type 1, «, is high
enough, as well as the population density of community 1, w, is low enough such

that @ > 2.

This inequality condition can be explained by the fact that the population
density of community 1 - the richer community, 7 is much more fewer than that
of community 2, 1 — m; while the share of labor income of community 1, « is

considerably high with respect to that of community 2, o.

Under this assumption 5.1, we obtain the Gini coefficient of wage income dis-

tribution, denoted by (,,, can be expressed as follow:
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Proposition 5.1

Gp=—— 1. (11.32)

a+o

Income inequality between communities is increasing in &, and decreasing (respec-

tively increasing) in 7 (respectively 1 — m).

Proof: Appendix m

Remark 5.1 Income inequality index G, can be expressed in terms of elastici-
ties €gp,. Indeed, equation (I1.32), combined with equations (I1.28) and (I11.29) of

proposition 4.3, turns out equivalent to be:

Gw = (]- - 7T)Ekhg — T€khy- (1133)

Noticing that egp, + €xn, = 1. We therefore find out a perfect positive (nega-
tive) correlation between income inequality G, and the elasticity of physical capital

saving to altruistic investment of the poorer (richer) community.

5.2 Inequality in terms of consumptions

Motivation: G, does not depend on the parameters [3; and ~;, which are impor-
tant since they respectively capture the willingness of an agent in investment in
physical capital and altruistic investment. Furthermore, by considering the Gini
coefficient of consumption, we will emphasize that these behavior parameters, (;
and ~;, importantly matter, when it comes to compare the consumption levels of

different agents.

As above, first, we consider inequality conditions between communities:

Assumption 5.2 Assume that the share of labor income of type 1, «, is high

enough, as well as the population density of community 1, w, is low enough such
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that both of the following inequalities hold:

o 1+p81+m

Q

- > , I1.34

T 1l—ml4 B+ ( )
1

o, o Blthtm (11.35)

T 1—mB1+B+7

Under the above assumption, individuals of the community 1 can be qualified

as richer compared to the others.

We can easily see that, if 8; = (s, then the two above consumption inequality
conditions are the same. Moreover, if Sy < (1, the inequality condition (I11.34)
automatically implies (11.35): Intuitively, consumption inequality between com-

munities among old individuals is worse compared to that of younger generation.

We respectively denote GY the Gini index of consumption between young work-
ers, and G¢ the Gini index of consumption between old agents. While reminding
that d; ;11 = Rit18:4, and ¢;¢ and s;; are given by equations (II.14) and (I1.16),

we compute GY and G as follow:

Proposition 5.2 Under assumption 5.2, consumption inequality indexes GY and

G? are given by:

(67

GY = -7 (11.36)
¢ 1+ 4y ’
o+ 01+B;+7;
[0
Gy = -7 (IL.37)
c B2 14+B1+71
o+ 0-51 14+f2+72

Furthermore, if B < (1, that is the preference for physical capital saving of the
poorer community is lower than that of the richer community, then consump-
tion inequality between communities among young workers is amplified when these

workers become retired.

Proof: Appendix m

This result leads to interesting interpretations.
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Remark 5.2

1. As seen in Proposition 5.1, these inequality indexes are also increasing in <,

and decreasing (respectively increasing) in 7 (respectively 1 — 7).

2. We notice that

Bol+fit+m 1+ 1+
511+52+’72_[1+ B1 }/[14_ Ba }

and Vi, %7— captures the degree of educational altruism relative to the param-
eter of physical capital saving. Therefore, inequality is not only a problem
for individuals when young, but when they become older retired, this kind of
inequality between rich and poor communities/classes/countries may be even

147

2% can be considerably greater than St the poorer an in-

worse. Indeed, 15

2
dividual is, the less preference she shows for investment in physical capital,
and meanwhile, the higher effort will be required to finance her children’s

education.

Comment: The impact of consumption inequality on the interaction between

physical capital and human capital can be expressed by the following note:

Since consumption inequality indexes are increasing in £, these indexes are also
decreasing with respect to 2%, which is proved by Proposition 4.3 to be equal to
€xh, - representing the elasticity of physical capital to human capital of an indi-
vidual of the richer community with respect to her willingness in physical capital
savings and altruistic investment: In other words, the worse inequality is, the more
the richer community’s agents raise their level of human capital accumulation (at
a given level of physical capital), compared to agents of the other community, if we
assume that the two communities share a same degree of willingness in altruistic

investment with respect to investment in physical capital.
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6 Conclusion

This chapter studies the dynamics of human capital accumulation in a two-period
overlapping generations model with heterogenecous agents. In this model, parents
are altruistic toward their children and invest in their offspring’s human capital.
We suppose there are two communities with distinct levels of altruism degree as
well as different preferences for investments in physical capital. We prove the
uniqueness of the balanced growth path (BGP) of the economy and characterize
equilibria around this BGP. We also study the inequality in terms of labor income

and consumption, by considering the GINTI coefficient.

In spite of the fact that our study has results in interesting and worthwhile
conclusions, there are two limitations: On the one hand, we can say little about
the impact of the parameters on the rate of economic growth such as the patience
coefficient, the degree of altruism and the share of two types of labor. On the
other hand, the mobility of individuals between two communities is restricted. It
means that only agent 1 gives birth to agent 1 and so on. Therefore, analyzing
more detail about the effects of fundamental parameters on the rate of economic
growth and introducing the probability distribution of the mobility of households

between two communities which are the future research.

7 Appendix

Proof of Lemma 3.1.

We solve the program of consumer’s utility, by considering the following Lagrange:

L=Inc+ Bilnd; 1 +vilne, s + Nw;thie — it — Sit — €it] + p[Rep18ir — dipia]-
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The necessary conditions are

1
— =\ IL.
e (11.38)
i _ 1, (11.39)

dz',t—i—l

pR1 = A, (11.40)
Ji_ (11.41)
€it

Moreover, the budget constraints are binded:

Cig + Sip + €ip = W;thig, (11.42)
di,t-l—l = Rt-l—lsi,t- (1143)

Combining (11.38) and (I1.39), we have:

A4
2= (11.44)
po Biciy
From (I1.40) and (I1.41), we get:
Ry = L (I1.45)
it
Meanwhile, combining (11.38) and (II.41) gives:
61'?75 = ’Yici,l% (1146)
With reference to the equations (I1.43) and (I11.44), we receive:
Sit = ﬁici,t. (1147)

Finally, we substitute (I1.46) and (I1.47) into the budget constraint (11.42), we

respectively obtain the individual’s consumption and savings, as well as the level
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of expenditure on education. W

Proof of Proposition 3.1.

Combining the capital market clearing condition (II.11) with equations (II.16)-
(I1.18) from the Lemma 1, we get (IL.19).

In order to achieve the results of I1.20 and I1.21, we simultaneously combine
the human capital accumulation equation (I1.5) with equations (I1.15), (II1.17) and
(I1.18).M

Proof of Corrolary 3.1.

Dividing (I1.20) and (I1.21) by k41, we get the following system:

hy 41 (hlt)l_e has

— —BC, [—= +(1—08)—, I1.48

kt-i-l kt+1 ( )kt-i-l ( )
1-0

hotyr _ BC, (@) (- 5)%7 (I1.49)

Kis1 K1 ki1

where

Cu

0
2! « 1
(14—514‘71 W) n?’
o1
_9.

C = V2 g
YT\l A+ B+l —n/) 1
h1 ¢ ho ¢

Noticing that ki1 = nAk, > 7 (mhy+)®[(1 — 7)ha,]°, We rewrite ros and g2t

by 111 (@)1_0_” (h)a
kivr nAme(1—m)7 \ Kk hot)

hpy 111 (%)1_0_" (%)”
Ky nA me (1 - 7)0 ke hiy .

as follow:
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h h )
Let us define u; = k%t and v, = kitt We obtain:

hi, 11 I T

—_ =t 11.50
kvr  nAme(1—m)o of ( )
hoy 11 1 u7° (1L51)

k1 nAre(l—m)7 ud

Replacing (I1.50) and (II.51) respectively into (I1.48) and (I1.49), we have:

BC L w) a5 L w"

U fmd w - )
ik nAn*(1 —m)7 vy nAr*(1 —m)7 vy
1 1—0o 1-0 1 Ul—o‘

= BC, L 1—96 L
Vet |:7]A7T“(1 — )7 ug ] + )T]Aﬂ'a(l — )7 ud

Proof of Proposition 4.1.

Along the balanced-growth path, physical and human capital grow at the same

Reyr _ haggn _ heesn

positive constant rate: p = == = ™" e

Combining equations (I1.16) and (II.11) gives:

5 Ba )
nkiy1 = | o +o . I1.52
" ( T+ fitm 1+t yw)” (11.52)
In another hand, by transforming equation (I1.5), we have:

hi i1 eir\’
7,0+ 2,t
B 2) +(1-90
D (hw) ( )

€t p—1+0 0
= . 11.53
e ( L ) (1153)
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Incorpotating equations (I1.15), (I1.17) and (II.18), we get:

et = Lwlthlt = QLZM
Tl Bittn T w14 B4 m

€at = LWchQt = 7 e Yt
’ 1+ﬁ2+’)/2 T 1—7T1+ﬁ2+’)’2

Moreover, combining the two latter equations with (I1.53), we obtain:

1
(p—1+(5>"h _a Y1 y
B 1t 7T].+ﬁ1+")’1 ty
p—14+90 g o Yo
B ) i v
w1+ By + 72

The above equations allow us to express human capital stock, h;; in term of

the output intensity, v, as follows:

1
(0% B 4 71
hi; = — , I1.54
1t 7T<p—1+5> 1+/31+71yt ( )
o B 6 Y2
ho, = : I1.55
2! 1—7T(p—1+5> 1+ B+ ya (IL55)
Substituting (I1.54) and (I1.55) into (II.13), we receive:
Akl—a—a -Oé gt B %- ° 72 B %- ’ a+o
= o
e A T+ B +m \p—1+0 T4+t \p—1+3) |
r e 170
—a— —a— B ’ 2 o
-« U:Akl a—o gi!
y'f N R A VA T+ B2+ 72 \p—1+0
or, equivalently
B % @ B % g l—a—o
g 72
= |A X k
v <a1+ﬁ1+’n (p—1+5> ) <01+62+w <p—1+5> ) ] f
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Combining (I1.19) and (I1.56), we get:

@:n ala M ( B )
kt 1"‘61"”)/1 p—l—i—é

) o V2 ( B ) N
1+ B4y \p—1+96 '
B1 B2

+
Notice that 5 = —=21m n‘71+32+72 , we finally have:

D=

@

ato 1 1 /Bl /82 > ( fyl ) l—a—0o
-1 + 5 0(1—a—0) — — AT-a—0 (a + o «
Plp ) n 1+B81i+m L+ B2+ 72 L+ 61+m

o

72 l-a—0o ato
o———— Bot-a=0), I1.57
( 1+ 62+ ’72) ( )

Proof of Proposition 4.2.

When () = 3 = f and 71 = 72 = 7, ¢(p) can be rewritten as:

a+to

6 fy l—a—0o
= constant X .
#(p) T+ B8+ \1+B8+~

Furthermore, ¢(p) can be linearized as follow:

Inf[p(p)] =In(8) —In(1+ B+ ~) + ] f +i . [In(y) — In(1 + B + )] + constant
a+o 1
=In(8) + - In(y) — S Rp— In(1+ 3 + ) + constant.

1. Taking the derivative of In(p(p)) with respect to +:

Oln(p(p)) _(a+o)1+pf)—(1—a—-o)y
Oy Y1—a—o)(1+5+7)

(+8)(a+o) ’

For a given value of (3, the critical level of v is 7 = ===
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2. Taking the derivative of In(y(p)) with respect to f:

dn(p(p)  (L—a—-o)(l+7) - (a+0)8

o8 Bl-a-o)1+B+7)

For a given value of 7, the critical level of 3 is 3 = %

Proof of Corollary 4.1.

Along the steady growth path, the equations of (I1.48) and (I1.49) become:

1-6
M _ e, (@) La—gh

k k Lk’
hy ho\'? ha
- =BC, (?) +(1-0)7,

which imply that:

k
ho ho\ '
—~ =BC, | =
" c7<k>

Consequently, it turns out that

hq Cy
nela]
_ al—ml+4[(1+5)/7)]

o 7 1+[(1+8)/m]

|

Furthermore, we can obtain (I1.26) and (I1.27) by combining (I1.52), (I1.54)
and (I1.55). W
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Proof of Proposition 4.3.

In order to calculate egp,, we linearize equation (I1.26) as follow:

In kY__¢ In(k;) + constant
h1 N a+o ! .

Consequently, we easily obtain (I1.28).

As for €gp,, €nn, they can be computed in the same manner. ll

Proof of Proposition 4.4.

Around the steady state, we linearize (I1.22) as follow:

dugiq 1,
duy : BO(1 = 6) L;Awa(i T u;a} k nAﬂa(i T '
+(1— 5)m(1 — a)uv—aay
—a 0 —a
dv, - BC,(1 - 0) [nAﬂa(i —5 u;,, } (—U)UAWQ& o Z;l
0l 1 yl-a

nAmre(1 — 77)"00‘”rl '
Consequently, we have:

I—a 16 1-a
BCu(1—6)< I ) F(l—)——t ](1—00%

udug

nAr*(l — )7 v

1—ay 10 ul—« v,
BC,(1 - 6) <UAWQ(1_W)U“UU ) =) — ](_g)d_.

u

_|_




106 CHAPTER 11

Noticing that at the steady state, we also have:

1 ul—a 1-60 1 ul—a
BC, (1 — 1-—
Cu(1-6) <7]A7Ta(1 — ) v > * 5)7]A7T0‘(1 —m)° v

1 ul—a

= u—0BC, ( )1_9. (11.59)

nAre(l1—m)° v’

Combining (I1.58) and (I1.59) we obtain:

udug g 1 wltme\ duy dv,
—— = |u—06BC, l—a)— —0—
u " ¢ (T}Aﬂ'o‘(l — ) ) (1-a) ’

1-6
0BC, (ﬁ)
A (1—m)o L
ey _ |y _ Koo {(1 _ o)t ad”t} . (IL60)

Let us define:

Because of (I1.59), we can easily see that 0 < a < 1. Moreover, (I1.60) becomes:

durpr _ [(1 _aydue 0%} . (IL61)
u u v
Around the steady state, we linearize (I1.23) as follow:
dvgyr 1,
duy : BC,(1 - 0) [77147?0‘(1 —T)° U;;U] ’ 771471‘0‘(1 —T)° (_Q)Z:
—(1=9) nAWa(i - ﬂ)”az:j’
dvy : BC,(1 - 06) {7)1477‘1(1 )° v;;a] ’ (1= U)/r]Aﬂ“(i —7)° Uu_:
1 v 7
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Consequently, we have:

vdvy

v nAne(1 —m)7 u®

BC,(1-0) ( . vH) T ”1_1 (—ay Pt

+|BC.1-0) LS i W PO S il PR 7
! nAre(1 — )7 ue nAre(1 —m)7 ue T
(I1.62)
Noticing that at the steady state:
1 e -0 1 pl=o
BC,(1— 1- -
¢u(1-9) <77A7T0‘(1 —7)7 u® ) + 5)77A7ra(1 — )7 u®
1 A
=v — 0BC, . II.
v—0BC <7’]A7TO‘(1—7T)U ua> (11.63)

Combining (I1.62) and (I1.63) we obtain:

vdvy 1 o\l duy dv,
2 |, _ 6B D SIS
5 v—60BC, (nAwa(l—w)U v > (—a)—+ (1 —-0)

1-60
1 vl=7
dvi4q N OBC, (ﬂAﬂa(l—W)" “_"> [( o duy

(% (%

Let us define:

nAT*(1—-m)° u®

Lo\ 1-6
b=1-— ey (+ ) )

(Y

Because of (I1.63), we can easily see that 0 < b < 1. Moreover, (I1.64) becomes:

dviiy

duy dvt] (11.65)

=b l(—a)— +(1—0)—].

v u v

Combining the results of (I1.61) and (I1.65), we finally obtain the system (I1.31).
]
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Proof of Proposition 4.5.
The characteristic polynomial of the system (I1.31) is given by:
P(\) =M —TA+ D,

where T" and D respectively denote by the trace and the determinant of the Jaco-

bian matrix. They are addressed by

T=(1-a)a+(1—-0)),

D=(1-a«a—-o)ab.

Furthermore, we have:

A=T?—-4D

[(1-a)a+ (1 —0)b)* —4(1 —a—o)ab

[(1-a)a?+[(1—0)b)* +2(1 —a)(l—0o)ab—4(1 —a —o)ab

[(1 —a)a— (1 —0o)b]* + dacab.

Consequently, we can easily see that A > 0and T = A+ > 0, D = A Ay > 0.
This means that the eigenvalues A\; and A\ are distinct and positive. Moreover,
because the sum of these eigenvalues T' = (1 — a)a + (1 — o)b is less than 2, one

of the eigenvalues is smaller than 1: If A\; < Ay then necessarily \; < 1.

Now, in order to prove that A5 is also less than 1, it is sufficient to show that

P(1) > 0. Indeed, since

P1)=1-T+D
=1-[1-a)a+(1-0)b+ (1 —a—oc)ab

=[1-(1-ad|[l—(1-0)b —acab,
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proving that P(1) > 0 is equivalent to point out that [1 — (1 —a)a][l — (1 —0)b] >

[1-(1-a)a][1-(1—0)}]
aocab

aoab, or equivalently > 1. The later inequality is always true,

because it is obvious that:
l1-1—-a)a=1—a+ aa > aa,
and

1—(1—0)b=1—b+0ob> ob.

Proof of Proposition 5.1

Since wage incomes of the two types of agent are respectively wyh = 2y, and

_ _g .
w27th2,t = Eyﬁ we have:

(1 =m) (G — 5 4)

Gy =

(a+ o)y
=(1-m -
a—+o a—+o
Q
= — .
a+o

Proof of Proposition 5.2

By the reason of the consumption of the two types of young workers of two com-

munities respectively are

1 o
C = - — s
M T Bt
and
1 o
Cot

B 1+52+’721—7Tyt
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we obtain:
[e] o
GY = (1—m) LBty 14Bat
c o + (2
14+B1+m 14+ B2+2
(6%
- a _|_01+51+11 -

14+B2+72

Similarly, we also had the consumption of an agent of type 1 is

di 41 = R

and the consumption of an agent of type 2 is:

52 g
Yt
L+py+rl—m

dot41 = Ry

We now achieve the consumption GINI coefficient index when individuals are

old:

_ - Sy -
o _ (1 7T)O‘1+ﬂ1+m M0 8,7
c B1 Ba
a1+51+’71 + 01+ﬁ2+‘/2
(6%
= — 7.
P2 14+B1+71
o+ 051 1482472
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1 Introduction

According to standard definitions Smith (1776) and Becker (1964), human capital
accounts for labor productivity and depends on the worker’s state of health and the
level of education. In equilibrium, when the labor market is perfect, human capital
turns out to be equivalent to the discounted value of life-span labor incomes. Since
the seminal Lucas’ contribution (1988), the accumulaiton of human capital is also

recognized to contribute to economic growth to a large extent.

Investments in human capital (health and education) are either private or pub-
lic choices. While households can decide the share of income and leisure devoted
to schooling, nutrition, medecines or sports, a government also can implement
educational policies and/or improve the health system. In this chapter, I will fo-
cus only on public spending on human capital accumulation through investment
in education and consider the impact of this policy on (endogenous) growth and

social welfare.

To this purpose I build a simple OLG model with two overlapping generations.
This approach is interesting in two respects. On the one hand, it allows to have a
general equilibrium perspective. On the other hand, it permits to study the (com-
plex) dynamics associated to the interplay between the accumulation of physical

and human capital.

In this study, I provide a study of the dynamic properties at the steady state
and during the transition. Besides, I address the impact of a two-sided fiscal
policy on human capital accumulation, economic growth, and social welfare. More
precisely, I assume that the government finances the young’s education by levying
taxes on labor and capital income following a simple balanced-budget rule: two

distinct but constant tax rates on labor and capital income are considered.
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There is a large existing body of literature on the accumulation of human cap-
ital. The classical work of Lucas (1988) focuses on human capital and considers
the trade-off between learning time and working time. Interestingly, a recent work
of this author, Lucas (2015) argues that “the contribution of human capital accu-
mulation to economic growth deserves a production function of its own” (p. 87),
and emphasizes the importance of human capital as source of economic growth.
Manuelli and Seshadri (2014), by measuring human capital according to schooling
and age-earnings data, show that the variation in average wealths among countries

is well-explained by the differences in the level of human capital accumulation.

Directly related to this work are the studies by Garrat and Marshall (1994),
Fernandez and Rogerson (1995), and Gradstein and Justman (1995). The main
conclusion of these authors is that individuals who attend institutions of education
would earn more income in the future and hence pay more income taxes. They
also emphasize the role of the government, through investment in education, on
reducing inequality and enhancing the benefits of social welfare. In addition, the
main motivation for this article is the work of Glomm and Ravikumar (1992), who
consider an OLG economy with heterogeneous agents and two-fold human capital
formation, i.e., public and private investment in education. I consider only the
former, with the aim to highlight the importance of the role of taxation on human

capital accumulation and ultimately on economic growth.

This research is also in the spirit of Barro (1990) and Bosi and Nourry (2007),
who examine the effect of public spendings on economic growth. Differently from
the first two chapters of my dissertation, where the investment in education is
decentralized (the role of private investment in education), this chapter considers
this variable as a government choice. In order to understand the impact of tax
policies on economic growth in separation from the decisions of the households, I
assume that the households invest only in physical capital. One of the purposes of
this research is to study the co-evolution of human and physical capital in an OLG
model. This work not only completes the work in Chapter 1, where the problem

is analysed in a Ramsey model, but also sheds light on the impact of taxation on
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long-run econmic growth.

The main idea runs as follows. I consider an overlapping generation (OLG)
model with homogeneous economic agents. The newborn agents live in date t,
when they are young, and in date t+1, when they are old. They work when young,
endowed with inelastic working time and a skill level. The latter is understood
as the human capital level characterizing their generation. They make decisions
on consumption and investment in physical capital (savings) when young and

consume what they get from savings when old.

The government taxes both wage (labor income) and capital returns on the
whole population (both young and old). Two effects of taxation are noteworthy.
First, it reduces the houscholds’ total income, hence lowering their investment
in physical capital, which has a negative impact on output. Second, it raises
tax revenues and the government’s investment in education, thus increasing the
productivity of the future generations. Consequently, the net impact on economic

growth is ambiguous.

Given taxes on labor and capital incomes, I characterize the balanced-growth
path (BGP) of the economy. I prove the existence and uniqueness of the BGP
and their convergence to this BGP in the long run. The growth rate on the
BGP is also determined as a function of taxes. Based on these results, I analyse
the impact of taxes on the long-run growth rate. In particular, I show that if
the labor income tax rate belongs to a certain interval, then the growth rate on
the BGP is positive, and the economy enjoys stable growth to infinity. On the
contrary, if this tax is either too low or too high, the BGP growth rate is negative
and the economy collapses to zero. The question on intertemporal welfare is also
considered. Furthermore, if I suppose that the government fixes a discount rate for
all future generations’ utilities, then I again compute the BGP and the long-run

growth rate.

The remainder of this chapter is organized as follows, section 2 outlines the

fundamentals of the economy. Section 3 gives the descriptions of global equilibrium
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dynamics. In section 4, the study analyzes steady-growth path. This research also
introduces an analysis of social welfare issue in section 5. Section 6 is conclusion.

The proofs are gathered in Appendix.

2 Fundamentals

This study considers a two-period overlapping generations model with physical and

human capital accumulation. Both goods and factors markets are competitive.

Firms. In each period, a representative firm uses physical capital and labor.
The economy’s technology is represented by the Cobb-Douglas production function

as follows:
F(K, Ly) = AKf‘Ltl_o‘, (I11.1)

where K; and L; denote the aggregate capital and the effective labor force, respec-

tively.

Given the return on physical capital R; and the wage rate for effective labor

wy, the problem of the representative firm is:

(%%%)[F(Kh Lt) — Rth — tht]~

The first order conditions of the optimization yields:

R = a AKS L, (I11.2)
wy = (1—a)AKL;“. (IIL.3)

Consumers. Each individual lives for two periods: young at time ¢ and old
at time ¢t 4+ 1. She works and saves when young and consumes from the return on

savings when old.

At time t, the young population is N;. We assume that the population grows
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at a constant rate n = N]ﬁ]—:l, for all ¢.

Let the level of human capital stock of generation N; be h;. The effective labor
force is therefore L, = h;N;. In this economy, a generation-t young worker supplies
labor and earns income w;h;, which is divided into consumption and savings at

time t. Consumptions when young and old are denoted by ¢; and d; 1, respectively.
The household’s optimization problem is the following:

max {u(c,) + fu(disq)}, (I1.4)

(ct,di11,5t

subject to the following budget constraints:

Ct + St S (1 - T)U)tht, (III5>

dt+1 S (]. — Tk)Rt+1St, (IIIG)

taking as given the income tax rate 7, the capital income tax rate 74, the return

on captial R;y; and the labor wage rate w;.

Government. The government in this economy generates revenues from taxes
and invests all these revenues in public education. In addition, the three kinds
of intensity form are considered as follows. The intensity of capital at time t:
k; = K;/N;, the income intensity of the economy at date ¢: y, = Y;/N;, and the

intensity of government spending for public education at period t: g, = G;/N;.

Furthermore, the individual labor income w;h;, the return of physical capital
Rk, and the intensity of government spending for public education g; can be

expressed in term of the income intensity of economy ;:

wihy = (1 — a)ys, (IL.7)
Riky = ay, (IIL.8)

g = lat, + (1 — a) 7]y, (I11.9)
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Besides the accumulation of physical and human capital in the economy evolve

according to the following difference equations:

nkt+1 = S, (III]_O)
hisi = Bglhy "+ (1 —6)hy, (I11.11)

where 0 < § < 1 is the depreciation rate of human capital, the parameter B
represents the efficiency of human capital formation technology, and ~ is the share
of the contribution of the government spending (while 1 —  expresses the current

human capital stock of individual) to the generation of new human capital.!

Market clearing conditions.

1. In the physical capital market:

Kt+1 = NtSt- (11112)

2. In the labor market:
3. In the consumption goods market:

AKPL; ™ = Nicy + Nysy + Ny_1dy + Gy, (I11.14)

where G; = Twihi Ny + 7Ry s;—1N;_1 is the total government tax revenues, which

are all invested in public schooling in our model.

! According to the evolution of human capital (equation III.11), the parameter B captures the
efficiency of human capital formation technology, including several features such as quality and
appropriateness of syllabus, quality of teaching facilities, and so forth. Additionally, the shares
of v and 1—+ reveal the effectiveness of parental human capital in their efforts towards educating
their children, and the efficiency of public schooling in generating human capital, respectively.
Moreover, + is affected by home education and family background; whereas 1 — ~ is affected by
the schooling and classes system, teachers, syllabus, facilities.
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A competitive equilibrium in the economy is given by the following definition:

Definition 2.1 An intertemporal competitive equilibrium of the economy is a
sequence (wy, Ry, ¢ty diy, Sty Yty By key1, G1)5oo where (wy, Reyq) satisfy (I111.2) and
(I11.3), households mazimize intertemporal utility (I11.4) subject to the constraints
(I11.5) and (111.6), markets clear (111.12), (111.18) and (III.14), evolution of phys-
ical and human capital satisfy equations (II1.10), (II1.11), and government spend-
ing satisfies (111.9).

3 Equilibrium dynamics
Note that we can write:

yr = Ak~

= f(ke, hy).

Furthermore, as we show in the following lemma, equilibrium consumption and

savings are proportional to output.

Lemma 3.1 For each agent we have:

1
Ct = m(l — T)’wtht, (11115)
St = %(1 — T)’U)tht, (11116)
dt+1 = i(1 - Tk)RH_l(l - T)wtht.

—
_|_
»

Proof: Appendix m
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According to equations (II1.12) and (II1.16), the equilibrium in capital markets

is given by

nkiy = %(1 —7)(1 — @)y (I11.17)
It is also equivalent to
nkiy = iu —7)(1 — ) AkShIe. (IT1.18)
1+8
Proposition 3.1 The dynamic system of the economy is given by

kt+1 = nf(kt, ht), (11119)
herr = BIxf (ke he) Ry + (1 = 6) Dy, (111.20)

where n = %, x = [(1 — )7+ an] and f(ks, hy) = AkFh; .

Proof: Appendix m

In order to analyze this two-dimensional equation system, we make a transfor-

mation of this system to a one-dimensional equation.

Let the ratio of physical capital to human capital be z;, = Z—’;, then the above
two-dimensional global dynamical system is reduced to a one-dimensional global

dynamical system as follows.
Corollary 3.1 Let us define
a=Ap1—-71)(1—-a),

b=n(1+pB)A"B[(1—a)T + ar]”,
c=n(1+B)(1-4).



EQUILIBRIUM DYNAMICS 121

Then the system (111.19) - (I11.20) becomes

a
Tt+1 = T,

b, ) 4 ex @
_ axy
br;” + ¢

For any xo > 0, there exists the limit of sequence {x:}52,

¥ = lim xy,
t—00

where x* is solution to the equation

ax
b 4+ ¢

Proof: Appendix m

Proposition 3.2 Given the initial pair of human and physical capital of (ko, hy),
the solution of the dynamical system converges to a unique balanced growth path
(BGP). Furthermore, on the BGP, human and physical capital grow at the same
rate:

1. kt-{-l ht+1

i

Proof: Appendix m

The one-dimensional global dynamic system can be expressed by the following

graph:
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Figure 3.1. The global dynamic system of the economy.

t+1

4 Steady-growth path analysis

If we know exactly the value of x*, we can calculate the growth rate p. However,
it is a difficult task. In order to calculate the value of the balanced-growth path

growth rate of the economy, we must follow another approach.

In this section, I focus on the balanced-growth path along which long-run
physical capital and human capital grow at the same positive constant growth

rate of the economy, p.

Proposition 4.1 There exists a unique BGP, on which the rate of growth of the
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economy is given by

p=0¢"" (U(r, 7)) (IT1.21)
=¢ ! [%ABT <%(1 —7)(1— a)) (1 —a)T 4 am) ],

1—a
vy

where ¢ (p) = p* (p—146) 7, which is an increasing function in p.

Proof: Appendix m

Next, I conduct a numerical exercise to illustrate Proposition 4.1 above. As-
sume that A =1, B = 1.05, n = 1.05, § = 0.05, « = 0.3, § = 0.95, v = 0.6,
7 = 0.3, 7v = 0.3. Then the growth factor of economy is approximately 1,278 (the

growth rate of the economy is around 0.278), as shown in Figure 3.2 below.

Figure 3.2. The growth rate of economy on the balanced-growth path (the
growth factor: 1.278).
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4.1 Tax policy and growth

I now study the impact of tax rates on long-run growth. More precisely, the fol-
lowing lemma shows the conditions under which the growth factor of the economy,

p is smaller or greater than zero.
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Lemma 4.1 According to Proposition 4.1, we have

(T, 1) = %ABT <%(1 —7)(1— a))a (1 —a)T + osz)l_a .

Define 7 to be a solution to

arg max {1—7)*[(1—a)r+a] *}.

We have

1. Ifl<a< % then the optimal labor income tax is 0 < 7 < 1,

2. If% < a < 1 then the optimal labor income tax is T = 0.

Proof: Appendix m

Proposition 4.2 Suppose that 0 < a < % We have two subcases:

1. 1If

—a 1 l1—a “ —«
55 > < AB' x <%(1 —a)(1 - %)) % (1= a)?) +a)™®,

then the growth rate p < 0 and the economy converges to zero, for any T, Ty.
2. If

l1-a 1 1—
0 — X AB ™~
n(X

= <%(1 —a)(l—%))a < (1= a)7) +a) ™,

then there exists 0 < 7 < T < 1 such that

(a) If T < T < T, then there exists T such that for p > 0 if and only if

7A'k<7'k<1.

(b) If T ¢ [z, 7], then for any T, we have p < 0.
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Proof: Appendix m

To illustrate Proposition 4.2, let us proceed with a numerical exercise with
a=0.3,6=0.9509=0.05and v = 0.67. In the first case, we let the parameter
of efficiency B decrease from 0.06 to 0.02 and the population growth rate increase
from 1.05 to 1.25. We see that in this case, for any 7 and 7, the growth rate of

economy p < 0 and the economy collapses to zero, as shown in Figure 4.2.

Figure 3.3. The BGP growth rate factor of economy is strictly less than one.
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The graph above shows that the efficiency parameter of human capital forma-

tion B is too low, while the population growth rate n is too high.

By contrast, in the second case, we let B increase from 0.2 to 0.6 while the

population growth decrease from 0.5 to 0.1. As illustrated in Figure 4.3, for any 7
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and 7, when the efficiency parameter of human capital formation is high enough

and the population growth rate is too low, the growth rate of economy is positive.

Figure 3.4. The BGP growth rate factor of economy is strictly greater than one.

DB T T T T T T T T T T T
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The graph above exhibits that the parameter of efficiency of education process

B is increasing, while the population growth rate n is decreasing.

Comment: Proposition 4.2 reveals that there are two impacts of taxation on
long-run economic growth with respect to the depreciation rate of human capital
(that is sufficiently low). On the one hand, if the labor income tax rate belongs
to a certain interval with respect to the capital returns tax rate, then the BGP
growth rate is positive, and the economy enjoys stable growth to infinity. On the
other hand, if this tax rate is either too high or too low, then the rate of growth

on the BGP is negative, and the economy collapses to zero.



STEADY-GROWTH PATH ANALYSIS 127

Proposition 4.3 Suppose that % < a < 1. We again have two subcases:
1. If

l—« 1 11—« /8 «
2 — X AB ™ —(1— -
o i X<1+5( a)) X a7,

then the growth rate p < 0 and the economy collapses to zero, for any T, T;.

2. If

l1—a

1 l1—a /8 «
2 — X AB ™~ — (1 — I—a
) <na>< ><<1+5( a)) X o,

then there exists 0 <7 < 1 such that

(a) For any T < T < 1, the growth rate p < 0 and the economy collapses to

Z€ero.

(b) For any 0 < 7 < T, there exists 0 < T, < 1 such that the growth rate

p >0 if and only if T, > Ty.
Proof: Appendix m

Comment: With reference to the case of % < «a < 1, and also the depreciation
of human capital is low enough, for the BGP growth rate to takes place (p > 0),
the labor income tax rate may only need to be less than the threshold of its value,
with respect to the capital returns tax rate. It turns out that this tax rate should

not be too high.

4.2 Comparative statics

Lemma 4.2 The elasticities of the growth rate with respect to taxes are given by

dp 0T l—a p - ar (1—a)*r
—/— = — I11.22
pl T {OH_ Y p—1+5} { -7 (I-a)7+am ( )

-1
% ,0m _ [a floe_ v 1 ol = o (TI1.23)
pl T v p—14+6] (1—a)r+am
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Proof: Appendix m

Proposition 4.4 Given Ty, the optimal tax on labor income of economy is given
by 7 (k) =1 —a— %Tk. Furthermore, the rate of growth of economy attains its

maximum value at 7.
Proof: Appendix m

Let us conduct a numerical test to interpret the Proposition 4.4. We assume
that the capital returns tax rate, 7, = 1/3, and the share of capital in production,
a = 1/3. Following this setting, we obtain the optimal tax rate on labor income,
7*(7%) = 0.61. Base on this result, we also compute the BGP growth rate of the
economy which is at the maximum value, p = 0.336 (it turns out to be that the

BGP growth factor is around 1.336).

Proposition 4.5 If the ratio of taxes to GDP increases (decreases) 1 percent then
the rate of growth of the economy increases (decreases) less than a corresponding

value.
Proof: Appendix m

To depict Proposition 4.5, let us proceed with a numerical exercise with the
following values: p = 0.336, 7, = 1/3 and 7%(7;) = 0.61 (these results come from
the simulation of Proposition 4.4). Under this setting and the equations (II1.36)
and (IT1.38), we calculate the value of the ratio taxes to GDP as follow. First, we
obtain the value of £ = 0.52 (remark: £ = (1 — a)[(1 — «) + a7x]). Second, We
compute the elasticity of the ratio taxes to GDP with respect to tax on capital:
2%% = —4.6 (remark: 2%;2 = [oz + I_To‘p—_h] _1). It turns out that if the ratio
taxes to GDP increases (decreases) 1 percent, then the rate of growth of the

economy increases (decreases) less than 4.6 percent.
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5 Social welfare and the problem of planner

This section considers the social welfare problem under a meritocratic regime

where the distribution of consumption and capital is taken by the government.
The government maximizes the following social welfare function

W= ¢'Ulcr, diga), (I11.24)

t=—1

where 0 < ¢ < 1is a fixed discount rate factor. This factor is determined by social

planner.

Under the assumption that the utility function is separable and logarithmic,

we can write:

U(Ct, dt+1) = U(Ct) + Bu(dt-l—l) =In Ct + ﬁll’l dt+1-

Obviously, since the consumption of the young generation —1 has been done

before the government’s decision, the social welfare function (I11.24) becomes

W= Z ¢t (m o+ P lnndf) . (I11.25)

At each time ¢, the government divides the intensive output y; = f(k, hy) into

three parts, as follows:

1. The consumption: ¢; + %,
2. Investment in physical capital: s; = nk;,q,

3. Investment in human capital: e;.
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The social welfare problem faced by the government is thus:

(ct,dit1.et) ¢ n

d
S.t. ¢+ — 4 nky 4 e, < ARSI,
n

max W =Y (' <lnCt+ ﬁlndt) (111.26)
t=0

hisi < Belhy " + (1 — 6)h,.

Proposition 5.1

1. The balanced-growth path is unique.

2. The growth rate of the economy is positive if and only if:

(—ya [e] == ].
(1—a)AT=B> (9) (e >0 (Z (=) =1 5)) .
n
3. The growth rate of the economy is increasing with respect to the efficiency

parameters of production and human capital formation A, B and decreasing

with respect to the population growth rate n.

Proof: Appendix m

Comment: In this economy, when the government fixes the discount rate
factor for all future generation’s utilities, then the existence and uniqueness of
the BGP, as well as the long-run growth rate of the economy, are characterized.
Furthermore, we can easily see that the BGP growth rate depends on the model’s
parameters and population growth, as well as the depreciation rate of stock of
human capital that is sufficiently low. Arguably, if the total factor productivity,
A and the efficiency of human capital formation technology, B arc high enough,
also the depreciation rate of human capital stock is low enough then the growth

rate on the BGP will take place.
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Figure 3.5. The BGP growth rate of economy under the regime of social planner

problem (the growth factor: 1.432)
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Again, a simulation is done with A =1, B =1.05, n = 1.05, = 0.05, o = 0.3,
¢ = 0.95, and v = 0.6. In this case, the value of growth rate is approximately
0.432 (the growth factor of the economy is around 1.432), as represented in figure
5.1 above.

In the analysis of social welfare problem, I touched upon the comparision of
steady state to section 4. This case is studied both analytically and numerically.
This is also a promising topic for future research. In particular, an analysis of
optimal tax rate which maximizes intergenerational welfare is called for a task. 1

will attempt to tackle this issue in the nearest future.

6 Conclusion

This study considers the important role of the public sector for investment in
education in promoting human capital accumulation, i.e., through government’s
expenditure on education, funded by taxation. The results are interesting in a
general equilibrium perspective. It also illustrates the dynamics associated with

the interaction between the accumulation of human and physical capital, and
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ultimately economic growth. In particular, two impacts of taxation policy are
notable. Firstly, it reduces the household’s total income and the level of invest-
ment in physical capital, hence having a negative impact on output. Secondly, it
raises tax revenues and the government’s spending on public education and conse-
quently enhancing the labor productivity of future generations. In addition, this
research provides notable findings regarding the BGP of the economy and char-
acterizes equilibria around this BGP. The issue of intertemporal social welfare is

also studied.

7 Appendix

Proof of Lemma 3.1.

The Lagrange equation is given by
In ¢+ Bln dt+1 - )\t(Ct + S¢ — (]. — T)wtht) — /-Lt(dt—i-l — (1 — Tk)Rt—i-lSt)-

The first order conditions are

1

- = )\t)

Ct
B
di11 ’

A\t = (1 - Tk)RtHMn

which lead to

A _ dint
22 Bey
= (1 — Tk)Rt+1-
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Moreover, the budget constraints are now binding, We therefore obtain

diy1 = (1 — 7)) Rey5¢,

ﬁCt = S¢.
Since ¢; + s; = (1 — 7)wihy, one has

1
=5t + 8¢ = (1 — T)wihy,

5
which implies
p
= — ]_ —
St 1 +5( T)wtht,
and
1
Cy = m(l - T)wtht.

Proof of proposition 3.1.

According to the equations of (I11.10), (IT1.11), (II1.17) and (II1.18), the dynamics

will be the form of equilibrium system, which is as following:

Al—7)1 -0
n(l+ p)

hiv1 = B[(1 —a)r + am]” (Akfhi =) b ™ + (1 = 6)hy

kt-i—l - X Ak’?h%_a,

= B[(1— )7+ am]” ATkXh* 4 (1 — 6)h,.
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Proof of Corollary 3.1.

Let us remark that
=

Tt

From Proposition 3.1, one can re-write the dynamical system as

ki _ AB(L—7)(1 - a) (@)H
Ky n(1+ B) Ky
_AB(L-7)(1-a)

n(l+ B)a; ="

ht+1 o 0% kt “
—AB[1—a)yr+an] (X)) +(1-0)
ht ht

=A'B[(1—-a)T+an]” 2"+ (1 -9).

Y

This implies

Tit1 _ AB(l—71)(1 —«a)
T n(1+ Bz * (AYB[(1 — a)T + arp]” 27 + (1 = 6))

The relation between x;.; and x; is

A1 —7)(1 — «) .
n(l+ f3) (AVB (1= a)T +an]” :Ut_a(l_ﬁ’) +(1 - 5)xt_o‘>

Ti+1 =

Proof of proposition 3.2.

From the Corollary 3.1, let us define

We then have
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This also implies that

x
li =
7@
lim — +00
T—00 f ZL‘)

Hence for x small we have f(z) > = and for x big we have f(x) < z. It is easy
to verify that f is increasing. There is thus unique x* solution to x = f(z). It is

equivalent to be
a(l,*)a

b(z*)*7 + ¢

*_

We now prove that for any x> 0,

=
Indeed, if zy < x*, then f(xy) > x¢. By the monotonicity of f, we have
zo < x1 = f(xo) < f(z*) = 2*. By induction, we have the sequence {x;}$°, is
strictly increasing and x; < x* for any ¢.
This implies that this sequence converges to a solution f(z) = x. Since z* is
the unique solution, we have

lim x; = z*.
t—o0

For the case ¢ > x*, we use the same arguments and get

lim x; = ™.
t—o00

Given the pair of (kg, ho), we obtain
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In addition, since

e = AR ()

and then

I
P K, n(l+ B)x*
Moreover, we also have
. hy
tlggo hy -

Therefore, given the initial pair of physical and human capital of (kg, ho), we

have the solution of dynamical system converges to the balance growth path. Bl

Proof of proposition 4.1.

Noticing that % — i1 — ) then the equation (II1.11) gives

Che
B\
=

Combining (II1.10) and (II1.17), we obtain

_ 18 1
S Y G G gy

(1 —a)T + ar)kiy.

Also, combining (II1.27) and (II1.28), we have

1+8 1

+
po1=-7)1-0a)

&
|
S
VRS
e
|
=
_|_
(=%
N——
2=

(1 — )T+ am]ki.

(111.27)

(I11.28)

(I11.29)
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Incorporating (II1.18) and (II1.29), we get

p
143

oaf/ B O\ (148 1 o
An'mokS <m) { 5 (1_7)(1_a)[(1—a)7+a7k]} ktlﬂ.

n = Apl= (%) - {iu _ (- a)} (1= a)r + and (14 p)e

nki = (1—-7)(1—a)x

pPp—1+8)7" = An B l%(l —7)(1 - a)]a [(1—a)T +an]' ™.

(111.30)

Let us define:
« b(p)=p"(p—1+0) ",
o Y(rm) = HABS (1 -n)(1-a)) (1-a)r+am) ™.

By logarithmizing the equation (IT11.30). We take the derivation of LHS calculus

with respect to p, it is easy to see that ¢'(p) = % + 1_7" p_} — > 0. Moreover,

the function ¢ is strictly increasing. The rate of growth of economy hence is
p=0"[(r,m). W
Proof of lemma 4.1.

1. Suppose that 0 < a < % We consider the following case
f)=01=7)"[(1-a)r+a]"".

Since

:dlnf(T) e (1—a)?

dr -7 (I-a)7+a’

9(7)

this is an decreasing function with respect to 7. Since 0 < a < %, we have

g(0) > 0 and ¢g(1) = —oo. This implies that the existence of 0 < 7 < 1 such

that g(7) > 0, for 0 < 7 < 7 and g(7) <0, for 7 <7 < 1.
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The function f hence is strictly increasing in [0, 7] and strictly decreasing in

[7,1].

2. Since § < a <1, for any 0 < 7 < 1, we have g(7) < ¢(0) < 0. The function

f is thus strictly decreasing in [0, 1], and 7=0. B

Proof of proposition 4.2.

1. We consider the first case. We have ¢(0) = 0, and ¢(1) = 55" > max, ,, (7, Tx).

We observe that ¢ is strictly increasing. Since ¢(1) > (7, 7% ), the value of
optimal growth p lies between 0 and 1. The economy, hence converges to

Zero.

2. We consider the second case. By Lemma 4.1, the function (7, 1) is strictly
increasing in [0, 7] and strictly decreasing in [7, 1].
Since ¢(1) < (7, 1), there exists 0 < 7 < 7 < 1 such that for 7 < 7 < 7,
P(7,1) > ¢(1) and for 7 ¢ [1,7], ¥(7,1) < ¢(1).
For fixed value of 7 lying between 7 and 7, denote by 7; the solution to

¢(1) = (7, 7). Recall that 75, depends on 7.
Since (7, ) is strictly increasing with respect to 7, for any 0 < 7, < 7}, we
have ¢(1) > (7, 7x), and for any 7, < 73, < 1, we have ¢(1) < (1, 7%).
Hence there exists growth if and only if 7 < 7.
If 7 ¢ [r,7], then

o(1) > (7, 1) > Y(7, 7).

This implies the growth rate p < 0. Hence the economy converges to zero.
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Proof of proposition 4.3.

From Lemma 4.1 we have 7 = 0 , for any 7, 73, and get

(1, ) < (1,1) <9(0,1).

1. In the first case, we use the same arguments as in the proof of Proposition

4.2, the economy therefore collapses.

2. In the second case, by using Lemma 4.1, the function (-, 1) is strictly de-
creasing with respect to 7. Since ¥(0,1) > ¢(1), we define 7 the unique

solution to ¢(1) = 9(7, 1).

For 7 < 7 < 1, we have ¥(1,7) < 9¥(7,1) < ¢(1), hence p < 0 and the

economy collapses.

Suppose that if 0 < 7 < 7, then ¢(1,1) > ¢(1). We also define 7}, is solution
to ¢(1) = (7, 7). For 0 < 1 < 7, we have ¥ (7, 7,) < ¢(1), and p < 0.

In contrast, if 7 < 7 < 1, ¥(7,7%) > ¢(1), then p > 0. the growth is

possible. ®

Proof of lemma 4.2.

First, by logarithmizing the equation (I11.30) that gives

1—a 11—« 16}
Inp+ In(p—14+6)=InA—alnn+ In B+ al
alnp n(p )=1In alnn 5 n an{l_'_ﬁoa}
+aln(l—7)+ (1 —a)n[(1 — a)7 + anl,
(111.31)
where

o ¢(p) = alnp+%n(p—1+9),

o C(rymp) =aln(l—7)+ (1 —a)In[(1 — a)7 + anl.
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Second, let us calculate

o« (1—«)?
or  1-7 (I—-a)r+an’
oac — a(l-a)

o, (1—a)T+am

Differentiating the equation (II1.31) with respect to labor income tax rate, T

and capital returns tax rate, 7. We therefore get the following derivatives:

ap _ [ —1\/ ac
5, = 07 [CT )] o
1
¢'(p) OT
a l—a 1 - et (1—a)?
_[;—i— v p—1—|—5} [_1—7'+(1—0z)7‘+oz7'/1<:7 (1L52)
8p _ —1\/ aC
a—Tk—(@ )[C(T’Tk)]am
1w
¢ (p) 07k
a l—-« 1 o oa(l—a)
_{;Jr - ,0—1—|—(5} Ry E— (I11.33)

These imply the above elasticites of the growth rate to taxes. H

Proof of proposition 4.4.

Obviously, gf_ =0 iff
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When 7 is given, the optimal tax on labor income is

042

™) =1—a-— Th- I11.34
(7k) L ( )
Since (7%) (1) = —% < 0. Therefore, gﬁ > 0 iff 7 < 7*(7%). The rate of
growth, p hence attains its maximum value at 7*.
Moreover, the positivity of 7* requires 1 — o — %Tk > 0, which is always

ensured by the following assumption: =2 > 1. B

Proof of proposition 4.5.

According to the equation (I11.23), the elasticity of growth rate with respect to

tax on capital, evaluated at (7, 7*(7%)) is given by:

dp 0 1— -
GPyoTh gy =2 P A (111.35)
P T v op—14+46] —+a

Tk

Additionally, we get the elasticity of 7*(7;) with respect to 7:

87'* 8Tk asz

/

™' (1-a)?—-ad’ny

With reference to the equation (II1.9), the ratio taxes to GDP is define as

follows:

§=g/y=am+ (1 —a)T. (111.36)

Furthermore, evaluated at 7*(7x), 7%, the taxes to GDP ratio is equal to

E=(1—-ao)(l—-a)+ar].

Then the elasticity of the ratio taxes to GDP with respect to tax on capital
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that is computed as follows:

AEJE _ aTy
ATk/Tk 1—Oz+OéTk

l—a  p ]3/)/11
Y p—1—|—(5 (97’]@/7%‘

= [a + (I11.37)

Combining (I11.23) and (I11.37). Hence, the elasticity of growth rate with

respect to the ratio of taxes to GDP is given by

Ap/p l-a  p 17
Af/é‘[C” Y p_1+5} | (153

Obviously, % <1l N

Proof of proposition 5.1.

For each # > 0. From the equation (III.25), we define w(x) as the following

function:

w(x) = max <1nc + Cﬁn In d) ) (I11.39)

d
stc+—<uw. (II1.40)
n

Taking FOCs by (I11.39) under the constraint (I11.40), we then receive:

= xr

— -,
14+ 2

i=? -
C1+n—<
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From the later caculus, we can re-write the problem (I11.26), as follows:

N i B, (B _m
s <l<—><l<<—>)

(11 ot 8 B _ B, 5
—<1+Z>;Cln(%)—;C [(1+n—g>ln(1+n—c>—zlnzl

The problem above becomes

maxz ¢ n(ay) (IIL.41)
t=0

S.t Xy + leH_l + € < Aktah%_a, (11142)

heyr < Belh; ™ + (1 — 6)hy. (I11.43)

Next, considering the the following Lagrange

L=> ¢"ay—Y N (2 +nkipr + e — AkPhy ) =Y gy (hess — BeJhi ™ — (1= 6)hy) .

t=0 t=0 t=0

Then, solving this above system, we therefore obtain

g_i _ x_i Y (111.44)
G‘Zi - = —n\ + A10A (Z::)l_a (I11.45)
g = =4 () v (0209 (522) - 0-0)

(I11.46)

s (B .

We continue to analyze the problem at BGP with the BGP growth rate of the

economy, p.
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The equation (I11.44) gives

t
At - C_a
Tt
which implies
¢t
A = . 111.48
' Topt ( )

From the equations (II1.44) and (II1.45), we get

hiy ) e P
aA =n-,
(k’t+1 ¢

which is equivalent to

ko [aAC\T e
o (255) 1114
ho < np ) (I11.49)

According to the equation (II1.47), we have

h\ '
A = pyB (—t> :

€t

which refers

1 €0 =

Combining (II1.46), (I11.48) and (II1.50), the program receives

¢t 1 (e ¢ttt Ko\
2 (& _ 1—aA (e
zopt . vB \ ho zopttl x(1-a) ho *

(t+1 1 eo 1—y eo v
+ —xopt'f']- X f)/_B h_o X (]_ — ’)/)B h_o + (]_ — 5) .
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This implies

£ (1-apan () x (h—) Ha-Bx () +a-s. aisy

0 €0 0

D

Subtituting (111.49) into (I11.51), we get

2= (1- )45 <%) (%) » (h—>+ - x () -5,

hs

it turns out to be equivalent to

€o p—1+90 g
— = — . I11.
ho ( B ) (111.53)

Replacing (I11.53) into (II1.52) with the definition of ¢(p) = £, yields

Ca an) 5 ()R
)= = )W?;l))v ) +(1—-7)B (f"T{”)m_a)

(1—a)As Bt (2)7% ()7
= ()h7<> + (1 =)p+r(1-9).
(p—1+40)7

Let us define

$(p) = d(p) — (1 —7)p — (1 =)
(1 — Q)AﬁB% (%)ﬁ (g)m

p

= -y
~

(h—1+9)
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The BGP growth rate is thus solution to

(1—)ATa B7 () 170 (§) 15
T—

where ¥(p) =

Elit 4
(p—1+0) 7

1. Since ¢ is strictly increasing and v is strictly decreasing with respect to p.

We therefore have

li _
i o(p) = +o0,

lim ¢(p) = 0.

p—>—+00

Hence there exists p* > 1 — § such that ¢(p*) = ¥(p*).

2. The BGP growth rate, p* is bigger than 1 if and only if

(1) > (1),
which is equivalent to

1 —a)ATa By (9)T== (% 1
S 5H<n) S S (]

This also implies that

(1—a)AT= B> (3)1%‘@% > 55 (% —(1—7)—~(1 —5)) .

n

3. This property is obvious, since ¢ is increasing with respect of parameters A

and B and decreasing with respect to n.



Chapter IV

Optimal Growth with Non-Concave
Technology: Application to Human Capital
Model !

IThis paper is co-written with Cuong LE-VAN and Thai HA-HUY






INTRODUCTION 149

1 Introduction

A large number of economic theories are based on the property of decreasing
marginal utility and marginal productivity. This property leads to an extensive
convex structure in different domains of economic sciences. Particularly, in dy-
namic programming, a wide class of issues need have to be satisfied with a strong
convex structure. This approach is also used in a well-developed branch of applied

mathematics, such as an excellent treatment can be found in Stokey (1989).

Additionally, the convexity properties are commonly applied in the macroeco-
nomic area. In the first line, Ramsey (1928) bases on the convexity technology and
examines that the optimal intertemporal growth tends to a unique steady state
(see Cass, 1965; Koopmans, 1965). While Benveniste and Scheinkman (1979) ex-
hibit the initial level of capital stock is a concave function. In the second line,
Becker (1965), Ben-Porath (1967), and Mincer (1974) focus on researching the in-
centive investment in skills, including schooling (pre-labor investment) and train-
ing (on-the-job investment). In addition to the externalities of human capital in
the process of economic growth that are emphasized by Lucas (1988, 2015) and
Azariadis and Drazen (1990). In the third stream, the role of human capital is to
introduce into productivity contribution, and the capacity of workers to cope with
changes, disruptions and new technologies. In this sense, Benhabib and Spiegel
(1994) and Foster and Rosenzweig (1995) suggest that the important role of human

capital is to facilitate technology adoption.

Nonetheless, imposing certain convexity assumptions could be restrictive. This
calls for a need to advance a theoretical framework that tackles the class of issues
where the restrictive assumptions of convexity properties are violated. Our study

is not the first attempt in this direction.
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As a matter of fact that non-concave technology displays a key role in the
optimal growth problems. Some studies indicate that the function of planner is
concave utility, while the function of producers and constraints are non-concave
function. In addition, non-concave technology is also used to study in one-sector
and multi-sector models where the optimal programs are monotonic (see e.g.,

Dechert & Nishimura, 1983; Amir, 1996).

Non-concave technology, according to Dechert and Nishimura (1983), consider
a model with convex-concave, S—shape production function. They prove the
monotonicity of an optimal capital stock and give a proof about the existence
of a poverty trap. They also examine that the economy collapses to zero if the
initial level of capital stock is below a certain threshold, the economy otherwise
converges to a positive steady state. This problem is also revisited by Le Kama et
al. (2014), who consider a convex-concave production function and show explicitly
determinant of a poverty trap. An additional example can be found by Hung et
al. (2009), who study the production function of an optimal growth model is
an aggregation of two separate concave production technologies. They show the
existence of two steady states when the discount rate is not too high or too low.
Their study also examines the optimal path can converge to the lower or the higher
one; Otherwise, there exists unique a steady state which is low or high value if the

discount rate is high or low value.

Non-concave programming for a continuous time version is addressed by Romer
(1983, 2011). Whereas this technique in the discrete-time version is examined by
Dimaria et al. (2002). Both of them work with the law of diminishing returns.
However, the production function of knowledge exhibits increasing return for en-
suring sustainable growth. Their model supposes that technological change is
endogenous and depend on capital. In another aspect, the concavity of utility
function is accepted in the almost models about economic dynamics, the con-
cavity of the production function does not have this agreement (as Clark, 1971;

Majumdar & Mitra, 1983).
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Although the literature on the non-concave technology has been shown by
some economists and researchers, there has been a lack of research on macroe-
conomics area, especially on the field of human capital. Therefore, this chapter
aims to propose a general mathematical model with non-concave technology and

an application to human capital model.

Our study is related to the work of Kamihigashi and Roy (2007). Their study
is neither convexity nor continuity properties of the production function. To over-
come the lack of smoothness properties, Kamihigashi and Roy (2007) use a notion
of discounted net return on investment, which appeared in the analysis of Majum-
dar and Nermuth (1982) and Dechert and Nishimura (1983). They prove that the
optimal paths increase in the future with the net return on investment. Their
work also provides in-depth insights into economic dynamics and characterizes

conditions for poverty trap or sustainable growth.

Apart from the study of Kamihigashi and Roy (2007) deals only with the
classical situation of optimal growth. It means that their outcome is split between
consumption and capital investment. This may lead to restrictions in human
capital research. This chapter, therefore, works with an indirect utility function

and fill this gap by considering an optimal growth model with human capital.

This study has two contributions. On the one hand, it builds a general math-
ematical model about non-concave technology. On the other hand, it shows an
application to an optimal growth model in which education is the prime source of
human capital formation. In the application section, the study pays attention to
the two roles of human capital: as a prime engine of endogenous growth and as a

force behind new technology.

The rest of this chapter is organized as follows. Section 2 shows a general
mathematical model of non-concave technology. Section 3 studies an application
in infinite-horizon optimal-growth model with human capital accumulation. Con-

clusion is Section 4 .The proofs and computations are relegated to Appendix.
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2 Fundamentals-mathematical preparations

2.1 Value function and Bellmann equation

The technology of the economy is characterized by G : Ry — R., a strictly
increasing function. Given capital stock # > 0, the interval I'(z) = [0, G(z)]
denotes the set of possible capital stock z" invested for the next period. When z, 2’/
are determined, the instantaneous utility (or felicity) value is V(z, '), in which V/
is an increasing function with respect to the first argument and decreasing function

with respect to the second one.

For each initial value xy > 0, denote by m(zg), the set of feasible sequences

X = {x }52y: for any t > 0, 2,11 € I'(zy).

Define the value function:

v(wo) = sup ZBtV(:ﬁt,xtH).
X€Il(z0) —0

The following assumption supposes that the productivity is not very high when

the level of capital stock is low.

Assumption G1
1. The function G is strictly increasing, differentiable with G'(0) <1 ,
2. For x big enough, x € intl'(x), i.e., 0 < x < G(x).

This assumption is not satisfied in standard model with concave technology
function, where the productivity is very high for low level of capital and x ¢ I'(x)
for big values of x. According to Dechert and Nishimura (1983), for x big, the

possible production is bigger than x. This opens room for economic growth.

In this section, we suppose that the value function V' is bounded from below.
Obviously, the unbounded from below case must be considered with the impor-

tance of the logarithmic functions.
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Assumption V1 The function V is bounded from below: V(0,0) = 0.

The properties of technical level can allows the possibility for sustainable
growth. We assume that the rate of growth cannot overcome effect of discount

factor, otherwise the value function could take infinity values.

Assumption V2 For fived zo > 0, for any € > 0, there exists T' big enough such

that for any x € l(xg) we have
Zﬁtv(xt,l‘tﬂ) <€
t=T

Under assumption V2, for any zq > 0, we have v(xg) < +oc and the function

v is continuous on [0, +00).
Proposition 2.1
1. For any xq > 0, v(zg) < +00.

2. For any xo > 0, there exists x* € l(xq) such that

o0

vlao) = 3 BV (e}, 7).

=0
3. The value function v is continuous.

4. The value function v satisfies the functional equation: for any xq > 0,

v(zg) = sup  [V(mo, 1) + Bu(z1)].

0<z1<G(20)

5. For any xo > 0, there exists x5 € T'(xy) such that

v(xg) = V(xg, 21) + fo(ay).

Proof: Appendix m
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2.2 The monotonicity and continuity properties of optimal pol-

icy functions

The compactness of I' and the continuity of v ensure the maximum problem in
part (5) of Proposition 2.1. It means that optimal solution exists. By the lack
of concavity of V and G, the solution can not be unique. We will consider the
optimal policy correspondence and focus on the maximal and the minimal values
of this correspondence. In order to analysis the properties, we must add some
supplementary structure. The assumption V3 is standard property in optimal
growth theory. If we increase the capital stock of future, we diminish the instan-
taneous utility. The assumption V4 supposes that the utility function satisfies

strict increasing differences property (see Amir, 1996).

Assumption V3

1. The function V is strictly increasing in the first variable and strictly decreas-

ing in the second one.

2. Inada condition:
oV (x,y)

lim — = —c0.
y—G(x) 8y

Assumption V4 The utility function V is twice differentiable and strictly super-

modular: for any x,y we have

0*V(z,y)

D2y > 0.

‘/12(37, y) =
Since the functions V' and v are not concave, the arg max of problem

sup [V (o, 1) + Bv(z1)]
0<z1<G(z0)

could have multitude number of solutions.
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Let define

P(xo) = argglaii [V(%, 1) + Bv(xl)]'

Under the Super-modularity property, the optimal policy correspondence sat-

isfies some “increasing property-like”, as in Proposition 2.2 below.

Proposition 2.2 Assume G1, V1, V2, V3, V/, for all xy < zf, and x; € ¢(xy),

z) € ¢(zf), we have xy < x.
Proof: Appendix m

Base on the continuity properties of V' and v, the set ¢(xq) is closed. The

minimum and maximum of ¢(z¢) are ¢(zq) and B(xo), respectively.

We now describe some properties of two functions ¢ and ¥ by using Lemma

2.1, as follows.
Lemma 2.1 Assume G1, V1, V2, V3, V.
1. The functions ¢ and ¢ are strictly increasing .

2. The function @ is upper semi-continuous and continuous from the right,

lim () = F(xo).

.’E—)(IZO

3. The function ¢ is lower semi-continuous and continuous from the left,

lim p(x) = (7).

CE—)IO

Proof: Appendix m
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2.3 Poverty trap, middle income trap and sustainable growth

The existence of poverty trap is obvious. Because the productivity is low when

the capital stock is low.

Proposition 2.3 Assume G1. The poverty trap ezists.
Proof: Appendix m

Next, we will study the possibility of existence of middle income trap and
necessary conditions for the existence of sustainable growth. We present here a

preparation lemma, which is similar with the result in Hung et al. (2009).

Lemma 2.2 Assume G1, V1, V2, V3, V4. The following statements are equiva-

lents:

1. There exists &y such that there exists an optimal path in I1(Zo) satisfying

. .
lim; , z} = +00.

2. There exists To such that for any x > Zo we have zo < p(x0).
Proof: Appendix m

This lemma states that the existence of an optimal path converging to inifnity is
equivalent to the existence of threshold value beyond every optimal path converges
to infinity.

Even if the case of the productivity function G is high when capital stock
converges to infinity, a low value of 5 could trap the optimal path into a bounded
set. In the next sections, we will discuss about conditions under which, there
exists an optimal sequence which converges to infinity. For instance, we call this

is sustainable growth condition.
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Let us define:

x = sup{Z > 0 such that p(zq) < x¢ for every zo < Zp},

T = inf{Z¢ > 0 such that p(zy) > z¢ for every zy > Zo}.

Before presenting Proposition 2.4, we provide a preparation lemma. This is

similar to the result of Hung et al. (2009).
Lemma 2.3 Suppose that x, € ¢(xy) for some x9 > 0. Then p(x1) = P(x1).

Proof: Appendix m

Proposition 2.4

Assume G1, V1, V2, V3, V4 and sustainable growth condition, we obtain
1. z and T exist.
2. If vy < x, then any optimal path from xy converges to zero.
3. If xo > Z, then any optimal path from xy converges to infinity.
4. There exist x, and Ty such that
o v <x;,<7T) <17,

o For any z, < x9 < Ty, the optimal path beginning from xy is bounded

away from zero and infinity.

5. There exists * such that x* = p(x*) = p(x*). Furthermore, x < r* < T.

Proof: Appendix m

Now, we will discuss a sufficient condition such that the sustainable growth

condition is satisfied. Therefore, we need to make the following lemma:
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Assumption V5 1. For any x,y, the functions V(-,y) and V(x,-) are con-

cave.
2. For z big enough we have Va(x,x) 4+ SVi(z,0) > 0.

In the first condition, one argument is fixed, the utility level in function of the
other satisfies the decreasing marginal utility property. The second condition is

to ensure a sustainable growth.

Comment. In standard growth model where technological function is concave,
the function V(x,z) has a single-peak form. There usually exists golden rule z¢
which maximizes V' (z,2). In this chapter, we find conditions under which the
optimal paths can converge to infinity. Naturally, a good candidate is a function
V with no golden rule, by example V' satisfying V' (x, ) is increasing, or V;(z,x) +
Vo(z,z) > 0. This condition ensures that there are at most a finite number of
steady states. We suppose that the utility function satisfies a condition which is

stronger: Va(x,x) + fVi(z,0) > 0 for large values of x.

For instance, the assumption V5 is only a technical condition. We hope that
we can find a good economic meaning for them. We will see that this condition is

satisfied in Section 3, which considers a problem with human capital.

Proposition 2.5 Assume G1, V1, V2, V3, V4, V5. There exists To > 0 such

that for any xo > o, every optimal path from xo converges to infinity.

Proof: Appendix m

2.4 Sensitivity analysis

Proposition 2.6 Assume G1, V1, V2, V3, V/ and sustainable growth condition.
For each p € (0,1), define zo(B), To(5) like in proposition 2.4. Then xo(S) and

Zo(B) are decreasing functions with respect to 3.

Proof: Appendix m
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3 Applications in infinite horizon optimal growth with

human capital

3.1 Fundamentals

In order to understand the non-concave technology, we begin with a case in the

following Lemma:

Lemma 3.1 The poverty trap and middle-income trap from convex-concave pro-

duction function which could be as a result of a fixed cost or corruption.
Proof: Appendix m

Following Lemma 3.1 above, we introduce the non-concave technology into a
growth model, in which human capital investment may bring on a sustainable
economic growth. Our model supposes that there is no physical capital. In ad-
dition to the agent, or the social planer divides the production into consumption
and investment in human capital, in order to maximize the intertemporal sum of

utility:

max Z Bru(cy)
=0

s.c i+ si41 < fF(hNy),

ho > 0 given.

¢, 8¢ are respectively the consumption and the savings at period t. N; denotes
the exogenous number of workers at period ¢, h; is their human capital at the
same period. For simplicity, we suppose that N, = 1 for every t. We suppose the
output is obtained by using only the effective labor through a production function

f which is concave, increasing, continuous, as usual. The utility function is strictly
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increasing, concave, continuous.

The rate of growth of the human capital depends on the investment s;.1,

hip1 = ht¢(5t+1>>

where ¢ is convex-concave and diffrentiable function. The parameter o rep-
resents the depreciation rate of human capital. The maximal rate of growth, A

which human capital can attaints.

Furthermore, the evolution of human capital accumulation can be expressed

by the following:

Figure 4.1. The convex-concave function of human capital formation.

Let us denote 1) = ¢~!. Since the function 1 is increasing then (1+\) = +oo.

At the optimum, ¢; = f(hy) — 1 (h;le ) We can re-write the problem as follow

v(ho) = ma,xg i ( ) — <h;:)>

0 < heyr < heod(f(he)),

ho > 0 given.
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Let I'(z) = {(z,y) € R2 : 0 <y < G(2)}, with G(z) = 2¢(f(z)). Define

Vie.y) =u(fl) - v (2)).

T

For cach hy > 0, define II(hg) the set of sequence: {h,}52, such that

0 < hesr < G(he).

3.2 Dynamical analysis

In this section, we begin with the following assumption that resumes the most
important properties of the utility function, production function and discount

factor.

Assumption H1

1. The utiity function u is stirctly increasing, strictly concave and bounded from

below: u(0) = 0. Assume that u'(0) = +oo.

2. The human capital production function satisfies:

o 9(0)=1-9,
o H(+00) =1+ A,
o lim, ,ox¢'(f(x)) =0.
3. For any hg > 0, for any € > 0, there exists Ty > 0 such that for any T > Tj,
and {h:}2, € Il(hy), we have

Z BV (hy, hyt) < e

t=T

Next, in order to establish the properties of G' and V', we need to have two

additional assumptions. Under these assumptions, there exists not only optimal
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converging to ininifty, but aso the growth rate converging to A (the maximal rate

of growth).

Assumption H2 Suppose that for every p > 0 we have

lim zf'(px) = 4o0.

Tr—r00

Assumption H3 Suppose that for any p > 1, M, N > 0 we have

lim inf w(f(pz) — M)

ORI

The assumption H2 is standard form in the literature framework. The following
one, the assumption H3 says that when p > 1, f(px) increase to infinity faster than
f(x), but the speed is not “too fast”. We can verify easily that these assumptions
can be satisfied for the forms: f(z) = Ax®, and u(z) = Inx or u(z) = 27 with

0<vy<l.

H1, H2 and H3 allow to establish G and V. Moreover, these assumptions

permit to prove the convergence of growth rate to the maximal value, .
Lemma 3.2 Assume H1, H2 and H3, we have
1. G satisfies assumption G1.

2. 'V satisfies assumptions V1, V2, V3, V4, V.

Proof: Appendix m

Proposition 3.1
Assume assumptions H1, H2 and H3. There exists poverty trap, middle income

trap, and threshold for convergence to infinity of optimal path, as in Proposition

2.4,

Proof: Appendix m
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We present the following figure to illustrate the above Proposition 3.1.

Figure 4.2. The poverty trap and middle-income trap.

t+1

iy [ D T T o N

<-h

=

> <hy, hhy->

Proposition 3.2
Assume assumptions H1, H2 and HS3. Suppose that optimal path {h;}2, from xq
converges to infinity, it also satisfies

1 _

h
fm s = 1A

Proof: Appendix m
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4 Conclusion

This chapter considers an optimal growth model with non-concave technology.
We first build a general mathematical model in order to create fundamentals via
applying in a growth model with the accumulation of human capital. In this
application section, we prove the existence of poverty trap (the optimal path of
human capital converges to zero) and middle-income trap (the optimal sequence
of human capital bounded away from zero and infinity). In addition, we point
out the conditions under which sustainable growth is possible. Under the same

assumption, the optimal growth rate also tends to the maximal value.

5 Appendix

Proof of Proposition 2.1

The proof of this proposition requires only standard arguments in dynamic pro-

gramming literature. W

Proof of Proposition 2.2
We use the characteristics of Super-modularity of V', which is in line with the
study of Dechert and Nishimura (1983).

Suppose the contrary, there exist xg < z(, x1 € ¢(x0), ] € ¢(xf) and x1 > .

Hence we have zj € I'(xg). This is in acordance with the definition of Amir (1996):

(‘T:J?xl) = (x()?xl) vV (176,1‘/1),

(o, 2) = (20, 1) A (2, 7).
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We also have

V (@, 1) + Bu(1) > V(wo, 2}) + Bu(ah),

V(wp, 21) + Pu(ay) = V(xg, 21) + Pu(z1).

From these two equations above we obtain

V(Io,fE]) + V(l{)vxll) > V(‘Tvall) + V($6,$1),

which is contradictory to the strict Super-modularity assumption. ll

Proof of Lemma 2.1

1. The increasing property of functions p and ¥ are direct consequence of the

Super-modularity of V' (Amir (1996)).

2. First, we prove that @ is upper semi-continuous. Take any sequence {xj}22,
converging to xz, satisfies x{j > xy, for any n. For the sake of simplicity,
define 27 = Pp(xf). By the increasing property of ¢, the sequence {z7}, is
bounded from above and below. Without loss of generality, suppose that

lim,, .o 27 = 7. By the continuity of G, we have i € I'(x). Take any

0 <2y < G(xg), for n sufficiently big, we have

V(xo, 1) + Bo(x1) < V(xg,z1) + Bo(;)

< V(xg,x7) + po(ay).

By the continuity of v, let n converges to infinity, we get for any 0 < z; <
G(IU),
V(zo, 1) + Bu(z1) < V (2o, 27) + Po(a]).

By the continuity of V' and v, we also get v(xg) < V(xg, x}) + Bv(z]), which

implies o7 € ¢(xg). Hence x7 < P(xp), or limsup,,_, . p(2}) < p(xp). From
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the monotonicity of @, and recall that xj > z for any n, we obtain

lim o(25) = B(xo).

n—oo

This implies the function @ is continuous from the right.

Consider the sequence {xj}>2, converging to xq satisfying zf < xo for any
n. Obviously, limsup,,_,. @(xj) < @(zg). The function P is upper semi-

continuous.

3. From the continuity of value function v, we can use the same arguments as
in the proof of the part 2. Remark that in the case v is only upper semi-
continuous, the same arguments for the value of @ cannot be applied for .

We cannot be sure about the continuity properties of . B

Proof of Proposition 2.3

Since G'(0) < 1, for x small enough, we have G(x) < . There exists xy > 0 such
that for any 0 < z < xy we get G(x) < x. Consider any feasible sequence {x;}2,
belonging to II(zg), we obtain for any ¢, 0 < xyy; < G(x;). The sequence hence
converges to a value z* < xy. By the definition of z(, one gets zy = 0, which is

equivalent to lim; .o z; = 0. W

Proof of Lemma 2.2

Assume that (1) is true. Take any zy > . Suppose that ¢(z¢) < 2. By
induction, we get ¢'(xo) < x¢ for any ¢ > 0. By Proposition 2.2, and by induction,
we get also for any t > 0, P'(Zg) < ¢'(xo), which is in contradiction with the
hypothesis that lim,_,, 2} = +00, since this implies lim;_,, P'(Zg) = oo.

Assume that (2) is true. We will prove that for any zy > #(, any optimal

sequence with initial value xy converges to infinity. Suppose the contrary. Since

Ty < @(0), by induction we have the sequence {'(z¢)}< is stricly increasing. If
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this sequence is bounded, then lim; ., ¢*(z9) = z*. Since  is continuous at the

*

left, this implies p(2*) = limy_,oc ©(©*(20)) = *: a contradiction.H

Proof of Lemma 2.3

Obviously, the lemma is true for xy = 0 or 1 = 0. We consider the case xg, z; > 0.

Define x9 = (1) and z, = P(x1). By Inada condition, we have z; < G(zo) and

0 < z9, 2 < G(x7).

Suppose the contrary case x5 < x4, from Euler equation we have
Va(zo, 21) + BVi(21, 22) = 0.

By the supermodularity, this implies Va(xg, z1) + Vi(21, 25) > 0, hence for €

sufficiently small:
V(xg,x1 +€) + BV (g +€,15) > V(xg, x1) + BV (21, 25),

a contradiction. W

Proof of Proposition 2.4

1. The existence of z is a consequence of properties of function GG. The existence

of T is direct consequence of Proposition 2.5.
2. This is a consequence of Proposition 2.3.
3. This is a consequence of Proposition 2.5.

4. First, observe that £ < ®(z). Indeed, suppose that the contrary: @(z) < z.
Since p is upper semi-continuous, there exists € > 0 such that for any x <

T < x4+ €, we have p(x) < z < z: a contradiction with the definition of z.

By the same arguments, we have & > (). Obviously, z < 2.
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Define z, = (), and Ty = ¢(Z). By Proposition 2.2 and Lemma 2.4,

(o) = P(zo) < ¢(To) = P(To).

Moreover, we have
r<xy <7< 7T
Since x < @(z), by the monotonicity of B, we have zy < P(z,) = p(z).

By the same arguments, we have Ty > %(Zp). And we have
25 < p(zy) < B(To) < To.

For any z, < o < Ty, for any optimal path {x}}{°, from initial state xg, so

by induction, we obtain
2y < 9'(xy) < 27 <P (To) < To.

The optimal path {z}}:°, is hence bounded away from zero and infinity.

5. Consider the sequence {x; }° such that zf = T and for any ¢, x7,; = @(7).
Since Ty < B(Tg), the sequence {z;}:°, is decreasing and converges to x*.
By the continuity from the right of 3, we have x* = B(x*). By Proposition
2.4, 7" = ¢(z*) =p(z*). B

Proof of Proposition 2.5

Resulting from the Lemma 2.2, we have only to prove that there exists zo > 0

such that there is one optimal path beginning from xy converges to infinity.

Suppose the contrary, there exists a sequence z{ which converges to infinity

satisfying ¢(z3) < zg for any n. Define 27 = p(2f) and 2 = ¢(z7). We have
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xy < 2t < z{. By Euler equation we obtain
‘/Q(xgﬂ 33711) + ﬁvl(lﬂlzv Ig) =0,

which implies
6 _ _‘/2(£E87 55711) )
Vi(at, 3)
By the concavity of V (zf,-), we have Va(ay, zy) < Va(xf,«t), which implies
_‘/2<‘r87 x?) < _‘/2(1;8’ J;g)
Similarly, by the concavity of V'(-, %), and the super-modularity of V' ( Via(z, 2") >

0 for any z,2’), we also have
Vi(zy, 25) = Va(zg, zy) = Vi(ag, 0).

Hence for any n we get
—‘/2(1’3, 1’3)

< b
S Vi(w0)

which implies Va(z{, zf) + Vi(zf,0) < 0, a contradiction with lim,,_,, z{ = +00

and assumption V5. The proof is completed. l

Proof of Proposition 2.6

According to Amir (1996), the optimal policy functions is written by function of
zo and B: ¢(x, ) and B(x, B) are strictly increasing with respect to 3.

Considering 81 < f5. We prove that z(0;) > z(82) and &(51) > Z(5a).

By the strict monotonocity of ®(z, ), if p(z, f2) < z, then P(x, 51) < x. This
implies [0, x(42)] C [0, z(81)], which is equivalent to z(82) < z(61).

Using the same arguments, we have Z(/2) < Z(f;). The values of z(+), Z(-) are

decreasing functions with respect to 5. B
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Proof of Lemma 3.1

The Harrod-like model is considered, as follows.

Ct + It = F(kt),
G = F)/F(k’)t)v
It — l{ft+1 - (1 - 5)]{775

ko > 0 given.

Let ¢, k; denote by the consumption and the physical capital at period %, re-
spectively. I; be the total investment of the economy at period . The depreciation

rate of physical capital is 9.

The model above can be re-written as

ki1 = (1 =) F (k) + (1 = 6)ky,

ko > 0 given.

If F(k) = Ak (Ak model), we then have:

kt-i—l = [A(l — ’}/) —|— 1 — 5]]{?,5

Assume that A(1—~)+1—0 > 1. In this case, the sequence of capital, k; will

converges to infinity, Vt.

Now, we also suppose that the economy exists a fix cost k, i.e., F (k) =0 if

k < kand F(k) = A(k — k) if k > k. The model is thus

ki1 = (1 —0)k, when k, < k,
kir = (1 —)A(k — k) + (1 — 6)k, when k, > k.
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Let k satisfy:

k=1—-Ak—Fk)+ (1—0)k.

Following this setting, it is easy to see that
1. k> k,

2. If ko < k, then k; converges to zero,

3. If ko > k, then k, converges to infinity,
4. If kg = k, then k, = k, Vt.

Therefore, the economy exists an poverty trap which is k. For the intuition,

we present this problem as shown in Figure 3.1 below.

Figure 4.3. The poverty trap and non-concave technology function.

t+1
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Proof of Lemma 3.2

1. This is obvious, because of using the properties of function ¢.
2. The assumption V1, V2 are satisfied by the condition (3) in H1. The as-
sumption V3 is satisfied by the monotonicity of u, f and ¢.

For the partial concavity of V', considering its partial derivatives:

o = (1) (2) (1 0
o = (-0 () () x

From the increasing property of ¥, fix y and f(z), f(z) —1 (;) is increasing
with respect to x, and ( fl(x)+ (%) l) is decreasing in respect to z. This

2

implies Vi1(z,y) < 0, or V(-,y) is concave with respect to the first argument.

For the concavity with respect to the second argument, we have

BVA(e,0)
—Va(z, x)

uflx)  2f(2)
W (f@) = (@) " (D)

By using the assumption H2 and H3, we also obtain

BVi(x,0)

R AP s

Hence, for = big enough we have gVi(x,0) > —Vi(z, ), which is Va(z, z) +
BVi(x,0) > 0. B

Proof of Proposition 3.1

The result is direct consequence of Proposition 2.4 and Lemma 3.2. B
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Proof of Proposition 3.2

First, we prove that for any 1 < p < 1+ A, there exists ho big enough such that

for any hgy > ho we have

p(ho) > phe.

Suppose the contrary, there exists a sequence hy which converges to infinity
and satisfies p(hg) < phg for any n. For the sake of simplicity, denote h} =

o(ho), by = p(h). From the Euler equation, we get

Vi(hi, hy) 1

Since hg is big enough, we have hy < ¢(hy), Assume that for any n, h), > hj

and hence hj > hY.

Since hj > h we obtain

o (f(h'f) ) (%)) > ' (f(RY) — (1))

We also have
" <f(h6’) —y (h—)) <o (f(D) — ¥(p).

Hence, we get

(e - () /
T T () e
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Now, let us consider

Vi(ht, hy)

—Va(hg, hy)

Furthermore, since

and lim, oo g f'(phy) =

x hg f'(phg).-

o (s0) — ) [£00) + v () e
w () = (35)) v (3%5) *

e -v(#)  pen
Tt -0 (i) e () < &
- (@) mren
Cw (e (i) e (i)

Lo (s ()
Z 0o (f(hg) —¢(Z—)) X he f'(hY)

o (f(00) = w(3))
( 7

ﬁ
ht
hy
hé

)
)

+00, we have for n big enough,

lim inf ! <f(h711) Y (
= () o (

> 0,

Vi(ht, hy)

1
/87

a contradiction. For any 1 < p < 1+ A and the optimal path {h;}2°, from hg

sufficiently big, we have hj , > ph;, V. For each value p, define h{ the infimum

of such initial value. Consider an optimal sequence which converges to infinity,

for any 1 < p < 1+ A, there exists T, such that for any ¢ > T,, h; > hf, hence

hi,, = ph;. This implies

*
ht—i—l _

tli>nolo hy 1+ 4.
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Résumé Le modele de Solow (1956) est une
référence parmi les théories qui cherchent la cause
de la croissance économique. Dans ce modéle, ce
ne sont pas les deux facteurs de production
(travail et capital physique) mais le progres
technique qui parait étre le moteur principal de la
croissance. Mankiw, Romer et Weil (1992)
améliorent ce modele de Solow en y introduisant
I’accumulation du capital humain, et montrent
empiriquement pourquoi les variables qui sont
initialement supposées comme exogenes dans le
modele de Solow varient de fagon aussi
remarquable entre pays. Leur résultat s’appuie sur
les roles plus importants des facteurs de
production, en particulier du capital humain.
Cette thése s’inspire des arguments développés
par Lucas (2015) qui réclame la nécessité de
placer le capital humain au centre de la croissance
économique, sans aucune source d’externalité.

La nouveauté de la dissertation est 1’introduction
du capital humain a la Lucas (1988) dans un
modele de type Ramsey (1928), en ajoutant
progressivement  différents  niveaux  de
complexité, afin d’aboutir 2 un modéle unifiant
les différents sources de croissance économique,
permettant non seulement d’étudier ’interaction
entre le capital physique et le capital humain, mais
aussi de mettre en évidence le rdle central du
proces d’accumulation du capital humain.

Comme nous le savons bien, un modéle a la
Ramsey est, dans un certain sens, équivalent a un
modéle a générations imbriquées augmenté par
I’altruisme intergénérationnel a la Barro (1974).

Il est intéressant de considérer d’autres formes
d’altruisme intergénérationnel en présence
d’accumulation du capital humain. Cette thése
explore I’impact de 1’altruisme paternaliste au
sens d’Abel et Warshawsky (1988) dans une
société hétérogeéne ou les ménages different par
leur degré d’altruisme, ce qui se traduit par le
fait que chaque agent économique a sa propre
maniere d’investir dans 1’éducation des
descendants.

L’éducation ne concerne pas seulement les
individus, mais ¢également les institutions
publiques. L’ investissement en I’éducation pour
générer du capital humain, est par la suite,
supposé n’étre qu’un choix public, c’est-a-dire
par le biais des dépenses publiques en faveur de
I’éducation, financées par les recettes fiscales.
L'étude est intéressante dans aux dynamiques
associées a l'interaction entre 1'accumulation du
capital physique et humain et, par conséquent, a
la croissance économique. Dans ce contexte,
I’impact des politiques fiscales sur la croissance
est également étudié.

Plusieurs enjeux économiques, par exemple le
piege de pauvreté, ou celui du revenu
intermédiaire, peuvent étre modélisés a ’aide
des modéles dans lesquels on n’a plus Ia
propriété de concavité de la fonction d'utilité.
Pour cette raison, il serait utile d’explorer des
modeles avec technologies non concaves, en
présence d’accumulation du capital humain.
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Abstract The model of Solow (1956) is a
seminal reference among the theories that seek
to understand the cause of economic growth. In
this model, it is not the factors of production
(labor and capital) but the technical progress that
gives rise to economic growth. Mankiw, Romer
and Weil (1992) augment this model by
introducing human capital accumulation and
show empirically why the variables considered
exogenous in Solow's model vary in such a
remarkable manner among countries. Their
results emphasize the importance of factors of
production, particularly of human capital. This
thesis is inspired by the arguments of Lucas
(2015) who calls for the necessity of putting
human capital at the center of economic growth
without any source of externalities.

The novelty of the dissertation is the formation
of human capital a la Lucas (1988) in Ramsey
(1928) model. By gradually adding different
layers of complexity, the dissertation arrives at
a unified picture of different source of economic
growth, allowing for the interaction between
physical and human capital where savings and
time play a non-trivial role.

As is well-known, the Ramsey model in a
certain way is equivalent to an OLG model with
intergenerational altruism in the sense of Barro

(1974). 1t is interesting to consider other forms
of intergenerational altruism in presence of
human capital accumulation. This thesis
explores the impact of paternalistic altruism in
the sense of Abel and Warshawsky (1988) in a
heterogeneous economy where the agents differ
in their degree of altruism, which is manifest in
their manner of investment in the education of
their offspring.

Education concerns not only the individuals but
also public institutions. Investment in education
to generate human capital can therefore be
considered a public choice, that is to say, by the
bias in public spending on education financed by
tax revenues. The study is interesting in the
dynamics associated with the interaction
between the accumulation of physical and
human capital, and consequently in economic
growth. In this context, the impact of taxation
policy on growth is also studied.

Many economic phenomena, for example,
poverty trap and middle-income trap, can be
analyzed in models where the concave property
of the utility function no longer holds. For this
reason, it would be useful to explore these
models of non-concave technology in presence
of human capital accumulation.
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