Isomonodromic deformations through differential Galois theory

par Juan Sebastián Díaz Arboleda

Thèse de doctorat en Mathématiques et leurs interactions

Sous la direction de David Blázquez Sanz et de Guy Casale.

  • Titre traduit

    Déformations isomonodromiques à travers la théorie de Galois différentielle


  • Résumé

    Le texte commence par une brève description de théorie différentielle de Galois dans une perspective géométrique. Ensuite, la théorie paramétrée de Galois est développée au moyen d’une prolongation des connexions partielles avec les fibrés de jets.  La relation entre les groupes de Galois différentiels a paramètres et les déformations isomonodromiques est développée comme une application du théorème de Kiso-Cassidy. Il s’ensuit le calcul des groupes de Galois a paramètres de l’équation générale fuchsienne et de l’équation hypergéométrique de Gauss.  Enfin, certaines applications non linéaires sont développées.  Au moyen d’un théorème de Kiso-Morimoto, un analogue non linéaire, on calcule le groupoïde de Malgrange de l’équation de Painlevé VI à paramètres variables.


  • Résumé

    The text begins with a brief description of differential Galois theory from a geometrical perspective. Then, parameterized Galois theory is developed by means of prolongation of partial connections to the jet bundles. The relation between the parameterized differential Galois groups and isomonodromic deformations is unfold as an application of Kiso-Cassidy theorem. It follows the computation of the parameterized Galois groups of the general fuchsian equation and Gauss hypergeometric equation. Finally, some non-linear applications are developed. By means of a non-linear analog, Kiso-Morimoto theorem, the Malgrange groupoid of Painlevé VI equation with variable parameters is calculated.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Rennes I. Service commun de la documentation. Bibliothèque de ressources en ligne.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.