Thèse soutenue

Étude de l'impact de la microstructure sur les propriétés effectives électriques des batteries lithium-ion

FR  |  
EN
Auteur / Autrice : François Cadiou
Direction : Éric MaireBernard Lestriez
Type : Thèse de doctorat
Discipline(s) : Matériaux
Date : Soutenance le 29/11/2019
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : Ecole doctorale Matériaux de Lyon (Villeurbanne ; 1992?-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Institut national des sciences appliquées (Lyon ; 1957-....)
Laboratoire : MATEIS - Matériaux : Ingénierie et Science - UMR 5510 (Rhône) - Matériaux- ingénierie et science [Villeurbanne] / MATEIS
Jury : Président / Présidente : Philippe Moreau
Examinateurs / Examinatrices : Éric Maire, Bernard Lestriez, Philippe Moreau, Sabine Rolland du Roscoat, Alejandro A Franco, Julie Villanova
Rapporteurs / Rapporteuses : Sabine Rolland du Roscoat, Alejandro A Franco

Résumé

FR  |  
EN

Cette étude porte sur la compréhension du lien existant entre l’architecture microstructurelle et les propriétés effectives de conductivité dans les électrodes des batteries Li-ion. Les batteries Li-ion sont très intéressantes pour des domaines tels que le transport électrique. En effet, elles présentent une grande densité d’énergie et de puissance ce qui en fait de bons substituts pour les moteurs thermiques. Cependant, même si elles sont maintenant assez largement utilisées dans beaucoup de domaines, il y a toujours besoin d’en optimiser les performances. Ceci passe par une meilleure compréhension de l’impact de la microstructure sur les propriétés effectives pour réduire l’écart entre théorie et pratique. L’attention est portée ici sur les électrodes positives des batteries lithium-ion. Les caractéristiques tridimensionnelles telles que la percolation des phases, leur tortuosité ou encore leurs dimensions caractéristiques ont un fort impact sur les propriétés à l'échelle macroscopique. Leur étude nécessite l’utilisation de techniques d’imagerie 3D comme la tomographie aux rayons X et la tomographie sériée par faisceau d’ions focalisés et MEB (FIB/SEM) pour obtenir des données quantitatives et en interpréter les propriétés de transport de charge. Ces volumes sont alors traités (segmentation et analyses morphologiques) et utilisés comme base pour des simulations numériques. La méthode FFT (Fast Fourrier Transform) avec opérateur de Green « discret » est choisie. Ces simulations permettent, soit de remonter aux propriétés de conduction électrique des phases, à partir de la mesure de la conductivité de l’électrode, par méthode inverse, soit de prédire la conductivité effective de l’électrode, en utilisant des propriétés mesurées expérimentalement sur les phases prises séparément. Les microstructures 3D numériques peuvent également être altérées afin de prédire l’impact, sur ses propriétés effectives, de changements de composition dans la formulation de l’électrode. De nouveaux outils consacrés à la meilleure compréhension de la relation entre microstructure, propriétés effectives et performance des batteries lithium-ion sont développés.