Thèse soutenue

Segmentation en instances génériques pour le dévracage orienté objet

FR  |  
EN
Auteur / Autrice : Matthieu Grard
Direction : Liming ChenEmmanuel Dellandréa
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 20/05/2019
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale InfoMaths (Lyon ; 2009-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École Centrale de Lyon (1857-....)
Equipe de recherche : Extraction de Caractéristiques et Identification - Siléane
Laboratoire : LIRIS - Laboratoire d'Informatique en Image et Systèmes d'information (Rhône ; 2003-....)
Jury : Président / Présidente : Marie-Odile Berger
Examinateurs / Examinatrices : Liming Chen, Emmanuel Dellandréa, Jean-Marc Odobez, Laetitia Leyrit
Rapporteurs / Rapporteuses : Dimitris Samaras, Thierry Chateau

Résumé

FR  |  
EN

Le dévracage robotisé est une tâche industrielle en forte croissance visant à automatiser le déchargement par unité d’une pile d’instances d'objet en vrac pour faciliter des traitements ultérieurs tels que la formation de kits ou l’assemblage de composants. Cependant, le modèle explicite des objets est souvent indisponible dans de nombreux secteurs industriels, notamment alimentaire et automobile, et les instances d'objet peuvent présenter des variations intra-classe, par exemple en raison de déformations élastiques.Les techniques d’estimation de pose, qui nécessitent un modèle explicite et supposent des transformations rigides, ne sont donc pas applicables dans de tels contextes. L'approche alternative consiste à détecter des prises sans notion explicite d’objet, ce qui pénalise fortement le dévracage lorsque l’enchevêtrement des instances est important. Ces approches s’appuient aussi sur une reconstruction multi-vues de la scène, difficile par exemple avec des emballages alimentaires brillants ou transparents, ou réduisant de manière critique le temps de cycle restant dans le cadre d’applications à haute cadence.En collaboration avec Siléane, une entreprise française de robotique industrielle, l’objectif de ce travail est donc de développer une solution par apprentissage pour la localisation des instances les plus prenables d’un vrac à partir d’une seule image, en boucle ouverte, sans modèles d'objet explicites. Dans le contexte du dévracage industriel, notre contribution est double.Premièrement, nous proposons un nouveau réseau pleinement convolutionnel (FCN) pour délinéer les instances et inférer un ordre spatial à leurs frontières. En effet, les méthodes état de l'art pour cette tâche reposent sur deux flux indépendants, respectivement pour les frontières et les occultations, alors que les occultations sont souvent sources de frontières. Plus précisément, l'approche courante, qui consiste à isoler les instances dans des boîtes avant de détecter les frontières et les occultations, se montre inadaptée aux scénarios de dévracage dans la mesure où une région rectangulaire inclut souvent plusieurs instances. A contrario, notre architecture sans détection préalable de régions détecte finement les frontières entre instances, ainsi que le bord occultant correspondant, à partir d'une représentation unifiée de la scène.Deuxièmement, comme les FCNs nécessitent de grands ensembles d'apprentissage qui ne sont pas disponibles dans les applications de dévracage, nous proposons une procédure par simulation pour générer des images d'apprentissage à partir de moteurs physique et de rendu. Plus précisément, des vracs d'instances sont simulés et rendus avec les annotations correspondantes à partir d'ensembles d'images de texture et de maillages auxquels sont appliquées de multiples déformations aléatoires. Nous montrons que les données synthétiques proposées sont vraisemblables pour des applications réelles au sens où elles permettent l'apprentissage de représentations profondes transférables à des données réelles. A travers de nombreuses expériences sur une maquette réelle avec robot, notre réseau entraîné sur données synthétiques surpasse la méthode industrielle de référence, tout en obtenant des performances temps réel. L'approche proposée établit ainsi une nouvelle référence pour le dévracage orienté-objet sans modèle d'objet explicite.