Thèse soutenue

Nage sous marine générée par boucle de rétroaction de courbure avec modélisation de muscles locomoteurs

FR  |  
EN
Auteur / Autrice : David Gross
Direction : Médéric Argentina
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 04/09/2019
Etablissement(s) : Université Côte d'Azur (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences fondamentales et appliquées (Nice ; 2000-....)
Partenaire(s) de recherche : établissement de préparation : Université de Nice (1965-2019)
Laboratoire : Institut de Physique de Nice
Jury : Président / Présidente : Frédéric Boyer
Examinateurs / Examinatrices : Médéric Argentina, Frédéric Boyer, Christophe Eloy, Serge Huberson, Yann Roux, Christophe Raufaste, Uwe Ehrenstein, Benjamin Thiria
Rapporteurs / Rapporteuses : Christophe Eloy, Serge Huberson

Résumé

FR  |  
EN

L'autopropulsion basée sur la propagation d'ondes de déformation, comme pour les poissons, pourrait être une alternative intéressante par rapport au déplacement généré par des hélices pour les bateaux et les véhicules sous-marins. La locomotion par ondulations implique une flexibilité de la structure du véhicule, dont il faut prendre en compte pour la dynamique des fluides et donc quantifier la vitesse et le rendement du déplacement. Dans cette thèse, nous avons développé une nouvelle méthode d'interaction fluide-structure (IFS) liant un solveur de dynamique de structure par éléments finis avec un solveur "vortex panel" bidimensionnel pour le couplage avec le fluide et une méthode des particules pour la résolution du sillage. Chaque composante du couplage IFS est d'abord validée indépendamment, puis nous testons le système complet dans le cadre d'une plaque flexible et bidimensionnelle en oscillation. La relation entre les paramètres cinématiques de nage et la vitesse de déplacement est reproduite et l'importance de la traînée pour cette relation est analysée avec détails. Pour modéliser le comportement d'un nageur souple, en autopropulsion, nous distribuons spatialement un moment de flexion, ce qui nous permet de faire des prédictions sur les grandeurs cinématiques de la nage. Par la suite, nous montrons qu'un moment de force rétroactif basée sur la courbure de déformation du nageur, avec un délai temporel, génère une autopropulsion différente de celle observée avec un forçage actif de moment de flexion. Nous proposons un modèle simplifié, capable à décrire le comportement du nageur avec rétroaction, pour comprendre qualitativement les phénomènes en jeux. Finalement, nous dérivons un modèle de muscle, en s'inspirant de la biologie ; et nous évaluons l'importance des différents paramètres du modèle quant à la performance d'autopropulsion. Le manuscrit de thèse se termine par l'analyse d'une plaque mince en trois dimensions, mise en oscillation pour apprécier la pertinence de la méthode tridimensionnelle "vortex panel" pour simuler la nage dans des conditions réelles.