Theoretical and phenomenological aspects of non-singular black holes

par Frédéric Lamy

Thèse de doctorat en Physique de l'univers. Physique théorique

Sous la direction de David Langlois.

Le président du jury était Danièle Steer.

Le jury était composé de David Langlois, Ruth Gregory, Carlos Herdeiro, Alessandro Fabbri, Éric Gourgoulhon.

Les rapporteurs étaient Ruth Gregory, Carlos Herdeiro.

  • Titre traduit

    Aspects théoriques et phénoménologiques des trous noirs sans singularité


  • Résumé

    Le problème des singularités en relativité générale remonte à la première solution exacte de la théorie obtenue en 1915, à savoir celle du trou noir de Schwarzschild. Qu'elles soient de coordonnée ou de courbure, ces singularités ont longtemps questionné les physiciens qui parvinrent à mieux les caractériser à la fin des années 1960. Cela conduisit aux fameux théorèmes sur les singularités, s'appliquant à la fois aux trous noirs et en cosmologie, basés sur un comportement classique du contenu en matière de l'espace-temps résumé par des conditions d'énergie. La violation de ces conditions dans les processus quantiques pourrait indiquer que les singularités doivent être vues comme des limitations de la relativité générale, pouvant ainsi disparaître dans une théorie plus générale de la gravité quantique.Dans l'attente d'une telle théorie, nous avons pour objectif dans cette thèse d'étudier les espaces-temps de trous noirs dépourvus de toute singularité ainsi que leurs conséquences observationnelles. A cette fin, nous considérons à la fois des modifications de la relativité générale et le couplage de la théorie à des contenus en matière exotiques. Dans le premier cas nous montrons qu'il est possible de retrouver des trous noirs réguliers à symétrie sphérique connus, tout d'abord en principe avec la théorie tenseur-scalaire de gravité mimétique, puis implicitement par le biais d'une déformation de la contrainte hamiltonienne en relativité générale inspirée des techniques de gravitation quantique à boucles. Dans le second cas nous restons dans le cadre de la relativité générale, et considérons des tenseurs énergie-impulsion effectifs. Ils sont en premier lieu associés à un modèle régulier à la Hayward en rotation fournissant dans un certain régime un premier exemple de trou noir en rotation exempt de toute singularité, puis à un espace-temps dynamique décrivant la formation et l'évaporation d'un trou noir sans singularité. Pour ce dernier, nous montrons que tout modèle basé sur l'effondrement gravitationnel de coquilles de genre lumière visant à décrire l'évaporation de Hawking est voué à violer les conditions sur l'énergie dans une région non compacte de l'espace-temps. Enfin, l'étude théorique de la métrique de Hayward en rotation est accompagnée de simulations numériques d'un tel objet au centre de la Voie Lactée, obtenues à l'aide du code de calcul de trajectoires de particules Gyoto en reproduisant les propriétés connues de la structure d'accrétion du trou noir présumé Sgr A*. Ces simulations permettent d'illustrer deux régimes très différents de la métrique, avec ou sans horizon, et soulignent la difficulté d'affirmer avec certitude la présence d'un horizon à partir d'images en champ fort telles que celles obtenues par l'instrument Event Horizon Telescope.


  • Résumé

    The issue of singularities in General Relativity dates back to the very first solution to the equations of the theory, namely Schwarzschild's 1915 black hole. Whether they be of coordinate or curvature nature, these singularities have long puzzled physicists, who managed to better characterize them in the late 60's. This led to the famous singularity theorems applying both to cosmology and black holes, and which assume a classical behaviour of the matter content of spacetime summarized in the so-called energy conditions. The violation of these conditions by quantum phenomena supports the idea that singularities are to be seen as a limitation of General Relativity, and would be cured in a more general theory of quantum gravity. In this thesis, pending for such a theory, we aim at investigating black hole spacetimes deprived of any singularity as well as their observational consequences. To that purpose, we consider both modifications of General Relativity and the coupling of Einstein's theory to exotic matter contents. In the first case, we show that one can recover the static spherically symmetric non-singular black holes of Bardeen and Hayward in principle in mimetic gravity, and implicitly by a deformation of General Relativity's hamiltonian constraint in an approach based on loop quantum gravity techniques. In the second case, we stay inside the framework of General Relativity and consider effective energy-momentum tensors associated with a fully regular rotating Hayward metric and with a dynamical spacetime describing the formation and evaporation of a non-singular black hole. For the latter, we show that all models based on the collapse of ingoing null shells and willing to describe Hawking’s evaporation are doomed to violate the energy conditions in a non-compact region of spacetime. Lastly, the theoretical study of the rotating Hayward metric comes with numerical simulations of such an object at the center of the Milky Way, using the ray-tracing code Gyoto and mimicking the known properties of the accretion structure of Sgr A*. These simulations allow exhibiting the two very different regimes of the metric, with or without horizon, and emphasize the difficulty of asserting the presence of a horizon from strong-field images as the ones provided by the Event Horizon Telescope.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris Diderot - Paris 7. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.