Thèse soutenue

Contributions à la complexité arithmétique et à la compression

FR  |  
EN
Auteur / Autrice : Guillaume Lagarde
Direction : Sophie LaplanteSylvain Perifel
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 05/07/2018
Etablissement(s) : Sorbonne Paris Cité
Ecole(s) doctorale(s) : École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....)
Partenaire(s) de recherche : établissement de préparation : Université Paris Diderot - Paris 7 (1970-2019)
Laboratoire : Institut de recherche en informatique fondamentale (Paris ; 2016-....)
Jury : Président / Présidente : Olivier Serre
Examinateurs / Examinatrices : Sophie Laplante, Sylvain Perifel, Olivier Serre, Meena Mahajan, Dieter Van Melkebeek, Tatiana Starikovskaya, Hervé Fournier, Claire Mathieu
Rapporteurs / Rapporteuses : Meena Mahajan, Dieter Van Melkebeek

Résumé

FR  |  
EN

Cette thèse explore deux territoires distincts de l’informatique fondamentale : la complexité et la compression. Plus précisément, dans une première partie, nous étudions la puissance des circuits arithmétiques non commutatifs, qui calculent des polynômes non commutatifs en plusieurs indéterminées. Pour cela, nous introduisons plusieurs modèles de calcul, restreints dans leur manière de calculer les monômes. Ces modèles en généralisent d’autres, plus anciens et largement étudiés, comme les programmes à branchements. Les résultats sont de trois sortes. Premièrement, nous donnons des bornes inférieures sur le nombre d’opérations arithmétiques nécessaires au calcul de certains polynômes tels que le déterminant ou encore le permanent. Deuxièmement, nous concevons des algorithmes déterministes fonctionnant en temps polynomial pour résoudre le problème du test d’identité polynomiale. Enfin, nous construisons un pont entre la théorie des automates et les circuits arithmétiques non commutatifs, ce qui nous permet de dériver de nouvelles bornes inférieures en utilisant une mesure reposant sur le rang de la matrice dite de Hankel, provenant de la théorie des automates. Une deuxième partie concerne l’analyse de l’algorithme de compression sans perte Lempel-Ziv. Pourtant très utilisé, sa stabilité est encore mal établie. Vers la fin des années 90s, Jack Lutz popularise la question suivante, connue sous le nom de « one-bit catastrophe » : « étant donné un mot compressible, est-il possible de le rendre incompressible en ne changeant qu’un seul bit ? ». Nous montrons qu’une telle catastrophe est en effet possible. Plus précisément, en donnant des bornes optimales sur la variation de la taille de la compression, nous montrons qu’un mot « très compressible » restera toujours compressible après modification d’un bit, mais que certains mots « peu compressibles » deviennent en effet incompressibles.