Développement et optimisation de catalyseurs à base de cuivre pour la synthèse de méthanol et de diméthyléther à partir de CO2

par Valentin L'Hospital

Thèse de doctorat en Catalyse hétérogène

Sous la direction de Anne-Cécile Roger.

Le président du jury était Sébastien Paul.

Le jury était composé de Anthony Le Valant, Solène Valentin, Ksenia Parkhomenko.

Les rapporteurs étaient Sébastien Paul, Cyril Aymonier.


  • Résumé

    Diminuer les émissions de CO2, principal gaz à effet de serre, constitue un des enjeux majeurs de notre ère actuelle. De nombreuses mesures existent déjà mais sont encore insuffisantes. C’est dans ce cadre que le projet ANR DIGAS a vu le jour. Durant ces travaux, des matériaux catalytiques composés de CuO/ZnO/ZrO2 ont été développés par coprécipitation classique et ont été testés sous une pression de 50 bar pour la synthèse de méthanol à partir de l’hydrogénation de CO2. Ces catalyseurs ont ensuite été optimisés à l’aide d’un système développé au laboratoire : la synthèse microfluidique en continu. Elle a permis de rendre les catalyseurs plus homogènes et ainsi plus efficaces. Le catalyseur le plus performant a, par la suite, été couplé à un catalyseur acide, une zéolithe ZSM5, pour permettre la synthèse directe de diméthyléther (DME) à partir de l’hydrogénation de CO2. Dans le cas de la synthèse de méthanol ainsi que pour la synthèse de DME, les catalyseurs développés sont compétitifs et plus performants que les catalyseurs actuellement sur le marché.

  • Titre traduit

    Development and optimization of copper-based catalysts for the methanol and dimethyl ether synthesis from CO2


  • Résumé

    Reducing CO2 emissions, the main greenhouse gas, is one of the major challenges of our current era. Many measures already exist but are still insufficient. It is in this context that the ANR project called DIGAS was funded. During this work, catalytic materials composed of CuO/ZnO/ZrO2 were developed by classical coprecipitation and tested under a pressure of 50 bar for the methanol synthesis from CO2 hydrogenation. Then, these catalysts were optimized using a system developed in the laboratory: microfluidic continuous synthesis. It has made the catalysts more homogeneous and thus more efficient. The most efficient catalyst was subsequently coupled to a ZSM5 zeolite to allow direct dimethyl ether (DME) synthesis from the CO2 hydrogenation. In the case of methanol as well as for DME synthesis, the developed catalysts are competitive and more efficient than the catalysts currently on the market.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Strasbourg. Service commun de la documentation. Bibliothèque électronique 063.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.