Thèse soutenue

Préparation de grands ensembles atomiques et applications en interface lumière-matière efficace

FR  |  
EN
Auteur / Autrice : Pierre Vernaz-Gris
Direction : Julien LauratPing Koy Lam
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 12/01/2018
Etablissement(s) : Sorbonne université en cotutelle avec Australian national university
Ecole(s) doctorale(s) : École doctorale Physique en Île-de-France (Paris ; 2014-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Kastler Brossel (Paris ; 1998-....)
Jury : Président / Présidente : Valia Voliotis
Examinateurs / Examinatrices : Gabriel Hétet, Ben Buchler
Rapporteurs / Rapporteuses : Joshua Nunn, Thierry Chanelière

Résumé

FR  |  
EN

Cette thèse de doctorat en co-tutelle a été centrée sur des expériences d’optique quantique faisant intervenir de grands ensembles atomiques. L’étude de l’interaction entre la lumière et la matière et l’augmentation de leur couplage dans ces systèmes sont des étapes fondamentales pour le développement et l’amélioration de protocoles de génération, de stockage et de manipulation d’information quantique. Le travail de thèse exposé ici traite en particulier de l’évolution des techniques de préparation d’ensembles atomiques denses, des protocoles de lumière arrêtée et de lumière stationnaire développés et étudiés expérimentalement. Les ensembles d’atomes froids préparés par refroidissement laser dans les deux réalisations expérimentales ont été portés jusqu’à des épaisseurs optiques de plusieurs centaines, à des températures d’une dizaine de microkelvin. De plus, l’adressage de ces ensembles dans des configurations symétriques ont permis l’étude de protocoles basés sur le renversement temporel de la conversion de lumière en excitations atomiques collectives. Ces améliorations ont mené au stockage de bits quantiques par transparence induite électromagnétiquement, et de lumière cohérente par symétrie temporelle dans une mémoire Raman, tous deux à des record d’efficacité, à de plus de 50%. Ce travail a également conduit à l’étude expérimentale de la lumière stationnaire et de nouveaux protocoles en découlant.