Imagerie par résonance magnétique à champ cyclé in vivo

par Nicolas Chanet

Thèse de doctorat en Imagerie et physique médicale

Sous la direction de Ludovic de Rochefort et de Geneviève Guillot.


  • Résumé

    L’IRM en champ cyclé (FFC-MRI) permet de dissocier deux processus clés de l’IRM qui dépendent chacun du champ magnétique principal B0 : d’une part, la détection du signal RMN et sa localisation et d’autre part, la relaxation du signal RMN, source de contraste d’intérêt biologique et médical. Le système d’IRM en champ cyclé est la combinaison de deux appareils, l’un est un système d’imagerie RMN et l’autre permet de faire varier le champ magnétique B0 rapidement devant les temps de relaxation. Il est ainsi possible de mesurer la dispersion de la relaxation de l’eau, c’est-à-dire sa variation en fonction du champ magnétique et potentiellement de la cartographier de manière non invasive in vivo. La dispersion est une source de contraste complémentaire, étant donné le lien entre relaxation de l’eau et son environnement moléculaire dans les tissus biologiques. L’objectif de la thèse consiste à développer et évaluer le potentiel de l’IRM en champ cyclé entre 1 T et 2 T sur un modèle de cancer. Ce travail a nécessité des développements instrumentaux et méthodologiques originaux pour intégrer le champ cyclé à des séquences IRM. Les solutions proposées portent tout d’abord sur la mesure précise du champ magnétique au cours du temps, la compensation des courants de Foucault et celle des instabilités de l’alimentation du système de variation de l’intensité de B0. De plus, nous proposons des méthodes d’acquisition avec un gain en signal sur bruit, utilisables pour mesurer la relaxation transversale aussi bien que longitudinale. Enfin une exploration sur modèle animal (tumeur du rein sur souris) a été entreprise.

  • Titre traduit

    In vivo fast field cycling magnetic resonance imaging


  • Résumé

    Fast Field Cycling Magnetic Resonance Imaging (FFC-MRI) has the ability to separate two key processes that both depends on the main field intensity B0. On one hand, signal acquisition and localization and on the other hand NMR relaxation, basis of MRI contrast. The equipment thus combines a standard MR scanner with a secondary system to rapidly switch the magnetic field B0 as compared to relaxation times. FFC enables to measure the evolution of NMR relaxation as a function of magnetic field B0, namely the NMR dispersion (NMRD) profile. Combining it with MRI the NMRD profile can be localized in vivo, together with the usual characterization at fixed B0. The NMRD profile of water carries information on molecular mobility in the surrounding biological tissues, and is thus another source of contrast. The objective of this PhD project was to further develop and evaluate the potential of FFC-MRI between 1 T and 2 T in a cancer model. This work required original instrumental and methodological developments to integrate FFC in MRI. First a precise measurement of magnetic field time profile was developed, as well as the compensation of eddy currents and of irreproducible transients in the secondary system. Moreover acquisition sequences with better signal to noise efficiency and applicable for longitudinal as well as transverse relaxation were implemented. Finally a kidney tumor mouse model was explored with FFC MRI.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.