Thèse soutenue

Nouveaux sensors optiques pour la detection de cations toxiques : Cesium, Uranyl et Arsenic

FR  |  
EN
Auteur / Autrice : Xuan Qui Pham
Direction : Isabelle LerayMinh Huong Ha Thi
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 07/02/2018
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences chimiques : molécules, matériaux, instrumentation et biosystèmes (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Photophysique et Photochimie Supramoléculaires et Macromoléculaires (Gif-sur-Yvette, Essonne ; 1993-....)
établissement opérateur d'inscription : École normale supérieure Paris-Saclay (Gif-sur-Yvette, Essonne ; 1912-....)
Jury : Président / Présidente : Gilles Clavier
Examinateurs / Examinatrices : Isabelle Leray, Minh Huong Ha Thi, Gilles Clavier, Mourad Elhabiri, Benoît Colasson, Miryana Hemadi
Rapporteur / Rapporteuse : Mourad Elhabiri, Benoît Colasson

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Ce travail concerne la synthèse, les études des propriétés photophysiques et de complexation des molécules fluorescentes pour la détection sélective de cations toxiques tels que le césium, l'uranyle et l'arsenic. Tout d'abord, deux nouveaux capteurs fluorescents pour le césium, Calix-COU-P et Calix-COU-Benz-CN, comportant le Calix[4]arène-couronne-6 et le fluorophore coumarine ont été synthétisés avec succès. En ce qui concerne le Calix-COU-P, une forte exaltation de fluorescence et un déplacement bathochrome d'absorption ont été observés en présence de césium dans l'eau. Une très bonne limite de détection (0,77 μM) ainsi qu'une excellente sélectivité vis-à-vis du césium ont été observées, démontrant que Calix-COU-P pourrait être un capteur exceptionnel pour la détection de césium dans l'eau. Calix-COU-Benz-CN possède quant à lui des propriétés photophysiques prometteuses dans un milieu partiellement aqueux avec des bandes d'absorption et de fluorescence intenses en visible grâce à la présence des groupements benzothiazole et cyano. L'addition de césium conduit aux déplacements ver le bleu des spectres d'absorption et une augmentation de l'intensité de fluorescence. L'étude de la cinétique de complexation entre Calix-COU-Benz-CN et Cs+ par la technique « stopped-flow » a montré une cinétique rapide à faibles concentrations de cations et une cinétique plus longue à des concentrations élevées (> 10 mM). Calix-COU-Benz-CN a ensuite été incorporé dans un dispositif microfluidique. Une courbe d'étalonnage qui représente l'intensité de fluorescence en fonction de la concentration du césium montre une valeur de limite de détection de l’ordre de 2,0 μM. Deux composés analogues contenant la même entité complexante Calix[4]arène-couronne-6 ont été également synthétisés et greffés sur des nanoparticules magnétiques afin d’obtenir un matériau fonctionnalisé pour la décontamination de l’eau contenant le césium radioactif. L'étude préliminaire montre que les nanoparticules fonctionnalisées pourraient capter efficacement une quantité très faible du césium dans l’eau contaminée. Par la suite, en vue de développer des capteurs pour l’uranyle, une série de dérivés de salicylaldéhyde-azine ont été synthétisés et caractérisés. Leurs propriétés d'émission induites par l'agrégation (AIE) ont été étudiées. Dans un mélange eau/acétonitrile, les composés U1 et U2 présentent une forte fluorescence lors de l'agrégation tandis que le composé U3 ne présente pas cet effet AIE dans la même condition. Grâce aux sites de complexation contenant des atomes d’oxygène et d'azote, ces molécules présentent une complexation efficace avec les ions uranyle et induire une extinction de la fluorescence. Dans notre étude, il était intéressant de noter la présence d’uranyle conduit à une destruction de l'agrégation, en particulier pour la molécule U2 dans un mélange eau / acétonitrile 60:40. L’extinction de l’émission a été expliquée par des processus de destruction d'agrégats émissifs lors de la complexation avec le cation. Le mécanisme proposé a été validé par des expériences de diffusion dynamique de la lumière et de microscopie électronique à balayage. Le composé U2 présente une bonne sélectivité vis-à-vis de l'uranyle en présence des lanthanides et des autres cations compétitifs. Le capteur permet la détection de concentrations de l’ordre ppb en uranyle. Enfin, la synthèse et l'étude de nouveaux capteurs pour la détection de l’arsenic ont également été discutées. Une série de capteurs fluorescents portant l’entité complexante cystéine a été synthétisée et leurs propriétés complexantes pour l'arsenic ont été étudiées. De plus, des nanoparticules d'or modifiées par la cystéine, le glutathion et le dithiothréitol ont été synthétisées. La complexation de l'ion arsenic avec ces nanoparticules a été étudiée et discutée. Une perspective sur le développement de nouveaux capteurs pour l’arsenic a été proposée.