Quelques applications de l’optimisation numérique aux problèmes d’inférence et d’apprentissage

par Hariprasad Kannan

Thèse de doctorat en Traitement du signal et des images

Sous la direction de Nikos Paragios.

Le président du jury était Josiane Zerubia.

Le jury était composé de Nikos Paragios, Nikos Komodakis, Yuliya Tarabalka.

Les rapporteurs étaient Pawan Kumar Mudigonda, Laurent Najman.


  • Résumé

    Les relaxations en problème d’optimisation linéaire jouent un rôle central en inférence du maximum a posteriori (map) dans les champs aléatoires de Markov discrets. Nous étudions ici les avantages offerts par les méthodes de Newton pour résoudre efficacement le problème dual (au sens de Lagrange) d’une reformulation lisse du problème. Nous comparons ces dernières aux méthodes de premier ordre, à la fois en terme de vitesse de convergence et de robustesse au mauvais conditionnement du problème. Nous exposons donc un cadre général pour l’apprentissage non-supervisé basé sur le transport optimal et les régularisations parcimonieuses. Nous exhibons notamment une approche prometteuse pour résoudre le problème de la préimage dans l’acp à noyau. Du point de vue de l’optimisation, nous décrivons le calcul du gradient d’une version lisse de la norme p de Schatten et comment cette dernière peut être utilisée dans un schéma de majoration-minimisation.

  • Titre traduit

    Few applications of numerical optimization in inference and learning


  • Résumé

    Numerical optimization and machine learning have had a fruitful relationship, from the perspective of both theory and application. In this thesis, we present an application oriented take on some inference and learning problems. Linear programming relaxations are central to maximum a posteriori (MAP) inference in discrete Markov Random Fields (MRFs). Especially, inference in higher-order MRFs presents challenges in terms of efficiency, scalability and solution quality. In this thesis, we study the benefit of using Newton methods to efficiently optimize the Lagrangian dual of a smooth version of the problem. We investigate their ability to achieve superior convergence behavior and to better handle the ill-conditioned nature of the formulation, as compared to first order methods. We show that it is indeed possible to obtain an efficient trust region Newton method, which uses the true Hessian, for a broad range of MAP inference problems. Given the specific opportunities and challenges in the MAP inference formulation, we present details concerning (i) efficient computation of the Hessian and Hessian-vector products, (ii) a strategy to damp the Newton step that aids efficient and correct optimization, (iii) steps to improve the efficiency of the conjugate gradient method through a truncation rule and a pre-conditioner. We also demonstrate through numerical experiments how a quasi-Newton method could be a good choice for MAP inference in large graphs. MAP inference based on a smooth formulation, could greatly benefit from efficient sum-product computation, which is required for computing the gradient and the Hessian. We show a way to perform sum-product computation for trees with sparse clique potentials. This result could be readily used by other algorithms, also. We show results demonstrating the usefulness of our approach using higher-order MRFs. Then, we discuss potential research topics regarding tightening the LP relaxation and parallel algorithms for MAP inference.Unsupervised learning is an important topic in machine learning and it could potentially help high dimensional problems like inference in graphical models. We show a general framework for unsupervised learning based on optimal transport and sparse regularization. Optimal transport presents interesting challenges from an optimization point of view with its simplex constraints on the rows and columns of the transport plan. We show one way to formulate efficient optimization problems inspired by optimal transport. This could be done by imposing only one set of the simplex constraints and by imposing structure on the transport plan through sparse regularization. We show how unsupervised learning algorithms like exemplar clustering, center based clustering and kernel PCA could fit into this framework based on different forms of regularization. We especially demonstrate a promising approach to address the pre-image problem in kernel PCA. Several methods have been proposed over the years, which generally assume certain types of kernels or have too many hyper-parameters or make restrictive approximations of the underlying geometry. We present a more general method, with only one hyper-parameter to tune and with some interesting geometric properties. From an optimization point of view, we show how to compute the gradient of a smooth version of the Schatten p-norm and how it can be used within a majorization-minimization scheme. Finally, we present results from our various experiments.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : CentraleSupélec. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.