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RÉSUMÉ

Pour les roches saturées, la comparaison entre les mesures ultrasoniques (1 MHz) au labo-
ratoire et les mesures sismiques (100 Hz) ou de diagraphie (10 kHz) sur le terrain n’est pas
directe à cause de la dispersion des vitesses des ondes. Les mécanismes impliqués dans la
dépendance en fréquence sont les écoulements de fluides à différentes échelles provoqués
par le passage de l’onde. La dispersion et l’atténuation des modules élastiques de roches
carbonatées ont été étudiées expérimentalement. Les calcaires étudiés sont : un Lavoux, un
Indiana intact et après craquage thermique, un calcaire Urgonien de Provence (Rustrel), et
un coquina pré-sel du Congo. Les mesures ont été faites sur une large gamme de fréquence,
en combinant les techniques d’oscillations forcées (10−3 to 102 Hz) et ultrasoniques (1 MHz)
dans une presse triaxiale, pour différentes pressions effectives. Le forçage peut être hydro-
statique pour mesurer un module d’incompressibilité, ou axial pour mesurer le module
de Young et le coefficient de Poisson. Pour étudier l’effet de la viscosité, les mesures ont
été faites en condition sèche, puis saturée en glycérine et en eau. Le drainage global et le
mécanisme d’écoulement crack-pore ont été caractérisés, en termes d’amplitude de disper-
sion, d’atténuation viscoélastique, et de fréquence de coupure. Pour nos échantillons, la
théorie de Biot-Gassmann s’est montrée valide pour les fréquences sismiques (10-100 Hz)
sauf pour l’Indiana craqué thermiquement. La transition liée à des écoulements cracks-
pores a été observé pour tous les échantillons sauf le Lavoux. Les fréquences de coupures
de ceux-ci sont toutes dans la gamme des fréquences des diagraphies (10 kHz) pour des
conditions de saturation en eau. Un modèle simple, combinant poroélasticité et milieux
effectifs, a été développé pour prédire la dispersion des modules sur toute la gamme de
fréquence, et s’est montré généralement en accord avec les résultats expérimentaux.
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ABSTRACT

For fluid-saturated rocks, comparing ultrasonic measurements (1 MHz) in the laboratory
and seismic (100 Hz) or logging (10 kHz) measurements in the field is not straightforward
due to dispersion of the body-wave velocities. The frequency-dependent mechanisms in-
volved are wave-induced fluid flows that occur at different scales. The dispersion and the
attenuation of the elastic moduli of four fluid-saturated carbonate rocks have been studied
experimentally. The selected limestones were a Lavoux, an intact and thermally cracked
Indiana, a Urgonian limestone from Provence (Rustrel), and a pre-salt coquina from off-
shore Congo. Measurements were done over a large-frequency range, by the combination
of forced oscillations (10−3 to 102 Hz) and ultrasonic measurements (1 MHz) in a triaxial
cell, at various effective pressures. The forced oscillations were either hydrostatic to deduce
the bulk modulus, or axial to deduce Young’s modulus and Poisson’s ratio. The measure-
ments were done in dry-, glycerin- and water-saturated conditions to investigate the effect
of viscosity. For all our samples, the global drainage and the squirt-flow mechanisms were
characterized experimentally, in terms of amplitude of dispersion, amount of viscoelas-
tic attenuation, and cut-off frequencies. Biot-Gassmann’s theory was found to be valid at
seismic frequencies (10-100 Hz) for all the samples except the thermally cracked Indiana.
Squirt-flow transitions were observed for all the samples, except the Lavoux. The cut-off
frequencies were all in the range of logging frequencies (10 kHz), for water-saturated con-
ditions. A simple model, combining poroelasticity and the non-interaction approximation
effective medium, was developed to predict the dispersion of the moduli over the whole
frequency range, and was generally in agreement with the experimental results.
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INTRODUCTION

Introduction générale

Pour l’exploration géophysique, les outils sismiques ou de diagraphies dans les puits sont
incontournables afin d’estimer les propriétés des roches en subsurface. Ces méthodes sont
utilisées pour explorer et produire les champs pétroliers, car les vitesses des ondes sis-
miques sont sensibles aux paramètres critiques des roches reservoirs, tels que la porosité,
les lithofaciès, la saturation, le fluide de pore, ou la pression de pore. En revanche, la
relation entre vitesses sismiques et ces paramètres est très complexe, et constitue l’enjeu
majeur de la recherche en physique des roches actuelle (Avseth et al., 2005).

La présence d’un fluide saturant dans la porosité, si l’on met de côté les effets d’intéractions
chimiques, augmente la vitesse des ondes de compression (P) en conditions non-drainées,
car le fluide contribue mécaniquement à augmenter la resistance à la compression du
milieu. Si les modules élastiques secs sont connus, par exemple par des mesures ultra-
soniques au laboratoire, la méthode standard pour évaluer les modules saturés non-drainés
est la theorie de Biot-Gassmann. En revanche, les équations de Biot-Gassmann ne sont
valides que pour les basses fréquences, où la pression du fluide est homogène dans toute
la porosité. Les études faites par Mavko and Nur (1975), O’Connell and Budiansky (1977)
ou par exemple Mavko and Jizba (1991), montrent que des gradients de pression peuvent
exister à haute fréquence entre des pores très compressibles (fissures) et des pores peu
compressibles (pores sphériques). Ce phénomène est ce que l’on nomme communément le
mécanisme de "squirt-flow". Les hypothèses de Biot-Gassmann ne sont ainsi plus valides,
et les vitesses d’ondes haute fréquence, en milieu saturé, apparaissent plus rapides que les
prédictions.

La dépendence en fréquence des vitesses d’ondes P et S pose la question de com-
ment comparer les mesures de terrain basses fréquences (100 Hz pour l’aquisition sismique;
10 kHz pour les diagraphies) avec les mesures conventionnelles hautes fréquences de labo-
ratoire (1 MHz), si les hypothèses de Biot-Gassmann ne sont pas respectées. La dispersion
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des vitesses d’ondes est directement liée à la dispersion des modules élastiques qui sont
affectés par les écoulements de fluide à differentes échelles dans la porosité (Batzle et al.,
2006a; Müller et al., 2010; Sarout, 2012). Les études expérimentales basse fréquence au lab-
oratoire sont ainsi essentielles pour comprendre ces mécanismes. Des études ont été réal-
isées sur les grès (e.g., Spencer, 1981; Spencer and Shine, 2016; Winkler, 1985; David et al., 2013;
Mikhaltsevitch et al., 2014; Pimienta et al., 2015a,b, 2016a), mais très peu sur les roches car-
bonatées (e.g., Spencer, 1981; Batzle et al., 2006a; Adam et al., 2006, 2009; Mikhaltsevitch et al.,
2016a), alors qu’elles représentent plus de 50% des roches réservoirs d’hydrocarbures.

Les carbonates sont caractérisés par des microstructures complexes et des types poreux
hétérogènes (Lucia, 1995). Pour une porosité donnée, les vitesses d’ondes P ou S peuvent
fortement varier en fonction du type de pores en présence (Eberli et al., 2003). Leurs pro-
priétés élastiques sont affectées par le réseaux poreux et la minéralogie, qui peuvent subir
des évolutions dues à la diagénèse (Fournier and Borgomano, 2009). Certaines études tentent
de comprendre la relation entre vitesses sismiques et porosité (e.g., Anselmetti and Eberli,
1993; Verwer et al., 2010), ou de vérifier l’applicabilité des relations de Biot-Gassmann (e.g.,
Baechle et al., 2009; Fabricius et al., 2010).

Notre étude se concentre sur la dispersion et l’atténuation en fréquence de tous les
modules élastiques de quatre calcaires, composés exclusivement de calcite, sur des larges
gammes de fréquences, par l’utilisation des méthodes dites d’oscillations forcées (0.01-100
Hz) et de mesures ultrasoniques dans une presse triaxiale. Les deux premiers calcaires,
le Lavoux et l’Indiana, sont des roches prélevées en carrière et sont bien connues dans
la bibliographie. Les effets d’un craquage thermique ont été testés sur le calcaire Indi-
ana. Le troisième calcaire est un calcaire Urgonien de Provence qui provient de Rustrel
(SE, France). L’échantillon est issu d’un faciès à rudistes, analogue à certains faciès des
réservoirs pétroliers du Moyen-Orient. Le dernier échantillon est un coquina pré-sel qui
provient d’un puit profond en mer au large du Congo.

Le manuscrit est organisé en trois parties. Après une introduction et une présenta-
tion du cadre théorique concernant la propagation des ondes dans les milieux poreux
à différentes fréquences, la première partie présente notre système expérimental et tous
les protocoles utilisés durant l’étude. La deuxième partie se focalise sur les résultats ex-
périmentaux obtenus sur les quatre calcaires. Les dispersions et atténuations de tous les
modules élastiques en conditions séche et saturée en eau ou glycérine sont présentées, avec
l’effet de la pression effective. Les modules statiques et dynamiques sont également com-
parés. La troisième partie concerne la modélisation des mécanismes dispersifs à différentes
échelles, que l’on confronte avec les résultats expérimentaux.
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General introduction

Geophysical exploration with seismic methods or well logging measurements are essential
to estimate the properties of the subsurface. They are extensively used to explore and de-
velop oilfields, as the seismic-wave velocities are strongly sensitive to the critical parameters
of the reservoir rock, such as porosity, lithofacies, saturation, pore fluid, or pore pressure.
However, the link between seismic velocity and these rock parameters is complex, and has
been the main focus of the research in rock physics (Avseth et al., 2005).

The presence of fluid in the porosity, if we put aside chemical interactions that may
affect the matrix, increases the P-wave velocity as the fluid contributes to mechanically
increase the stiffness of the rock. If the dry properties of the rock are known, for exam-
ple from ultrasonic measurements in the laboratory, the standard procedure to estimate
the fluid-saturated properties is Biot-Gassmann’s fluid substitution theory. However, Biot-
Gassmann’s relation is only valid for low frequencies, where the pore pressure is homo-
geneous. Studies from Mavko and Nur (1975), O’Connell and Budiansky (1977) or Mavko and
Jizba (1991) for example, showed that wave-induced pressure gradients are possible at high
frequency between compliant (e.g. cracks) and stiff pores. This phenomenon is what we
refer to as the "squirt mechanism". Biot-Gassmann’s assumption are therefore violated, and
the high-frequency saturated velocities are greater than expected.

The frequency-dependence of the P- and S-wave velocities, and the potential viola-
tion of Biot-Gassmann’s assumptions, raises questions on how to compare low-frequency
field measurements (100 Hz for seismic data; 10 kHz for sonic logs) to conventional high-
frequency ultrasonic measurements in the laboratory (1 MHz). The dispersion of the elastic
wave velocities is directly related to the dispersion of the elastic moduli, which are affected
by fluid flows occurring at different scales in the porosity (Batzle et al., 2006a; Müller et al.,
2010; Sarout, 2012). Understanding the underlying mechanisms requires the ability to mea-
sure the low-frequency moduli in the laboratory. Numerous studies of such have been done
on sandstones (e.g., Spencer, 1981; Spencer and Shine, 2016; Winkler, 1985; David et al., 2013;
Mikhaltsevitch et al., 2014; Pimienta et al., 2015a,b, 2016a), but only few on carbonate rocks
(e.g., Spencer, 1981; Batzle et al., 2006a; Adam et al., 2006, 2009; Mikhaltsevitch et al., 2016a),
while they represent more than 60% of the reservoir rocks for hydrocarbons.

Carbonate rocks are characterized by complex microstructures and heterogeneous pore
types (Lucia, 1995). For a given porosity, carbonate rocks were shown to exhibit a wide
range of P-wave and S-wave velocities, due to the large variety of pore types (Eberli et al.,
2003). Their elastic properties are affected by the pore network and the mineralogy, which
can be modified through diagenetic processes (Fournier and Borgomano, 2009). Several stud-
ies have attempted to understand the relationship between seismic wave velocity and poros-
ity (e.g., Anselmetti and Eberli, 1993; Verwer et al., 2010), or to verify the applicability of
Biot-Gassmann’s fluid substitution theory (e.g., Baechle et al., 2009; Fabricius et al., 2010).
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In this study, we investigated the dispersion and attenuation of the elastic moduli of 4
pure calcite limestones, over a large frequency range (0.01-100 Hz) using forced oscillations
and ultrasonic velocities in triaxial cells. The first two limestones, the Lavoux and the
Indiana, are quarry limestones and are very well known in the bibliography. The effect
of thermal cracking was investigated on the Indiana limestone. The third limestone is a
Urgonian limestone from Rustrel, Provence (SE, France). The rudist-facies outcrops from
which it was cored are close analogues to east-Arabic plate reservoirs. The last sample is a
pre-salt coquina sample cored in a deep well offshore Congo.

The manuscript is organized in 3 main parts. After an introduction and a overview
of the framework regarding wave propagation in porous-saturated media at different fre-
quencies, the first part presents our experimental setups and all the experimental protocols
used during this study. The second part focuses on the experimental results obtained for
the limestones. The dispersion and attenuation of all the elastic moduli under dry-, water-
and glycerin-saturated conditions are reported, with the effect of effective pressure. Static
and dynamic moduli are also compared. The third part focuses on modeling the dispersive
mechanisms at different scales, with a comparison with the experimental results.
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CHAPTER 1

FREQUENCY DEPENDENCE AND ATTENUATION OF WAVE
VELOCITIES

1.1 Résumé

Nous présentons dans ce chapitre le cadre théorique de la propagation des ondes à dif-
férentes fréquences dans les milieux poreux saturés. La propagation des ondes se résout
dans le cadre de l’élasticité linéaire, où la vitesse est reliée aux modules élastiques et à la
densité du milieu. Le comportement élastique linéaire des roches n’est valide que pour
des petites déformations (ε < 10−6). La saturation en fluide va influencer les propriétés
élastiques du milieu poreux et par extension la vitesse des ondes. Le fluide contribue
mécaniquement à la résistance à la compression du milieu.

La contribution du fluide à basse fréquence, lorsque la pression est homogène, se résout
dans le cadre de la poroélasticité quasi-statique. Pour les roches sédimentaires, les effets
inertiels dans le fluide étant négligeables en dessous de 1.2 MHz, nous pouvons ignorer
le domaine dynamique de la poroélasticité. Deux conditions aux limites sont prévues par
la poroélasticité, les conditions drainées où le fluide peut librement s’échapper du volume
et maintenir la pression de pore constante, et les conditions non-drainées où la masse de
fluide est constante dans le volume et la pression de pore augmente sous l’effet d’une
contrainte extérieure. Les modules élastiques saturés, dans les conditions non-drainées,
se calculent avec les équations de Biot-Gassmann. Expérimentalement, il est possible de
voir une transition entre un régime drainé et non-drainé en fréquence, pour des petits
échantillons à conditions de bords ouvertes. Cela dépend du temps de diffusion global
dans la roche, qui est relié à la perméabilité et à la taille de l’échantillon.

Lorsque le milieu possède des fissures compressibles connectées à des pores ronds
moins compressibles, un écoulement se produit des premières vers les seconds afin d’équilibrer
la pression. À cause de la viscosité du fluide, il est possible que cet écoulement, dit de «
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CHAPTER 1. FREQUENCY DEPENDENCE AND ATTENUATION OF WAVE
VELOCITIES

squirt-flow », n’ait pas le temps d’équilibrer la pression à haute fréquence. Le fluide est
comme figé dans la porosité et des gradients de pressions importants sont maintenus dans
les fissures, se qui augmente d’autant plus la résistance à la compression de la roche, et
par extension la vitesse des ondes. C’est ce que l’on défini par le régime non-relaxé, qui se
résout dans le cadre des milieux effectifs, où les inclusions sont considérées comme isolées.
Nous pouvons ainsi définir trois régimes d’écoulements : drainé, non-drainé et non-relaxé.
La transition d’un régime d’écoulement à l’autre, génère une dispersion des modules élas-
tiques, qui s’accompagne d’une dissipation énergétique dans la viscosité du fluide. La
roche peut être assimilée à un matériaux viscoélastique pour lequel on va quantifier cette
dissipation par l’atténuation Q−1 (inverse du facteur de qualité). Ces régimes d’écoulement
ont été bien identifiés expérimentalement sur les grès, tel que le grès de Fontainebleau. En
revanche, peu de mesures existent sur les roches carbonatées qui présentent des microstruc-
tures bien plus complexes et hétérogènes.

En laboratoire, plusieurs techniques existent pour mesurer la dispersion des modules
élastiques sur des larges gammes de fréquences, telles que les oscillations forcées, la barre
résonante où les ultrasons. Chaque technique présente des avantages et des inconvénients.
Les oscillations forcées permettent d’étudier les basses fréquences et les fréquences sis-
miques (0.01-100 Hz). La barre résonante ne donne généralement qu’une seule fréquence
de résonance autour des fréquences de diagraphie (10 kHz). Enfin, les ultrasons donnent
une mesure à très haute-fréquence (1 MHz), qui correspond en général à un régime non-
relaxé. Au laboratoire de l’ENS de Paris, nous combinons les techniques d’oscillations
forcées et d’ultrasons dans une pressure triaxiale.
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1.2. ELASTICITY AND WAVE PROPAGATION IN ISOTROPIC MEDIA

1.2 Elasticity and wave propagation in isotropic media

For a purely linear elastic material, Hooke’s law relates the stress and the strain by:

σ = C : ε, (1.1)

where C is the fourth rank tensor of the elastic moduli, or elastic stiffness tensor. C can
be inverted to S = C−1 the elastic compliance tensor. In isotropic media, C is completely
defined with two independent elastic moduli. Equation 1.1 simplifies to:

ε =
1 + ν

E
σ− ν

E
tr(σ)I, (1.2)

or with index notations:
ε ij =

1 + ν

E
σij −

ν

E
σijδij, (1.3)

where E and ν are respectively the Young’s modulus and the Poisson’s ratio, and δij is
Kronecker’s symbol (δij = 1 if i = j, δij = 0 if i 6= j). In a uniaxial loading (σ33), the Young’s
modulus relates the axial stress to the axial strain on the sample:

σ33 = Eε33, (1.4)

while the Poisson’s ratio relates the perpendicular (or radial) strains to the axial strain:

ε11 = ε22 = −νε33. (1.5)

The bulk modulus (K) relates a hydrostatic stress to the volumetric strain by:

σkk

3
=

E
3(1− 2ν)

εkk = Kεkk, (1.6)

while the shear modulus (G) relates the shear stress (σij) to the engineering shear strain
(γij = 2ε ij):

σij =
E

2(1 + ν)
2ε ij = Gγij. (1.7)

It is often convenient to work with the inverse of the bulk modulus (1/K), which is defined
as the compressibility.

In elastic media, the propagation velocity of the compressive P-wave and shear S-wave
are directly related to the previous elastic moduli and the medium density. A planar wave
that propagates into a medium characterized by the stiffness tensor C creates a deformation
ε = grad−→u , where −→u is the displacement vector of the particle. By combining Hooke’s law
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(Equation 1.1) and Newton’s second law, ρ ∂2~u
∂t2 = divσ, we obtain:

ρ
∂2~u
∂t2 = div (C : grad~u) , (1.8)

where ρ is the density of the medium. In a linear elastic isotropic medium, for the com-
pressive P-wave, the direction of the propagation (Ox) and of the particle displacement are
the same, and ~u = ux(x, t)~i. Equation 1.8 becomes:

ρ
∂2ux

∂t2 =
E(1− ν)

(1 + ν)(1− 2ν)

∂2ux

∂x2 , (1.9)

from which we can deduce the P-wave velocity:

VP =
∂x
∂t

=

√
E(1− ν)

(1 + ν)(1− 2ν)ρ
=

√
K + 4

3 G
ρ

. (1.10)

For the shear S-wave, the displacement of the particle is perpendicular to the direction of
propagation, such that ~u = uy(x, t)~j. From Equation 1.8, the shear wave velocity is given
by:

VS =

√
G
ρ

. (1.11)

Elastic properties can therefore be inverted from wave velocities if the density ρ of the
medium is known. This technique is generally used in laboratory by measuring the ultra-
sonic P- and S-wave velocities.

In porous rocks, the previous equations stand if the wavelength is larger than the grain
diameters, pores or cracks. If the wavelength approaches the size of the heterogeneity, scat-
tering effects may occur (Sarout, 2012). By analogy with seismic-field measurements, if the
wavelength becomes even much smaller than the heterogeneity, then ray theory would ap-
ply. Our measurements are limited to ultrasonic frequencies (1 MHz). If the wave velocity
is around 3000 m/s, then the wavelength at 1 MHz is of λ = 3 mm, which is higher than
the grain or pore sizes of the samples we selected for our study (maximum 500 µm). We
can therefore exclude scattering effects from the scope of our study.

In dry conditions, within the small deformation hypothesis (ε ∼ 10−6), rocks behave
like linear elastic media. This is the case for the body wave propagation. The elastic
moduli relative to the wave propagation are the dry dynamic moduli, and the density
is the density of porous medium taking in account the mineral and the porous voids.
For large deformations obtained for quasi-static experiments such as triaxial loadings, the
elastic moduli are the static moduli, which are generally lower than the dynamic because
of nonlinear effects due to microheterogeneity (Ide, 1936; Fjær, 2009). Therefore they are not
relevant moduli for the wave propagation.

10
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1.3 Poroelasticity: fluid substitution at low frequency

Porous rocks in the field can be saturated with fluids, such as water or hydrocarbons. The
extension of elasticity to porous saturated media is given by the theory of poroelasticity,
which was developed by Biot (1956a,b) and Gassmann (1951), and reformulated by Rice and
Cleary (1976). If the fluid is unable to flow in or out of the studied volume, considered
as a representative elementary volume (REV) of the rock, it will contribute to increase the
bulk modulus of the medium when submitted to a stress field, such as a propagating wave.
This type of condition on the fluid’s boundaries is called the "undrained" conditions, by
opposition to "drained" conditions where the fluid is allowed to go in and out of the REV
to maintain a constant pressure p f . In the drained conditions, the case where p f = 0 is
equivalent to dry conditions, if chemical interactions are negligible.

1.3.1 Drained conditions

The effective dry compressibility (inverse of Kdry) of a porous solid is written as (Mavko
et al., 2009):

1
Kdry

=
1

Km
+

φ

vp

∂vp

∂σhyd

∣∣∣∣
dry

, (1.12)

where Km is the bulk modulus of the solid mineral material, φ is the porosity, vp is the
pore volume and ∂vp/∂σhyd|dry is the derivative of vp with respect to externally applied
hydrostatic stress σhyd. We can define the dry pore-space stiffness Kφ = vp/(∂vp/∂σhyd)|dry

so that the previous equation rewrites:

1
Kdry

=
1

Km
+

φ

Kφ
. (1.13)

The compressibility of the porous medium is equal to the intrinsic mineral compressibility
plus an additionnal compressibility due to the pore space. We can also define the Biot
coefficient α, such as (Mavko et al., 2009):

Kdry = Km(1− α). (1.14)

From the previous expression of Kdry, we can deduce that:

α =
φKdry

Kφ
=

∆vp

∆V

∣∣∣∣
dry

, (1.15)

The Biot coefficient describes the ratio between pore-volume change (∆vp) and bulk-volume
change (∆V) for the dry or drained REV.

For a given confining pressure Pc = σhyd applied to the REV, the presence of a pressur-
ized fluid in the porosity, of pressure p f , will modify the effective stress state of the REV.
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The notion of effective pressure Pe f f is essential in poroelasticity, and is given by:

Pe f f = Pc − αp f , (1.16)

The effective stress state σe f f of the REV is therefore:

σe f f = σ− αp f I. (1.17)

The drained elastic moduli, which depend on the effective stress state, are given for an
effective pressure. Experimentally, the comparison of dry moduli and saturated drained
moduli (with a pore pressure), is only possible at equivalent effective pressure. The effective
pressure should not be confused with the differential pressure Pdi f f given by:

Pdi f f = Pc − p f . (1.18)

However, since in general Kd << Km, the Biot coefficient α is close to 1, and Pdi f f ≈ Pe f f .

1.3.2 Undrained conditions

In undrained conditions, the pore pressure build-up (dp f ) in the fluid when a hydrostatic
stress increment (dσhyd) is applied on the REV are related by Skempton’s coefficient B. If
we assume that the pore pressure is homogeneous in the whole connected pore space, then
B is given by (Mavko et al., 2009):

B =
dp f

dσhyd

∣∣∣∣
undrained

=
1

1 + Kφ

(
1

K f l
− 1

Km

) =
1

1 + φ
(

1
K f
− 1

Km

) (
1

Kdry
− 1

Km

)−1 , (1.19)

where K f is the fluid’s bulk modulus. The hypothesis of homogeneous pore pressure, or
isobaric pressure, is possible if the pore space deformation is slow enough to relax any
pressure gradient in the heterogeneous pore space. This is what we can define as a relaxed
regime. With respect to wave propagation, these conditions are valid for low frequencies.
The bulk modulus of the undrained medium Ku is then given by Biot-Gassmann’s equation
(Gassmann, 1951):

Ku = Kd +
K f

(
1− Kd

Km

)2

φ +
((

1− Kd
Km

)
− φ

)
K f
Km

. (1.20)

Since a shear stress does not change the volume of the medium, the fluid does not con-
tribute to additional stiffness. Therefore (Gassmann, 1951):

Gu = Gd. (1.21)
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The five essential conditions of the applicability of Biot-Gassmann’s equations are: (1) φ

represents a connected pore space fully saturated; (2) the REV is in undrained conditions;
(3) the fluid is isobaric within φ (low frequency); (4) no chemical interaction occur between
the fluid and the solid; (5) the solid is monomineralic.

In fact, the Gassmann limit represents the lower frequency limit (quasi-static) of the
generalized poroelasticity developed by Biot (1956a), which also includes dynamic (inertial)
poroelasticity at higher frequencies (Biot, 1956b). The quasi-static and the dynamic domains
of poroelasticity are separated by Biot’s characteristic frequency:

fb =
ηφ

2πρ f κ
, (1.22)

where η is the dynamic viscosity of the fluid, ρ f the fluid’s density and κ the intrinsic
permeability. Below fb, the porous medium response is dominated by viscous flow, and
above fb, it is dominated by inertial drag and no flow occurs. In water saturated conditions
(η = 10−3 Pa.s, ρ f = 1000 kg.m−3), for a porosity of 7.5% and a permeability of 10−14 m2,
representing the extreme values we shall encounter in the samples of this study, Biot’s
characteristic frequency is at minimum of fb = 1.2 MHz, which is superior to the ultrasonic
frequencies. Therefore, we exclude the dynamic poroelasticity from the scope of our work,
and shall consider solely the viscous driven flows.

1.3.3 Experimental drained/undrained regimes

In laboratory, the low-frequency moduli of saturated small samples (∼ 80 mm length) de-
pend on the type of boundary condition that is at play: either drained or undrained. To
measure dynamic drained moduli at low-frequency, any increase of pore pressure at the
center of the sample should have time to diffuse towards the drained boundaries. Drained
boundaries can be achieved by a constant-pressure regulation from a pump, or with very
large dead-volumes (Pimienta et al., 2016b). This diffusion of pore pressure throughout all
the REVs towards the boundary conditions can be defined as a global-drainage flow. Cleary
(1978) defined it as the global diffusion between adjacent continuum elements. This flow is
a viscous-controlled flow through the permeability of the sample. Therefore, it should not
be confused with the inertial global flow defined by Biot (1956a) relevant to static/dynamic
poroelasticity, which is characterized by the cut-off frequency fb (Equation 1.22). For a
sample of characteristic length L, Cleary (1978) showed that the cut-off frequency of this
global diffusion is given by;

fundrained =
4κKd

ηL2 . (1.23)

At low-frequency, fundrained separates the experimental drained regime from the undrained
regime, only in the case drained boundary conditions around the sample. Pure undrained
conditions can be achieved at lower frequencies if a valve is placed at the nearest of the
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sample in the drainage circuit, or by sealing completely all the faces of the sample after
saturating it. However, a residual dead volume between the valve and the sample will still
induce a partial drainage (Pimienta et al., 2016b).

1.4 Effective medium theory

Rocks are heterogeneous materials that can be composed of various minerals with different
properties. Moreover, they can bear a heterogeneous pore-space that can be saturated with
a fluid. Since we deal with mixtures of two or more materials, effective medium theories
have been developed in order to predict the effective elastic properties. The latter do not
dependent solely on the properties of the individual constituents, but also depend on ge-
ometry. If inclusions of a second material are embedded in the first material (matrix), then
the orientations and the aspect ratios of these inclusions will affect the effective properties.

We can distinguish two families of effective medium theories: the bounds and the mix-
ing laws. Bounds are a mean to find the lower and upper bounds of the effective properties
considering solely the intrinsic properties of the constituents and their volume fractions.
Mixing laws are a mean to give estimates of the elastic properties with the addition of the
geometrical information of the constituents, their distribution and their interactions.

1.4.1 Bounds

The simplest bounds are the Voigt (upper) and Reuss (lower) bounds (Voigt, 1889; Reuss,
1929). They correspond respectively to the arithmetic and the harmonic averages of the
elastic moduli of each of the N phases in presence in the medium:

K+
Voigt =

N

∑
i=1

fiKi and
1

K−Reuss
=

N

∑
i=1

fi

Ki
, (1.24)

where fi is the volume fraction of phase i. They do not depend upon any geometrical
consideration, either for the shapes of the inclusions or their spacial distribution. They
simply use the volume fractions of each phase in presence. The interval between the bounds
gets smaller, only if the contrast between the N phases moduli gets smaller. Hill (1952)
proposed to average them to give the Voigt-Reuss-Hill average to approach the effective
properties.

More sophisticated bounds were developed by Hashin and Shtrikman (1963), which con-
siders solely two phases ( f1 and f2) arranged as a mixture of spheres, each sphere’s core
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composed by the first material and each sphere’s shell composed by the second.

K±HS = K1 +
f2

(K2−K1)
−1+ f1

(
K1+

4
3 G1

)−1

G±HS = G1 +
f2

(G2−G1)
−1+2 f1(K1+2G1)

/[
5G
(

K1+
4
3 G1

)] . (1.25)

The upper and lower bounds are found by inverting the roles of the two materials in the
sphere mixture. They are the sharpest possible bounds attainable for a biphasic isotropic
medium, without using any geometrical information about the constituents.

1.4.2 Mixing laws

Mixing laws use geometrical information about the constituents, their distribution and their
interactions, to predict more accurately the effective properties of the composite material.
Eshelby (1957) was the first to demonstrate that the stress-tensor within an ellipsoidal in-
clusion is homogeneous when a homogeneous stress is applied at infinity. Because the
stress-tensor is homogeneous, determining the inclusion’s strain, and therefore the elas-
tic moduli, becomes straightforward. The stiffness of a single ellipsoidal inclusion, either
spherical or with a crack-like low aspect ratio, are given by:

1
Kφ−sphere

=
1

Km

3(1− ν)

2(1− 2ν)
and

1
Kφ−crack

=
1

Kmξ

4(1− ν2)

3π(1− 2ν)
, (1.26)

where ξ = a/c is the aspect ratio of the ellipsoidal crack, c being the largest diameter
and a the height. Walsh (1965) gave the effective bulk modulus in the case of a uniform
distribution of randomly oriented penny-shaped cracks:

1
K

=
1

Km

(
1 +

16
9

1− νm
2

1− 2νm
ρ

)
, (1.27)

where ρ is the crack density parameter. For n inclusions of length ci in a volume V, the
crack density is given by:

ρ =
n

∑
i=1

ci
3

V
. (1.28)

For higher concentration of inclusions, O’Connell and Budiansky (1974) developed the
self-consistent approximation (SCA) scheme for randomly orientated ellipsoidal cracks to
account for interactions between the inclusions. The approach uses the result of Eshelby
(1957): the deformation of a medium containing similar ellipsoidal inclusions is considered
equivalent to the deformation of a medium with one inclusion, in which the background is
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replaced by the as-yet-unknown effective medium (Mavko et al., 2009), which gives:

KSCA

Km
= 1− 16

9

(
1− νSCA

2

1− 2νSCA

)
ρ (1.29)

GSCA

Gm
= 1− 32

45
(1− νSCA)(5− νSCA)

(2− νSCA)
ρ. (1.30)

Berryman (1980, 1995) extended this approach to N different inclusions. One major draw-
back of this method, is that the predicted moduli decrease rapidly with increasing pore/crack
concentration. Cleary (1978) stated that the SCA scheme overestimates interaction energy,
resulting in a abnormally strong decrease with increasing pore/crack concentration. A
differential self-consistent approach was then suggested.

The differential effective medium (DEM) model computes the effective moduli after an
iteration process where the inclusions are added one by one into the matrix. At each step,
the inclusion is added to a homogeneous matrix, which in turn gives a new homogeneous
matrix that will host the next inclusion. The effective properties are computed at each step
to serve as host to the next inclusion. This allows for a better control over the interactions
between the inclusions (Guéguen et al., 1997). However, the final effective moduli strongly
dependent upon the order in which the inclusions were added. To counter this, it is possible
to apply a Monte-Carlo simulation with the same number and type of inclusions, but
added in different orders. Le Ravalec and Guéguen (1996) showed that just over a hundred
of simulations are necessary to obtain a converging solution. They also showed that the
predictions are consistent, only if the aspect ratios are not too small.

The last effective medium we shall present here is the non-interaction approximation
developed by Kachanov (1993). Kachanov (1993) considers two possible interactions between
two parallel inclusions: (1) an amplifying effect if the cracks are aligned; (2) a shielding
effect if the cracks are facing each other. The hypothesis of non-interaction considers that
for random distributions of inclusions, there should be, statistically, an equivalent pro-
portion of amplifying and shielding effects. The two interactions would then compensate
each other, so that the effective elastic properties can be calculated without considering
any interaction (Kachanov, 1993). One major advantage compared to DEM, is that it is not
restricted to randomly oriented cracks, but applies to arbitrary orientational distributions
(Kachanov, 1993). It can therefore be used for anisotropic materials. Moreover, since in-
teractions are ignored, the contribution of cracks (ρ) can be added to the contribution of
spherical pores of porosity φp, and the contribution of a saturating fluid can be added
through a fluid/solid coupling parameter δ. In the fully-saturated isotropic case, i.e., for
randomly oriented cracks mixed with spherical pores, the effective moduli are given by
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(Fortin et al., 2007):

Km

K
= 1 + φp

3(1− νm)

2(1− 2νm)

(
δp

1 + δp

)
+ ρ

16(1− νm
2)

9(1− 2νm)

(
δc

1 + δc

)
(1.31)

Gm

G
= 1 + φp

15(1− νm)

7− 5νm
+ ρ

[
16(1− νm)

15(1− νm
2 )

+
32(1− νm)

45

(
δc

1 + δc

)]
, (1.32)

where the fluid/solid coupling parameters for the spherical pores (δp) and for the cracks
(δc) are given by:

δp =
2Em

9(1− νm)

(
1

K f
− 1

Km

)
and δc =

Emπξ

4(1− νm2)

(
1

K f
− 1

Km

)
. (1.33)

For dry conditions (K f = 0) the ratio δ/(1 + δ) tends to 1, and if we fill the inclusions
with the matrix materials (K f = Km), the ratio δ/(1 + δ) tends to 0 and we obtain K =

Km. Sayers and Kachanov (1995) and Schubnel and Guéguen (2003) showed that this non-
interacting approximation presented very satisfactory results. Kachanov (1993) compared
his model with SCA and DEM methods, and with a numerical simulation, for a medium
with randomly distributed and oriented cracks. The numerical simulations were in better
agreement with the non-interaction approach (Kachanov, 1993).

1.5 Dispersion and attenuation mechanisms

1.5.1 Definitions

Dispersion refers to the variation of the elastic moduli, or the seismic wave velocities, with
frequency. When there is dispersion of an elastic modulus M, the rheology of the medium
is similar to that of a viscoelastic material (O’Connell and Budiansky, 1977). One can measure
a phase shift ∆φ between the stress and the strain response related to the modulus M. Since
M relates the stress and the strain, it can be written in the form of a complex number:

M = MR + iMI . (1.34)

During stress oscillations, such as the passing of a wave, if E is the maximum elastic energy
stored in one cycle, and ∆E is the dissipated elastic energy during that cycle, then by
analogy to viscoelastic media, we can define the inverse of the quality factor (Q−1

M ) of the
linear dynamic response related to the complex modulus M by (O’Connell and Budiansky,
1978):

Q−1
M =

1
2π

∆E
E

=
MI

MR
= tan(∆φ). (1.35)
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For a viscoelastic medium, a body wave of angular frequency ω related to the modulus M,
follows the propagation equation along the x-axis:

u = u0e−axeiω(t− x
V0

), (1.36)

where V0 is the wave velocity, M = K + (4/3)G for the P-wave and M = G for the S-wave.
a is the attenuation coefficient. It translates the attenuation of the wave’s energy during
propagation: along the x-axis, the wave’s energy decreases according to e−2ax. Q−1

M and a
are related by:

a =
Q−1

M ω

2V0
. (1.37)

For the sake of comparison between different samples, the term "attenuation" will refer
solely to Q−1

M as it depends exclusively on the energy dissipation at a given frequency, while
a also depends on the wave velocity that can vary for different rocks. For purely elastic
material, there is no phase shift between the stress and the strain (∆φ = 0), therefore there is
no attenuation (Q−1 = 0). The more the material moves away from pure elasticity towards
pure viscosity, the higher Q−1 gets. However, since the wave-induced fluid flows are within
the frame of Biot’s theory of poroelasticity, the analogy to a viscoelastic material to calculate
the attenuation is not straightforward. Solazzi et al. (2016) investigated whether this analogy
is valid and demonstrated, from numerical calculations in the theoritical framework of
poroelasticity, that the analogy is true for low attenuation values, and slightly deviates
when Q−1 ≥ 0.1 (less than 5% for 0.1) in a cracked medium (Solazzi et al., 2016).

Different mechanisms can lead to seismic wave attenuation and dispersion. One of the
major causes of attenuation in heterogeneous porous media is wave-induced fluid flow
(WIFF). A review of the different WIFF mechanisms has been presented by Müller et al.
(2010). Effects of patchy saturation or mesoscopic fractures are out of the scope of our
study, since we studied fully-saturated homogeneous samples, with heterogeneities smaller
than 1 mm. Scattering can also be considered as a dispersive mechanism (Sarout, 2012), but
it only occurs when the wavelength is comparable to the size of the heterogeneities. For the
selected samples of the study, the ultrasonic wavelengths are within the range of 4-5 mm,
which excludes scattering effects from our study. In fully-saturated conditions, two types
of mechanisms are to be considered, the inertial and the viscous effects. The inertial effects
are taken in account within the generalized poroelasticity of Biot (1956a). Attenuation
would occur from the transition to the quasi-static limit (Biot-Gassmann) to the dynamic
limit, around Biot’s cut-off frequency fb (Equation 1.22). We saw previously in Section 1.3.2
that for all the samples we shall encounter in this study, Biot’s cut-off frequency is higher
than 1.2 MHz in water-saturated conditions. Since we will study low frequencies (10 Hz
- 10 kHz) up to the ultrasonic measurements (1 MHz), we shall ignore inertial effects and
remain within the framework of the quasi-static limit of poroelasticity. Our study will focus
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solely on viscous-driven fluid flows at different scales that can generate attenuation.

1.5.2 Viscous driven fluid-flow regimes in fully-saturated conditions

When the porous medium is submitted to an oscillating stress field, the deformation of the
solid frame may induce a fluid pressure variation if the fluid has no time to diffuse through
the pore network. In fully saturated conditions, viscous diffusion can occur at different
scales (Sarout, 2012): global within the wavelength scale, or local within a representative el-
ementary volume (REV). Local flow, or squirt flow, may equalize the fluid pressure between
compliant cracks and rounded pores within one REV (Mavko and Jizba, 1991), whereas the
global-drainage flow equalizes pressure through all the connected REVs. Three fluid-flow
regimes can therefore be considered from this: drained, undrained and unrelaxed regimes
(Pimienta et al., 2016c) (Figure 1.1).
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Figure 1.1: (a) Drained, undrained and unrelaxed fluid-flow regimes, and (b) related bulk
modulus dispersion and attenuation. The attenuation is calculated here by Zener model.
Modified after Pimienta et al. (2015a).

The undrained and unrelaxed regimes refer to respectively the saturated isobaric and
the saturated isolated regimes described by O’Connell and Budiansky (1977). The drained
regime occurs when the fluid has time to diffuse by local and global flow through all the
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REVs, i.e., when f < fundrained (Figure 1.1). The elastic properties of the porous medium are
similar to dry conditions if no chemical interaction occur. When the frequency increases be-
yond fundrained, the fluid stops diffusing at wavelength scale, letting place to the undrained
regime. In this regime, the REVs are as disconnected from each other and remain isobaric.
Because of the deformation of the frame, the fluid pressure increases in the porosity, there-
fore increasing the stiffness of the medium (Figure 1.1). The two previous regimes are well
accounted for in the quasi-static poroelasticity (Gassmann, 1951).

When the frequency is high enough, pressure may not equilibrate by local flow within
the REVs. This is what we define as the unrelaxed regime. A pore space can be composed
with compressible cracks connected to stiff rounded pores. Therefore, the volumetric de-
formation of the cracks will be greater than the pores, generating a flow attempting to relax
the induced pressure gradient. This viscous-dominated flow is called squirt-flow. It can
be assimilated to a Hagen-Poiseuille flow, and if the deformation is too rapid, a relative
high pressure can be maintained in the crack because of the viscous drag. In this regime,
the fluid can be considered immobile in the cracks with high pressure gradients (Figure
1.1). The unrelaxed pressure gradients will further increase the apparent stiffness of the
medium (Dvorkin et al., 1995; Shafiro and Kachanov, 1997).

Effective medium theories are possible tools to predict the elastic properties in this
last regime, since the fluid is immobile and can be considered as a solid with a nil shear
modulus (e.g., Adelinet et al., 2011). If we model a crack with a penny-shape geometry of
aspect ratio ξ (height over diameter) connected to a round pore, the characteristic diffusion
time of the squirt-flow can be evaluated, which gives a squirt-flow cut-off frequency ( fsq)
of:

fsq =
ξ3Km

η
. (1.38)

Below fsq, the squirt-flow has time to equilibrate the pressure between the crack and the
pore, which corresponds to the relaxed regime (isobaric) accounted for in poroelasticity.
Above fsq, the fluid is like "frozen" within the compliant crack, which corresponds to an
unrelaxed regime that violates the isobaric assumption of poroelasticity. Above fsq, the
fluid is like "frozen" in the pore space, and the rock is equivalent to a medium of isolated
(unconnected) saturated pores and cracks. The elastic properties can therefore be predicted
by effective medium theories. While the elastic properties are not frequency dependent
within a specific regime, they will show dispersion in the transitions between these regimes
(Pimienta et al., 2015a), around the two cut-off frequencies, fundrained and fsq, respectively for
the drained/undrained transition and undrained/unrelaxed transitions. For the sake of
simplicity and consistency with the discussions of the experimental results in the following
chapters, the cut-off frequencies fundrained and fsq can also be written respectively f1 and f2:

f1 = fundrained =
4κKd

ηL2 and f2 = fsq =
ξ3Km

η
. (1.39)
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We have to distinguish two types of dissipation: (1) attenuation of the matrix, and (2)
the attenuation related to fluid-flow. The attenuation of the matrix is the natural attenua-
tion of the dry frame at every frequency. Two factors can contribute to this attenuation: the
anelasticity of the matrix minerals and the frictional dissipation due to relative motions at
grain contacts or in cracks (Johnston et al., 1979). It is still unclear how fluid in the porosity
may affect this latter. The fluid-flow attenuation is due to the viscous dissipation in the sat-
urating fluid during the fluid-flow transitions: global-drainage and squirt-flow. Therefore,
this attenuation will be localized between the different fluid-flow regimes, when the disper-
sion of the elastic moduli occurs (1.1). From the bulk modulus attenuation measurements
on carbonate rocks done by Adam et al. (2009), the attenuation of the matrix corresponds to
the "background" level of Q−1

K , which was found to be between 0.01 and 0.02 in general,
while the fluid-flow attenuation correspond to peaks that can reach 0.1 or more.

The dispersion and the attenuation are related to the same phenomenon: a viscous-
controlled transition between two fluid-flow regimes when the frequency increases (Figure
1.1). Since the rock can be assimilated to a linear viscoelastic material of complex modulus
M, a causality principle links the dispersion and the attenuation. This causality is expressed
by the Kramers-Kronig relations, which link the real part and the imaginary part of M by:

MR(ω) =
2
π

∫ ∞

0

ΩMI(Ω)

Ω2 −ω2 dΩ and MI(ω) = −2ω

π

∫ ∞

0

MR(Ω)

Ω2 −ω2 dΩ. (1.40)

O’Donnell et al. (1981) found an approximate form of the Kramers-Kronig relations, which
enables to calculate the attenuation by (Mikhaltsevitch et al., 2016b):

Q−1
M (ω) =

π

2
ω

MR(ω)

dMR(ω)

dω
. (1.41)

From the previous equation, we can see that the amount of attenuation (Q−1
M (ω)) is directly

related to the slope of the dispersion (dMR(ω)/dω). Viscoelastic relaxation models can also
be used to relate dispersion and attenuation, such as the Zener model, or more generally
the Cole-Cole model initially applied for dielectrics (Cole and Cole, 1941), given by:

M(ω) = M∞ +
M0 −M∞

1 + (iωτ)1−r , (1.42)

where τ is the relaxation time and r is a distribution parameter. M0 and M∞ are the moduli
at zero and infinite frequency respectively.

1.5.3 Theoretical models of squirt-flow

We present here a brief review of theoretical squirt-flow models for the undrained/unrelaxed
transition. A more extended review has been done by Müller et al. (2010). This latter review
also presents dispersion models related to Biot’s equations of dynamic poroelasticity that
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we ignore here since we only focus on the quasi-static limit of poroelasticity and viscous-
driven mechanisms such as squirt-flow. Two family of models can be used for squirt-flow:
(1) models based on viscoelastic rheology and poroviscoelasticity or (2) models that use
hydraulically communicating cavities (Müller et al., 2010).

Since the dispersive phenomenon is related to a pressure-relaxation process, phenomeno-
logical models based on viscoelastic material behavior can be used to describe the evolution
of the modulus from a relaxed state (M0) to an unrelaxed state (M∞) at a given character-
istic frequency. One of the most popular viscoelastic model is the Standard Linear Solid
(SLS) or Zener model (e.g., Mavko et al., 2009), which will be presented in more details in
Section 3.4.3 for comparison with attenuation measurements. However, the phenomeno-
logical nature of these models prevents us to interpret dispersion and attenuation in terms
of rock properties.

The models based on hydraulically connected cavities attempt to forward model the dis-
persion of the effective elastic moduli when squirt-flow dissipation occurs locally between
the cavities. Such models highly depend on the geometrical description of the cavities se-
lected to model the rock. Some attenuation models are based on analyzing aspect-ratio
distributions (e.g., O’Connell and Budiansky, 1977; Mavko and Nur, 1979; Palmer and Travio-
lia, 1980). A review of these models is given by Jones (1986). Other models consider the
pore space to be a binary structure, with stiff pores on one side, that represent most of the
porosity, and compliant cracks on the other side, responsible for the pressure dependence
of the elastic moduli (e.g., Walsh, 1965; Mavko and Jizba, 1991; Shapiro, 2003).

A model from Dvorkin et al. (1995) and reformulated by Pride et al. (2004) even considers
the medium to be a aggregate of porous grains, where the intragranular porosity is soft and
the intergranular porosity is stiff. The main advantage of this latter over all the other squirt
models is that it is compatible with Biot’s equations of poroelasticity (Pride and Berryman,
2003). It is also consistent with the well established high-frequency limit of Mavko and Jizba
(1991). However, interpretation of the parameters of these imaginary microporous grains
in terms of rock properties can be difficult (Müller et al., 2010; Gurevich et al., 2010).

An alternative approach from Murphy III et al. (1986) considers the compliant pores as
gaps at the adjacent grain contacts. However, this model is not consistent with the high-
frequency limit of Mavko and Jizba (1991), because it was developed within the framework
of the Hertz-Mindlin grain contact theory (Digby, 1981; Winkler, 1983) where grains are
assumed rigid and the compliance of the rock is only due to the gaps. This results in
an overestimation of the rocks stiffness at high-frequency. A model from Gurevich et al.
(2010) uses the same pressure relaxation approach in the gaps as Murphy III et al. (1986), in
conjunction with the discontinuity tensor formulation of Sayers and Kachanov (1995). This
allows the model to be consistent with the Gassmann (1951) limit at low frequency, the
Mavko and Jizba (1991) limit at high frequency, and the stress-sensitivity model of Shapiro
(2003). Moreover, the formulation of the model is compatible with Biot’s equations of
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dynamic poroelasticity if needed (Gurevich et al., 2010). De Paula et al. (2012) extented this
approach with the addition of an intermediate aspect-ratio family of pores that explains the
pressure-dependence of bulk modulus at high confining pressures where all the compliant
cracks are closed.

Chapman et al. (2002) developed a model that can be expressed through a macroscopic
parametrization, and where the microstructure consists of randomly oriented thin cracks
and spherical pores. Each parameter of the model has a physical interpretation corre-
sponding to a well-defined rock property (Chapman et al., 2002). The model is consistent
with Biot’s theory and the dispersion amplitudes predicted by Endres and Knight (1997),
which are the standard effective medium theory results, for distibutions of aspect ratios,
in the low frequency (Gassmann limit) and the high frequency cases (unrelaxed regime
where there is no fluid exchange). The frequency dependence of the full elastic tensor can
be obtained and the model can be extended to include the effect of mesoscale fractures
(Chapman, 2003, 2009).

Jakobsen et al. (2003) and Jakobsen (2004) developed a more general computational model
that uses the T-matrix approximation. This method can take into account pores and frac-
tures of any size and any aspect ratio. In this approach, the effects of the pores and fractures
are introduced as perturbations of the solution for the elastic background. Jakobsen and
Chapman (2009) further investigated the similarities with the approach of Chapman (2003).

1.6 Experimental investigation in laboratories

1.6.1 Experimental techniques

We present here a brief overview of experimental techniques to investigated the dispersion
and attenuation of the dynamic elastic properties in laboratory, over a large frequency
range. These experimental studies, in controlled conditions, are essential to understand the
fluid-related dispersive processes that are at stake when comparing classical low-frequency
field measurements, such as seismics (1-100 Hz) or well logging (10 kHz), with ultrasonic
measurements in laboratory (1 MHz) (Figure 1.2). A more exhaustive overview was done
by Subramaniyan et al. (2014). Three main laboratory techniques exist for such matter: (1)
ultrasonics, (2) resonant bar, and (3) forced oscillations techniques.

(1) Ultrasonics: two ultrasonic transducer are positioned on both sides of the sample.
One acts as a source and the second acts as a receiver. The transducers are piezoelectric
crystals (quartz or piezoceramics) that can vary in size. The size of the crystal determines
its resonant frequency. For quartz disks of 1 cm diameter and several millimeters height,
the resonant frequencies for compression and shear are between 0.3 and 1 MHz (Figure
1.2). To avoid scattering effects, the size of the sample’s largest heterogeneity should be
lower than the wavelength, which is generally between 3 to 6 mm for sedimentary rocks.
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(2) Resonant bar: the sample is mechanically excited to vibrate at its resonant frequen-
cies. The frequencies depend on the bar’s length and P-wave velocity, and gives a moduli
measurement in that corresponding frequency range (e.g., Murphy III, 1982; Lucet et al.,
1991). The longer the bar, the lower the characteristic frequency. For the Hunton limestone,
Born (1941) obtained a resonant frequency of 10.6 kHz for a 17.8 cm long bar, and 2.8 kHz
for a 71 cm long bar. The attenuation can be measured either from the width of the resonant
peak, or from the time constant of the resonant decay (Murphy III, 1982). The need for such
long bars to measure lower frequencies is the main limitation of this technique, as they are
difficult to core directly. Generally the long bars are fabricated by cementing short length
bars together end to end (Born, 1941). Nakagawa (2011); Nakagawa et al. (2013) developed a
method to bypass this issue, named the Split Hopkinson Resonant Bar (SHRB) technique.
Instead of extending the sample with other short elements of the same rock to investigate
lower frequencies, the SHRB uses metal-rod extensions. Then, numerical inversions have to
be performed to invert the complex Young’s modulus and shear modulus, corrected from
the effects of the sample-rod interfaces.

(3) Forced oscillations: the sample is generally set in a confining cell (e.g. triaxial
cell) where controlled stress oscillations are applied on it, and the resulting strains are
recorded (e.g., Spencer, 1981; Paffenholz and Burkhardt, 1989; Lienert and Manghnani, 1990).
These type of setups require: (i) a force generator with adjustable frequency, (ii) a force
sensor to estimate the applied stress and (iii) strain sensors for the sample. The strain
oscillation amplitudes have to be in the order of 10−6 to be in the linear elastic domain. This
technique has gained popularity in recent years as the frequency range of the measurements
corresponds to that of seismic data (e.g., Lu and Jackson, 1996; Batzle et al., 2006a; Tisato
and Madonna, 2012; Madonna and Tisato, 2013; Mikhaltsevitch et al., 2014; Fortin et al., 2014).
Different modes of stress-oscillation are possible with this technique. The forced oscillations
can be in the axial direction, from which the Young’s modulus and the Poisson’s ratio can
be deduced if axial and radial strains are recorded (e.g., Batzle et al., 2006a). Torsional
oscillations were performed in the setup of Jackson and Paterson (1987, 1993), from which
the complex shear modulus could be deduced. Hydrostatic-stress oscillations by the mean
of confining pressure oscillations were performed by Adelinet et al. (2010), from which the
complex bulk modulus can be deduced.
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Figure 1.2: Schematic of the measurement techniques’ position in the frequency-strain
space. The techniques are either from laboratory or from field measurements.

For forced oscillations technique, with current technologies, the frequency of the stress
oscillations can hardly go above 1 kHz (e.g., Batzle et al., 2006a). Most of the setups’ maxi-
mum frequency are around 100-200 Hz (Subramaniyan et al., 2014). This is generally suffi-
cient to measure the properties at seismic frequencies, however it fails to investigate the gap
between seismic and ultrasonic frequencies (Figure 1.2), which would correspond to well
logging (∼ 10kHz). In order to investigate fluid-flow related dispersion that would occur
at logging frequencies, if the rock was saturated with water, is to use forced oscillations on
a sample saturated with a very viscous fluid, such as glycerin (Fortin et al., 2014; Pimienta
et al., 2016c). Since the time-scale of diffusion processes are related to the fluid’s dynamic
viscosity, the frequency of the measurement can be scaled by the viscosity of the fluid.
If water is the reference fluid, the use of glycerin that is a thousand times more viscous,
will give fluid-flow related dispersion for apparent frequencies a thousand times greater
(Pimienta et al., 2015a,b, 2016a) (Figure 1.2).

1.6.2 Some results on sandstones and limestones

The previous techniques to measure dispersion at seismic frequencies have been used
mainly on sandstones (e.g., Spencer, 1981; Spencer and Shine, 2016; Winkler, 1985; Batzle et al.,
2006a; Mikhaltsevitch et al., 2014; Pimienta et al., 2015a), and more rarely on carbonates (e.g.,
Spencer, 1981; Batzle et al., 2006a; Adam et al., 2009; Mikhaltsevitch et al., 2016a). Most of
the previous studies used forced oscillations to measured Young’s modulus’ dispersion be-
tween 0.01 to 100 Hz. Deducing the other elastic moduli of a isotropic sample was possible
by measuring both axial and radial strains. However, few studies attempted to measure di-
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rectly the bulk modulus, which is expected to be the most sensible to the different fluid-flow
regimes. Direct measurements of K at low-frequency using hydrostatic oscillations were
done by Adelinet et al. (2010) and David et al. (2013). They compared the high-frequency (1
MHz) and the low-frequency (0.1 Hz) bulk moduli for dry and fluid-saturated rocks, but
they did not investigate the transitions occurring at intermediate frequencies.

Pimienta et al. (2015a) reported the bulk modulus frequency-dependence and attenuation
on a Fontainebleau sandstone (Figure 1.3). The sample was measured under dry-, glycerin-
and water-saturated conditions, to scale the frequency with the viscosity of the fluid. Wa-
ter is considered the reference fluid for the apparent frequency. The drained, undrained
and unrelaxed fluid-flow regimes were clearly identified, with dispersive transitions be-
tween them. The first transition occurring around 40 Hz, was interpreted as the drained /
undrained transition due to the experimental boundary conditions (Pimienta et al., 2015a).
The undrained bulk modulus, visible between 100 Hz and 1 kHz, can be consistently de-
duced from the drained modulus with Biot-Gassmann’s theory. The ultrasonic results (1
MHz for water) exhibit a much greater bulk modulus than the undrained value, suggest-
ing the presence of a second dispersive transition between 1 kHz and 1 MHz (Figure 1.3)
interpreted as squirt-flow dispersion (Pimienta et al., 2015a). Attenuation was successfully
measured from the phase shift between the stress and the strain, and correlated perfectly
with the dispersion (Figure 1.3).

Few analysis of such are available in carbonate rocks. Batzle et al. (2006a) reported P-
wave and S-wave dispersion of a heavy oil-saturated Uvalde carbonate as a function of
temperature for a frequency range of 1 Hz to 2.5 kHz and 0.8 MHz. The low-frequency
velocities were deduced from axial oscillations up to 1 kHz. Significant dispersion was
observed between 104 and 106 with an increasing effect of temperature. Because of the
viscous-solid nature of the heavy oil, from which a frequency-dependent shear modulus
can be measured (Das and Batzle, 2008), the observed dispersive transition is out of the
scope of the fluid-flow regimes discussed previously.

Other measurement on carbonate-reservoir plugs have been reported by Adam et al.
(2009) on the same experimental setup, for a frequency range of 10-1000 Hz and 0.8 MHz,
and are presented Figure 1.4. The resonant bar technique adds an additional measurement
at 104 Hz. Three of the carbonates are presented here: the samples 100, 200 and 300 (Adam
et al., 2009). Sample 100 and sample 200 are two very porous wackestones (φ ∼ 30%)
that are composed of 9% of dolomite, and the rest of calcite. Sample 300 is a porous
packestone (φ ∼ 20%) that is pure calcite. The samples were measured in dry condition,
then were saturated with butane and brine. The differential pressure Pdi f f = Pc − Pp was
around 31 MPa for samples 100 and 200, and around 24 MPa for sample 300. Results of
the P-wave velocities show that there is no significant difference between the dry and the
butane-saturated results. The brine-saturated results however exhibits a greater P-wave
velocity for every frequencies (Figure 1.4). Not much dispersion is observed between 10
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Figure 1.3: Bulk modulus dispersion (a) and attenuation (b) measured on a 7% porosity
Fontainebleau sandstone obtained by Pimienta et al. (2015a). The drained, undrained and
unrelaxed fluid-flow regimes are clearly visible, with dispersive transitions between them.
The undrained regime is consistent with Biot-Gassmann, while the unrelaxed regime, visi-
ble with ultrasonic measurements, exhibits a much higher bulk modulus.
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as nondispersive in the seismic frequency range.
[26] There are two reasons why the ultrasonic velocity is

higher than seismic and log velocities. High velocities at
ultrasonic frequencies can result from the bulk sti�ening
due to pore �uid pressures being unable to reach equilibrium
within one wave period [
there is enough time for the pore �uid pressure to relax, the
system is, therefore, more compliant, which results in lowe
velocities. Our observed velocity dispersion is in agreeme
with those from the broad frequency range experiment on
sandstones bySams et al.
This velocity dispersion could be modeled by existing
dispersive media theories [
and Budiansky, 1977;
Gurevich, 2005]. However, choosing the wave dispersion
mechanisms that best describe our data is beyond the scope
of this paper.
[27] An alternative explanation why the ultrasonic veloc-

ity is higher than for seismic and log frequencies is that the
ultrasonic wave propagation is path-dependent. This phe-
nomenon is particularly relevant given our transducer size
Each ultrasonic crystal (P and S wave) in our transducer
package has a diameter of 0.75 cm, compared to the
aluminum casing diameter of 3.75 cm. Small transducers
are used because the aluminum casing is also our reference
material for the strain measurements, and a large crystal
embedded into the casing would change the elastic proper-

panied by a single ultrasonic data point at 0.8 MHz. We plot
the low-frequency velocity at three representative points
(10, 100, and 1000 Hz) obtained from the parameter
estimation and error analysis described in section 4. The
data points near 104 Hz are obtained from sonic log data in
the wells from which the rock samples were cored. This
velocity is an average over a 0.6 m depth range centered at
the sample depth. From the resistivity and bulk density logs
we conclude that the samples were extracted from brine-
saturated reservoir intervals. Overall, the P wave velocit
for the three samples consistently increases with frequenc
At low frequencies, sample 300 has large error bars in the
velocity, so the velocity in this sample could be interprete
as nondispersive in the seismic frequency range.
[26] There are two reasons why the ultrasonic velocity is

higher than seismic and log velocities. High velocities at
ultrasonic frequencies can result from the bulk sti�ening
due to pore �uid pressures being unable to reach equilibrium
within one wave period [Biot, 1956b]. At low frequencies
there is enough time for the pore �uid pressure to relax, the
system is, therefore, more compliant, which results in lowe
velocities. Our observed velocity dispersion is in agreeme
with those from the broad frequency range experiment on
sandstones bySams et al. [1997] andBest and Sams
This velocity dispersion could be modeled by existing
dispersive media theories [Biot, 1956a, 1956b;
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Figure 1.4: P-wave velocity dispersion of three different carbonates from Adam et al. (2009).
The samples 100 and 200 are wackstones with 9% of dolomite, and sample 300 is a pure
calcite packstone.

Hz and 0.8 MHz for the wackestones (samples 100 and 200), however, a large dispersion
of at least 1000 m/s is expected for the packestone (sample 300) between 104 and 106 Hz.
Because this seemed to apply also for the dry measurements, it lead to the conclusion that
this dispersion may not be related to fluid-flow dispersion, but rather to a path-dependent
wave propagation during the ultrasonic measurements (Adam et al., 2009).

To further investigate fluid-flow related dispersion in carbonates and understand the
interplay between the heterogeneous pore types and the stress-induced viscous flows, we
limited our experimental study to pure calcite and homogeneous rocks with different mi-
crostructures. Moreover, we limit ourselves to fully-saturated conditions to exclude any
dispersive mechanisms related to partial saturation (e.g. White, 1975; Dutta and Odé, 1979;
Toms et al., 2007; Lebedev et al., 2009; Tisato and Madonna, 2012; Chapman et al., 2016; Chap-
man, 2017), which would add a level of complexity and prevent us from identifying effects
intrinsically due to the microstructure’s heterogeneity.
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CHAPTER 2

EXPERIMENTAL DEVICES AT THE LABORATOIRE DE
GÉOLOGIE DE L’ENS

2.1 Résumé

Nous présentons ici les dispositifs expérimentaux qui ont été utilisés au cours de cette thèse.
Au laboratoire de géologie de l’ENS de Paris, deux cellules triaxiales sont équipées pour
faire des oscillations forcées combinées à des mesures ultrasoniques. La première presse est
une cellule Géodesign équipée de pompes Sanchez Technologies, dans laquelle nous avons
caractérisé le Lavoux. La seconde presse est un système complet de Top Industrie, que nous
avons reçu en cours de deuxième année de thèse, et qui a permis de caractérisé l’Indiana,
le Rustrel et le coquina, après un phase de calibration sur du gypse. Cette seconde presse a
été dimensionnée spécifiquement pour les oscillations forcées, et est bien plus ergonomique
que la première.

Les deux cellules sont capables de faire des oscillations axiales jusqu’à 100 Hz, grâce à
un oscillateur piézoélectrique logé entre l’échantillon et le piston. De plus, des oscillations
hydrostatiques peuvent être générées par oscillation de la pression de confinement. Pour
ce dernier mode, la presse Géodesign est limitée à 0.4 Hz alors que la Top Industrie peut
aller au-delà de 1.2 Hz. Les déformations radiales et axiales de l’échantillon sont mesurées
par des jauges de déformations directement collées sur la surface latérale. La contrainte
axiale générée durant les oscillations axiales est déduite de la déformation de l’embase en
aluminium sous l’échantillon.
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2.2 Introduction

At the Laboratoire de Géologie de l’ENS de Paris, two triaxial cells are able to perform
forced oscillations over a wide frequency range, along with ultrasonic mesurements. The
first is a Geodesign triaxial cell equipped with Sanchez Technologies pumps. The second
is a triaxial cell entirely produced by Top Industrie. Both cells are designed for cores of
40 mm diameter, and about 80 mm height.

2.3 Geodesign triaxial cell

The Geodesign cell is an autonomous (integrated piston) and auto-compensated cell, which
can reach 300 MPa of confining pressure (Figures 2.3a and 2.2). The axial loading and the
confining pressure are regulated by two single screw pumps of from Sanchez Technologies
that can go up to 100 MPa (Figure 2.3b). The volume of each pump is 300 mL and they are
controlled through a FALCON software.

The sample is held between two end-platens (Figure 2.2), and is isolated from the con-
fining oil by a neoprene jacket (visible next to the sample in Figure 2.3a). The top and bot-
tom end-platens contain the pore pressure upstream and downstream (Figure 2.2). More-
over, they are equipped with P- and S-ultrasonic transducers of 10 mm diameter and 1 mm
height from PI Ceramics (type PI255). The pore pressure is regulated by a Quizix QX-1500
dual-pump, which can reach 10 MPa and has a stroke volume of about 50 mL per cylinder
(Figure 2.3c). The top and bottom drainage circuit can be closed by two valves between the
Quizix pumps and the cell. This creates small dead volumes of about 3.3 mL at the top and
bottom of the sample.

The cell has 34 electrical wire outputs, of which 28 can be used to connect strain gauges
in quarter-bridge configuration. A total of 14 strain gauges can be monitored (2 wires
per strain gauge). These wires are connected to a HBM MGCplus data acquisition system
(DAQ), which is also connected to the thermocouple and the three pressure transducers
for the axial loading, confining pressure, and pore pressure upstream (Figure 2.2). All the
sensors connected to the DAQ are then monitored through a CATMAN data aquisition
software. The sampling frequency of the DAQ can go up to 2 kHz. The strain gauges used
for axial and radial measurements throughout all the experiments were 350Ω foil strain
gauges (FCB-6-350-11) built by Tokyo Sokki Kenkyujo Co., Ltd.

A PI PICA piezoelectric stack actuator is mounted between the piston and the top end-
platen, which can generate axial-stress oscillations up to 100 Hz (Figure 2.2). The blocking
pressure of the piezo actuator is around 35 MPa. The initial signal is generated by a TTi
TG1010A function generator. It is then amplified by PI high-power amplifier before reach-
ing the piezo actuator. The top end-platen is made out of aluminium 2017A (AU4G), and
two axial strain gauges are glued on it to measure the axial stress.
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A B C

Figure 2.1: Photographs of the Geodesign triaxial cell (a), the Sanchez Technologies pumps
for the axial loading and the confining pressure (b), and the Quizix dual-pumps for the
pore pressure (c).

The confining pressure pump can be programmed to perform hydrostatic oscillations
around a mean value. The calibration of the system from Pimienta et al. (2015a) show that
the maximum frequency measurable is around 0.4 Hz (Figure 2.3). Because the confining
pump has a limited flux and the cell has a large volume of oil, when the frequency increases
above 0.1 Hz for a programmed oscillation of 0.1 MPa, the actual pressure oscillation in the
cell will decrease, and eventually reach zero (Figure 2.3a). This has the effect of reducing
the measured strain on the sample when the frequency increases (Figure 2.3b). For a sample
of bulk modulus K = 40 GPa (e.g. gypsum), the volumetric strain would be just above the
measurable limit of 3× 10−7 for a frequency of 0.4 Hz (Figure 2.3b).

2.4 Top Industrie triaxial cell

The Top Industrie cell is similar to the Geodesign cell, although it has been specifically
designed to measure frequency-effects. It is equipped with four single screw pumps con-
trolling the axial load, the confining pressure, the pore presure upstream and dowstream,
which are all Top Industrie made, and are integrated into a single frame (Figure 2.4). Simi-
larly to the Geodesign, it is an autonomous triaxial cell that can reach 100 MPa of confining
pressure.

The jacketed sample is held between two endplatens equipped with the similar PI255
ultrasonic transducers than the Geodesign cell (Figure 2.5). The lower endplaten is made
out of aluminium 2017A (AU4G), and is bolted to the cell base. It is equipped with 4 axial
strain gauges to deduce the axial stress (Figure 2.5).
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Aluminium endplaten
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Figure 2.2: Schematic diagram of the Geodesign triaxial cell (Modified after Fortin et al.
(2007)).
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Figure 2.3: Calibration of the hydrostatic oscillations in the Geodesign cell. Measurement
of the pressure amplitude (a) and the strain amplitude (b) on three reference samples:
glass (triangles), gypsum (diamonds) and plexiglas (squares). The grey zone is out of the
experimental range, as the strains have to be between 3× 10−7 and 2× 10−5, to be above
the uncertainty limit of the strain gauges, and to respect the small deformation condition
of elasticity. Modified after Pimienta et al. (2015a).

A B

Figure 2.4: Photograph of the Top Industrie triaxial cell in the closed (a) and open (b)
configuration.
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Figure 2.5: Schematic diagram of the Top Industrie triaxial cell.
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Figure 2.6: Calibration of the hydrostatic oscillations in the Top Industrie cell. Measure-
ment of the pressure amplitude (a) and the strain amplitude (b) on a gypsum standard
(diamonds). The dark grey zone is out of the experimental range, as the strains have to
be between 3× 10−7 and 2× 10−5, to be above the uncertainty limit of the strain gauges,
and to respect the small deformation condition of linear elasticity. The light grey zone
corresponds to the Geodesign cell (Figure 2.3a). Modified after Pimienta et al. (2015a).

The cell has 37 electrical wire output on which can be connected a total of 16 strain
gauges (4 being dedicated to the aluminium endplaten). Similarly to the Geodesign cell, the
strain gauges are wired in quarter-bridge configuration. The data acquisition system (DAQ)
for the strain gauges and the pressure sensors is integrated in the Top Industrie’s frame.
The maximum sampling rate of the DAQ is 4 kHz. A unique Labview software designed
by Top Industrie controls both the pumps and the data acquisition. The confining pump
can be programmed through a sequencer. This enables to perform tasks, say a sequence
of different frequencies, automatically. To reduce the size of the data file, the sampling
frequency can be adjusted in the sequencer in accordance to the oscillation frequency.

Although the Top Industrie cell has two integrated pumps for the pore pressure, each of
200 mL volume, the complexity of the pore-fluid circuit makes it difficult to change fluid. In
order to saturate the sample with a second fluid, say glycerin, the Quizix pump previously
used for the Geodesign cell (Figure 2.3c) can be connected to the drainage circuit next to
the sample.

The Top Industrie confining pump has similar characteristics in terms of maximum flux
and pressure than the Sanchez Technology pump used for the Geodesign cell. However, the
overall oil volume of the Top Industrie cell is smaller than the Geodesign, which means that
the pressure amplitude will be higher for the same pump displacement. This enables the
Top Industrie cell to measure higher frequencies in hydrostatic conditions. In practice, the
maximum frequency measured is around 1.1 Hz (Figure 2.6). Moreover, a heating system
allows for measuremtns up to 100°C.

Finally, the same piezoelectric oscillator as in the Geodesign cell is used to generate
the axial-stress oscillations. The PI stack is mounted above the top endplaten (Figure 2.5).
As previously, the input signal and frequency change is controlled manually on the TTi
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function generator, and is then amplified before reaching the piezoelectric oscillator.
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CHAPTER 3

EXPERIMENTAL PROTOCOL

3.1 Résumé

Nous présentons ici tous les protocoles expérimentaux qui ont été utilisés pour caractériser
les quatre échantillons étudiés au cours de la thèse. Pour les cellules triaxiales présentées
précédemment, les échantillons doivent être des cylindres de longueur 80 mm et de di-
amètre 40 mm. La première étape consiste à effectuer un carottage de 40 mm de diamètre
dans un bloc, puis de couper la carotte à la longueur souhaitée. Les surfaces supérieure
et inférieure sont rectifiées afin d’être parfaitement parallèles, et ainsi éviter de la flexion
lors d’un chargement axiale. La porosité est mesurée par triple pesée, puis l’échantillon
est séché dans une étuve à 60°C. Après préparation de la surface latérale, quatre paires de
jauges axiales et radiales y sont collées à mi-hauteur, dans des positions diamétralement
opposées. L’échantillon est enfin mis dans sa jaquette et est installé dans la cellule triaxiale.

Après quelques cycles de chargements hydrostatiques visant à supprimer tout effet
irréversible, le module d’incompressibilité statique est mesuré en sec. Ensuite, pour dif-
férentes pressions effectives, les cycles d’oscillations forcées hydrostatiques (0.01-1 Hz) et
axiales (0.01-100 Hz) sont effectués à différentes fréquences, suivi des mesures de vitesses
ultrasoniques P et S (1 MHz). Une fois le cycle en sec terminé, l’échantillon est saturé en
glycérine par drainage après avoir effectué le vide. On répète les mesures puis l’on sature
avec l’eau, également par drainage. Les mesures de perméabilité par écoulement de Darcy
sont effectuées avant chaque changement de pression effective.

Les oscillations hydrostatiques permettent de calculer un module d’incompressibilité
pour chaque fréquence, après avoir moyenné les signaux de toutes les jauges de déforma-
tions. Le module de Young et le coefficient de Poisson sont déduits des oscillations axiales.
Si la roche est isotrope, les formules de conversion entre modules élastiques permettent de
calculer un module de cisaillement et un module d’incompressibilité. Ce dernier est com-
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paré au module obtenu précédemment lors des oscillations hydrostatiques. L’atténuation
liée à un module est déduite du déphasage entre la contrainte et la déformation corre-
spondante. L’atténuation mesurée est également comparée au modèle viscoélastique de
Zener.
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3.2 Sample preparation

The sample’s preparation is a delicate, yet important, step in order to obtain proper mea-
surements. First, the sample is cored in the bloc with a diameter of 40 mm. The plug is
reduced to 80 mm length, and the upper and lower surfaces are rectified to be perfectly
perpendicular to the cylinder’s axis. The lateral surface is locally polished and cleaned to
obtain a perfectly smooth surface where the strain gauges will be glued. A first layer of
glue can be locally applied in order to fix any residual dust and to create a perfectly clean
surface (Figure 3.1a).

The 350Ω strain gauges are then glued on the preexisting layer, with axial and radial
orientations (Figure 3.1b). The strain gauges are foil strain gauges built by Tokyo Sokki
Kenkyujo Co., Ltd. (FCB-6-350-11), which combine two perpendicular elements (vertical
and horizontal).

The wires welded to the strain gauges go through smalls holes in the neoprene jacket,
and finish with connectors adapted to the apparatus (Figure 3.1c). After the jacket holes are
sealed with epoxy glue, the sample can be installed in the cell (Figure 3.1d). The process of
gluing strain gauges requires that the sample is placed into a 80°C oven for at least 4 hours
in order to crystallize the glue. This process being repeated at least twice, we can assume
that the sample is dry when installed in the cell.

A B C D

Figure 3.1: Preparation of the sample. After the plug has been cored and rectified, the
lateral surface is polished and a first layer of glue is applied to create a clean surface (a).
The strain gauge is glued on the preexisting layer, and the electric wires are welded (b). The
wires go through two small holes in the jacket, and connectors adapted to the apparatus
are welded (c). After the jacket holes are sealed with epoxy glue, the sample is installed in
the apparatus (d).

3.3 Static bulk modulus

Once the sample is installed in one of the triaxial cell, it runs through a first hydrostatic
seasoning cycle in order to minimize nonlinear cycling effects caused by microcracks (Hart
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and Wang, 1995). The maximum confining pressure considered is always lower than 30 MPa,
as it is the maximum pressure tolerable for the piezoelectric stack. Moreover, the studies
reviewed by Zhu et al. (2010) suggests that the high porous limestones (between 21% and
30% in the study) have a minimal pore collapse pressure of 30 MPa. For samples of porosity
superior to 20%, a maximum pressure of 20 MPa is therefore chosen.

After the seasoning cycle is done, the static modulus is deduced from the unloading
of the next cycle. We consider the tangent modulus as our static measurement at a given
confining pressure. All the strain gauges are average and multiplied by 3 to obtain the
volumetric strain. A polynomial function, of order higher or equal than four, is fit through
the stress-strain curve. The tangent modulus is then easily calculated from the derivative
of the polynomial at each confining pressure.

3.4 Forced oscillation methods

To measure the dispersion and the attenuation of the dynamic elastic moduli over a large
frequency range, we used the forced oscillation method (or stress-strain method), combined
with ultrasonic measurements, in two different triaxial cells at the ENS of Paris (Figure 3.2)
(Fortin et al., 2005, 2014; Adelinet et al., 2010; David et al., 2013). With these type of apparatus,
two types of stress oscillations can be achieved: hydrostatic (Figure 3.2a) to measure the
bulk modulus (K), and axial (Figure 3.2b) to measure the Young’s modulus (E) and the
Poisson’s ratio (ν).

To investigate the effect of the fluid’s viscosity, the sample’s properties were measured
under dry, glycerin-saturated and finally water-saturated conditions. The glycerin used for
the experiments is the Glycérol ≥ 98% GPR RECTAPUR provided by VWR. The advan-
tages of glycerin is that it is a thousand times more viscous than water, and chemically
inert to non-hydrous minerals. Moreover, it has three hydroxyl groups that are respon-
sible for its high solubility in water, and its hygroscopic nature. Therefore, the samples
are first measured dry, secondly with glycerin, and finally with water. The certificate of
analysis provided by VWR guaranties a minimal mass content of 98% of glycerin. At room
temperature (20 °C), the viscosity of glycerin and water will be taken as ηgly = 1 Pa.s and
ηwat = 10−3 Pa.s (Figure 3.3).

To fully saturate the sample with glycerin after the dry measurements, vacuum condi-
tions are made in the sample and the drainage circuit. Then the glycerin is injected from the
upstream in one side of the sample with a constant differential pressure (Pc − Pp) of 1 MPa.
The confining pressure is generally set between 2 MPa and 5 MPa in order to maximize the
permeability. This process can take more than 15 days for a sample of permeability 0.02 mD
at room temperature. After the glycerin-saturated measurements, the similar process is re-
peated to saturate with water. The downstream is unconnected from the circuit and drains
out of the cell at atmospheric pressure. This enables to control the mixture going out of the
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Figure 3.2: Schematics of the experimental set-up for a) hydrostatic oscillations and b) ax-
ial oscillations, in the triaxial cell at the ENS of Paris. The hydrostatic oscillations were
imposed by the confining pump, in the frequency range of [0.004; 0.4]Hz for the Geode-
sign cell, and [0.004; 1.1]Hz for the Top Industrie cell. The axial oscillations are imposed
by a piezoelectric actuator mounted over the top endplaten, in the frequency range of
[0.004; 100]Hz. Strains are measured by axial and radial strain gauges bonded on the sam-
ple at mid-height. Ultrasonic transducers are settled in the endplatens to obtain the P- and
S-wave velocities at 1 MHz.
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A B

Figure 3.3: Dynamic viscosity of water-glycerin mixture as function of temperature. The
source data is extracted from Segur and Oberstar (1951).

sample.

We also studied the effect of the boundary conditions on the measured elastic prop-
erties, with two different configurations for the drainage system: 1) open (drained con-
ditions), and 2) closed (undrained for the system {sample + dead volumes}) (Figure 3.2a).
Pimienta et al. (2016b) demonstrated that the effect of the dead volumes on the measured
properties depends upon the ratio of the storage capacities of the sample and the drainage
system. In the drained frequency range, the measured properties would tend to their
undrained value if the dead volumes tend to zero. For example, in the Geodesign cell,
the dead volumes of the closed drainage system (second case) were measured at about
Vd = 3.3 mL for the top and bottom endplatens (Pimienta et al., 2016b). Pimienta et al.
(2016b) showed that if the dead volumes were 10 times greater than this volume, the mea-
sured properties would converge to the fully drained values. For our experiments, either
in the Geodesign cell or the Top industrie cell, when the drainage system is open, the dead
volumes are in fact much larger, and correspond to the volume of all the hydraulic tubings
added to the volume of fluid in the pore-pressure pumps. During the stress oscillations,
the pore pressure pumps are shut off, to avoid a fluid induced response back to the sample,
and to monitor the pore pressure evolution.

The sample is 8 cm long and 4 cm diameter cylinder. To measure the strains, 4 pairs of
350 Ω metal-foil strain gauges with axial and radial orientations are glued at mid height
all around the lateral surface (Figure 3.2). Axial strain (εax) and radial strain (εrad) are
averaged from all the strain gauges. The sample is under a rubber jacket that separates the
pore pressure (p f ) from the confining pressure (Pc) (Figure 3.2a). When the sample is fluid
saturated, the pore pressure is controlled by the pore-pressure pumps system connected to
the top and the bottom of the sample through a drainage circuit (Figure 3.2a). Throughout
all the experiments, the pore pressure was maintained at 2 MPa. Measurements at different
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differential pressures (Pdi f f = Pc − p f ) were done, with a maximum confining pressure of
30 MPa, which is the blocking pressure of the axial piezoelectric actuator.

3.4.1 Hydrostatic-stress oscillations - Bulk Modulus

The hydrostatic-stress oscillations give a direct measurement of the bulk modulus Khyd

(Adelinet et al., 2010). The oscillations are obtained from the confining pressure ∆Pc that
oscillates with an amplitude of 0.2 MPa around a mean value Pc (Figure 3.4a). This ampli-
tude value has been calibrated in order to obtain small strains on the sample (ε ∼ 10−6)
to remain in the linear elastic domain (Figure 3.4a) (Winkler and Murphy III, 1995). The
frequency of these hydrostatic oscillations is between 4× 10−3 Hz and 4× 10−1 Hz for the
Geodesign cell, and a maximum of 1.1 Hz for the Top Industrie apparatus. The induced
volumetric strain signal (εvol) is calculated by εvol = εax + 2εrad. Thus, the bulk modulus
Khyd is obtained from the measured stress ∆Pc and the measured strain εvol such that:

Khyd =
−∆Pc

εvol
, (3.1)

with the convention ∆Pc = −σii/3. A linear regression of the stress signal versus the strain
signal is then processed to calculate Khyd (Figure 3.4b).

3.4.2 Axial-stress oscillations - Young’s Modulus and Poisson’s Ratio

In order to perform axial-stress oscillations (e.g., Batzle et al., 2006a; Mikhaltsevitch et al.,
2014; Tisato and Madonna, 2012; Madonna and Tisato, 2013; Pimienta et al., 2015b; Szewczyk
et al., 2016), we used a piezoelectric actuator that is mounted between the axial piston of
the triaxial cell and the top end-platen (Figure 3.2b). A small deviatoric stress of 1 MPa is
maintained on the assemblage in order to have a good contact. The frequency range of the
oscillations applied on the Lavoux sample is 10−2 Hz to 10 Hz. The top end-platen is made
out of aluminium 2017A (AU4G) and is bonded with 2 axial strain gauges acting as a axial
stress sensor (Figure 3.2b). During the measurements, the two axial strains are averaged
(εalu) and the axial stress is computed from σax = Ealu.εalu (Figure 3.4c), where Ealu is the
Young’s modulus of the aluminum endplaten (Ealu = 72 GPa). With the measurements of
the axial strain (εax) and the radial strain (εrad) of the sample (Figure 3.4c), we can directly
obtain the Young’s modulus (E) and the Poisson’s ratio (ν) of the sample:

E =
σax

εax
and ν = − εrad

εax
. (3.2)

E and ν are determined by linear regression of the signals, respectively, σax over εax and
−εrad over εax (Figure 3.4d). A bulk modulus (Kax) and a shear modulus (Gax) are calcu-
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Figure 3.4: Example of stress-strain vs time recordings during a-b) hydrostatic oscillations,
and c-d) axial oscillations. The elastic moduli are calculated from the linear regressions of
the stress vs strain curves (b-d). The ellipse shapes (hysteresis) result from the phase shift
between stress and strain when dispersion occurs, similarly to viscoelastic materials.
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lated, with the assumption of an isotropic medium:

Kax =
E

3 (1− 2ν)
and Gax =

E
2 (1 + ν)

. (3.3)

Kax can then be compared to the bulk modulus Khyd obtained from the hydrostatic oscilla-
tions to validate the assumption of isotropy, and to check the consistency of the results.

3.4.3 Attenuation - Q−1 measurements

The factor Q−1 measures the elastic energy dissipation within the sample. When this dis-
sipation occurs, the rheology of the medium is similar to a viscoelastic material (O’Connell
and Budiansky, 1977). The stress-strain curve presents an elliptic shape that clearly high-
lights the non elastic behavior (e.g. Figures 3.4b and 3.4d). This results from the phase shift
between the stress and the strain. During a dynamic oscillation of frequency f , the complex
stress can be expressed as σ̄ = σei(2π f t+φσ) and the resulting complex strain ε̄ = εei(2π f t+φε),
where φσ and φε are the phases of σ̄ and ε̄. For each elastic modulus, the calculation of the
Q−1 factor is based on the causality principle, where the complex modulus M̄ relates the
stress σ̄ to its resulting strain ε̄:

σ̄ = M̄ε̄. (3.4)

The factor Q−1
M of the modulus M̄ is then defined as follows (O’Connell and Budiansky, 1978):

Q−1
M =

Im (M̄)

Re (M̄)
=

Im
(

σ̄/ε̄

)
Re
(

σ̄/ε̄

) = tan (φσ − φε) , (3.5)

In the case of the bulk modulus measured from hydrostatic oscillations, Q−1
Khyd

is deduced
from the phase shift between the hydrostatic stress −∆Pc, with the convention ∆Pc =

−σii/3, and the volumetric strain εvol . With the combination of Equations 3.1 and 3.5,
we obtain:

Q−1
Khyd

= tan (φ−∆Pc − φεvol ) . (3.6)

The Young’s modulus and Poisson’s ratio factors Q−1
E and Q−1

ν are deduced from Equations
3.2 and 3.5:

Q−1
E = tan (φσax − φεax) and Q−1

ν = tan (φεax − φεrad) . (3.7)

To derive Q−1 for Kax and Gax, with the assumptions of isotropy and small strains, we
combine Equations 3.2 and 3.3:

Kax =
1
3

.
σax

εax + 2εrad
and Gax =

1
2

.
σax

εax − εrad
. (3.8)
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For both Kax and Gax the stress is σax and the resulting strains are respectively εax + 2εrad

and εax − εrad. After combining Equations 3.5 and 3.8, the related attenuations are:

Q−1
Kax

= tan (φσax − φεax+2εrad) and Q−1
Gax

= tan (φσax − φεax−εrad) (3.9)

Three different methods can be used to calculate the Q−1 factors (e.g., Tisato and Madonna,
2012). The first method consists of fitting two sine functions y = A sin(2π f + φ) through
the stress and strain signals and extract φ from each signal to calculate the phase shift
φσ − φε. The second method consists in extracting the phases from a Fourier analysis of the
signals. For this purpose a Fast Fourier Transform (FFT) algorithm is applied on the stress
and strain signals. And finally, the last method is based on the definition of Q−1 factor
that relates Q−1 to the dissipated elastic energy (∆E) during a stress-strain cycle and to the
average elastic energy stored (Em) as follows (O’Connell and Budiansky, 1978):

Q−1 =
∆E

4πEm
. (3.10)

When viscous dissipation occurs in the fluid, the stress-strain curve presents an elliptic
shape, similarly to viscoelastic materials (e.g. Figures 3.4b and 3.4d). The dissipated energy
∆E is equal to the surface of this ellipse, and Em is equal to the average surface under the
stress-strain curve. The surfaces that represent ∆E and Em can be calculated from the stress
versus strain curve by numerical integration (Tisato and Madonna, 2012):

∆E =
N−1

∑
n=1

(σn+1 + σn) (εn+1 − εn)

2Nc
and Em =

N

∑
n=1

σnεn

2N
, (3.11)

where σn and εn are all the data points of respectively σ̄ and ε̄ signals during one recording,
N is the total number of sampled data and Nc = f .ttot is the number of cycles, f being
the frequency of the oscillation and ttot the total time of the sequence. For simplicity,
the three methods presented above are respectively denominated as “Sines”, “FFT” and
“Ellipse” method in the following text. The experimental measurements presented later in
the results section were calculated from the “FFT" method, and comparison between the
three methods will be provided for the axial oscillations.

The relation between the dispersion and the attenuation of the complex modulus M̄,
arises from the causality principle between the stress and strain that is expressed through
the Kramers-Kronig equations (Mikhaltsevitch et al., 2016b). If M̄ = MR + iMI , with i the
imaginary unit, MR the real part and MI the imaginary part of M̄, an approximation of the
Kramers-Kronig equations was found by O’Donnell et al. (1981):

MI (ω) =
π

2
ω

dMR (ω)

dω
, (3.12)
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where ω = 2π f . The major drawback of applying Equation 3.12 to experimental data, is
that an accurate calculation of the derivative dMR

/
dω by finite difference requires a good

resolution in ω.
The use of Kramers-Kronig relations is the most general approach to relate dispersion

and attenuation for linear systems. However, because our experimental measurements did
not necessarily have a proper resolution in ω, the consistency between the measured dis-
persion and attenuation was verified instead with a Zener viscoelastic model (Pimienta et al.,
2015a), since only the modulus at zero and at infinite are required. The equivalent spring-
damper model is represented Figure 3.5b, and its transfer function M̄ can be expressed
with the viscoelastic parameters of the system:

M̄ =
1 + iωτ(

1
Ma

+ 1
Mb

)
+ iωτ

Ma

, (3.13)

where Ma and Mb are the moduli of the two springs, τ = ηb
/

Mb where ηb is the viscosity of
the dashpot element (Figure 3.5b). This model follows the assumption that only one viscous
dissipation mechanism is involved. With the approximation Ma << Mb, the Equations 3.5
and 3.13 give:

Q−1
M '

ωτ

1 + ω2τ2
Ma

Mb
. (3.14)

If we consider a dispersive transition where the sample’s modulus (M̄) varies from M0 to
M1 around the cut-off frequency fc (Figure 3.5a), the elastic parameters of the Zener model
become Ma = M1 and Mb

−1 = M0
−1 − M1

−1, and the viscosity of the dashpot becomes
ηb = M1/2π fc (Figure 3.5b). Therefore, only three parameters are required to calculate the
Q−1 factor from Zener’s model: the moduli M0 and M1, and the cut-off frequency fc. It is
to note here that if the dispersion is related to the global-drainage flow, M0 and M1 would
be the drained and undrained (isobaric) moduli. If the dispersion is related to squirt-flow,
M0 and M1 would be the undrained (isobaric) and unrelaxed (isolated) moduli.

3.5 Measurements on standard materials

Dispersion and attenuation measurements on standard materials have been done in both
cells to validate the experimental protocol. Measurements on gypsum, glass and plexiglas
have been done in the Geodesign cell. The full data set for hydrostatic oscillations can be
found in Pimienta et al. (2015a), and for axial oscillations in Pimienta et al. (2015b).

For the Top Industrie cell, the initial design of the lower aluminum endplaten was
not adapted for the axial-stress oscillations. The strain gauges were glued on the 50 mm
diameter shoulder at the bottom of the piece (Figure 3.6). The whole piece being bolted to
cell’s base, the apparent Young modulus Ealu was estimated around 340 GPa (Figure 3.6).
The inconvenience was that the axial strain signals from the aluminium were very weak,
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Figure 3.5: Zener’s viscoelastic model used to calculate the attenuation from the dispersion.
a) Model applied to the dispersion of the modulus M of relaxed value M0 and unrelaxed
value M1. b) Spring-damper representation of Zener’s model, with the relationships be-
tween the springs elastic moduli (Ma and Mb) and dispersion’s relaxed and unrelaxed
values (M0 and M1). The viscosity (ηb) of the damper is a function of M1 and the cut-off
frequency fc: ηb = M1/2π fc.

near the uncertainty limit of the strain gauges.
A modification of the endplaten was done in order to reduce the apparent Young’s

modulus, and increase the amplitudes of the strain signals (Figure 3.6). The shoulder was
replaced by a trench and the strain gauges were glued as high as possible on the 40 mm
diameter central cylinder (Figure 3.6). The idea is to measure the strain as far as possible
from the lower fixed boundary conditions, and on a smaller diameter section. A residual
13 mm had to be left above the strain gauges for the sample’s jacket.

Measurements on gypsum have been done after the modification, and the results are
shown Figure 3.7. The Young’s modulus of the aluminum endplaten was taken to be
72 GPa. For both axial and hydrostatic oscillations, the gypsum exhibits no dispersion
as expected (Figures 3.7a-c) and no attenuation accordingly (Figures 3.7d-i). Moreover,
the moduli exhibit no dependence to the confining pressure. From axial oscillations, we
obtain Egypsum = 41 GPa (Figure 3.7a) and νgypsum = 0.34 (Figure 3.7b). For the gypsum,
the bulk modulus measured from hydrostatic oscillations is around Kgypsum = 43 GPa and
matches the bulk modulus deduced from the axial oscillations (Figure 3.7c). The gypsum’s
measured moduli are in accordance with the previous calibrations of the Geodesign cell
(Pimienta et al., 2015a,b).

3.6 Ultrasonic measurements

In addition to the low frequency forced oscillations at different differential pressures, the
apparatus enables the measurement of the high-frequency ( f = 1 MHz) moduli from P- and
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Figure 3.6: Design of the bottom aluminium endplaten acting as our stress sensor (Figure
2.5). In the initial design, the strain gauges were glued on the 50 mm diameter shoulder at
the bottom of the piece. The modified design replaces the shoulder by a trench, and glues
the strain gauges as high as possible on the central cylinder of diameter 40 mm, leaving a
13 mm space for the sample’s jacket.
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Figure 3.7: Dispersion and attenuation measurements on a gypsum standard in the Top
Industrie cell, along with the results obtained from previous calibrations on the Geodesign
cell by Pimienta et al. (2015b).
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a)

b)

P-wave

S-waveP-wave

Figure 3.8: Example of ultrasonic P- and S- waves picking.

S-wave ultrasonic transducers (PI piezoceramics), glued in the end-platens at both ends on
the sample (Figures 2.5 and 3.2a). The ultrasonic signals are generated by the TTi TG1010A
function generator, and amplified with a FLC A400 linear amplifier. The signals are moni-
tored and analyzed through Insite Seismic Processor software. The sampling frequency is
10MHz. To reduce the noise, the software enables to stack signals up to 1000 times. The P-
and S-waves travel times are handpicked at the first rupture of the signal (Figure ).

The P- and S-wave velocities VP and VS are then inferred from the travel time (∆t)
through the sample’s length (L = 80 mm), after correction of the travel time through the
end-platens. The P- and S-wave travel times in the endplatens were calibrated with the
aluminum sample of 80 mm length. They were found to be tP−end = 15.3 µs and tS−end =

30.0 µs respectively. The arrival times of the P- and S-waves are hand-picked with a maxi-
mum error of ±0.1 µs. The velocity (V) is then calculated by V = L/∆t. With a maximum
error on L of ±0.01 mm, the relative uncertainty on the velocities is about ∆V/V = 0.5 %.
The high-frequency moduli KHF and GHF are obtained by the well known formulas:

KHF = ρ

(
VP

2 − 4
3

VS
2
)

and GHF = ρVS
2, (3.15)
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where ρsample is the density of the medium, calculated from the density of the dry sam-
ple ρdry, the density of the saturating fluid ρ f luid and the porosity φ by: ρsample = ρdry +

φ.ρ f luid. The densities of glycerin and water are respectively ρgly = 1250 kg/m3 and
ρwat = 1000 kg/m3 (Bosart and Snoddy, 1927). With a relative uncertainty on ρ estimated
around 1 %, the relative uncertainty of the product ρV2 is about 2 %. From this we can
deduce the relative uncertainties ∆KHF/KHF ' 4 % and ∆GHF/GHF ' 2 % for respectively
the ultrasonic bulk and shear modulus.

3.7 Permeability

In order to understand the relationship between diffusion processes and frequency effects,
and especially to characterize the drained/undrained transition, it is essential to measure
the permeability at different effective pressures. The permeability of medium quantifies
its ability to let the fluid flow when there is a pressure gradient. This permeability can be
quantified by the intrinsic permeability κ (m2), which is an intrinsic property of the porous
medium. It is defined by Darcy’s law:

Q = κ
A∆P
ηL

, (3.16)

where Q (m3/s) is the volumetric flux through the sample, A (m2) the cross-sectional sur-
face, η (Pa.s) the dynamic viscosity of the fluid, ∆P (Pa) the pressure difference between
the two ends of the sample of length L (m).

To measure the permeability in the triaxial cell, the upstream and downstream pressure
are regulated individually by a separate pump. A pressure difference of about ∆P = 1 MPa
is imposed to the sample (Figure 3.9a), and the volumetric displacement of each pump
is recorded to deduce the flux (Figure 3.9b). The volumetric flux going into the sample
(here Qdown) and going out of the sample (here Qup) are calculated from the slopes of the
asymptotes (dV/dt) of the volume vs time curves, after the permanent regime is reached
(Figure 3.9b). The intrinsic permeability is then calculated from Darcy’s law (Equation
3.16), with Q = (Qup + Qdown)/2.

The permanent regime is reached when the flux becomes constant with time, i.e., when
the volume variations of the pumps are linear with time. A transient regime with a higher
flux is always present just after setting the pressure gradient, and its duration depends on
the permeability. For low-permeability samples, the monitoring has to be long enough to
be able to distinguish the permanent regime from the transient regime.
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up
up

dV
Q

dt
=

down
down

dVQ
dt

= −

P∆

Figure 3.9: Permeability measurement by Darcy flow. A pressure gradient is imposed
between the upstream and the downstream by the two pore-pressure pumps (a). The
volume of each pump can be monitored as a function of time (b). The flux calculated
from the upstream pump (Qup) and the downstream pump (Qdown) are calculated from the
slopes of the asymptotes (dV/dt) after the permanent regime is reached.

3.8 Sequence of a typical experiment

We present here the full experimental sequence that has been used for the different samples
that will be presented in Part II.

1) Coring of the sample, and rectification of the upper and lower faces. Measurement
of length and diameter.

2) Measurement of the porosity by triple-weight method. The sample is then dried in a
oven around 60°C.

3) The sample is instrumented with the strain gauges and is jacketed (section 3.2).

4) The sample is installed in one of the triaxial cells, between the two endplatens, and
the strain gauge wires are connected to the cell.

5) Once the cell is closed and filled with oil, a first seasoning cycle is performed. The
static bulk modulus is measured from the next hydrostatic cycle.

6) Low-frequency hydrostatic and axial oscillations are performed at different frequen-
cies around a given differential pressure (Figure 3.10).
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Figure 3.10: Illustration of the experimental sequence for one saturating fluid.

7) Ultrasonic measurements are done just after the low-frequency oscillations.

8) The differential pressure is changed by increasing the confining pressure to a new
value, with enough time to equilibrate the pore pressure (Figure 3.10).

9) Steps 6 to 8 are repeated for each differential pressure to be characterized for the dry
conditions (Figure 3.10).

10) Saturation with glycerin at a low differential pressure.

11) Steps 6 to 8 are repeated as much as necessary for the glycerin-saturated conditions.

12) Saturation with water at a low differential pressure.

13) Steps 6 to 8 are repeated as much as necessary for the water-saturated conditions,
with the addition of the permeability measurement just before step 8 (Figure 3.10).

57



CHAPTER 3. EXPERIMENTAL PROTOCOL

58



Part II

Dispersion and attenuation
measurements in limestones.
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CHAPTER 4

OOLITIC GRAINSTONE FROM LAVOUX

4.1 Résumé

Le calcaire Lavoux est un grainstone oolitique provenant du Dogger dans une carrière au
Sud-Ouest du bassin parisien. Il est pure calcite, est a une distribution de tailles de pores
bimodale, avec de la microporosité intragranulaire et de la macroporosité intergranulaire.
La porosité est d’environ 23% pour une perméabilité de 10 mD. Les modules élastiques
se sont montrés insensible à la pression effective entre 2.5 et 20 MPa. Seuls les résultats à
2.5 MPa seront discutés. Les fréquences sont discutées en termes de fréquences apparentes
normalisées à l’eau.

La transition drainé / non-drainé est observée autour de 200 Hz, avec dispersion et
atténuation des modules K, E, et ν. Le module K déduit des oscillations axiales se com-
pare bien à celui mesuré par les oscillations hydrostatiques, en termes de disperion et
d’atténuation. La théorie de Biot-Gassmann est en accord avec les résultats, d’autant plus
que le module G s’est avéré non-dispersif, ce qui était prédit par la théorie.

Les mesures ultrasoniques donnent des valeurs de modules élastiques similaires aux
résultats non-drainés, suggérant l’absence de toute autre transition dispersive, tel que
l’écoulement crack-pore. Cela rejoint l’observation d’insensibilité à la pression effective
qui suggérait l’absence de fissures. Si l’on extrapole aux mesures de terrain, cette roche
serait non-dispersive car elle serait en régime non-drainé quelque soit la fréquence. Les
mesures sismiques, de diagraphie ou ultrasoniques seraient ainsi équivalentes.
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4.2. INDRODUCTION

4.2 Indroduction

Carbonate rocks can bear multiple pore-types that depend on textural depositions and
diagenetic processes (Lucia, 1995). It is of particular interest to identify the possible wave-
induced fluid flow that might occur between different pore types, if their respective com-
pressibilities are different and induce pressure gradients. Quarry limestones are good can-
didates to start investigating dispersion/attenuation effects, as they are generally monomin-
eralic, homogeneous, and are well documented as "reference" limestones. We selected a
pure calcite sample with solely two different pore types, intragranular microporosity and
intergranular macroporosity, exhibiting a clear bimodal porosity distribution.

4.3 Sample description

The studied sample is a Lavoux limestone that was quarried in Paris basin, and was ex-
tensively studied in the literature (e.g., Fabre and Gustkiewicz, 1997; Rasolofosaon and Zin-
szner, 2002; Youssef et al., 2008; Bemer and Lombard, 2010; Vincent et al., 2011; Zinsmeister,
2013). It is from Dogger age and is considered as an analogue to the White Oolitic For-
mation of Paris basin (Bemer and Lombard, 2010). It is a pure calcite oolitic grainstone
with intergranular macroporosity and intragranular microporosity (Figure 4.1). Mercury
porosimetry measurements confirm the presence of a connected bimodal porosity distribu-
tion with pore-entry diameters around 0.6 µm and 20 µm, which corresponds respectively
to the intra-oolite micropores and the inter-oolite macropores (Figure 4.2). Similar results
were obtained by Vincent et al. (2011) or Zinsmeister (2013). Moreover, the NMR unimodal
distribution results from Vincent et al. (2011) were interpreted as indicating a good con-
nectivity between the intragranular-micropore network and the intergranular-macropore
network. The study from Zinsmeister (2013) suggests that there are generally two families
of Lavoux limestones, with small grains or with large grains. Our sample can be considered
from the large grain family.

The porosity was measured around 23% from the triple-weight method, where the
sample’s mass is measured under three different conditions: dry, fluid-saturated and sus-
pended in the saturant. Image analysis of the SEM photomicrograph enables to evaluate the
proportion of macroporosity in the total porosity. A threshold was applied on the grayscale
of the photomicrograph to turn it into a binary image showing solely the macropores (Fig-
ure 4.3). The macropores’ proportion in the binary image, combined with the previous
experimental porosity, gives a contribution to the total porosity of 45% and 55% for the
macroporosity and the microporosity, respectively. The permeability was measured to be
around 10 mD, under water-saturated conditions, and shows no dependence to differential
pressure (Figure 4.4).

63



CHAPTER 4. OOLITIC GRAINSTONE FROM LAVOUX

A

B

A: Microporosity
B: Macroporosity

Figure 4.1: SEM photomicrograph of the Lavoux sample. The sample is a pure calcite grain-
stone composed of microporous oolites (marker A), surrounded by macropores (marker B).
The average size of the oolites is around 300 µm.

Figure 4.2: MICP analysis of a large grain Lavoux sample, exhibiting a bimodal porosity
distribution.
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Grayscale
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Macro-
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Micro-
porosity

Solid

No applied threshold Corresponding binary image 
with applied threshold

Figure 4.3: Determination of the proportion macroporosity/microporosity in the sample
from the grayscale analysis of the SEM photomicrograph. A threshold is applied on the
initial photomicrograph (Left), to create a binary image representing solely the macropores
(Right). The porosity of the macropores is calculated from the number of black pixels over
the total number of pixels of the image, evaluated at 10.35 %. With a total porosity of 23%
measured experimentally, the proportion of macroporosity over microporsity is therefore
around 45/55.
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Figure 4.4: Intrinsic permeability of the Lavoux sample as a function of differential pressure.
The measurements were obtained by Darcy’s law under water-saturated conditions. The
results show no dependence to the effective pressure.
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Figure 4.5: Ultrasonic results (1 MHz) at different differential pressures (Pdi f f = Pc− p f ) for
a) the bulk modulus (KHF) and b) the shear modulus (GHF), for dry-, water- and glycerin-
saturated conditions.

4.4 Results

4.4.1 Pressure dependence of the sample’s elastic properties

Ultrasonic measurements and the axial oscillations have been performed at differential
pressures from 2.5 MPa to 20 MPa, to check the pressure dependence of the elastic moduli.
The travel times measured for the Lavoux limestone are reported Table 4.1, along with the
deduced P-wave and S-wave velocities and high-frequency moduli KHF and GHF (Equation
3.15). KHF and GHF for dry-, water- and glycerin-saturated conditions as a function of
differential pressure are represented in Figure 4.5. No variation in pressure is to be noted.
KHF is constant at about 14.5 GPa, 21.5 GPa and 25.5 GPa, respectively for the dry-, water-
and glycerin-saturated conditions. We can see that the fluid nature strongly affects the
high-frequency bulk moduli. On the other hand, GHF remains constant at 9.5 GPa, with no
sensitivity to the fluid nature.

For the axial oscillations at different pressures, the Young’s modulus (E) and Poisson’s
ratio (ν) results measured at 5× 10−2 Hz, 10−1 Hz and 5 Hz are presented Figure 4.6. Again,
no dependence to differential pressure is observed, either for Young’s modulus (Figure 4.6a)
or Poisson’s ratio (Figure 4.6b). Under dry conditions, no dependence to f is observed.
Under glycerin-saturated conditions, nearly no dependence to f is observed on E (Figure
4.6a), but a large one is observed on ν (Figure 4.6b).

We can conclude that, similarly to the permeability, the elastic properties of the Lavoux
limestone seem to not depend on the differential pressure. Therefore, in the following,
all the results will be presented solely for a differential pressure of 2.5 MPa, and can be

66



4.4. RESULTS

Saturating fluid Pdi f f (MPa) tP (µs) tS VP (m s−1) VS KHF (GPa) GHF
2.5 23.0 38.5 3520 2103 14.0 9.6

DRY 5 22.4 38.0 3614 2131 15.4 9.8
ρsample = 2160 kg.m−3 10 23.0 38.0 3520 2131 13.7 9.8

15 22.4 38.0 3614 2131 15.1 9.8
20 22.5 38.0 3598 2131 14.9 9.8

WATER 2.5 21.4 40.8 3783 1984 21.7 9.4
ρsample = 2391 kg.m−3 10 21.5 40.6 3766 1994 21.2 9.5

2.5 20.6 42.3 3930 1914 25.9 9.0
GLYCERIN 5 20.4 42.2 3969 1918 26.5 9.0

ρsample = 2448 kg.m−3 10 20.8 42.0 3892 1928 25.0 9.1
15 20.7 41.6 3911 1946 25.1 9.3
20 20.6 41.4 3930 1956 25.3 9.4

Table 4.1: Ultrasonic measurements (1 MHz) on the Lavoux limestone under dry-, water-
and glycerin-saturated conditions. The travel times tP and tS were corrected from the travel
times in the end-platens. The length of the sample is 80 mm. KHF and GHF are deduced
from Equation 3.15.
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Figure 4.6: Axial oscillations results at different differential pressures (Pdi f f = Pc− p f ) for a)
Young’s modulus (E) and b) Poisson’s ratio (ν). The results for dry and glycerin-saturated
conditions are presented, for 0.05 Hz, 0.1 Hz and 5 Hz.
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considered as independent of differential pressure.

4.4.2 Axial-stress oscillations results at Pdi f f = 2.5 MPa

The dispersion and attenuation results from the axial and the hydrostatic oscillations under
dry-, water- and glycerin-saturated conditions are presented Figures 4.8-4.7. The results are
represented as a function of an apparent frequency f ∗ = f .(η f luid/ηwater) to take into ac-
count the effect of the fluid’s viscosity, with water as the reference fluid (ηwater = 10−3 Pa.s).
For dry conditions, the viscosity of air is considered at about ηair = 10−5 Pa.s. The Q−1

factors results are calculated from the “Ellipse" method and are systematically compared
to Zener’s viscoelastic model. The measurements are done with the valves of the drainage
circuit open (Figure 3.2a), i.e. in drained boundary conditions, with a pore pressure of
p f = 2 MPa.

The Young’s modulus and Poisson’s ratio dispersion and attenuation results from the
axial oscillations at Pdi f f = 2.5 MPa are presented Figure 4.8. The Young’s modulus (E)
is constant around 22.5 GPa between 10−3 Hz and 102 Hz, with a good agreement be-
tween the dry-, water- and glycerin-saturations (Figure 4.8a). Then, E increases slightly
between 102 Hz and 103 Hz from 22.5 GPa to 24 GPa (Figure 4.8a). The factor Q−1

E results
are consistent with the dispersion data: no attenuation under 102 Hz, a small peak around
Q−1

E = 0.025 at 3 102 Hz, and no more attenuation beyond 103 Hz (Figure 4.8b). Moreover,
the results are in good agreement with Zener’s model, using the parameters M0 = 22.5 GPa,
M1 = 24 GPa and fc = 220 Hz (Figure 3.5).

Similarly to E, the Poisson’s ratio (ν) below 102 Hz shows no dispersion, but a slight
disagreement subsists between the dry- (ν = 0.25), and the water- and glycerin-saturated
results (ν = 0.275) (Figure 4.8c). Then ν increases from 0.275 to 0.35 between 5 101 Hz
and 103 Hz (Figure 4.8c), in correlation with a Q−1

ν peak of 0.08 at around 3 102 Hz (Figure
4.8d). For this case, Zener’s model seems to over predict the attenuation. The Zener peak
is around 0.13 at 3 102 Hz, with the parameters M0 = 0.275 and M1 = 0.35. (Figure 4.8d).

Assuming isotropic conditions, the dispersion and attenuation results of the bulk mod-
ulus and the shear modulus, deduced from E and ν, are presented Figure 4.9. The bulk
modulus deduced from the axial oscillations (Kax) shows a large dispersion from 16 GPa
to 26 GPa between f ∗ = 5 101 Hz and f ∗ = 103 Hz, visible under glycerin-saturated con-
ditions (Figure 4.9a). The corresponding attenuation peak reaches Q−1

Kax
= 0.225 around

f ∗ = 3 102Hz with a good fit with Zener’s model with the parameters M0 = 16 GPa and
M1 = 26 GPa. The shear modulus Gax shows no dispersion at all, with a constant value
around Gax = 9 GPa (Figure 4.9c). Consistently, the related attenuation Q−1

Gax
is nil through-

out the whole frequency range (Figure 4.9d).
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Figure 4.8: (a) Young’s modulus E, (b) Q−1
E , (c) Poisson’s ratio ν and (d) Q−1

ν resulting from
the axial oscillations at Pdi f f = 2.5 MPa, under dry, water and glycerin-saturated conditions.
The frequency is scaled with the viscosity of the saturating fluid η f luid. The factors Q−1

E
and Q−1

ν are compared to Zener’s model. The range for the drained/undrained cut-off
frequency f ∗1 is represented by the grey area.
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Figure 4.9: (a) Bulk modulus Kax, (b) Q−1
Kax

, (c) shear modulus Gax and (d) Q−1
Gax

deduced
from the results of the axial oscillations (Figure 4.8). Kax and Gax are deduced from E and
ν (Equation 3.3) under the assumption of an isotropic medium. Q−1

Kax
and Q−1

Gax
, deduced

from Equations 3.8 and 3.9, are compared to Zener’s model. The frequency is scaled with
the viscosity of the saturating fluid η f luid. The range for the drained/undrained cut-off
frequency f ∗1 is represented by the grey area.
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4.4.3 Hydrostatic oscillations results at Pdi f f = 2.5 MPa

The results of the purely hydrostatic oscillations at Pdi f f = 2.5 MPa are presented Figure
4.7. The measured bulk modulus Khyd shows a dispersion from 16 GPa to 25 GPa between
f ∗ = 2 101 Hz and f ∗ = 4 102Hz, visible under glycerin-saturated conditions (Figure 4.7a).
The related factor Q−1

Khyd
has a peak at about Q−1

Khyd
= 0.22 around f ∗ = 2 102 Hz and is nil

elsewhere (Figure 4.7b). The attenuation seems to compare well with Zener’s model with
the parameters used previously for Kax (M0 = 16 GPa, M1 = 26 GPa) (Figure 4.7b).

4.4.4 Uncertainty analysis

For the hydrostatic oscillations, the uncertainty on the bulk modulus measurements (δK)
depends on the confining pressure uncertainty (δP), and the uncertainty of the strain mea-
surements (δε). From Equation 3.1, the relative uncertainty on K is given by:

δKhyd

Khyd
=

δP
P

+
δε

ε
. (4.1)

The pressure sensor of the confining cell is capable to measure pressure with a resolution
of δP = 0.001 MPa. The amplitude of the confining pressure oscillations being around
0.2 MPa, the relative uncertainty on pressure becomes δP/P = 0.005, which can be con-
sidered negligible. Therefore, the uncertainty on the bulk modulus highly depends on
the quality of the strain measurement. The higher the number of strain gauges, the lower
this uncertainty becomes. A total of n = 8 strain gauges were used (4 axial and 4 ra-
dial). When proceeding with the oscillations, the amplitude of the strain gauges may vary
slightly from one another. These variations could be related to the quality of the contact
between the strain gauge and the sample, or to small heterogeneities in the sample despite
being considered perfectly homogeneous. Although the orientation of the strain gauges
relatively to the vertical and horizontal axis can be determinant for axial oscillations, it
is irrelevant for hydrostatic oscillations on a isotropic medium. For the hydrostatic oscil-
lations at f = 0.004 Hz and Pdi f f = 2.5 MPa, the average of the 8 measured strain was
ε = 2.22 µm/m, with a standard deviation of std = 0.266. The error on the average strain
(δε) can be calculated from δε = std/

√
n = 0.094 µm/m. From Equation 4.1, we deduce

the relative uncertainty on Khyd for the hydrostatic oscillations: δKhyd/Khyd = 4.2%. This
corresponds to an error of about ± 0.3 GPa for Khyd.

The similar approach can be done to calculate the uncertainties for the axial oscillations
results. From Equation 3.2, we can deduce:

δE
E

=
δεalu

εalu
+

δεax

εax
and

δν

ν
=

δεrad

εrad
+

δεax

εax
. (4.2)

With 2 strain gauges measuring εalu, 4 measuring εax and 4 measuring εrad, the relative un-
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certainties on E and ν were found to be: δE/E = 12% and δν/ν = 8%. These uncertainties
corresponds to errors of ± 1.3 GPa for E and ± 0.01 for ν. We can then use Equation 3.3 to
propagate the error to Kax and Gax. This gives an error of ± 1.5 GPa for Kax, and ± 0.6 GPa
for Gax.

The presented methodology to calculate uncertainty does not take into account any
systematic error that would be due to the apparatus or the protocol. As shown by the
calibration measurements on a gypsum standard (Figure 3.7), it would appear that such
systematic error on the gypsum appeared negligible. However, we cannot exclude that the
quality of the strain gauge bounding might differ in quality depending on the rock type,
and might even degrade in time with long experiments, increasing the systematic error.

4.4.5 Comparison of the three methods used to infer Q−1

Q−1 factors of all the elastic properties deduced from the axial oscillations at Pdi f f =

2.5 MPa under glycerin-saturated conditions were also calculated using the “Sines" and
the “FFT" method. Those are compared to the previously presented results from the “El-
lipse" method (Figure 4.10). For E, Kax and Gax (respectively Figures 4.10a, 4.10c and 4.10d)
the three methods compare well over the experimental frequency range f ∈ [2 10−2 ; 5]Hz.
In case of ν (Figure 4.10b), the “FFT" and the “Ellipse" method are consistent with each
other, but not with the “Sines" method. The results obtained with the “Sines" method for
ν are unstable and give erratic results with data points off the chart (Figure 4.10b). The
“Sines" method shows also some slight inconsistencies with the other methods at 10−2 Hz
for E and Kax (Figures 4.10a and 4.10c). We can therefore conclude that only the “Ellipse"
and the “FFT" methods are reliable to calculate Q−1 in our case.

4.5 Discussion

4.5.1 The drained and undrained regimes

With respect to the cut-off frequencies (Equation 1.39), and especially the drained/undrained
cut-off frequency, a viscosity contrast for the fluid results in a shift in frequency of the tran-
sition. The results presented with the three different saturating fluids show a good conti-
nuity in scaled frequency (Figure 4.11). A slight discrepancy exists between the dry and
the water saturated conditions, the dry bulk modulus being about 2.5 GPa lower than the
water-saturated bulk modulus (Figure 4.11a). This discrepancy is seen in both the hydro-
static and the axial oscillations and seems larger then the uncertainties of the measurements
(Figure 4.11a). It is possible that this is related to a systematatic error on the strain gauges
after a long experiment, since the water-saturation measurements are done after the dry-
and the glycerin-saturated cycles.

The drained/undrained cut-off frequency ( f1) was experimentally measured around
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2 10−1 Hz in glycerin-saturated conditions, which is a frequency that is equivalent to 2 102Hz
in water-saturated conditions. Therefore, when studying dispersion and attenuation phe-
nomenon related to diffusion processes at different scales, the experimental frequencies can
be scaled by the dynamic viscosity of the fluid η (Pimienta et al., 2015a,b, 2016c; Spencer and
Shine, 2016). This has the major advantage to increase the apparent frequency range reach-
able by the experimental setup-up, in our case for the axial oscillations from 10−2 − 101 Hz
to 10−4− 104 Hz, and therefore characterize the dispersion of the sample over a much larger
frequency band.

Elastic moduli

The common elastic modulus we can extract from the hydrostatic and the axial oscillations
is the bulk modulus, respectively Khyd and Kax (deduced from E and ν). The comparison
between the dispersion and Q−1 of both moduli at Pdi f f = 2.5 MPa is presented Figure 4.11.
The hydrostatic and the axial results compare well over their overlapping frequencies, both
for the dispersion (Figure 4.11a), and for Q−1 (Figure 4.11b). This tends to validate our
hypothesis of an isotropic medium, and shows a good consistency between both forced
oscillation methods, for the drained and undrained regimes.

Using the measured permeability value (i.e. κ = 10−14 m2) and the dry bulk modulus
(i.e. Kd = 15 GPa), and assuming a diffusion length L in the sample between 40 mm and
80 mm, the expected cut-off frequency f ∗1 for the drained/undrained transition is between
102 Hz and 4 102 Hz. All the previous dispersions and Q−1 results are in agreement with
this frequency transition (Figures 4.8, 4.9, 4.7 and 4.11). The maximum Q−1 peaks for E,
ν, Kax and Khyd, and the dispersion slopes of the elastic moduli are systematically in the
expected range of f ∗1 (Figures 4.8, 4.9, 4.7 and 4.11).

The undrained elastic properties of a rock are generally deduced from the drained (or
dry) properties using Biot-Gassmann relations (Gassmann, 1951):

Ku = Kd +
K f

(
1− Kd

KS

)2

Φ +
((

1− Kd
KS

)
−Φ

)
K f
KS

and Gu = Gd, (4.3)

where Kd and Gd are respectively the drained bulk modulus and shear modulus, Φ the
porosity, K f the saturating fluid’s bulk modulus, KS the skeleton bulk modulus, Ku and
Gu respectively the undrained bulk modulus and shear modulus. The Biot-Gassmann
predictions for the bulk modulus with water- and glycerin-saturated conditions are pre-
sented in Figure 4.11a, using the parameters Kd = 15 GPa, Φ = 23%, K f−water = 2.21 GPa,
K f−glycerin = 4.36 GPa (Bridgman, 1931) and KS = 77 GPa, which is the bulk modulus of
calcite (Mavko et al., 2009). The predictions give an undrained bulk modulus with water
of Ku−wat = 20.8 GPa and with glycerin Ku−gly = 25.8 GPa. These results are consistent
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with the bulk modulus results independently obtained from the forced oscillations under
glycerin-saturated conditions (Figure 4.11a). Moreover, the shear modulus Gax deduced
from the axial oscillations is constant over the frequency range of the drained/undrained
transition (Figure 4.9c), which is again consistent with Biot-Gassmann’s theory.

Q−1 factors

The Zener viscoelastic model (Figure 3.5), used to calculate Q−1 from the modulus’ disper-
sion, gives accurate results for the Young’s modulus (Figure 4.8b), the bulk modulus (Fig-
ures 4.9b and 4.7b) and the shear modulus (Figure 4.9d). However, the model seems to over-
predict Q−1 for the Poisson’s ratio (Figure 4.8d), with a peak value of 0.13 instead of 0.09.
These results, added to similar observations in Fontainebleau sandstones (Pimienta et al.,
2015a), show the general good applicability of Zener’s model to the drained/undrained
transition.

In an isotropic medium, we previously showed that the bulk modulus and the shear
modulus can be deduced from axial solicitations, and that the bulk modulus gives con-
sistent results with the hydrostatic measurements in the drained and undrained regimes.
Therefore, the axial oscillations allows to measure all the moduli if we measure the axial
and the radial strains. The Young’s modulus Q−1

E and Poisson’s ratio Q−1
ν are directly mea-

sured from the phase shifts between the output signals σax, εax and εrad (Equation 3.7). We
presented a method to deduce the bulk modulus Q−1

Kax
and the shear modulus Q−1

Gax
from

different combinations of the previous output signals (Equation 3.9). It is therefore of great
interest to check the consistency of these Q−1 values with existing equations that give re-
lationships between Q−1 of all the different moduli. Our aim is to calculate Q−1

K and Q−1
G

from the measured Q−1
E and Q−1

ν . Such relationships have been given by Winkler and Nur
(1979), but with the hypothesis of a constant Poisson’s ratio ν. Pimienta et al. (2016a) intro-
duced a dispersive ν into Winkler and Nur (1979)’s equations, and obtained the following
relationship between ν, Q−1

ν , Q−1
E and Q−1

G :

Q−1
ν

[
ν + Q−1

G

(
(1 + ν) Q−1

E −Q−1
G

)]
= (1 + ν) Q−1

E − (1 + ν) Q−1
G . (4.4)

For our purpose, the previous equation can be turned into a second order polynomial on
Q−1

G :

−Q−1
ν

[
Q−1

G

]2
+ (1 + ν)

(
1 + Q−1

ν Q−1
E

) [
Q−1

G

]
+
(

νQ−1
ν − (1 + ν) Q−1

E

)
= 0, (4.5)

which admits two solutions that can be numerically calculated. The order of magnitudes
of these two solutions are around Q−1

G ∼ 0.01 and Q−1
G ∼ 10. The second solution being

unrealistic as it would give a phase shift between the stress and the strain of nearly π/2,
we keep only the first one. We then calculate the bulk modulus attenuation Q−1

K with the
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relationship from Winkler and Nur (1979):

Q−1
K =

3
1− 2ν

Q−1
E −

2 (1 + ν)

1− 2ν
Q−1

G . (4.6)

For the axial oscillations, in the frequency range of the drained/undrained transition
under glycerin-saturated conditions at Pdi f f = 2.5 MPa, the results for Q−1

K and Q−1
G de-

duced from Equations 4.5 and 4.6 are reported Figure 4.12, along with Q−1
Kax

and Q−1
Gax

obtained experimentally from the output signals with the "FFT" and the "Ellipse" method
(Equation 3.9, Figures 4.10c and 4.10d). The results show a general good match between the
two methods to calculate Q−1

K and Q−1
G . Q−1

K as deduced from Q−1
EEllipse

and Q−1
νEllipse

through
Equations 4.5 and 4.6, seems to be a bit lower than the direct experimental result, with a
value of 0.15 instead of 0.22 at f = 0.3 Hz (Figure 4.12). This error is solely related to the
small difference that was measured between Q−1

νEllipse
and Q−1

νFFT
(Figure 4.10b). Note that

Q−1
EEllipse

= Q−1
EFFT

(Figure 4.10a). We can therefore conclude that, in an isotropic medium and
for the drained/undrained transition, the axial oscillations allow to measure all moduli and
their respective Q−1 factors, either directly calculated from σax, εax and εrad (Equation 3.9),
or from the relationships relating ν, Q−1

E , Q−1
ν , Q−1

K and Q−1
G (Equations 4.5 and 4.6).

4.5.2 Absence of dispersion at higher frequencies

Once the drained and the undrained properties of the rock are clearly identified, one can
investigate the possible existence of other dispersive transitions at higher frequencies. This
concerns a possible unrelaxed (saturated isolated) regime.

No squirt-flow: absence of cracks?

Undrained/unrelaxed transitions can exist when local flows occur within the REV in the
undrained regime, for instance squirt-flows from compliant cracks to rounded pores (Mavko
and Jizba, 1991). The only high-frequency properties available to us in this study are the
ultrasonic results (1 MHz) reported Table 4.1. The high-frequency bulk modulus KHF for
dry-, water- and glycerin-saturated conditions are reported on Figure 4.11a. In dry condi-
tions, the ultrasonic result corresponds clearly to the drained properties. For water- and
glycerin-saturated conditions, the ultrasonic results show a good correspondence with the
undrained properties, or the Biot-Gassmann’s predictions (Figure 4.11a). We can conclude
that no distinct unrelaxed regime is expected beyond the drained/undrained transition for
this dual-porosity limestone. In the Lavoux limestone, the elastic moduli are independent
of the differential pressure (Figures 4.5 and 4.6), suggesting the absence of cracks. Con-
sistently, no squirt-flow is thus possible between cracks or from cracks to rounded pores.
This is corroborated by the sample’s permeability that is also independent of differential
pressure (Figure 4.4) (Guéguen et al., 2011).
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E , Q−1
ν and ν (Equations 4.5 and 4.6).
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No local diffusion between the microporosity and the macroporosity.

In a bimodal-porosity medium, question rises whether there could be a local diffusion be-
tween the macroporosity and the microporosity, delayed relative to the global diffusion,
due to a lower permeability of the micropores contained in the oolites. The macroporos-
ity of the Lavoux limestone being connected independently of the microporosity, we can
model this grainstone as a pile of spherical-microporous oolites, of diameters 100 µm to
500 µm, solely surrounded by macropores (Figure 4.13). The REV of the Lavoux would be a
volume containing a few oolites separated by macropores, as no heterogeneity larger than
the oolites seem to exist (Figure 4.1). At f = 1 MHz in saturated conditions, the ultrasonic
velocities of both the P-wave or the S-wave are greater than 1914 m s−1 (Table 4.1) corre-
sponding to a minimum wavelength of approximately 2 mm. This wavelength represents
a square area similar to half the area of the photomicrograph presented in Figure 4.1, con-
taining at least a dozen of oolites. Thus, we can safely assume that, during the propagation
of the ultrasonic P-wave and S-wave, the volume of the oscillating stress field is much larger
than the limestone’s REV. In the undrained regime, the pore-pressure is isobaric in the REV
(Gassmann, 1951), meaning that the fluid’s pressure in the macropores (p f−Macro) equals the
fluid’s pressure in the oolites’ micropores (p f−micro) (Figure 4.13).

Similarly to the drained/undrained transition characterized by the cut-off frequency f ∗1
(Equation 1.39) that concerns the global diffusion, a local cut-off frequency f ∗1 oolite could
characterize the fluid flow occurring locally from the oolites to the macropores. The per-
meability of the oolites κoolite should be lower than the total permeability of the sample
because of a much smaller pore-entry radius compared to the macropores (Figure 4.1). A
1D permeability model from Guéguen and Dienes (1989) can be used to have an estimation
of κoolite. The oolite’s microporous network is modeled as a set of pipes of variable radii
r and lengths λ, isotropically distributed (Figure 4.13). If we assume that all the pipes are
connected, with respect to the definition of percolation theory, Guéguen and Dienes (1989)
showed that the permeability of the medium can be given by:

κoolite =
r̄2

32
Φoolite. (4.7)

The porosity of the oolite Φoolite is calculated from the proportion of microporosity in the
total porosity, which was deduced from the SEM image analysis at about 55 % (Figure 4.3),
and the total porosity measured experimentally at about 23 %. If we consider all the micro-
porosity to be in the oolites and the total volume Vtot = VMacropores + Voolites, we can deduce
Φoolite = 14.2 %. The average radius r̄ is taken as the pore entry radius of the micropores
measured from the porosimetry measurements from Zinsmeister (2013), and corroborated
with the SEM photomicrograph (Figure 4.1), at about r̄ = 0.6 µm. Therefore, Equation 4.7
gives a permeability of κoolite = 1.6 10−15 m2, which is smaller than the sample’s global
permeability (κ = 10−14 m2). Now if we apply the drained/undrained cut-off frequency
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Figure 4.13: Model of the Lavoux, composed with spherical microporous oolites sur-
rounded by macropores. The global diffusion within the REV, and the local diffusion in the
oolites are represented. The oolites’ porosity (φoolite) is deduced from the experimental total
porosity (23 %), and from the ratio macroporosity/microporosity (45/55), calculated from
the photomicrograph’s analysis (Figure 4.3). A 1D pipe model (Equation 4.7) is used to cal-
culate the local permeability of the oolites (κoolite). The obtained results are: φoolite = 14.2 %
and κoolite = 1.6 10−15 m2. The calculated local permeability of the micropores (κoolite) is
smaller to the sample’s permeability measured experimentally (κ = 10−14 m2).
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to the oolite, with a diffusion length L of about 300 µm (Figure 4.13) and a drained bulk
modulus Kd taken as 15 GPa, we obtain f ∗1 oolite = 106 Hz in scaled frequency, which is far
above the cut-off frequency of the global diffusion ( f ∗1 = 2 102 Hz). This frequency mea-
sures the minimum time scale that allows total diffusion in the oolite, and therefore to
equilibrate the inner pore pressure p f−micro and the surrounding pore pressure p f−Macro

(Figure 4.13). Above f ∗1 oolite, no fluid exchange by diffusion is possible between the oolites
and the macropores.

The only measurement we have above f ∗1 oolite is the ultrasonic measurement in glycerin-
saturated conditions ( f ∗ = 109 Hz). The bulk modulus and shear modulus KHF−gly and
GHF−gly of the sample were found equal to their respective undrained values (Table 1,
Figure 4.9a and 4.9c). Therefore, no dispersion is visible around f ∗1 oolite, which suggests that
there is no flow between the oolites and the macropores in the undrained regime ( f ∗ > f ∗1 ).
This is consistent with the idea that the micropores and the macropores have similar aspect
ratios (ξ = 1), implying no pressure gradients to relax, and that the fluid is isobaric in
the REV because the sample is already in the undrained regime. If f ∗1 oolite had been less
than f ∗1 , one could imagine a “partially-undrained" regime, for a frequency between f ∗1 oolite

and f ∗1 , where the oolites are undrained while the macropores are still drained. A local
transition around f ∗1 oolite could then be expected with dispersion and attenuation.

4.6 Conclusion

The elastic moduli (E, ν, K and G) dispersion, and their associated Q−1 factors, have been
measured on a Lavoux limestone, using forced oscillation method and ultrasonic measure-
ments in a triaxial cell. The sample was measured under dry-, water- and glycerin-saturated
conditions, which enabled to extend the apparent frequency range of our measurements.
Two types of stress oscillations were performed: axial and hydrostatic.

The bulk modulus obtained from both the axial and the hydrostatic oscillations com-
pared well over their mutual frequency range, confirming the consistency of both methods
when applied on an isotropic material in the drained and undrained regimes. Therefore,
the axial oscillations enable to calculate all the moduli and Q−1 factors. The formalized
relationships between the Q−1 factors (Winkler and Nur, 1979; Pimienta et al., 2016a) are in
agreement with the experimental results, with the condition of a dispersive Poisson’s ratio.

The drained/undrained transition has been successfully characterized, with a disper-
sive effect on all the elastic moduli except for the shear modulus. The Q−1 factors were
also measured and correlate well with the measured dispersions. The dispersion on K and
G are consistent with Biot-Gassmann’s theory, either in the water-saturated or the glycerin-
saturated sample.

No other dispersive transitions is detected above the drained/undrained cut-off fre-
quency. We interpret this as an absence of squirt-flow due to the absence of cracks. This is
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corroborated by the fact that the elastic properties and the permeability are independent of
effective pressure. We conclude that both the intragranular micropores and intergranular
macropores are rounded pores (ξMacro = ξmicro = 1). The sample has a bimodal porosity
distribution. Local diffusion between the oolites’ micropores and the surrounding macro-
pores is however faster than the global diffusion. In other words, the cut-off frequency
of the global flow (drained/undrained transition) f ∗1 is lower than the theoretical cut-off
frequency of the local flow in the oolites f ∗1 oolite.

The drained/undrained transition is measurable in the laboratory. Its critical frequency
concerns a global diffusion process on a small length scale, which in our case is the size of
the sample L. In the field, with seismic or sonic logs, the global diffusion process would
occur within the scale of the wavelength, which is far larger than L for frequencies under
105 Hz. Therefore, at the seismic and sonic frequencies, the medium would always be in
the undrained regime and be non dispersive. This would not be the case if an open, or
drained, boundary condition would exist, for example a permeable fault.

83



CHAPTER 4. OOLITIC GRAINSTONE FROM LAVOUX

84



CHAPTER 5

BIOCLASTIC GRAINSTONE FROM INDIANA: INTACT AND
AFTER THERMAL CRACKING.

5.1 Résumé

Le calcaire d’Indiana est un grainstone bioclastique provenant d’une carrière de Bedford,
Indiana (Etats-Unis), d’âge Mississipien. Il est composé essentiellement de fragments de
fossiles, ou d’ooides, avec l’espace intergranulaire presque exclusivement rempli de ciment
calcitique. Les grains sont microporeux, et peu de macropores sont visibles dans l’espace
intergranulaire. Il a été sélectionné en complément du Lavoux, car d’après la bibliographie,
l’Indiana est sensible à la pression effective suggérant la présence de fissures. La porosité a
été mesuré à environ 11.4% pour une perméabilité d’environ 0.02 mD.

Après avoir caractérisé les effets de fréquences dans l’échantillon intact, l’effet d’un
craquage thermique à 500°C sur la dispersion des modules a été étudié. Seuls les mod-
ules K et ν ont été présentés due à un défaut de mesure de contrainte axiale. Le craquage
thermique a sensiblement diminué le module d’incompressibilité de la roche, tout en aug-
mentant sa dépendance en pression, qui s’explique par la création de nouvelles fissures.

Les fréquences sont discutées en termes de fréquences apparentes normalisées à l’eau.
Dans les deux cas, intact et après craquage thermique, la transition drainé / non-drainé,
visible en saturation à l’eau, se situe autour de 0.1 Hz et est en accord avec Biot-Gassmann,
quelque soit la pression effective. Dans le cas intact, les mesures ultrasoniques sont supérieures
aux résultats non-drainés suggérant la présence d’une transition d’écoulement crack-pore
entre 104 et 106 Hz. En revanche, cette dispersion n’a pu être observée directement car les
oscillations forcées ont permis de mesurer une fréquence maximale de 103 Hz. Après le
craquage thermique, la fréquence de cette seconde transition a diminué autour de 100 Hz,
ce qui a permis de l’observer expérimentalement.
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5.2 Indroduction

We previously observed that in the bimodal oolitic grainstone Lavoux, no dispersion is sus-
pected to occur in the field, as the saturating-fluid, within the grain’s micropores and sur-
rounding macropores, is isobaric up to ultrasonic frequencies. The elastic properties were
nearly pressure-independent up to 20 MPa, suggesting the absence of any compliant poros-
ity that could have generated squirt-flow (Dvorkin et al., 1995). The second sample we chose
is an Indiana limestone, which is also originated from a quarry, but was known to presented
pressure-dependent elastic properties (Vajdova et al., 2004). We investigated the frequency
effects first in an intact sample. Then, we decided to thermally crack the same sample to
investigate a high crack-density material and compare the dispersion/attenuation results
with the original sample.

5.3 Sample description

The Indiana limestone is a pure calcite bioclastic limestone that comes from Bedford, Indi-
ana, of Mississippian age. It may also be known as the Salem or Spergen limestone (Fossum
et al., 1995). Its mechanical properties have been extensively studied in the literature (Brace
and Riley, 1972; Michalopoulos and Triandafilidis, 1976; Hart and Wang, 1995; Vajdova et al.,
2004; Zhu et al., 2010; Ji et al., 2012). It is essentially composed of fossil fragments and ooids,
with calcite cement between the grains (Figure 5.1). According to Fossum et al. (1995), the
calcite distribution is about 69% of fossiliferous calcite and 31% of cement calcite, which
seems consistent with the SEM photomicrograph of our own sample (Figure 5.1). The grain
sizes can go up to 300 µm and are poorly sorted (Figure 5.1). The sample is assumed to be
isotropic.

The total porosity of our sample has been estimated by triple-weight method to be
around 11.4%. The mass density of the dry sample is around Ddry = 2348 kg.m−3. It is
characterized by some intergranular macroporosity and intragranular microporosity. An
image analysis of the SEM photomicrograph can enable us to calculate the proportion of
macropores and micropores (Figure 5.2). A threshold is applied to the grayscale of the
photomicrograph to isolate the macropores as a binary image (Figure 5.2). The 2D porosity
of macropores is estimated around 5.4%, which suggests a distribution between macro- and
micropores of 47/53.

After the sample’s elastic moduli have been fully studied, the same sample has been
thermally cracked in an oven, following the procedure described by Johnston and Toksöz
(1980). The temperature was progressively increased to 500°C and was maintained for 1
hour in order to leave sufficient time for outgassing. According to Rodriguez-Navarro et al.
(2009), with measurements done on Iceland spar single crystals, the thermal decomposition
of calcite (CaCO3) into calcium oxide (CaO) and carbone dioxide (CO2) starts around 600°C
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500 µm

Figure 5.1: SEM photomicrograph of the Indiana limestone.

with a very low degree of conversion, and is complete after 850°C. Therefore, we assume
that our thermally cracked sample has no change in mineralogy. The sample was then
naturally cooled down to room temperature and re-instrumented with new strain gauges.

For both the intact and the thermally cracked sample, Mercury Injection Capillary Pres-
sure (MICP) results exhibit a unimodal pore-entry size distribution, with a maximum peak
around 0.5 µm that corresponds to the microporosity (Figure 5.3). The macropores visible in
the SEM photomicrograph (Figures 5.1 and 5.2) are not detected by the MICP analysis sug-
gesting that they do not constitute an independent connected network like in the Lavoux
limestone. In other words, the fluid accesses the macropores solely by going through mi-
cropores or cracks. The measurements on the thermally cracked sample seems to detect
slightly higher pore-entry diameters (Figure 5.3b), with a higher total volume injected (Fig-
ure 5.3a). This could just be due to heterogeneity between the two different fractions of
the plug that were sliced out to do the measurements. The slices were 40 mm diameter for
only several millimeters height. However, two small peaks seem to be distinguishable in
the thermally cracked sample, which was not the case for the intact sample (Figure 5.3).
This could be due to the new population of cracks.

5.3.1 Permeability

The permeability as a function of differential pressure of the two samples have been mea-
sured by Darcy flow with water. The results are presented Figure 5.4. The permeabil-
ity does not substantially change between the intact sample and the thermally cracked
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500 µm

No applied threshold
Corresponding binary image 

with applied threshold

Grayscale

Threshold

Figure 5.2: Image analysis of the SEM photomicrograph of the Indiana limestone to de-
termine the proportion of macropores versus micropores. A threshold is applied to the
grayscale of the original image (left) to obtain a binary image (right) where solely the
macropores are present.

Figure 5.3: Pore-entry size distribution of the intact Indiana sample obtained from MICP.
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Figure 5.4: Permeability measurements of the Indiana sample intact and after the thermal
cracking at 500°C for 1 hour. The measurements were done by Darcy flow under water-
saturated conditions.

sample, with a difference less than 1× 10−17 m2 at Pdi f f = 2.5 MPa and no difference at
Pdi f f = 20 MPa (Figure 5.4). Both samples’ permeability show a small dependence to dif-
ferential pressure that could be linked to the closure of microcracks. With the differential
pressure increasing from 2.5 MPa to 20 MPa, the permeability decreased from 2.2× 10−17 m2

to 1.5× 10−17 m2 for the intact sample and from 2.7× 10−17 m2 to 1.5× 10−17 m2 for the ther-
mally cracked sample (Figure 5.4). The samples properties are summarized in Table 5.1 for
unconfined conditions.

Indiana Intact Thermally cracked
Φ(%) 11.4 11.4

Ddry (kg.m−3) 2348 2348
κ (m2) 2.2× 10−17 2.7× 10−17

ξ̂ 1.8× 10−4 1.4× 10−4

ρ 0.22 0.99
Kd (GPa) 20 6
f ∗1 (Hz) 0.25 0.1
f ∗2 (Hz) 420 230

Table 5.1: Unconfined properties of the Indiana sample intact, and after thermal crack-
ing. Kd is the dry dynamic moduli estimated from the hydrostatic oscillations. The
drained/undrained and undrained/unrelaxed (squirt-flow) cut-off frequencies, respec-
tively f ∗1 and f ∗2 (Equation 1.39), are valid for water-saturated conditions.
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Figure 5.5: Static bulk modulus analysis of the Indiana sample intact and after thermal
cracking.

5.3.2 Static bulk modulus

The hydrostatic stress-strain curve and the pressure dependence of the static (tangent) bulk
modulus of the Indiana sample before and after thermal cracking are presented Figure
5.5. The pore collapse pressure P∗ of a 18% porosity Indiana limestone was measured to
be around 60 MPa by Vajdova et al. (2004). For both our samples, the maximum confining
pressure was Pc = 30 MPa. The hydrostatic loading started at 2.5 MPa. Both samples
exhibit a typical crack-closure behavior, much more pronounced for the thermally cracked
sample, with a crack-closing phase at low pressure before reaching a linear elastic phase
(Figure 5.5a). Therefore, the static bulk modulus of each sample, respectively Kin and Kth

for the intact and thermally cracked, increases with pressure before tending to a constant
maximum value (Figure 5.5b). Kin increased from 15 GPa to 27.5 GPa. With larger strains
observed for the thermally cracked sample (Figure 5.5a), Kth is much lower than Kin at all
the measured pressures, and increased from 2.5 GPa to 18 GPa (Figure 5.5b).

To deduce the crack density (ρ) and crack aspect ratio (ξ̂) of the samples, we applied
Morlier’s method which consists on fitting the pressure-dependence of the dry bulk mod-
ulus in order to deduce crack aspect ratio distributions and porosities (Morlier, 1971; Jaeger
et al., 2009). This method is similar to Walsh (1965). The method will be very detailed
in a following chapter (Chapter 10) dedicated to the effective medium approach to model
frequency effects. The results obtained for the Indiana intact and after thermal cracking
give respectively a crack density of 0.20 and 0.99, for crack aspect ratios of 1.8× 10−4 and
1.4 × 10−4. This corresponds to crack total porosities of 0.016% and 0.06% respectively
(Chapter 10).

From the measurements of the permeability and the characterization of the microcracks,
we can have a first estimation of the cut-off frequencies of the drained/undrained transi-
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INDIANA Intact Thermally cracked
Pdi f f (MPa) VP (m s−1) VS KHF (GPa) GHF VP (m s−1) VS KHF (GPa) GHF

2.5 4061 2439 20.3 14.1 2572 1642 7.1 6.3
5 4348 2556 24.2 15.5 2758 1785 7.9 7.5

DRY 10 4494 2564 27.1 15.6 3065 1918 10.5 8.6
20 4762 2658 31.5 16.8 3375 2127 12.6 10.6
30 4878 2667 34.0 16.9 3493 2228 13.1 11.7
2.5 4848 2548 37.1 16.2 3721 1965 21.5 9.5

WAT 5 4908 2589 37.8 16.7 3756 1999 21.7 9.9
10 4938 2597 38.4 16.9 3864 2025 23.4 10.1
20 4969 2606 39.1 17.0 3980 2066 25.1 10.5
2.5 4967 2548 40.6 16.4 4519 2331 32.9 13.6

GLY 5 5031 2597 41.3 17.1 4545 2325 33.6 13.5
10 5063 2632 41.5 17.5 4597 2345 34.5 13.7
20 5096 2649 42.0 17.8 4651 2401 34.8 14.4

Table 5.2: Results of the ultrasonic measurements on the intact and thermally cracked
Indiana limestone.

tion by f ∗1 = 4κKd/ηL2, and the undrained/unrelaxed transition related to squirt-flow by
f ∗2 = ξ̂3KS/η (Equation 1.39). With Kd taken as the dry dynamic moduli measured by the
hydrostatic oscillations, and L taken as the samples’ lengths (80 mm), f ∗1 is estimated at
0.25 Hz and 0.1 Hz respectively for the intact and thermally cracked sample, which is in the
same order of magnitude. With KS = 77 GPa for the skeleton modulus (Mavko et al., 2009),
and ξ̂ the aspect ratio estimated from Morlier’s method (see Table 5.1) (Morlier, 1971), f ∗2
is estimated around 420 Hz and 230 Hz respectively for the intact and thermally cracked
sample.

5.3.3 High-frequency ultrasonic results

The ultrasonic P- and S-wave velocities were measured in the axial direction of the sam-
ple. The corresponding frequency is 1 MHz. The measured travel times in the apparatus
are corrected from the travel times in the endplatens. The high-frequency bulk modulus
(KHF) and shear modulus (GHF) are deduced from Equation 3.15. The obtained results are
presented Table 5.2.

In dry conditions, the moduli of the intact and thermally cracked sample show a
clear dependence to the differential pressure. The pressure sensitivity disappears in fluid-
saturated conditions, either for the high-frequency bulk modulus (KHF) or shear modulus
(GHF) (Table 5.2).

92



5.4. LOW-FREQUENCY DYNAMIC MODULI

5.4 Low-frequency dynamic moduli

The low-frequency dynamic moduli of the Indiana sample intact and after thermal cracking
have been studied under dry, glycerin-saturated and water-saturated conditions at different
differential pressures. The measurements were done in the Top Industrie apparatus. The
boundary conditions at both ends of the sample were drained (large dead volumes includ-
ing volumes of the pumps). The attenuation were all calculated by the "FFT" method.

5.4.1 Bulk modulus from hydrostatic oscillations

Hydrostatic oscillations were performed within the frequency range of [0.01; 1]Hz, at the
differential pressures of [2.5; 5; 10; 20; 30]MPa. The pressure amplitude of the oscillations
were around 0.2 MPa, for resulting linear strains between 10−6 and 10−5. The full set of
results are presented Figure 5.6. From Equation 4.1, the uncertainty due to the averaging of
strain gauges was around ∆K/K = 1.45% for the intact sample, and ∆K/K = 4.35% for the
thermally cracked one. The apparent frequency ( f ∗ = f × η f l/10−3) is the frequency nor-
malized by the viscosity of the fluid, taking water as the reference fluid (ηwat ≈ 10−3 Pa.s).
It has the effect of shifting the glycerin-saturated measurements to higher frequencies by
a factor 103, and the dry measurements to lower frequencies by a factor 10−2. This en-
ables to compare the glycerin-saturated and the water-saturated measurements as if they
were the same fluid in terms of mobility, but with different compressibilities. The total
apparent frequency range measured becomes [10−4; 103]Hz, although the shift of the dry
measurements is simply a visual aid as no fluid-related dispersion can be expected from
dry conditions.

From the hydrostatic oscillations, the bulk modulus of the intact sample exhibits one
dispersive frequency range between 10−2 Hz and 1 Hz visible under water-saturated con-
ditions (Figure 5.6a), correlated with attenuation (Figure 5.6b). As the dry bulk modulus
increases from 21 GPa to 34 GPa with increasing differential pressure, the amount of dis-
persion decreases. The attenuation peaks decrease from 0.19 to 0.06 with increasing dif-
ferential pressure, and are all centered around 0.1 Hz (Figure 5.6b). Zener’s viscoelastic
model adjusted to the dispersion (Equation 3.14), seems to overpredict the attenuation at
low pressure but is in agreement at high-pressure (Figure 5.6b). This dispersive transition
correlates well with the drained/undrained cut-off frequency f ∗1 = 0.25 Hz of the intact
sample (Table 5.1).

The bulk modulus of the thermally cracked sample exhibits two dispersive frequency
ranges between 10−2 Hz and 1 Hz visible under water-saturated conditions, and between
10 Hz and 103Hz visible under glycerin-saturated conditions (Figure 5.6d). Both transitions
are consistent with the attenuation measurements, with the presence of two peaks around
8× 10−2 Hz and 102 Hz (Figure 5.6e). Zener model seem to apply well for the first transi-
tion, but over estimates the attenuation of the second Zener’s viscoelastic model adjusted
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Figure 5.6: Results of the hydrostatic oscillations on the Indiana limestone before and after
thermal cracking.
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to the dispersion (Equation 3.14), seems to overpredict the attenuation at low pressure but
is in agreement at high-pressure. With the increase of the differential pressure, the dry
bulk modulus increases from 6 GPa to 20 GPa, and the amount of dispersion decreases for
both transitions. With increasing differential pressure from 2.5 MPa to 30 MPa, the first
attenuation peak decreases from 0.3 to 0.1, and the second peak decreases from 0.25 and
tends rapidly to 0 just above Pdi f f = 10 MPa (Figure 5.6e). Moreover, the frequency of
the second attenuation peak seem to slightly decrease with increasing differential pres-
sure (Figure 5.6e). The first transition correlates well with the drained/undrained cut-off
frequency f ∗1 = 0.1 Hz, and the second transition with a undrained/unrelaxed cut-off fre-
quency f ∗2 = 230Hz related to squirt-flow.

Despite the experimental drained boundary conditions achieved with large dead vol-
umes, a pore pressure oscillation (∆Pp) was detectable in the drainage tubes, and a non nil
"pseudo-Skempton" coefficient (B∗) could be calculated by B∗ = ∆Pp/∆Pc for both samples
(Figures 5.6c and 5.6f). For both the intact and the thermally cracked sample, B∗ decreases
to 0 between 0.01 Hz and 1 Hz, which is perfectly consistent with the drained/undrained
transitions of both samples. Indeed, a pore pressure oscillation in the drainage system can
only be detected if the sample is drained or partially drained (Pimienta et al., 2016b). An
undrained regime, by definition, is a closed boundary condition where the fluid cannot
diffuse out of the sample, and therefore no pressure buildup can be measured by the pore
pressure sensor.

5.4.2 Poisson’s ratio from axial oscillations

After the hydrostatic oscillations are performed at a given differential pressure, the piston
of the triaxial cell is lowered to be in contact with the piezoelectric oscillator and the axial
oscillations up to 100 Hz were performed, which gives a maximum apparent frequency
of 105 Hz for the glycerin-saturated conditions. The measurements were done prior to
the modification of the aluminium endplaten (Figure 3.6), preventing us to have a proper
measurement of the axial stress during the oscillations. Solely the sample’s Poisson’s ratio
could be directly measured with the sample’s remaining axial and radial strain gauges. The
dispersion and attenuation of the Poisson’s ratio are presented Figure 5.7. From Equation
4.2, we deduce an average relative uncertainty of ∆ν/ν = 2.7% for the intact sample, and
∆ν/ν = 5.2% for the thermally cracked one.

The intact sample exhibits not much dispersion at the measured frequency range, with
a value around 0.28 for dry and water-saturated conditions (Figure 5.7a). A slight increase
is observed in water-saturated conditions around 0.1 Hz, which is consistent with the high-
frequency end of the drained/undrained transition (Figure 5.7a). The related attenuation,
is consistent with the dispersion, exhibiting a peak around 0.06 at 0.1 Hz, and decreasing
to 0 at higher frequencies (Figure 5.7b). The attenuation is in agreement with Zener model
(Equation 3.14). The drained/undrained cut-off frequency is consistent with the observed
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Figure 5.7: Frequency dependence of Poisson’s ratio and respective attenuation measured
on the intact and the thermally cracked Indiana limestone from axial oscillations.
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transition (Figures 5.7a and 5.7b). In dry and water-saturated conditions, the Poisson’s
ratio did not seem to be sensitive to the differential pressure, going up 5 MPa to 30 MPa.
On the other hand, in glycerin-saturated conditions, a slight dependence to the differential
pressure was observed, with a Poisson’s ratio increasing from 0.3 to 0.34 between Pdi f f =

5 MPa and Pdi f f = 30 MPa (Figures 5.7a and 5.7b). No dispersive transition is observed
around the squirt-flow frequency f ∗2 = 420 Hz deduced previously (Table 5.1).

The dispersion and attenuation of the Poisson’s ratio of the thermally cracked sample
are presented Figures 5.7c and 5.7d. The minimum frequency measured was around 1 Hz
as our objective was to observe high-frequency effects such as squirt-flow. Therefore, the
drained/undrained transition could not be observed from the axial oscillations. First, the
differential pressure has nearly no effect on the observed measurements, with a slight vari-
ation of the dry Poisson’s ratio from ν = 0.16 at Pdi f f = 5 MPa to ν = 0.2 at Pdi f f = 30 MPa.
The Poisson’s ratio of the thermally cracked sample exhibits dispersion from ν = 0.14
to ν = 0.35 between 1 Hz and 105 Hz, visible with water- and glycerin-saturated condi-
tions (Figure 5.7c). This transition is consistent with attenuation, with a peak of about
0.18 around 7× 102 Hz (Figure 5.7d). However, the Zener model predicts a much higher
peak value with a more narrow frequency range. Nevertheless, this dispersive transition is
centered around the squirt-flow cut-off frequency f ∗2 predicted previously (Table 5.1).

5.5 Discussion

5.5.1 Frequency-dependence of the bulk modulus due to different fluid-flow
regimes.

The frequency dependence of the dynamic bulk modulus over a large frequency range in
dry or fully-saturated conditions, by combination of ultrasonic measurements and low-
frequency oscillations with different viscous fluids, enables us to identify all the fluid-flow
regimes within the medium, and characterize their frequency ranges and their effect on
the elastic properties. For both the intact and thermally cracked sample, the results of the
dispersion of K over the full frequency range ([10−4; 109]Hz), for differential pressures of
2.5, 5, 10 and 20 MPa, are presented Figure 5.8. The corresponding static measurements
are also represented. Biot-Gassmann fluid substitution theory (Equation 4.3) is applied
on the dynamic dry bulk modulus to predict the undrained bulk modulus. The skeleton
bulk modulus was taken as 77 GPa (Mavko et al., 2009). Biot-Gassmann’s prediction was
calculated for the lowest differential pressure (Pdi f f = 2.5 MPa).

The general observation we make is that the Indiana limestone exhibits three fluid-flow
regimes: the drained, the undrained and the unrelaxed regimes, either for the intact or the
thermally cracked sample (Figure 5.8).

Both samples exhibit the drained/undrained transition around the predicted cut-off
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Figure 5.8: Static and frequency-dependent dynamic bulk modulus of the Indiana limestone
intact (a) and after the thermal cracking (b), for four different differential pressures in fully-
saturated conditions. The results combine the hydrostatic-stress oscillations results with the
ultrasonic and static measurements.
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frequency f ∗1 , as the saturated bulk modulus tends to the dry result when decreasing the
frequency. At low and high differential pressure, for both samples, the undrained regime
is consistent with Biot-Gassmann’s prediction in water-saturated conditions (Figure 5.8).
The cut-off frequency of this transition shows no dependence to effective pressure, which
is perfectly with by the permeability measurements that show almost no dependence to
pressure (Figure 5.4).

For the dry intact sample, there is a good match between the ultrasonic results and the
low-frequency dynamic results at every differential pressures (Figure 5.8a). The sample
is non-dispersive in the absence of a saturating fluid. In fluid-saturated conditions, the
ultrasonic measurements become nearly pressure-independent and fit with the undrained
high-pressure bulk modulus(Figure 5.8a). This suggests, that for low effective pressures
a second dispersive transition, corresponding to the undrained/unrelaxed transition, is
expected between 104 and 106 Hz. In the unrelaxed regime, the saturated cracks have a
similar response as filled-isolated inclusions, which increases the effective bulk modulus
of the medium close to the high-pressure modulus where the cracks are closed (Mavko
and Jizba, 1991; Adelinet et al., 2011; Pimienta et al., 2015a). The consistency with effective
medium theory shall be developed in a following chapter.

For the thermally cracked sample, the results from the ultrasonic measurements in fluid-
saturated conditions seem to always be lower than the hydrostatic-oscillation result, either
in dry or fluid-saturated condition (Figure 5.8b). This could be due to a non homogeneous
thermal cracking of the core, due to temperature gradients perpendicular to the surface for
example. The strain-gauges, limited to the surface, and the ultrasonic waves, propagating
in the center of the core, would therefore probe a different medium. However, experimen-
tal studies on pure glass from Ougier-Simonin et al. (2011) and Mallet (2014) showed that
transverse isotropy is mainly due to the thermal quenching after being heated, which was
not our case here. Nevertheless, similarly to the intact sample, the fluid-saturated ultra-
sonic measurements are weakly pressure-dependent, consistent with an unrelaxed regime
(Figure 5.8b).

For the intact sample in glycerin-saturated conditions, Biot-Gassmann predictions are
in good agreement with the measurements, but seems to slightly over-predict the mea-
surements at Pdi f f = 2.5 MPa (Figure 5.8a). For the thermally cracked sample, the same
observations can be made, but due to the low frequency-shift of the second transition with
increasing differential pressure, the high-pressure results in glycerin, visible in Figure 5.8b,
are to be considered in the unrelaxed regime, explaining why they are higher than Biot-
Gassmann’s high-pressure prediction. It would seem that the undrained regime is solely
visible, for glycerin-saturated conditions, for Pdi f f = 2.5 MPa and Pdi f f = 5 MPa. The
pressure-dependence of the undrained/unrelaxed cut-off frequency is noticeable, with a
decrease of 2 orders of magnitude with increasing pressure from 2.5 MPa to 20 MPa.
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5.5.2 Effect of the thermal cracking

The pressure dependence of the intact Indiana’s bulk modulus is associated to the pres-
ence of microcracks (Walsh, 1965), either for the static (Figure 5.5b) or the dynamic mod-
uli (Figure 5.6a). We attempted to observe the squirt-flow phenomenon related to these
cracks, either by hydrostatic or axial low-frequency oscillations. Despite a predicted cut-off
frequency of f ∗2 = 421 Hz, which is measurable from the axial oscillations under glycerin-
saturated conditions but not for the hydrostatic oscillations, no fluid-related dispersion nor
attenuation was observed on the Poisson’s ratio (Figure 5.7a). The attenuation observed
around 0.1 Hz (Figure 5.7b) is related to the drained/undrained transition as it is consis-
tent with the drained/undrained cut-off frequency ( f ∗1 = 0.25 Hz).

A clear effect of the thermal cracking was observed on the Indiana. The squirt-flow
transition was observed both with the hydrostatic and the axial oscillations under glycerin-
saturated conditions (Figures 5.7c and 5.8b), and exhibits more dispersion than intact. The
thermal cracking reduced both the static and the dynamic bulk moduli of the limestone at
every differential pressure. This reduction at low effective pressures, when the cracks are
open, can be explained by a higher crack density of ρ = 0.99 instead of ρ = 0.22 (Figure 5.8),
but we would have expected the high-pressure moduli to be identical if all the cracks are
closed. According to the static loading, the cracks should be all closed above 25 GPa (Figure
5.5). The thermal heating might have induced some damage into the rock’s matrix that
cannot be simply recovered by increasing the effective pressure. SEM photomicrographs
have been done on the Indiana sample before and after the thermal cracking to localize
the induced cracks. We selected images that are centered on random microporous grains
surrounded by cement and macropores. These images are presented Figure 5.9.

The major difference we can observe between the intact microstructure (Figures 5.9a-c)
and the thermally cracked one (Figures 5.9d-f) is the presence of cracks in the cement of the
latter. In the intact sample, we do not visually distinguish any cracks whatever the scale
(Figures 5.9a-c). The thermally induced cracks are essentially located in the blocky calcite
cement (Figures 5.9d-f), although we noticed that some grains, occasionally, possessed mi-
crocracks within (Figure 5.9d). It is noticeable that in a thin band of cement between two
grains, most cracks are oriented perpendicularly to the surfaces of these grains, with a clear
example visible in Figure 5.9d. On the other hand, in the center of a large intergranular
space, the cracks are more randomly oriented, and may even connect to separate rounded
grains of cement (Figure 5.9e). If the cement is damaged to some extent, debris might sep-
arate from the initial matrix and no longer support external stresses, similarly to cataclastic
failures during a triaxial test. This would explain the systematic difference between the
intact bulk modulus and the thermally cracked one, even at high pressure. Such cataclastic
failures of the cement of an Indiana limestone have been observed by Ji et al. (2012) during
a classic triaxial experiment.

Thermally induced cracking occurs when the stress exceeds the local strength of the
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Figure 5.9: SEM images of the Indiana sample, intact (a-c) and after the thermal cracking (d-
f). The intergranular space is mainly filled with blocky calcite cement (letter C), and some
macropores. The thermally cracked sample exhibits microcracks (black arrows), mainly
located in the blocky calcite cement.
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rock (Lu and Jackson, 1996). Different mechanisms can lead to such stress concentration. In
polymineralic rocks, like granites, each mineral possesses a different thermal expansion co-
efficient. This induces a thermal expansion mismatch (Fredrich and Wong, 1986) and create
high local stresses. Thermal gradients are also known to create local stress even in homo-
geneous solids (Fredrich and Wong, 1986). The thermal expansion anisotropy of a mineral
can also induce microcracks in a monomineralic rock, and calcite is known to possess such
characteristic (Fredrich and Wong, 1986; Lu and Jackson, 1996). Calcite thermoelastic proper-
ties are highly anisotropic, with thermal expansion coefficients of α‖ = 26.4× 10−6/ °C for
the c-axis direction, and α⊥ = −5.3× 10−6/ °C for any direction perpendicular to the c-axis
(Lu and Jackson, 1996).

In addition to the previous mechanisms, one other factor that has to be taken into
account is texture (Homand-Etienne and Troalen, 1984). Several studies, on rocks or ceramics,
showed that thermal cracking can be grain-size dependent and that a minimal grain-size is
required (Evans, 1978; Fredrich and Wong, 1986; Laws and Lee, 1989). Therefore, the thermal
behavior of monomineralic carbonate rocks is conditioned by textural heterogeneity and
thermal expansion anisotropy.

Clear evidences of thermally induced cracks have been observed in homogeneous mar-
bles, such as Carrare limestone (Homand-Etienne and Troalen, 1984; Lu and Jackson, 1996), with
grain sizes of at least 300 µm. The main mechanism of microcracking was thermal expan-
sion anisotropy, which occured as soon as the temperature was increased (Homand-Etienne
and Troalen, 1984).

The study from Homand-Etienne and Troalen (1984) also investigated the response to
thermal heating of a heterogeneous Crepey oolitic limestone. Similarly to the Indiana
limestone of this study, the Crepey limestone was composed of different crystals of calcite
such as micrite in the grains and microsparites in the blocky cement. Homand-Etienne and
Troalen (1984) concluded that the largest crystals of microsparite were clearly the most
responsive to thermal cracking compared to the micrite, as they occur at the periphery of
intergranular pores where they can expand.

In a study by Lion et al. (2005), an oolitic limestone from Anstrude, France, has been
subjected to thermal heating up 250°C to study the effects on the hydraulic and poroelas-
tic properties. Similarly to the Crepey and the Indiana limestone, the calcite is present as
different forms such as micrite in the grains or sparite in the cement. However, not much
thermally induced cracks were observed in the SEM photomicrographs, which might be ex-
plained by an insufficient temperature increase. Fredrich and Wong (1986) heated an Oakhall
oolitic limestone at least up to 500°C to observe some microcracks. The general consensus
between these studies is that monomineralic limestones with heterogeneous textures, such
as oolitic limestones, are not very sensitive to thermal heating when compared to homoge-
neous textures or polymineralic rocks.

In our study case, 500°C was a sufficient temperature to create microcracks in the blocky
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cement of the Indiana limestone, but no cracking was observed in the grains composed of
micrite. This is in agreement with the previous conclusion, as the micritic heterogeneous
texture of the bioclasts prevents the development of microcracks. The thermal expansion
is likely to be accommodated within the microporosity. Some small microcracks may exist
between micrite grains before the thermal treatment. Due to the random orientations and
the small size of the grains (< 5 µm), they would more likely accommodate the anisotropic
thermal expansion of the individual micrite grains rather than propagate into larger cracks.

5.6 Conclusion

The frequency dependence of dynamic elastic moduli (K and ν) have been measured over
a large frequency range ([10−4 ; 109]Hz) on an Indiana limestone at different effective
pressures, before and after thermal cracking at 500°C. In both cases, the Indiana limestone
exhibited three fluid-flow regimes, that correspond to the drained, the undrained and the
unrelaxed regimes. The undrained regime under water-saturated conditions was consistent
with Biot-Gassmann’s theory, either at low or high effective pressure.

The presence of an unrelaxed regime, with a bulk modulus higher than in the undrained
regime, is explained by squirt-flow between compliant cracks and more rounded pores. The
thermally cracked sample exhibited a more dispersive squirt-flow transition than the intact
sample, at lower frequencies. This observation was made both from hydrostatic and axial
oscillations, although the squirt-flow transition from the axial oscillations seem to have a
larger frequency range, but centered around the same cut-off frequency.

The additional cracks induced by the heating seem to localize essentially in the blocky
calcite cement around the grains. This is explained by the homogeneous texture due to
the microsparite that allowed nucleation and propagation of cracks. On the other hand,
the heterogeneous textures of the microporous bioclasts composed of micrite inhibited the
development of intragranular microcracks.
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CHAPTER 6

RUDIST DOMINATED URGONIAN LIMESTONE FROM
RUSTREL.

6.1 Résumé

Le troisième échantillon étudié est un calcaire Urgonien de Provence, qui provient d’un af-
fleurement à Rustrel. Le bloc a été prélevé dans un faciès à rudistes. L’intérêt particulier de
ces calcaires est qu’ils sont des analogues à certains réservoirs carbonatés du Moyen-Orient.
Sachant que les rudistes peuvent avoir des dimensions importantes (quelques centimètres),
nous nous sommes limités à un bloc homogène contenant seulement des grains fins, qui
équivaux à la matrice entourant les plus gros rudistes dans ces faciès. La porosité de
l’échantillon a été mesurée aux alentours de 14.9% pour une perméabilité d’environ 0.04
mD. La distribution de taille de pores est unimodale, avec principalement de la microp-
orosité intragranulaire. L’espace intergranulaire est entièrement cimenté. En revanche, le
ciment calcitique n’est pas entièrement cristallisé, ce qui laisse place à de la microporosité
intercristalline.

Les fréquences sont discutées en termes de fréquences apparentes normalisées à l’eau.
La transition drainé / non-drainé a été observée autour de 0.1 Hz, et est en accord avec
la prédiction de Biot-Gassmann, quelque soit la pression effective. En régime non-drainé,
aucune dispersion n’est observée jusqu’à 104 ,Hz. En revanche, les mesures ultrasoniques à
basse-pression semblent donner des modules élastiques légèrement supérieurs aux valeurs
non-drainées pouvant suggérer une seconde transition d’écoulement crack-pore. En re-
vanche, tout comme l’Indiana intact, cette dispersion n’est pas observable directement, et
devrait se situer au-delà de 105 Hz. Au vu de l’écart entre les modules non-drainés et
ultrasoniques, la dispersion reste néanmoins très faible.
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6.2 Indroduction

The Urgonian limestones from Monts de Vaucluse (Provence, France), are a good opportu-
nity to study close analogues to carbonate reservoir rocks on the east part of the Arabian
plate, such as the Kharaib and Shu’aiba Formations (Alsharhan and Nairn, 1997; Leonide
et al., 2012). The depositional context of the Barremian - lower Aptian carbonate platform
of Provence was very similar to the east-Arabic carbonate platform. Therefore the outcrop
limestone are found to be good analogues in terms of age, facies, or reservoir properties
(Borgomano et al., 2002; Fournier et al., 2011; Borgomano et al., 2013). Urgonian carbonates
are an opportunity to follow the evolution of wave velocities with diagenetic evolution of
the pore space, with three main categories: by increasing stiffness 1) purely microporous,
2) preserved intergranular and moldic, 3) vuggy (Fournier et al., 2014). A large dataset
of ultrasonic wave velocities has been done by Fournier et al. (2014), and showed some
substantial dependence to confining pressure for the more compliant intercrystalline mi-
cropores, whereas the moldic pores were stiff and less sensible to pressure. For the study
of frequency effects and potential squirt-flow related to relative compliant porosities, we
selected a sample mainly microporous with pressure-dependent elastic properties.

6.3 Sample description

The sample comes from a lower cretaceous carbonate platform outcrop in SE of France,
corresponding to the barremian-lower Aptian succession in the Monts de Vaucluse (Leonide
et al., 2012), which is part of the Urgonian Limestone Formation. The sample was cored
in a block that came from Rustrel (Figure 6.1), in an outcrop identified as "Les Antennes"
(N43.926516°,E5.502709°) in the studies of Leonide et al. (2012) and Léonide et al. (2014).

The block we retrieved from the outcrop "Les Antennes" presented some sparsely dis-
tributed rudists of around 1 cm size. The block’s original facies is identified as the Rudist
facies (FA6) in the studies of Leonide et al. (2012) and Fournier et al. (2014). The use of 5
mm strain gauges prohibits us to measure the elasticity of such large heterogeneities. We
therefore cored the plug in the fine-grained homogeneous part of the block that constitutes
the matrix surrounding the large rudists. A SEM photomicrograph of the sample is pre-
sented Figure 6.2. The sample is homogeneous, with poorly sorted grains of maximum
size 500 µm (Figure 6.2). We can therefore assume the plug is isotropic at this scale. The
microstructure is mainly composed of calcite cement surrounding micritic peloidal grains
that could be fragments of rudist shells (Figure 6.2). The principal pore type is intragran-
ular micropore within the micritic grains, and intercrystalline porosity within the calcitic
cement.

The porosity was measured to be around 14.9% by triple-weight method, and the per-
meability was measured to be around 4× 10−17 m2 (Figure 6.3). The dry density is around

107



CHAPTER 6. RUDIST DOMINATED URGONIAN LIMESTONE FROM RUSTREL.

Figure 6.1: Setting of the Urgonian platform in the South-East of France during the Late
Barremian (a) and the Early Aptian (b). Rustrel is located at the edge of the Provence inner
platform. Modified after Léonide et al. (2014).

300 µm

Figure 6.2: SEM photomicrograph of the Rustrel sample, showing the large amount of
intergranular calcite cement in white with some intercrystalline microporosity, and the
intragranular microporosity in black.
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Figure 6.3: Permeability results of the Rustrel sample at different differential pressures.
Measurements were done by Darcy flow under water-saturated conditions.

Figure 6.4: MICP results of the Rustrel sample.

D = 2345 kg.m−3. With increasing differential pressure, the permeability slightly drops
around 2× 10−17 m2 (Figure 6.3). The MICP results show a clear unimodal pore-entry size
distribution with a maximum peak at 0.6 µm (Figure 6.4), corresponding to the intragranu-
lar microporosity (Figure 6.2).

6.3.1 Static bulk modulus

Because no mechanical data was available concerning the pore-collapse pressure, we de-
cided to limit the measurements to a maximum effective pressure of 20 MPa. The hydro-
static loading stress-strain curve, up to 18 MPa, is shown Figure 6.5a. After a polynomial fit,
we can deduce the static bulk modulus by derivation of the stress-strain curve (Figure 6.5b).
Results show a static bulk modulus that increases from 5 GPa at Pc = 2.5 MPa to 23 GPa at
Pc = 18 MPa (Figure 6.5b). A typical crack closure behavior is observed between 2.5 MPa
and 18 MPa, with an increase of the bulk modulus, but the high-pressure asymptote was
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Figure 6.5: Static loading results obtained on the Rustrel sample.

not reached.

6.3.2 High-frequency ultrasonic results

The ultrasonic results at different effective pressures under dry-, water- and glycerin-
saturated conditions are presented Table 6.1. All four elastic moduli (K, G, E and ν) are
calculated, with the assumption of isotropy. In dry conditions, the high-frequency bulk

RUSTREL
Pdi f f (MPa) VP (m s−1) VS KHF (GPa) GHF EHF νHF

2.5 3545 2185 14.5 11.2 26.7 0.19
5 3762 2265 17.1 12.0 29.3 0.22

DRY 10 4008 2395 19.7 13.4 32.9 0.22
15 4111 2484 20.3 14.5 35.1 0.21
20 4198 2548 21.0 15.2 36.8 0.21
2.5 4111 2104 27.3 11.0 29.0 0.32

WAT 5 4265 2197 29.2 12.0 31.6 0.32
10 4506 2366 31.8 13.9 36.4 0.31
20 4583 2431 32.6 14.7 38.2 0.30
2.5 4748 2215 40.2 12.3 33.6 0.36
5 4776 2265 40.2 12.9 35.0 0.35

GLY 10 4805 2366 39.3 14.1 37.7 0.34
15 4863 2453 39.3 15.1 40.2 0.33
20 4893 2467 39.8 15.3 40.7 0.33

Table 6.1: Results of the ultrasonic measurements on the Rustrel sample.

modulus (KHF) is pressure-dependent and increases from 14.5 GPa to 21.0 GPa between
Pdi f f = 2.5 MPa and Pdi f f = 20 MPa (Table 6.1). GHF and EHF both seem to be pressure-
dependent, but νHF seems to be relatively constant with pressure, around 0.21.
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Rustrel Pdi f f = 2.5 MPa
Φ(%) 14.9

Ddry (kg.m−3) 2345
κ (m2) 4× 10−17

ξ̂ 1.8× 10−4

ρ 0.52
Kd (GPa) 14.5
f ∗1 (Hz) 0.36
f ∗2 (Hz) 477

Table 6.2: Properties of the Rustrel sample for a differential pressure of 2.5 MPa. Kd is the
dry dynamic moduli estimated from the ultrasonic measurements. The drained/undrained
and undrained/unrelaxed (squirt-flow) cut-off frequencies, respectively f ∗1 and f ∗2 (Equa-
tion 1.39), are valid for water-saturated conditions.

In fluid-saturated conditions, KHF is only slightly pressure-dependent with water, but
completely pressure-independent with glycerin (Table 6.1). The Poisson’s ratio νHF de-
creases with increasing pressure, while the Young’s modulus EHF continues to increase.
The shear modulus, and its pressure-dependence, doesn’t appear to be fluid sensitive.

From the permeability measurement (κ), the sample’s length (L), and the measurement
of the dry KHF considered as the drained modulus (Kd), we can have a first estimation
of the drained/undrained cut-off frequency ( f ∗1 = 4κKd/ηL2). At Pdi f f = 2.5 MPa, the
drained/undrained cut-off frequency would be around f ∗1 = 0.36 Hz.

We obtain from Morlier’s method (Morlier, 1971), applied on the pressure-dependence
of the dry bulk modulus obtained from hydrostatic oscillations (see Chapter 10), a charac-
teristic crack aspect ratio ξ̂ = 1.8× 10−4 with a crack density of ρ = 0.52. If we take KS =

77 GPa, the squirt-flow cut-off frequency of these cracks would be f ∗2 = KS ξ̂3/η = 477 Hz
for water saturated conditions. A synthesis of the sample’s properties at Pdi f f = 2.5 MPa
can be found Table 6.2.

6.4 Low-frequency dynamic moduli

The low-frequency axial and hydrostatic oscillations were performed under drained bound-
ary conditions (large dead volumes).

6.4.1 Young’s modulus, Poisson’s ratio and shear modulus deduced from axial
oscillations

The Top Industrie apparatus was used for the experiments, with the modified aluminium
endplaten (Figure 3.6). This enabled us to have a proper measurement of the axial stress
during the oscillations, and therefore deduce the dynamic Young’s modulus in addition
to the Poisson’s ratio. A small deviatoric load of 1 MPa was applied with the piston
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in order to maintain the piezoelectric oscillator. The dispersion and attenuation of the
Young’s modulus and the Poisson’s ratio are presented respectively Figures 6.6a-b and
Figures 6.6c-d, for dry-, water- and glycerin-saturated conditions, at differential pressures
[2.5, 5, 10, 20]MPa. From Equation 4.2, the average relative uncertainties found on E and ν

was around ∆E/E = 2.4% and ∆ν/ν = 3.4%.
The Young’s modulus, obtained from the low-frequency axial oscillations, exhibits dis-

persion around 0.05 Hz (Figure 6.6a), correlated with attenuation (Figure 6.6b), visible un-
der water-saturated conditions. Q−1

E has a maximum peak around 0.1 for Pdi f f = 2.5 MPa
and decreases with increasing pressure, consistently with Zener’s model (Equation 3.14).
This transition seems to correspond to the drained/undrained cut-off frequency ( f ∗1 ), al-
though the prediction f ∗1 seems to overestimate the experimental results of nearly one
order of magnitude. No dispersion, nor attenuation, is detected for higher apparent fre-
quencies with glycerin, although the measurements cross the predicted squirt-flow cut-off
frequency f ∗2 (Figures 6.6 and 6.6b). The dry results are consistently non-dispersive. The
Young’s modulus in water- and glycerin-saturated conditions at Pdi f f = 2.5 MPa seem to
be inferiour to the dry Young’s modulus (Figure 6.6a). At higher differential pressures, the
results between dry and fluid-saturated moduli seem consistent.

The Poisson’s ratio exhibits the similar dispersive transition around 0.05 Hz (Figure 6.6),
which is related to the drained/undrained transition. Q−1

ν peaks at a higher value than Q−1
E

as predicted by Zener’s model (Figure 6.6d). At frequencies lower than f ∗1 (drained regime),
ν seems to slightly increase with increasing pressure (Figure 6.6c). On the other hand,
at frequencies greater than f ∗1 (undrained regime), we observe the opposite: ν decreases
slightly with increasing pressure (Figure 6.6c). Similarly to E, the Poisson’s ratio does not
exhibit any dispersive transition around the predicted squirt-flow cut-off frequency f ∗2 .

The dispersion and attenuation of the shear modulus can also be obtained from the
axial oscillations, with the condition of an isotropic medium (Equations 3.3 and 3.9). No
dispersion nor attenuation is observed for the shear modulus (Figure 6.7). The relative
uncertainty on G was found to be around ∆G/G = 3.3% (Equations 3.3 and 4.2). Similarly
to E, the water- and glycerin-saturated shear moduli are lower than in the dry conditions,
at Pdi f f = 2.5 MPa. This could be some shear-weakening due to chemical fluid/rock inter-
action, although it is similarly observed both with water and with glycerin.

6.4.2 Bulk modulus deduced from hydrostatic and axial oscillations

The bulk modulus dispersion and attenuation can be obtained from both hydrostatic (Equa-
tions 3.1 and 3.6) and axial oscillations (Equations 3.3 and 3.9). The results at different
differential pressures under fully saturated conditions are presented Figure 6.8. The rel-
ative uncertainties on Khyd and Kax were found to around ∆Khyd/Khyd = 2% (Equation
4.1) and ∆Kax/Kax = 6.5% (Equations 3.3 and 4.2). For both stress-oscillation type, the
drained/undrained transition is detected at the same frequency, between 0.05 and 0.1 Hz.
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Figure 6.6: Results of Young’s modulus (a-b) and Poisson’s ratio (c-d) dispersion and at-
tenuation obtained from axial oscillations at different differential pressures on the Rustrel
sample.
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Figure 6.7: Results of the shear modulus dispersion (a) and attenuation (b) obtained from
axial oscillations at different differential pressures on the Rustrel sample.
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No dispersive transition is detected for frequencies higher than f ∗1 , in glycerin-saturated
conditions (Figure 6.8). The bulk modulus obtained from the hydrostatic oscillations (Khyd)
seems to be slightly more sensitive to differential pressure than the bulk modulus obtained
from the axial oscillations (Kax) (Figures 6.8a and 6.8b). In dry conditions, Khyd increases
from 11 GPa to 25 GPa, while Kax increases from 15 GPa to 23 GPa (Figures 6.8a and 6.8b).
Similar observation can be made for the bulk modulus results in glycerin-saturated con-
ditions (undrained regime), Khyd is pressure sensitive while Kax shows less dependence to
differential pressure.

The attenuation related to Khyd at Pdi f f = 2.5 MPa has a higher peak than for Kax, re-
spectively 0.62 and 0.42 (Figures 6.8b and 6.8e), which is consistent with the higher amount
of dispersion measured for the hydrostatic oscillations in water-saturated conditions (Fig-
ures 6.8a and 6.8d). No attenuation is detected elsewhere. The attenuation peaks at low
and high-pressures are consistent with Zener’s model.

Despite the sample being with drained boundary conditions achieved with large dead
volumes, a small pore pressure oscillation was detected in the drainage circuit, either for
hydrostatic or axiual oscillations, similarly to the Indiana samples. The ratio between this
pore pressure oscillation amplitude (∆Pp) and the hydrostatic stress oscillation (σii/3) are
reported Figures 6.8c and 6.8f for the hydrostatic and the axial oscillations respectively.
We recall that for the hydrostatic oscillations σii/3 = ∆Pp, and for the axial oscillations
σii/3 = σax/3. When the frequency increases, we see that for both stress-type oscillations,
the ratio 3∆Pp/σii tends to 0 around 0.05 Hz, which is consistent with a drained/undrained
transition (Figures 6.8c and 6.8f). The ratio decreases with increasing differential pressure,
which is consistent with an increasing bulk modulus that, in the frame of poroelasticity,
generates less pressure build-up in the fluid for a given stress oscillation (Figures 6.8c and
6.8f).

6.5 Discussion

6.5.1 The drained/undrained transition

The results of the bulk modulus obtained from the static-loading, the ultrasonic measure-
ments, and the low-frequency axial and hydrostatic oscillations are compared Figure 6.9.
The drained/undrained transition was observed around 0.1 Hz in water-saturated condi-
tions, which is in goood agreement with the predicted cut-off frequency of 0.36 Hz. For the
hydrostatic and the axial bulk modulus results, Biot-Gassmann equation was applied on
the low-pressure (Pdi f f = 2.5 MPa) and the high-pressure (Pdi f f = 20 MPa) drained results
in water-saturated conditions (Figure 6.9). The skeleton bulk modulus was taken equal
to the calcite’s bulk modulus KS = 77 GPa. For the hydrostatic oscillations (Figure 6.9a),
Biot-Gassmann prediction seems to slightly underestimate the experimental undrained re-
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Figure 6.8: Results of the bulk modulus dispersion and attenuation obtained from hydro-
static (a-b) and axial oscillations (d-e) at different differential pressures on the Rustrel sam-
ple. The pore pressure variation in the drainage circuit over the hydrostatic stress variation
are respectively presented in (c) and (f).
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sults in water-saturated conditions, and is consistent with the glycerin-saturated undrained
results (Figure 6.9a). For the axial oscillations (Figure 6.9b), Biot-Gassmann’s prediction is
consistent with the water-saturated undrained results, but slightly underestimated the low-
pressure (Pdi f f = 2.5 MPa) glycerin-saturated undrained results, although the latter seem
not to be much pressure-sensitive.

6.5.2 Unrelaxed regime?

In water-saturated conditions, KHF−wat at Pdi f f = 20 MPa is in agreement with Biot-Gassmann’s
prediction, while KHF−wat at Pdi f f = 2.5 MPa overestimates the prediction from at least 7
GPa (Figure 6.9), which could suggest a small dispersion at low effective pressures. De-
spite the fact that KHF seem to fit well with the undrained values of Khyd (Figure 6.9a), even
at low pressures, the bulk moduli deduced from axial oscillations (Kax) are all lower than
KHF for all pressures (Figure 6.9b). Moreover, the ultrasonic results in glycerin-saturated
conditions show nearly no dependence to differential pressure, and are consistent with the
high-pressure prediction of Biot-Gassmann (Figure 6.9). This suggests that there could be
a small amount of dispersion due to squirt-flow above 104 Hz. If we invert the expression
f ∗2 = ξ̂3KS/η, the corresponding crack aspect ratios would be at least 5× 10−4. The pre-
dicted cut-off frequency from Morlier’s method gave f ∗2 = 477 Hz with the microcracks
parameters ξ̂ = 1.8× 10−4 and ρ = 0.52, which underestimates the experimental observa-
tions.

The comparison of the low-frequency and the ultrasonic results for the Young’s mod-
ulus, Poisson’s ratio and the shear modulus are presented Figure 6.10. We recall that the
drained/undrained transition is visible for both E and ν consistently with f ∗1 (Figures 6.10a
and 6.10b), and that the shear modulus is constant throughout this transition, which is con-
sistent with poroelasticity. We note that all these moduli are pressure-dependent. E and G
increase with increasing differential-pressure, either in drained or undrained regime (Fig-
ures 6.10a and 6.10c). The pressure-dependence of Poisson’s ratio is different, ν increases
with pressure in the drained regime but decreases with pressure in the undrained regime
(Figure 6.10b).

For both the hydrostatic (Figure 6.9a) and the axial oscillations (Figure 6.9b) the static
bulk modulus is lower than the dynamic one, except for Pdi f f = 20 MPa. The axial and
hydrostatic oscillations results compare well over the frequency range, as they detected the
drained/undrained transition at exactly the same frequency (Figure 6.9). A slight difference
subsists regarding the sensitivity to differential pressure: the hydrostatic results are more
sensible than the axial results in the drained regime, visible under dry- and water-saturated
conditions (Figure 6.9).

For E and G, the ultrasonic results in glycerin-saturated conditions seem to be slightly
higher than the undrained moduli, similarly to K, especially for the low differential pres-
sures (Figures 6.10a and 6.10c). Not much difference is visible for water-saturated condi-
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Pdiff = 2.5 MPa
Pdiff = 5 MPa
Pdiff = 10 MPa
Pdiff = 20 MPa

Dry
Water saturated
Glycerin saturated

Low-frequency oscillations:

 (G
Pa

)
hy

d
K

 (G
Pa

)
ax

K

Static
Ultrasonic

Biot-Gassmann prediction:
Pdiff = 2.5 MPa
Pdiff = 20 MPa

Axial oscillations

Hydrostatic oscillationsA)

B)

Figure 6.9: Static and frequency-dependent dynamic bulk modulus obtained from the hy-
drostatic (a) and axial oscillations (b) of the Rustrel sample, for four different differential
pressures in fully-saturated conditions. The results combine the low-frequency results with
the ultrasonic and static measurements. The drained and undrained regimes are clearly
identified, however, it is difficult to conclude if there is any unrelaxed regime.
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Figure 6.10: Frequency-dependent dynamic Young’s modulus (a), Poisson’s ratio (b) and
shear modulus (c) obtained from the low-frequency axial oscillations and the ultrasonic
measurements on the Rustrel sample, for four different differential pressures in fully-
saturated conditions.
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tions. For ν, there is nearly no difference between the ultrasonic and the undrained results
(Figure 6.10b) in fluid-saturated conditions. This confirms that the squirt-flow dispersion
is overall very small for this sample.

Previously, for the Indiana limestone, we evoked the key role the intergranular blocky
cement might play into hosting microcracks able to generate squirt-flow. A comparison of
SEM photomicrographs of the Rustrel sample and the Indiana sample (intact and thermally
cracked) is presented Figure 6.11. Our main observation is the microstructural difference
between the blocky calcite cement of the Rustrel and the Indiana limestones. The Rustrel
sample is not fully cemented. Its cement still bears intercrystalline microporosity (Figures
6.11a-c). On the other hand, the cement of the Indiana is fully composed of large homoge-
neous crystals (Figures 6.11d-f). Question rises whether this incomplete cementation of the
Rustrel sample could explain a pressure-dependent behavior, but still not generate much
squirt-flow dispersion due to leak-off in the intercrystalline microporosity of the blocky cal-
cite cement. We can suspect a similar behavior if the pressure-dependence originates from
microcracks located in the micriticized grains. As comparison, the thermally cracked Indi-
ana (Figure 6.11f) that exhibited substantial squirt-flow dispersion, bears neat microcracks
within the homogeneous cement.

6.6 Conclusion

The frequency dependence of all the dynamic elastic moduli have been measured over a
large frequency range ([10−4 ; 109]Hz) on a rudist-dominated facies limestone from Rus-
trel, at different effective pressures. The drained and the undrained regime were clearly
identified for all the elastic moduli, and were consistent with Biot-Gassmann theory within
the uncertainty of the measurements. The transition was also consistent with the predicted
cut-off frequency f ∗1 , and by extension with the measured permeability of the sample.

Similarly to the intact Indiana, the presence of an undrained/unrelaxed transition was
not directly observed, but was inferred from the comparison of the undrained moduli,
obtained from forced oscillations, and the ultrasonic measurements that are expected to
be in the unrelaxed regime. Only a small amount of squirt-flow dispersion is expected,
equivalent to the intact Indiana despite a higher crack density. The main difference between
the Rustrel and the Indiana was found to be the texture of the calcite cement. The Indiana
bears a homogeneous cement with large crystals, while for the Rustrel sample the cement
is not fully crystallized and bears extensive intercrystalline porosity resulting in a overall
weaker frame, but not generating substantial squirt-flow. The consistency with effective
medium theory shall be discussed in an other chapter.
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Figure 6.11: SEM photomicrographs of the Rustrel sample (a-c), compared to photomicro-
graphs of the intact (d-e) and thermally cracked (f) Indiana samples. The arrows indicate
some examples of intercrystalline microporosity embedded in the calcite cement of the
Rustrel limestone. As comparison, the Indiana’s calcite cement is more homogeneous with
no intercrystalline porosity.
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CHAPTER 7

PRE-SALT COQUINA FROM OFFSHORE CONGO.

7.1 Résumé

Le dernier échantillon étudié est un coquina pré-sel, provenant d’un puits profond en mer
(4000 m) au large du Congo. Ce coquina est un calcaire lacustre détritique, composé essen-
tiellement de fragments de coquilles. Il a été déposé dans les grands lacs qui se sont formés
au crétacé inférieur en marge de l’ouverture de l’océan Atlantique. Le sel s’est ensuite dé-
posé par-dessus, à mesure que les lacs s’asséchaient. On retrouve ces coquina pré-sel de
part et d’autre de l’Atlantique, dans les marges continentales au large du Congo mais
également du Brésil. Ils constituent une grande partie des roches réservoirs des champs
pétroliers découverts au large du Brésil. Les coquinas du Congo peuvent potentiellement
être des analogues à ceux du Brésil, bien que les conditions de dépôts furent différentes.
La porosité de notre échantillon est d’environ 7.5% pour une perméabilité d’environ 0.05
mD. Les grains du coquina ne sont pas microporeux, et la porosité est essentiellement
intergranulaire. De plus, la roche ne semble pas du tout cimentée.

Les fréquences sont discutées en termes de fréquences apparentes normalisées à l’eau.
La transition drainé / non-drainé a été observée autour de 0.2 Hz, et est en parfait ac-
cord avec Biot-Gassmann, quelque soit la pression effective. Une seconde transition a été
observée autour de 104 Hz, qui correspond à l’écoulement crack-pore. Cette seconde dis-
persion est nettement plus importante que les échantillons précédents, mis à part l’Indiana
craqué thermiquement. Elle a été observée sur les modules E, G et K. Ce ne sont pas
forcément que des fissures qui peuvent générer ce type d’écoulement, mais également les
contacts entre les grains qui peuvent avoir un comportement analogue. Ce raisonnement
est en général applicable aux grès, et par extension au roches détritiques.

Ainsi, pour les mesures sismiques sur le terrain (100 Hz), un tel coquina saturé à l’eau
serait en régime non-drainé et les prédictions de Biot-Gassmann seraient valides. En re-
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vanche les mesures de diagraphies (10 kHz) seraient exactement dans la gamme fréquen-
tielle de la seconde transition (écoulement crack-pore), avec des atténuations importantes.
Les mesures ultrasoniques sont dans le régime non-relaxé.
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7.2. INDRODUCTION

7.2 Indroduction

In the South Atlantic, number of offshore hydrocarbon reservoirs are pre-salt lacustrine
carbonates, and more specifically coquinas. These coquina reservoirs are located in the
Brazilian and West African continental margins, and were deposited on shallow lacustrine
platforms created during the break-up of West Gondwana in the Early Cretaceous (Thomp-
son et al., 2015). Coquinas are detrital rocks that are mainly composed of calcitic shell
debris. They can also be composed with a large amount of siliciclastic or other carbonate
components such as pellets (Thompson et al., 2015). Few experimental studies on Coquinas
have been published because of the limited availability of well-cores. We present here our
results of the effect of frequency on the elastic properties of a West-African pre-salt coquina.

7.3 Sample description

The sample is a pre-salt coquina that comes from offshore of the Republic of Congo (Figure
7.1), around 60 km off the West African Atlantic Margin. The Congo-Angola margin is
a passive continental margin that resulted from the opening of the South Atlantic Ocean
in the Early Cretaceous (Marton et al., 2000). Three main units can be distinguished in the
sedimentary series of the lower Congo basin, which are related to three tectonic phases: pre-
rift continental deposits (Jurassic), syn-rift fluvio-lacustrine deposits and sag phase (Lower
Cretaceous), and post-rift unit with large accumulation of salt (Middle Aptian) covered by
thick marine succesions (Albian to present) (Savoye et al., 2009).

The margin hosts one of the largest deep-sea fan in the world (Figure 7.1), with a
maximum thickness of 5 km (Anderson et al., 2000), which bears important activity in terms
of sedimentary processes due to active turbidity currents (Wonham et al., 2010). Oligocene
and Miocene turbidite systems are particularly studied by the oil industry due to oil and
gas reservoirs discoveries in the Tertiary series (Savoye et al., 2009).

Beneath the fan, there is the Middle-Aptian Salt (Loeme Formation) that covers the
Lower-Cretaceous lacustrine deposits (Wonham et al., 2010), from which our sample orig-
inates. The pre-salt coquinas of this latter deposites are of major interest as they could
be analogues to the pre-salt lacustrine deposites of the Brazilian offshore fields, although
the deposition conditions were slightly different. The west african coquinas deposited on
distally steepened ramps and rimmed platforms, whereas the Brazilian coquinas were de-
posited on low angle ramps, resulting in different facies (Thompson et al., 2015).

The coquina sample measured here did not bear any large clasts of large moldic pores as
frequently observed for coquinas. The texture of our selected plug was homogeneous and
fined grained, so that the strain gauges are larger than the REV. A SEM photomicrograph of
the coquina sample is presented Figure 7.2a. The microstructure seems poorly cemented,
with extensive intergranular or intercrystalline porosity (Figure 7.2a). The EDX analysis
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since the mid 1990s. These reservoirs are found princi-
pally within the Oligocene to Miocene aged Malembo
Formation. Because of the commercial sensitivity of the
Malembo play, there is little published information
addressing important issues such as the controls on
turbidite sand deposition and the distribution and evolu-
tion of the turbidite fan complexes. In common with
many of the passive margin basins surrounding the
South Atlantic, Neogene turbidite deposition in the
Lower Congo Basin occurred against a background of
evolving post-rift structures. The structural style is domi-
nated by thin-skinned extension on Aptian-aged evaporites
(Brown, 1993; Eichenseer, Walgenwitz & Biondi, 1999),
with halokinesis and thin-skinned thrusting dominating
further west in the ultradeep water areas (Dominey &
Wiffe, 1998; Hartman, Swanson, Smith, Goulding &
Kelly, 1998; Schollnberger & Vail, 1999; Spathopoulos,
1996; Tard, Amaral, Beydoun, Biteau, Deregnaucourt &
Manuel, 1999). In this contribution, we discuss the struc-
tural evolution during deposition of the Malembo Formation
and assess the influence of structures on the distribution of
the Malembo turbidite sands. This paper is illustrated with
examples from the Miocene turbidite complexes of Block 4,
offshore Angola. Although our examples are specific to this
block, it is hoped that the ideas presented may find applic-
ability elsewhere in the Lower Congo Basin, and in the
exploration for hydrocarbons in other basins characterised
by a similar post-rift structural evolution.

2. Geological background

2.1. Stratigraphic evolution of the Lower Congo Basin from
rift to passive margin

The Lower Congo Basin is one of a series of sub-basins
developed along the West African passive margin (Fig. 1).
The component sub-basins share a common origin related
initially to the early Cretaceous break-up of Gondwana
(Bradley & Fernandez, 1991; Brice, Cochran, Pardo &
Edwards, 1982; Moore, 1988; Reyre, 1984; Standlee, Brum-
baugh & Cameron, 1991). Rift basins formed on thinned
continental crust as Africa and South America rifted apart.
De Matos (1999), Karner and Driscoll (1999) and Karner,
Driscoll, McGinnis, Brumbaugh and Cameron (1997) recog-
nised three phases of rifting in the early Cretaceous with each
rift phase resulting in the generation of deep, underfilled
lacustrine basins (Fig. 2). Rifting ceased in the early Aptian
(Karner et al., 1997) and the terrestrial rift basins were trans-
gressed by marine conditions. Evaporitic sediments of the
late Aptian Loeme Formation record the first marine trans-
gressions from the south across the subsiding volcanic
Walvis Ridge (Brognon & Verrier, 1966; Burke, 1975;
Burke, Dessauvagie & Whiteman, 1971; Roberts, 1975). A
shallow marine clastic/carbonate shelf developed in the
Albian, but as seafloor spreading and thermal subsidence
accelerated in the late Cretaceous, open marine conditions
transgressed the shelf leading to deposition of deep marine
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Fig. 1. Location of the: (a) component basins comprising the West African passive margin; and (b) Congo fan in the Lower Congo Basin.

Fig. 2. Southern Lower Congo Basin stratigraphy.
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tion of the turbidite fan complexes. In common with
many of the passive margin basins surrounding the
South Atlantic, Neogene turbidite deposition in the
Lower Congo Basin occurred against a background of
evolving post-rift structures. The structural style is domi-
nated by thin-skinned extension on Aptian-aged evaporites
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examples from the Miocene turbidite complexes of Block 4,
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(Bradley & Fernandez, 1991; Brice, Cochran, Pardo &
Edwards, 1982; Moore, 1988; Reyre, 1984; Standlee, Brum-
baugh & Cameron, 1991). Rift basins formed on thinned
continental crust as Africa and South America rifted apart.
De Matos (1999), Karner and Driscoll (1999) and Karner,
Driscoll, McGinnis, Brumbaugh and Cameron (1997) recog-
nised three phases of rifting in the early Cretaceous with each
rift phase resulting in the generation of deep, underfilled
lacustrine basins (Fig. 2). Rifting ceased in the early Aptian
(Karner et al., 1997) and the terrestrial rift basins were trans-
gressed by marine conditions. Evaporitic sediments of the
late Aptian Loeme Formation record the first marine trans-
gressions from the south across the subsiding volcanic
Walvis Ridge (Brognon & Verrier, 1966; Burke, 1975;
Burke, Dessauvagie & Whiteman, 1971; Roberts, 1975). A
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ability elsewhere in the Lower Congo Basin, and in the
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initially to the early Cretaceous break-up of Gondwana
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Edwards, 1982; Moore, 1988; Reyre, 1984; Standlee, Brum-
baugh & Cameron, 1991). Rift basins formed on thinned
continental crust as Africa and South America rifted apart.
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Driscoll, McGinnis, Brumbaugh and Cameron (1997) recog-
nised three phases of rifting in the early Cretaceous with each
rift phase resulting in the generation of deep, underfilled
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(Karner et al., 1997) and the terrestrial rift basins were trans-
gressed by marine conditions. Evaporitic sediments of the
late Aptian Loeme Formation record the first marine trans-
gressions from the south across the subsiding volcanic
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Figure 7.1: The Coquina sample was cored in the pre-salt deposits beneath the fan, at
approximately 4 km depth, in Offshore Republic of Congo (red rectangle). Modified after
Anderson et al. (2000).

shows that the sample is mainly composed of calcite (>97%) (Figure 7.2b). Some traces of
quartz and solid bitumen was also detected (< 1%) and can be visualized in the element
mapping Figure 7.2c. Some pores seem to be filled by the solid bitumen (Figure 7.2c).
The porosity was measured to be around 7.5% by triple-weight method, and the dry mass
density is around Ddry = 2540 kg.m−3.

The pressure-dependence of the permeability is given Figure 7.3. A clear decrease with
pressure is visible, with a variation from 5.0× 10−17 m2 at Pdi f f = 2.5 MPa to 2.5× 10−17 m2

at Pdi f f = 20 MPa. The MICP results are presented Figure 7.4. The obtained results show
a large distribution of pore-entry diameters, with a relatively constant plateau between
0.5 µm and 5 µm (Figure 7.4), which should correlate with intercrystalline microporosity.
Moreover, a small peak is visible around 10 µm that decreases slowly up to 30 µm (Figure
7.4), which should correlate with the intergranular pore space (Figure 7.2). the visible
grains in the microstructure do not seem to be micriticized, and therefore, do not seem to
bear much intragranular microporosity (Figure 7.2).

7.3.1 Static bulk modulus

Because we only possessed one plug of this low-porosity coquina (φ = 7.5%), and no
mechanical data was available, the measurements were limited to a maximum effective
pressure of 25 MPa to avoid pore-collapse. The results of the static loading stress-strain
curve, up to 25 MPa, is shown Figure 7.5a. After a polynomial fit, we can deduce the static
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C 98.91%
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O 0.28%
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Figure 7.2: (a) SEM photomicrograph, (b) EDX bulk spectrum and (c) element mapping of
the elements calcium (Ca), silicium (Si) and carbon (C) of the Coquina sample.
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Figure 7.3: Permeability results of the Coquina sample at different differential pressures.
Measurements were done by Darcy flow under water-saturated conditions.

Figure 7.4: MICP results of the Coquina sample.
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Figure 7.5: Static loading results obtained on the Coquina sample.

bulk modulus by derivation of the stress-strain curve (Figure 7.5b). Results show a static
bulk modulus that increases from 2 GPa at Pc = 2.5 MPa to 23 GPa at Pc = 25 MPa (Figure
7.5b). A rather exotic behavior is observed between 2.5 MPa and 25 MPa, with nearly a
perfectly linear increase of the static bulk modulus with increasing pressure (Figure 7.5b).
It could suggest that the high-pressure asymptote is reached at much higher pressures than
25 MPa. But because we do not know the pore-collapse pressure of the sample, and that
this unique plug had to be kept intact, we decided not to investigate the high-pressure
limit.

7.3.2 High-frequency ultrasonic results

The ultrasonic results at different effective pressures under dry-, water- and glycerin-
saturated conditions are presented Table 7.1. All four elastic moduli (K, G, E and ν) are
calculated, with the assumption of isotropy. In dry conditions, the high-frequency bulk
modulus (KHF) is pressure-dependent and increases from 12.2 GPa to 26.8 GPa between
Pdi f f = 2.5 MPa and Pdi f f = 20 MPa (Table 6.1). Similarly, all the other moduli (GHF, EHF

and νHF) all increase with increasing pressure (Table 7.1).
In fluid-saturated conditions, KHF remains pressure-dependent, with an increase from

32.8 GPa to 38.6 GPa in water-saturated conditions, and an increase from 45.3 GPa to 48.9 GPa
in glycerin-saturated conditions (Table 6.1). The Poisson’s ratio νHF seems rather pressure-
independent in fluid-saturated conditions, with a values between 0.27 and 0.29 for water-
and between 0.32 and 0.34 for glycerin-saturated conditions. The fluid-saturated shear
moduli are higher than the dry shear moduli at every pressure, with an average increase
of 6 GPa (Table 6.1).

From the permeability measurements (κ), the sample’s length (L), and the measurement
of the dry K that is measured to be around 5 GPa from hydrostatic oscillations at Pdi f f =

2.5 MPa, we can have a first estimation of the drained/undrained cut-off frequency ( f ∗1 =
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COQUINA
Pdi f f (MPa) VP (m s−1) VS KHF (GPa) GHF EHF νHF

2.5 3174 1985 12.2 10.0 23.6 0.18
5 3545 2148 16.3 11.7 28.4 0.21

DRY 10 3890 2312 20.3 13.6 33.3 0.23
15 4191 2400 25.1 14.6 36.7 0.26
20 4335 2486 26.8 15.7 39.4 0.25
2.5 4626 2571 32.8 17.2 43.9 0.28
5 4741 2597 35.1 17.6 45.1 0.29

WAT 10 4863 2661 37.0 18.4 47.4 0.29
15 4958 2718 38.3 19.2 49.4 0.29
20 5057 2840 38.6 21.0 53.3 0.27
2.5 5057 2495 45.3 16.3 43.7 0.34

GLY 5 5196 2562 47.8 17.2 46.0 0.34
10 5268 2689 47.4 18.9 50.1 0.32
20 5380 2778 48.9 20.2 53.3 0.32

Table 7.1: Results of the ultrasonic measurements on the Coquina sample.

Coquina Pdi f f = 2.5 MPa
Φ(%) 7.5
κ (m2) 5× 10−17

ξ̂ 2.8× 10−4

ρ 1.3
Kd (GPa) 5
f ∗1 (Hz) 0.16
f ∗2 (Hz) 1600

Table 7.2: Properties of the Coquina sample for a differential pressure of 2.5 MPa. Kd is the
dry dynamic moduli estimated from the hydrostatic oscillations. The drained/undrained
and undrained/unrelaxed (squirt-flow) cut-off frequencies, respectively f ∗1 and f ∗2 (Equa-
tion 1.39), are valid for water-saturated conditions.

4κKd/ηL2). At Pdi f f = 2.5 MPa, the drained/undrained cut-off frequency would be around
f ∗1 = 0.38 Hz, and for Pdi f f = 20 MPa, the cut-off frequency gives f ∗1 = 0.16 Hz, which
includes the increase of the drained bulk modulus .

From the hydrostatic loading stress-strain curve (Figure 7.5), we cannot know the high-
pressure limit after which the bulk modulus becomes constant. A first estimation can
be given, if we assume that the high-pressure value of the static bulk modulus is equal
to KHF = 35 GPa at Pdi f f = 30 MPa, we obtain from Morlier’s method (Morlier, 1971)
a characteristic crack aspect ratio ξ̂ = 2.8 × 10−4 with a crack density of ρ = 1.3 (see
Chapter 10). If we take KS = 77 GPa, the squirt-flow cut-off frequency of these cracks
would be f ∗2 = KS ξ̂3/η = 1600 Hz for water saturated conditions. A synthesis of the
sample’s properties at Pdi f f = 2.5 MPa can be found Table 7.2.
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7.4 Low-frequency dynamic moduli

The low-frequency axial and hydrostatic oscillations presented in this section were per-
formed under drained boundary conditions (large dead volumes), in the Top Industrie
apparatus, for differential pressures of [2.5; 5; 10; 20; 25]MPa, in dry- and water-saturated
conditions, and [2.5; 5; 10]MPa for glycerin-saturated conditions.

7.4.1 Young’s modulus, Poisson’s ratio and shear modulus.

In this section we present the results of the low-frequency axial oscillations, along the
ultrasonic results, for E, ν and G. A small deviatoric load of 1 MPa was applied to the piston
to maintain the piezoelectric oscillator. The dispersion and attenuation of the Young’s
modulus, the Poisson’s ratio, and the deduced shear modulus, are presented respectively
Figure 7.6, Figure 7.7, and Figure 7.8, for dry-, water- and glycerin-saturated conditions at
different differential pressures. The low-frequency measurements are compared with the
respective ultrasonic results (Table 7.1). The relative uncertainties on E, ν and Gax were
found to be around ∆E/E = 6.7%, ∆ν/ν = 4.2% and ∆Gax/Gax = 6.4% (Equations 3.3 and
4.2).

The Young’s modulus seems to exhibit only one dispersive-frequency range, visible
in glycerin-saturated conditions above 103 Hz (Figure 7.6a), correlated with a peak in at-
tenuation around Q−1

E = 0.25, consistently with Zener’s prediction (Figure 7.6b). Only
a small quantity of dispersion is visible around the predicted drained/undrained cut-off
frequency (Figure 7.6a). The low-frequency dry measurements are consistent with the ul-
trasonic results (Figure 7.6a). The water-saturated and glycerin-saturated ultrasonic results
are nearly equal to each other, and seem to correspond to the high-frequency limit (105 Hz)
of the Young’s modulus measured by forced oscillations (Figure 7.6a). The dispersive phe-
nomenon could be related to squirt-flow, as it is within one order of magnitude from the
cut-off frequency f ∗2 = 1600 Hz. The attenuation peaks in glycerin-saturated conditions
seem to decrease very slightly with increasing pressure (Figure 7.6b).

The Poisson’s ratio exhibits dispersion and attenuation around the drained/undrained
cut-off frequency f ∗1 , but none around the squirt-flow predicted cut-off frequency f ∗2 (Figure
7.7). The effect of the differential pressure is inverted from one side of the drained/undrained
transition to the other: in the drained regime ( f ∗ < f ∗1 ), ν increases with pressure, while in
the undrained regime ( f ∗ > f ∗1 ), ν decreases with pressure (Figure 7.7a). With the increase
of frequency from 10−2 Hz to 1 Hz, ν varies from 0.21 to 0.34 for Pdi f f = 2.5 MPa, and varies
from 0.26 to 0.3 for Pdi f f = 20 MPa. The crossing point that sees no effect of the differ-
ential pressure is located precisely at f ∗1 = 0.16 Hz (Figure 7.7a). The drained/undrained
dispersion of ν is well correlate to attenuation (Q−1

ν ) with peaks centered around f ∗1 Hz that
decrease with increasing pressure (Figure 7.7b). The attenuation peaks are in agreement
with Zener’s model. No more attenuation is visible at higher frequencies (Figure 7.7).
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Figure 7.6: Results of Young’s modulus dispersion (a) and attenuation (b) obtained from
axial oscillations and ultrasonic measurements at different differential pressures on the
Coquina sample.
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Figure 7.7: Results of Poisson’s ratio dispersion (a) and attenuation (b) obtained from axial
oscillations and ultrasonic measurements at different differential pressures on the Coquina
sample.

132



7.4. LOW-FREQUENCY DYNAMIC MODULI

For dry conditions, the ultrasonic results are consistent with the low-frequency mea-
surements, and for glycerin-saturated conditions, the ultrasonic results seem consistent
with the low-frequency undrained values (Figure 7.7a). In water-saturated conditions,
across the drained/undrained transition, ν increases much higher than νHF. A slight de-
crease of ν is then visible between 1 Hz and 100 at every pressures (Figure 7.7), suggesting
that ν tends to νHF. Similar phenomenon has been observed for the Poisson’s ratio of
a Fontainebleau sandstone (Pimienta et al., 2016a), but with a much larger decrease than
seen here. The phenomenon was correlated to the undrained/unrelaxed regime of the
sandstone, and was equally visible for water- and glycerin-saturated conditions (Pimienta
et al., 2016a). In our case, the glycerin-saturated results do not see the effect above 102 Hz
(Figure 7.7a), and are consistent with the ultrasonic results. The phenomenon might have
been observed in glycerin-saturated conditions at much lower experimental frequencies
(0.001− 0.01 Hz).

The results of the shear modulus, obtained from the ultrasonic and the low-frequency
axial oscillations, are presented in Figure 7.8. We observe a very similar behavior than
the Young’s modulus (Figure 7.6), except for the drained/undrained transition that ex-
hibits no dispersion/attenuation (Figure 7.8) around f ∗1 , consistently with Biot-Gassmann
(Gassmann, 1951). Similarly to E a dispersive transition that could be related to squirt-flow
is visible above 103 Hz (figure 7.8a), consistent with attenuation peaks around 0.25 as pre-
dicted by Zener’s model (Figure 7.8b). The dry ultrasonic results are consistent with the
low-frequency results, and the fluid-saturated ultrasonic results seem to be consistent with
the high end of the dispersive transition visible with glycerin (Figure 7.8a). The effect of
the differential pressure is analogue to E, with a constant pressure-dependence throughout
the whole frequency range (Figure 7.8).

7.4.2 Bulk modulus deduced from hydrostatic and axial oscillations

The bulk modulus obtained from the low-frequency hydrostatic (Khyd) and axial oscillations
(Kax) are presented Figure 7.9. Both Khyd and Kax consistently exhibit dispersion around
the drained/undrained cut-off frequency f ∗1 in water-saturated conditions (Figures 7.9a and
7.9d), with associated attenuation peaks (Figures 7.9b and 7.9e). The relative uncertainty on
Khyd and Kax were found to be around ∆Khyd/Khyd = 3.2% (Equation 4.1) and ∆Kax/Kax =

8.6% (Equations 3.3 and 4.2).
Khyd seems to be more pressure-sensitive than Kax. For dry conditions, from Pdi f f =

2.5 MPa to Pdi f f = 20 MPa, Khyd increases from an average value of 7 GPa to 28 GPa, and Kax

increases from an average value of 10 GPa to 19 GPa (Figures 7.9a and 7.9d). The undrained
values of Khyd and Kax, above 1 Hz, seem consistent with each other. For each pressure, the
amount of dispersion for K is slightly higher for the hydrostatic oscillations than for the
axial oscillations (Figures 7.9a and 7.9d), and accordingly, the related attenuation peaks
for Khyd are slightly higher than for Kax (Figures 7.9b and 7.9e), with a maximum value
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Dry
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Figure 7.8: Results of the shear modulus dispersion (a) and attenuation (b) obtained from
axial oscillations and ultrasonic measurements at different differential pressures on the
Coquina sample.
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Figure 7.9: Results of the bulk modulus dispersion and attenuation obtained from hydro-
static (a-b) and axial oscillations (d-e) at different differential pressures on the Coquina
sample. The pore pressure variation in the drainage circuit over the hydrostatic stress
variation are respectively presented in (c) and (f).
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of Q−1
Khyd

= 0.8 and Q−1
Kax

= 0.65 for Pdi f f = 2.5 MPa, which are in agreement with Zener’s
model.

Similarly to E and G, a dispersive transition is observe above 103 visible under glycerin-
saturated conditions that could be explained by squirt-flow. Kax seems rather pressure-
independent in glycerin-saturated conditions, and increases from around 30 GPa to 45 GPa
between 102 Hz and 105 Hz. The corresponding attenuation peak has a maximum value of
0.2 at 104 Hz and seems also pressure-independent.

Despite being in experimental drained conditions (large dead volumes), similarly to the
previous samples, the pore pressure sensor in the drainage circuit was able to detect a small
fluid-pressure oscillation when applying the forced oscillations on the sample. The ratio
3∆Pp/σii is reported Figure 7.9c for the hydrostatic oscillations (3∆Pp/σii = B∗), and Figure
7.9f for the axial oscillations (3∆Pp/σii = 3γ∗). For the Coquina sample, it would seem that
a pore pressure oscillation in the drainage circuit was detected only during the hydrostatic
oscillations experiment (Figure 7.9c), as 3γ∗ was nearly nil for all the frequencies during the
axial oscillations (Figure 7.9f). Nevertheless, for the hydrostatic oscillations, B∗ decreases
to 0 consistently with the drained/undrained transition.

7.5 Discussion

7.5.1 Drained and undrained regimes.

The results of the bulk modulus obtained from the static-loading, the ultrasonic measure-
ments, and the low-frequency axial and hydrostatic oscillations are compared Figure 7.10.
The static bulk modulus is lower than the dynamic bulk modulus, obtained either by the
hydrostatic oscillations (Figure 7.10a) and the axial oscillations (Figure 7.10b), for differ-
ential pressures between 2.5 and 20 MPa. The axial and hydrostatic oscillations results
compare well over the frequency range, as they detected the drained/undrained transi-
tion at exactly the same frequency, and the difference between Khyd and Kax is at most of
5 GPa (Figure 7.10). A slight difference regarding the sensitivity to differential pressure
was noted: the hydrostatic results are more sensible than the axial results in the drained
regime, visible under dry- and water-saturated conditions (Figure 7.10).

For Khyd and Kax, Biot-Gassmann equation was applied on the low-pressure (Pdi f f =

2.5 MPa) and the high-pressure (Pdi f f = 20 MPa) drained results in water-saturated condi-
tions (Figure 7.10). The skeleton bulk modulus was taken equal to the calcite’s bulk modu-
lus (KS = 77 GPa). For the hydrostatic oscillations, Biot-Gassmann prediction is consistent
with the experimental results, both for water- and glycerin-saturated conditions (Figure
6.9a). For the axial oscillations, Biot-Gassmann’s prediction is consistent with the water-
saturated undrained results, but slightly overestimated the glycerin-saturated undrained
results (Figure 6.9b).
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Figure 7.10: Static and frequency-dependent dynamic bulk modulus obtained from the hy-
drostatic (a) and axial oscillations (b) of the Coquina sample, for different differential pres-
sures in fully-saturated conditions. The results combine the low-frequency results with the
ultrasonic and static measurements. The drained and undrained regimes are clearly iden-
tified, and an undrained/unrelaxed transition that seems related to squirt-flow is visible
under glycerin-saturated conditions.
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7.5.2 Unrelaxed regime

The sample exhibits a clear second dispersion range visible from the axial oscillation results
under glycerin-saturated conditions (Figure 7.10b). The bulk modulus, which doesn’t vary
so much with differential pressure, increases from the undrained value around 30 GPa to
the ultrasonic values around 45 GPa (Figure 7.10b). We saw previously that attenuation was
consistent with this dispersion, with a maximum peak around Q−1

K = 0.2 (Figure 7.9e), and
was not correlated to fluid drainage out of the sample (Figure 7.9f). The cut-off frequency
of squirt-flow, deduced from the characteristic crack aspect ratio calculated from Morlier’s
method, was expected to be around 1600 Hz, which is within one order of magnitude of
our observed transition. We can therefore interpret this observed transition as squirt-flow
between compliant grain contacts and intergranular pores, as we would find for sandstones
(Pimienta et al., 2015a).

These observations also hold for the other elastic moduli, where the Young’s modulus
and the shear modulus exhibit a large dispersion and attenuation (Figures 7.6 and 7.8). The
Poisson’s ratio however did not vary much during this undrained/unrelaxed transition,
with no attenuation visible, in agreement with the ultrasonic results (Figure 7.7).

7.5.3 Conclusion

The frequency dependence of all the dynamic elastic moduli at different effective pressures
have been measured over a large frequency range ([10−4 ; 109]Hz) on a coquina originating
from a deep well in offshore Congo. The three fluid-flow regimes, drained, undrained
and unrelaxed, were clearly identified for all the elastic moduli. The transition between
the undrained and unrelaxed regime by squirt-flow affected mainly K, E and G but not ν.
The drained/undrained transition, visible under water-saturated conditions, was consistent
with Biot-Gassmann theory, and was consistent with the predicted cut-off frequency f ∗1 . It
mainly affected K and ν.

The pressure-dependence of the elastic moduli suggested the presence of microcracks
with aspect ratios around 2.8 × 10−4. The related squirt-flow was observed but at fre-
quencies one order of magnitude greater than the cut-off frequency, for any moduli. One
explanation could be the fact that not one crack aspect ratio is expected in reality, but a
more widespread distribution, especially if they result from contacts between grains of
different sizes. Moreover, these contact may not be perfectly planar, with rugosity or punc-
tual contacts, which would therefore increase the squirt-flow frequency of the remaining
open space around such contact. We can say that the detrital nature of the coquina, with
non-porous grains and low cementation, explains the analogies with sandstones.
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CHAPTER 8

SYNTHESIS OF THE EXPERIMENTAL RESULTS

8.1 Résumé

Nous synthétisons ici les résultats de dispersions et atténuations de tous nos échantillons,
en termes d’ondes P et S. Lorsque nécessaire, une correction poroélastique est appliquée
aux résultats en glycérine afin d’être comparés aux données en l’eau. De plus, pour chaque
échantillon et chaque pression effective, le modèle viscoélastique de Zener est ajusté aux
données de dispersions afin de comparer les atténuations obtenues. L’objectif principal du
chapitre est de corréler les observations de dispersions/atténuations avec les microstruc-
tures des roches. Une discussion supplémentaire est apportée en lien avec la comparaison
des modules statiques et dynamiques.

Les résultats sur le Lavoux nous indiquent que la microporosité intragranulaire ne
génère pas nécessairement une dépendance en pression et un comportement mécanique
similaire aux fissures. L’Indiana intact et le Rustrel nous indique que, bien que cimenté, un
grainstone peut être sensible à la pression effective. Il est en revanche difficile de localiser
les fissures (ou pores) qui sont à l’origine de cette dépendance en pression. Cela pourrait
être les contacts entre grains ou le contact grain/ciment, voir même, pour le Rustrel, la
porosité intercristalline dans le ciment. Dans tous les cas, la dispersion liée à l’écoulement
crack-pore est relativement faible (maximum 400 m/s pour l’onde P), et se situe à des
fréquences supérieures à 105 Hz.

Dans l’Indiana craqué thermiquement et le coquina, la dispersion liée à l’écoulement
crack-pore s’est montrée beaucoup plus significative. Dans le premier cas, les cracks ther-
miques à l’origine de la dispersion autour de 100 Hz se sont essentiellement créés dans les
gros cristaux du ciment. Dans le second cas, il semblerait que ce soit les contacts en grains
qui généreraient l’écoulement type crack-pore, autour de 104 Hz. Ce comportement semble
similaire à celui des grès. Dans les carbonates non-détritiques, la cimentation semble être
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un paramètre clé, permettant la présence ou non de fissures susceptibles de générer des
écoulements locaux.
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8.2. INDRODUCTION

8.2 Indroduction

In this chapter, we resume our observations of dispersion and attenuation of the elastic
moduli of our carbonate samples, and discuss what is the effect on the P- and S-wave
velocities and attenuation. Possible correlations of the dispersion with the observed mi-
crostructures will be discussed, followed by a discussion on the discrepancy between static
and dynamic bulk moduli.

φ (%) κ (m2) Ddry (kg/m3)
Lavoux 23.0 1× 10−14 2100
Indiana intact 11.4 2× 10−17 2348
Indiana th. cracked 11.4 3× 10−17 2348
Rustrel 14.9 4× 10−17 2345
Coquina 7.5 5× 10−17 2540

Table 8.1: Porosity, permeability and dry density of the carbonate samples

8.3 Dispersion/attenuation associated to microstructure

The dispersion and attenuation of the elastic moduli can be converted into velocity dis-
persion and attenuation, to see the implications of field measurements versus ultrasonic
laboratory measurements. For isotropic medium, the velocity dispersions of the P- and
S-waves are given by:

VP(ω) =

√
K(ω) + 4

3 G(ω)

D
and VS(ω) =

√
G(ω)

D
, (8.1)

where D is the density of the medium.

The attenuation of the P-wave and S-wave (respectively Q−1
P and Q−1

S ) are defined by:

Q−1
P (ω) =

Im
(
K̄ + 4

3 Ḡ
)

Re
(
K̄ + 4

3 Ḡ
) and Q−1

s (ω) =
Im (Ḡ)

Re (Ḡ)
, (8.2)

where K̄ = K(ω) + iKI(ω) and Ḡ = G(ω) + iGI(ω) represent the bulk and shear complex
moduli. Since by definition Q−1

K = KI(ω)/K(ω) and Q−1
G = GI(ω)/G(ω), we can deduce

from Equation 8.2:

Q−1
P (ω) =

1

1 + 4
3

G(ω)
K(ω)

Q−1
K (ω) +

1

1 + 3
4

K(ω)
G(ω)

Q−1
G (ω), (8.3)

and
Q−1

S (ω) = Q−1
G (ω). (8.4)
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In order to have an idea of the velocity dispersion over a large frequency range (10−3 Hz
to 106 Hz), we can put side by side our experimental results from hydrostatic and axial
forced-oscillations and ultrasonic results under water- and glycerin-saturated conditions.
But in order to have a frequency profile for VP or VS that would apply for a single fluid
saturation, we have to correct either the water-saturated moduli or the glycerin-saturated
moduli to take into account the difference in fluid bulk modulus (Kwat = 2.24 GPa and
Kgly = 4.34 GPa), and calculate the velocities with the common medium density D =

Ddry + φD f luid.

As a first approximation, we could apply a poroelastic correction to the either the water-
or the glycerin-saturated bulk moduli results, to obtain their equivalent in the other fluid
saturation, similarly to Spencer and Shine (2016). In theory, a poroelastic correction would be
valid only for undrained moduli and cannot be applied for the drained or partially drained
moduli. Since most samples (except Lavoux) exhibit the drained/undrained transition in
water-saturated conditions, we choose to correct eventually the glycerin-saturated results.
With the use of Biot-Gassmann equation, if K is the glycerin-saturated bulk modulus we
want to correct into its equivalent water-saturated bulk modulus Kcorr, one can obtain:

1
1

Kcorr
− 1

Km

=
1

1
K − 1

Km

+
1

φ
(

1
Kwat
− 1

Km

) − 1

φ
(

1
Kgly
− 1

Km

) . (8.5)

Moreover, we keep note that this poroelastic correction does not apply completely for un-
relaxed moduli if squirt-flow occurs. In the unrelaxed regime, effective medium theory
applies, representing saturated-isolated inclusions. Therefore, the hypothesis of isobaric
REV are violated and poroelasticity cannot apply.

For the Lavoux sample, since the drained/undrained transition is visible under glycerin-
saturated conditions, no corrections are needed as the drained modulus is common to all
dry, water- and glycerin-saturations. We therefore keep the moduli as they are, and calcu-
lated the velocities with a glycerin-saturated density. Since the Indiana intact sample and
the Rustrel sample glycerin-results do not exhibit squirt-flow and are solely undrained, the
poroelastic correction can fully apply, and the final results will all be expressed in terms of
water-saturated conditions.

Only the thermally cracked Indiana sample and the Coquina sample exhibit squirt-flow
visible under glycerin-saturated conditions. The maximum error, due to the correction,
would occur for a purely unrelaxed bulk modulus, i.e., at ultrasonic frequencies (KHF).
We can therefore apply the poroelastic correction on KHF−gly, and compare it with the
measured KHF−wat. Our maximum error on the bulk modulus due to the correction can
be taken as dK = |Kcorr − KHF−wat|. Since the poroelastic correction does not apply to the
shear modulus G = GHF−gly at ultrasonic frequencies, the maximum error on the shear
modulus can be taken as dG = |GHF−gly − GHF−wat|. If we neglect the uncertainty on D,
the maximum relative uncertainty on the corrected-glycerin VP at ultrasonic frequencies is
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given by (Equation 8.1):

dVP

VP
=

1
2

dK(
Kcorr +

4
3 GHF−gly

) + 2
3

dG(
Kcorr +

4
3 GHF−gly

) . (8.6)

For the coquina, from Equations 8.5 and 8.6 and the ultrasonic results Table 7.1, we deduce
dVP/VP = 4.2% at Pdi f f = 2.5 GPa and dVP/VP = 4.6% at Pdi f f = 20 GPa. For the Indiana
thermally cracked sample, the bulk modulus results under-glycerin saturation at Pdi f f =

2.5 MPa were abnormally lower than Biot-Gassmann’s prediction and the undrained bulk
modulus in water-saturated conditions (Figure 7.10b). For the sake of the illustration, we
prefer to apply the correction solely on the results for Pdi f f = 5 GPa and Pdi f f = 20 GPa, as
the corrected results for Pdi f f = 2.5 GPa would be un-physical. For the thermally cracked
Indiana, from Equations 8.5 and 8.6 and the ultrasonic results Table 5.2, the maximum
relative uncertainties on VP are dVP/VP = 6.9% at Pdi f f = 5 GPa and dVP/VP = 8.6% at
Pdi f f = 20 GPa. It might seem counter-intuitive the fact that the uncertainty increases with
pressure, since the squirt-flow effect decreases. This in fact due to the poroelastic correction
applied on K (Equation 8.5): the more K increases, the closer it gets to Km, and therefore
the lower the effect of the correction, which then increases dK.

We present Figure 8.1 the corrected (scaled to a single fluid) P- and S-wave dispersions
and attenuations for the Lavoux (glycerin-saturated), the Indiana intact and the Indiana
thermally cracked (water-saturated) at differential pressures of 5 MPa and 20 MPa, along
with a schematic drawing of the characteristic elements of their microstructures. The same
plots for the Rustrel and Coquina samples at differential pressures of 2.5 MPa and 20
MPa under water-saturated conditions are presented Figure 8.2. The poroelastic correc-
tion is only applied on the low-frequency forced oscillations results in glycerin-saturated
conditions, except for the Lavoux. The corrected results, either from axial of hydrostatic
oscillations are then merged with the water-saturated results. For Figures 8.1 and 8.2, no
correction was applied on the attenuation results: the P- and S-attenuations were directly
calculated on the uncorrected data with Equations 8.3 and 8.4. A Zener model (Figure 3.5)
was fitted each for the drained/undrained and for the undrained/unrelaxed transition of
VP and VS. The Zener models are fitted on the elastic moduli (see Equation 3.14) to be then
converted into velocities by Equation 8.1. Since the attenuations are uncorrected, the atten-
uation deduced from Zener’s model were calculated from fitting the uncorrected moduli
before and after the dispersive transition. Only then, for illustration purposes, the Zener
model for VP corresponding to undrained and unrelaxed frequencies in glycerin-saturated
condition was corrected by Equation 8.5, without correcting the attenuation.

The Lavoux limestone is an oolitic grainstone, with principally uniform intragranular
microporosity in the oolites, and an equivalent volume of intergranular macropores (Figure
8.1a). A very low amount of calcitic cement was observed. The total porosity is 23%, with
a relatively large permeability of 10−14m2. Only one dispersive transition was observed for

143



CHAPTER 8. SYNTHESIS OF THE EXPERIMENTAL RESULTS

this type of microstructure, which corresponds to the drained/undrained transition (Figure
8.1b). The absence of any squirt-flow can be linked to the rather pressure-independent
bulk modulus up to Pdi f f = 20 MPa. This transition is an experimental artifact, as an
increase of the sample’s size would shift the observed drained/undrained transition to
lower frequencies. We can see Figure 8.1a that the Zener model approaches well the P-
wave attenuation. In the field, the characteristic length of diffusion would be theoretically
the wavelength λ = V/ f , instead of the sample’s length in our experiments. Therefore,
for seismic frequencies we are in no doubt in undrained condition. Since no squirt-flow is
visible at higher frequencies, then we can deduce that this microstrucuture is non dispersive
along the full frequency (Figure 8.1b). The ultrasonic laboratory measurements and the
seismic field measurement would be equivalent. We concluded here that the micropores
and the macropores had both very large aspect ratios, close to 1.

The Indiana limestone is a bioclastic grainstone, which also bears some microporosity
within the grains, and very few macropores (Figure 8.1c). The distribution of micropores
in the some grains such as oolites was uniform, while in the bioclasts it seemed to be more
rimmed (Figure 8.1c). The intergranular pore space is nearly entirely filled with a homoge-
neous (large crystals) calcite cement (Figure 8.1c), in which we didn’t visually see any cracks
from the SEM images. The bulk modulus showed a small dependence to effective pressure,
suggesting that a few amount of cracks or complaint pores are present. We suspect that the
pressure-dependence provides mainly from the micriticized grains or the grain contacts, as
the calcitic cement was found to be very homogeneous in the SEM analysis (Figure 5.9).
The dispersion results of this sample exhibited the drained/undrained transition in agree-
ment with the predictions, but nearly no squirt-flow (Figure 8.1d). Since we do not have the
shear modulus measurements for the Indiana limestone, we used GHF−dry for the drained
shear modulus and GHF−wat for the unrelaxed shear modulus. G is considered constant
while crossing the drained/undrained transition, and a Zener model was used to estimate
the dispersion between the undrained and the unrelaxed regime. Again, for the P-wave
velocities, the Zener model seems in agreement with the drained/undrained transition.
We suspect a little squirt-flow dispersion to occur at low pressure around 105 Hz since the
ultrasonic velocity is slightly higher than the undrained velocities (Figure 8.1d). But this
would induced a maximum change in P-wave velocity of about 200 m/s in water-saturated
conditions. The shear wave shows no significant dispersion nor attenuation (Figure 8.1c).
A good agreement between the glycerin-corrected results and the water-saturated results
is observed, as the velocity profiles show a good continuity in frequency (Figure 8.1d).

After we thermally cracked the same Indiana sample at 500°C during 1 hour, we could
observe on the SEM images the extensive amount of microcracks that developed in the
homogeneous calcitic cement (Figure 8.1e). We did not observe much cracks developing
in the microporous areas. We suspect that the crystal sizes, and therefore the texture, are
the main reason for this. Microcracks can only develop in sufficiently large homogeneous
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Figure 8.1: Microstructure and body wave dispersion/attenuation in the fluid-saturated
Lavoux (a-b), and the Indiana limestone intact (c-d) and after thermal cracking (e-f). For
overlapping frequencies between the axial and the hydrostatic oscillations, the bulk modu-
lus from the latter is used.
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grains. The microporous heterogeneous textures, like the intragranular microporosity, are
not a favorable medium for cracks to propagate. Similarly to the intact sample, we decided
to consider solely GHF−dry for the drained and undrained shear modulus, and GHF−wat

as the unrelaxed shear modulus. For this microstructure, two dispersive transitions were
clearly observed, the expected drained/undrained transition and the squirt-flow transition
around 100 Hz (Figure 8.1f). For Pdi f f = 5 MPa, the P-wave dispersion in the field, between
the frequency ranges of seismic acquisition and logs, would be around 500 m/s with an
attenuation peak around Q−1

P = 0.1. For the S-wave, the dispersion would be of 200 m/s
with a similar attenuation peak of 0.1 (Figure 8.1f). However, above 20 MPa of effective
pressure, no more squirt-flow is expected (Figure 8.1f). This transition seems consistent
with Zener’s model, but this latter overpredicts the attenuation peak for the drained /
undrained transition (Figure 8.1f). Again, a good agreement between the glycerin-corrected
results and the water-saturated results was observed, for Pdi f f = 5 MPa and Pdi f f = 20 MPa.

The Rustrel limestone is a grainstone that was cored in a rudist dominated facies surface
outcrop. The observed grains or pelloides, are possibly fragments of larger rudist’s shell
and are extremely micriticized. The sample is essentially microporous, with the micropores
located in the grains (Figure 8.2a). We do not observe any macropores, as the intergranular
pore space is completely filled by calcitic cement. This latter is not completely crystallized
and homogeneous like in the Indiana limestone. The SEM images revealed a substantial
amount of intercrystalline porosity within the cement (Figure 8.2a), which could play the
role of the pressure-dependent compliant porosity. The pressure-dependence could also
originate from the micritic microporosity in the grains. The experimental results do not
show much dispersion related to squirt-flow at high-frequency, despite a noticeable effect
of the differential pressure on VP and VS (Figure 8.2b). After the drained/undrained transi-
tion, the amount of dispersion of VP is of maximum 200 m/s for Pdi f f = 2.5 MPa, and is nil
for Pdi f f = 20 MPa. The S-wave shows a dispersion less than 100 m/s. This low amount of
squirt-flow dispersion is expected to occur between 104 Hz and 106 Hz. For both pressures,
only the drained/undrained transition seems to exhibit large dispersion, in perfect agree-
ment consistent with Zener’s model (Figure 8.2b). A good consistency of the poroelastic
correction was also observed (Figure 8.2b).

Finally, the Coquina sample is a grainstone originated from a deep well in offshore
Congo, in the pre-salt sequence at least at 4 km depth. The homogeneous matrix is mainly
constituted of what seems to be abraded fragments of shells, with grains less than 100 µm
that are poorly sorted (Figure 8.2c). These grains are not micriticized at all, and do not bear
much microporosity (Figure 8.2c). The porosity is mainly of intergranular or intercrystalline
origin. No calcitic cement was found, and the grain contacts were found to be poorly
cemented, making it a rather unconsolidated rock very compliant at low pressures (Figure
8.2c). The P-wave velocity at Pdi f f = 2.5 MPa was found to be less than 2800 m/s in
the drained regime. This drained velocity rises to nearly 4000 m/s at Pdi f f = 20 MPa.
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Figure 8.2: Microstructure and body wave dispersion/attenuation in the fluid-saturated
Rustrel (a-b) and Coquina samples (c-d). For overlapping frequencies between the axial
and the hydrostatic oscillations, the bulk modulus from the latter is used.
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The compliant porosity seems to be the grain contacts, similarly to sandstones. After the
drained/undrained transition, a substantial amount of dispersion related to squirt-flow
was observed around 2× 104 Hz (Figure 8.2d). At Pdi f f = 2.5 MPa, VP increases by more
than 600 m/s and VS increases by 400 m/s (Figure 8.2d). The crack closure pressure was
not reached during the experiments, but we can say it is expected to be greater than 40 MPa
of differential pressure, as the pressure-dependence of the static bulk modulus, increases
linearly with pressure up to 25 MPa (Figure 7.5). The poroelastic correction on the glycerin
results seem to underestimate the water-saturated undrained results between 2× 102 Hz
and 3× 103 Hz as we can see a little discontinuity (Figure 8.2d), which seems within our
calculated relative uncertainty of 4.2% for Pdi f f = 2.5 MPa, but slightly greater than the
relative uncertainty of 4.6% expected for Pdi f f = 20 MPa.

8.4 Static versus dynamic bulk modulus

We would like to investigate here if there is any correlation between the static/dynamic
behavior of a rock, and the presence of dispersion/attenuation related to fluid flow. We
presented Figure 8.3, the evolution with confining pressure of the static (Kstat) and dynamic
(Kdyn) dry bulk modulus of all the samples, and the evolution of the ratio Kstat/Kdyn with
pressure. Kdyn is the bulk modulus obtained from hydrostatic oscillations. We recall that
the static bulk modulus is the tangent modulus of the static loading curve, calculated after
a polynomial fit.

The first observation we can make, is that the ratio Kstat/Kdyn tends to 1 with increasing
pressure for all our sample, which correlates well with the closure of cracks (Figure 8.3).
This does not come as a surprise, since open cracks are known to induce non-linear effects
during large deformations (ε > 10−3) (Simmons and Brace, 1965; King, 1969; Cheng and John-
ston, 1981; Fjær, 2009), that do not appear for the small deformations (ε < 10−5) induced by
the dynamic measurements. A linear function was fitted through the pressure dependence
of Kstat/Kdyn for each sample (Figure 8.3). A rather similar trend was found between the
thermally cracked Indiana, the Rustrel and the Coquina samples, with a common slope of
0.03 (Figures 8.3d, 8.3f and 8.3h) and initial ratios inferior to 0.5. The Lavoux and the intact
Indiana exhibited lower slopes of respectively 0.02 and 0.01 with much higher initial ratio
greater than 0.65.

Cheng and Johnston (1981) and Fjær (2009) both agreed that the strain amplitude is the
key factor to explain the difference between the static and dynamic modulus. Fjær (2009)
suggested that frictional sliding inside the cracks was a possible mechanism to explain this.
This mechanism would be only activated if large strains occur, i.e., in the static measure-
ments. Fjær (2009) even found that, in sandstones, the static and dynamic bulk moduli
were always different except immediately after beginning the unloading cycle.

In our carbonate rocks, if we suppose that frictional sliding in cracks is the acting mech-
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Figure 8.3: Comparison of the static and dynamic bulk moduli at different pressures for
all the samples (left column). The ratio static over dynamic bulk modulus (Kstat/Kdyn) is
calculated for each experimental point (right column).
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anism, then the Lavoux and intact Indiana wouldn’t exhibit much of it, contrary to the
thermally cracked Indiana, the Rustrel and the Coquina. Interstingly, we observed cracks,
or potential compliant pores, between large homogeneous crystals in the thermally cracked
Indiana (cement), the Rustrel (intercrystalline porosity in the cement) and the Coquina
(grain contacts), and did not observe any for the Lavoux and intact Indiana. We can only
speculate that there could be a correlation between the cracks locations and the static ver-
sus dynamic behavior. Since the frictional sliding would be related to the crack’s inner
planes’ texture or rugosity, we can only suppose that the cracks located in the heteroge-
neous microporous grains (Lavoux + intact Indiana) exhibited less frictional sliding than
the cracks surrounded by larger homogeneous crystals (thermally cracked Indiana, Rustrel
and Coquina). More experimental work would have to be done to assess this.

To the state of our understanding, a low Kstat/Kdyn is clearly correlated to the presence
of cracks, but fails to discriminate potential squirt-flow from these cracks, since the Rustrel
sample, which exhibited a low amount of squirt-flow dispersion, shared similar static vs
dynamic trend than the cracked Indiana and the Coquina samples.

8.5 Conclusion

The investigation of the squirt-flow between compliant cracks and stiff pores is of major
importance as it results in discrepancies between the elastic properties deduced from ul-
trasonic velocities and from seismic field measurements. The squirt-flow in Sandstones
correlate well with the presence of microcracks and compliant grain boundaries and analy-
sis of effective medium theories (Pimienta et al., 2015a). However, wave induced fluid flows
at microscale within the complexe pore spaces of carbonate rocks are much more difficult
to predict.

For all the samples, the drained/undrained transitions in our carbonate samples were
perfectly characterized and were in agreement with Biot-Gassmann predictions, either for
the bulk modulus and the shear modulus measurements, and in agreement with the cut-
off frequency f1 = 4κKd/ηL2. We did not see substantial shear weakening due to fluid-
saturation in our samples, except for the Rustrel sample. We recall that this transition is an
experimental artifact that would dependent on the size of the sample. In laboratory mea-
surements, characterizing this transition is essential to distinguish the drained/undrained
regimes, from any potential unrelaxed regime. In our experimental setups, since the
samples are relatively small (80 mm) and the boundary conditions are never perfectly
undrained, it may occur that the drained/undrained transition (or partial drainage) oc-
cur at the same frequency than the squirt-flow dispersion, provided the sample has a high
permeability with low aspect ratio cracks (e.g. Pimienta et al., 2015a). Besides for the Lavoux
limestone, the permeability range of the samples was sufficiently low (10−17 m2) so that the
drained/undrained transition would be visible at low frequencies for the water-saturated
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results, so that the glycerin-saturated measurements started in undrained conditions.
We attempted to correlate our dispersion observations with characteristic features of the

rock’s microstructure. The samples exhibiting pressure-dependent moduli did show squirt-
flow (all except the Lavoux), but in different proportions. In general, the P-wave is the most
affected by the wave-induced-fluid-flow dispersions. For all samples, effective pressures
greater than 20 MPa would nearly cancel all squirt-flow dispersion. At low-pressure, the
squirt-flow dispersion was much larger for the thermally cracked Indiana and the coquina,
than for the intact Indiana and the Rustrel samples. This suggests that this phenomenon is
more important for cracks in large homogeneous crystals or for grain contacts in detritic-
type rocks such as the coquina. The compliant pores or cracks originating from the more
heterogeneous micritized grains or at the grain boundaries with the cement will exhibit
much less squirt-flow dispersion. The S-wave only exhibits dispersion for the squirt-flow
transition. Only the coquina sample had a significant S-wave dispersion of maximum 400
m/s at an effective pressure of 2.5 MPa. The others samples showed very little S-wave
dispersion with a maximum amount of 200 m/s. The presence of cracks, and therefore
squirt-flow, correlates well with a low Kstat/Kdyn. With the closure of cracks with increasing
pressure, Kstat/Kdyn tends consistently to 1. However, it is still difficult to find a clear
correlation between the low-pressure value of Kstat/Kdyn, and the amount of squirt-flow,
since the Rustrel (low amount of squirt-flow) and the coquina (large amount of squirt-flow)
have nearly identical Kstat/Kdyn profile.
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Part III

Modelling the frequency dependence
of elastic properties over the drained /

undrained / unrelaxed regimes.
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CHAPTER 9

MODELLING THE DRAINED/UNDRAINED TRANSITION:
EFFECT OF THE MEASURING METHOD AND THE
BOUNDARY CONDITIONS.

Geophysical Prospecting, 2016.

Pimienta, L., J.V.M. Borgomano, J. Fortin and Y. Guéguen.

9.1 Résumé

La dépendance en fréquence des modules élastiques des roches saturées est liée aux écoule-
ments de fluides à différentes échelles. Dans la gamme de fréquence [10−3; 106]Hz, pour
les roches saturées, deux phénomènes ont été mis en évidence expérimentalement : (i) la
transition drainé / non-drainé (i.e. diffusion globale) ; et (ii) la transition non-drainé /
non-relaxé (i.e. diffusion local). Lorsque l’on mesure ces phénomènes en laboratoire, ou
lorsque l’on veut comparer différentes mesures sur une roche, les conditions aux limites
et la méthode de mesure utilisée doivent être prises en compte. Un modèle poroélastique
1D est présenté, et vise à calculer la réponse poroélastique attendue lors d’une expérience
d’oscillations. Ce modèle est utilisé pour tester différentes conditions aux limites ainsi que
la méthode de mesure de déformation : locale avec des jauges, ou globale avec des LVDT.
Quatre propriétés sont prédites et comparées aux données expérimentales, i.e., le module
K, son atténuation, un coefficient de « pseudo-Skempton », et le déphasage de la pression
de pore. Pour la transition drainé / non-drainé, puisque la pression de fluide n’est pas
nécessairement homogène sur tout l’échantillon, les mesures locales et globales peuvent
être différentes. De plus, on démontre que l’existence de volumes morts à chaque ex-
trémité de l’échantillon peut fortement influencer les résultats. La relation entre la capacité
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de stockage de l’échantillon et des volumes morts va déterminer l’amplitude et la dépen-
dance en fréquence de mesures de dispersions et d’atténuations. Le modèle se compare
bien avec des mesures effectuées sur des grès poreux et très compressibles. Des compara-
isons supplémentaires ont été effectuées sur les calcaires.
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9.2. ABSTRACT

9.2 Abstract

The dependence of fluid-saturated rocks’ elastic properties to the measuring frequency is
related to fluid flow phenomena at different scales. In the frequency range of [10−3, 106]Hz,
for fully-saturated rocks, two phenomena have been experimentally documented: (i) the
drained/undrained transition (i.e. global flow); and (ii) the relaxed/unrelaxed transition
(i.e. local flow). When investigating experimentally those effects or comparing different
measurements in rocks, one needs to account for both the boundary conditions involved
and the method of measurement used. A 1D poroelastic model is presented that aims at cal-
culating the expected poroelastic response during an experiment. The model is used to test
different sets of boundary conditions as well as the role of the measuring set-up, i.e. local
(strain gauges) or global (LVDT) strain measurement. Four properties are predicted and
compared to the measurements, i.e. bulk modulus, bulk attenuation, pseudo-Skempton
coefficient and pore pressure phase shift. For the drained/undrained transition, because
fluid pressure may not be homogeneous in the sample, local and global measurements are
predicted to differ. Furthermore, the existence of a dead volume at both sample’s ends
is shown to be important. Owing to the existence of the dead volume, an interplay be-
tween sample’s and dead volumes’ storage capacity determines both the magnitudes and
the frequency dependence of the dispersion/attenuation measurements. The predicted
behaviours are shown to be consistent with the measurements recently reported on very
compressible and porous sandstone samples. Additional comparisons are done on the
limestones.

9.3 Introduction

Dispersive elastic properties in porous fluid-saturated rocks originate from the presence
and mechanical effect of fluid (e.g. Biot, 1956a; O’Connell and Budiansky, 1974). The char-
acteristic frequency of those effects are related to fluid pressure equilibration during the
passing of the seismic wave (e.g. O’Connell and Budiansky, 1974; Cleary, 1978). Two com-
plementary methods have been proposed to investigate experimentally rocks’ dispersive
elastic properties, i.e. the resonant-bar and the stress-strain method. The resonant-bar
method relies on fixing one side of a sample, applying a small displacement to the other
side and observing the resonance modes of the rock sample (e.g. Winkler and Nur, 1979;
Bourbie and Zinszner, 1985). Depending on the sample’s length and diameter, the frequency
range investigated is of about 10 kHz. However, the method often implies for the sample to
be unbounded so that investigating the confining pressure effect is challenging. The stress-
strain, or sub-resonance, method is promising as it allows for measurements over wide
frequency ( f ∈ [10−2; 103]Hz) and pressure ranges (e.g. Subramaniyan et al., 2014). Depend-
ing on the apparatuses’ specificity, different elastic properties can be precisely investigated

157



CHAPTER 9. MODELLING THE DRAINED/UNDRAINED TRANSITION: EFFECT
OF THE MEASURING METHOD AND THE BOUNDARY CONDITIONS.

such as the bulk modulus (e.g. Adelinet et al., 2010; David et al., 2013; Pimienta, Fortin
and Gueguen, 2015a), the shear modulus (e.g. Jackson and Paterson, 1987), Young’s modulus
(e.g. Batzle, Han and Hofmann, 2006; Adam et al., 2009; Takei, Fujisawa and McCarthy,
2011; Tisato and Madonna, 2012; Madonna & Tisato, 2013; Mikhaltsevitch, Lebedev and
Gurevitch, 2014; Pimienta, Fortin and Gueguen, 2015b) or Poisson’s ratio (Pimienta, Fortin
and Gueguen, 2016).

When measuring these dispersive properties experimentally, one however needs to
properly account for the specific boundary conditions brought by the measuring apparatus
and method. For the resonant-bar method or stress-strain experiments under ambient pres-
sure (e.g. Paffenholz and Burkhardt, 1989; Lienert and Manghnani, 1990; Takei et al., 2011), the
sample is unbounded so that fluid is allowed to flow laterally. For such experiments, Dunn
(1987) has shown that the lateral boundary condition could affect the dispersive proper-
ties by creating a lateral fluid flow out of unjacketed samples, the so-called Biot-Gardner
effect. On the contrary, the stress-strain method under confining pressure implies a lateral
bounding of the sample by using either epoxy sealing (e.g. Batzle et al., 2006b; Adam et al.,
2006, 2009), copper (e.g. Tisato and Madonna, 2012; Madonna and Tisato, 2013) or rubber (e.g.
Adelinet et al., 2010; David et al., 2013; Fortin et al., 2014; Mikhaltsevitch et al., 2014; Pimienta
et al., 2015a,b, 2016a) jacketing. Most of the existing apparatuses have been designed to
measure properties on assumed undrained samples, by not allowing for axial fluid flow
through the end-platens (e.g. Tisato and Madonna, 2012; Madonna and Tisato, 2013; Mikhalt-
sevitch et al., 2014). However, because the saturating procedure might not be optimum
with such set-ups, and because the drained/undrained transition is of interest, a different
set-up/methodology has been used at ENS (e.g. Pimienta et al., 2015a). The drained con-
ditions have been approached by creating large dead volumes in the drainage system, at
the sample’s ends, allowing to precisely measure both cause (fluid flow) and consequence
(dispersion/attenuation) of the drained/undrained transition (e.g. Pimienta et al., 2014a).

To check experimental data against predictions for this drained/undrained transition, a
1D poroelastic model has been derived from solving the pore pressure diffusion equation
with different sets of boundary conditions. The technique used for the measurement (i.e.
local or global) has also been taken into account. The predictions have been compared to
measurements on two porous and compliant sandstone samples.

9.4 General 1D poroelastic model

Within the framework of linear isotropic poroelastic theory for an homogeneous medium,
using the poroelastic relations, the mechanical equilibrium equation and the mass balance
equation, one gets the partial derivative equation satisfied by the pore fluid pressure (p f )

158



9.4. GENERAL 1D POROELASTIC MODEL

(e.g. Rice and Cleary, 1976; Zimmerman, 2000; Guéguen and Boutéca, 2004):

∂p f

∂t
− κBKd

ηα(1− αB)
∇2 p f =

BKd

1− αB
∂εv

∂t
. (9.1)

Where κ, Kd, B and α are respectively the rock’s permeability, drained bulk modulus,
Skempton coefficient and Biot coefficient. η is the fluid’s intrinsic viscosity, and εv is the
volumetric strain.

Noting that the volumetric strain is εv = K−1
d (P − αp f ), Equation (9.1) is a diffusion

equation with a source term that depends on the condition of stress solicitation P. Two cases
of stress solicitation could be considered. The confining pressure oscillations (e.g. Adelinet
et al., 2010) can be considered as an “isotropic solicitation”, i.e. a stress solicitation equal in
all directions. The uniaxial stress oscillation (e.g. Batzle et al., 2006b) can be considered as
a “deviatoric solicitation”. Although we focus in the following on the “isotropic solicitation”
case, the case of a “deviatoric solicitation” can be shown to give very similar results.

9.4.1 Model derivation : Isotropic solicitation

An oscillating confining pressure is applied so that P(t) is a source term that is time-
dependent. Equation (9.1) is solved in 1 dimension (1D model) by assuming p f to vary as
a function of z only. Finally, the equation rewrites (Zimmerman, 2000):

∂p f

∂t
− κBKd

ηα

∂2 p f

∂z2 = B
∂P
∂t

. (9.2)

Noting that the rock’s storage coefficient is Ss = α/(BKd) (Kümpel, 1991), the equation
rewrites:

∂p f

∂t
− κ

ηSs

∂2 p f

∂z2 = B
∂P
∂t

, (9.3)

which is similar to the heat equation with a heat source.

In case of no source term (i.e. P = const), this equation is that used in the “oscillating
pulse” method (e.g. Brace et al., 1968; Lin, 1977; Hsieh et al., 1981; Song and Renner, 2006,
2007). If P(t) is variable, the source term exists. Here, the applied confining pressure
P(t) is supposed to be small variations around a nil value of a sinusoidal form such that
P(t) = ∆P0 eiωt. Accounting for this time dependence, assuming a steady-state solution,
and using the method of variables separation with p f (z, t) = f (z)eiωt, the partial derivative
equation simplifies to:

f (z) + i
(

D
ω

)
d2

dz2 [ f (z)] = B∆P0, (9.4)

with D = κ/(Ssη) being the fluid hydraulic diffusivity in the sample. The equation being
simplified to a typical differential equation of second order, steady-state solutions can be
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found analytically. These are of the form:

p f (z, t) =
[

B∆P0 + p±0 e±(1+i)
√

ω
2D z
]

eiωt, (9.5)

with p+0 and p−0 two constants that are obtained from the chosen problem’s boundary
conditions. Knowing p f (z, t) (Eq. 9.5), the volumetric strain is obtained such that εv(z, t) =
K−1

d (P(t)− αp f (z, t)).

9.4.2 Solution for undrained and drained boundary conditions

9.4.2.1 Theoretical derivation

In the undrained condition, fluid is not allowed to flow out of the sample so that:(
∂p f

∂z

)
z=L

=

(
∂p f

∂z

)
z=0

= 0. (9.6)

The undrained boundary condition leads to a solution of p f (t) = B P(t), i.e. an immediate,
position- and frequency-independent response of the pore fluid to the oscillating pressure.
Under drained boundary conditions, pore pressure is maintained to the sample upper (i.e.
z = L) and lower (i.e. z = 0) ends so that no overpressure can occur, and:

p f (0, t) = p f (L, t) = 0. (9.7)

In the drained boundary condition, the sample’s behaviour depends on the frequency of
the applied stress oscillation.

Owing to the simple drained boundary condition, of nil pore overpressure at both ends,
an analytical solution can be found such that:

p f (z, t) = B∆P0eiωt
[

1− sinh(a(L− z)) + sinh(az)
sinh(aL)

]
, (9.8)

with the parameter a = (1 + i)
√

ω/2D. As shown from this solution, any value of p f (z, t)
corresponds to the “local” fluid overpressure created by the stress oscillation P(t). Finally,
a “local” volumetric strain can be calculated such that:

εv(z, t) =
B∆P0

Kd
eiωt

[
(

1
B
− α) + α

sinh(a(L− z)) + sinh(az)
sinh(aL)

]
. (9.9)

Parameter a depends on ω so that, at a given z, both p f and εv depend on ω. Moreover,
because a is a complex number, p f and εv are complex-valued functions. In the following
these are characterized by their amplitude and phase.
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Table 9.1: Parameters values used for the model predictions. The rock parameters and dead
volume values are those reported from Pimienta et al. (2015a).

Parameter Estimated value
Sample length L = 80 mm
Sample diameter d = 40 mm
Sample’s porosity φ = 7 %
Sample’s drained bulk modulus Kd = 14 GPa
Sample’s permeability κ = 4 10−15 m2

Confining oscillation amplitude ∆P = 0.2 MPa
Lower Dead volume (1) V1 = 3.4 mL
Upper Dead volume (2) V2 = 3.2 mL
Glycerine bulk modulus Kgly = 4.36 GPa
Glycerine viscosity ηgly = 1.087 Pa.s
Lower (1) storage capacity S1 = 7.80 10−4 L.GPa−1

Upper (2) storage capacity S2 = 7.34 10−4 L.GPa−1

Sample’s storage capacity Ss = 5.86 10−2 GPa−1

Sample’s hydraulic diffusivity Dgly = 6.28 10−5 m2.s−1

Water bulk modulus Kwat = 2.25 GPa
Water viscosity ηwat = 0.89 10−3 Pa.s
Lower (1) storage capacity S1 = 1.51 10−3 L.GPa−1

Upper (2) storage capacity S2 = 1.42 10−3 L.GPa−1

Sample’s storage capacity Ss = 7.36 10−2 GPa−1

Sample’s hydraulic diffusivity Dwat = 6.10 10−2 m2.s−1

9.4.2.2 Discussion of the analytical 1D solution

Values of the different physical parameters: The different parameters used (Table 9.1)
are chosen to be the ones measured experimentally (e.g. Pimienta et al., 2015a). The rock’s
drained bulk modulus varies with confining pressure. Its value is Kd ∼ 14 GPa at lowest
confining pressure (i.e. Pe f f = 1 MPa). The sample’s Skempton (B) and Biot-Willis (α)
coefficients and storage capacity (Ss) are calculated, assuming the skeleton bulk modulus
to be the one of quartz (i.e. Kqtz = 37 GPa), from usual relations of poroelastic theory
(Detournay and Cheng, 1993). Finally, the hydraulic diffusivity (D) is directly deduced from
the measured sample’s permeability (i.e. κ = 4 10−15 m2) and storage capacity (i.e. Ss), and
the fluid’s viscosity (η).

The behaviours of the fluid saturated rock depend on two fluid’s intrinsic properties.
Viscosity affects the hydraulic diffusivity, thus modifying parameter a and introducing a
frequency dependence of p f (Eq. 9.5) and εv (Eq. 9.9). On the other hand, the fluid’s
compressibility affects the saturated sample’s compressibility, the storage capacity and the
Skempton coefficient B, thus affecting the magnitude of the frequency effect (Eqs. 9.8 &
9.9).
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Figure 9.1: Time dependence of the applied confining pressure oscillations and predicted
pore pressure response for different frequencies in the range of f ∈ [10−2; 102] Hz. The
parameters values are the ones from Table 9.1 in case of glycerine saturation.

Time dependence : Using the same parameters values as above, the time-dependence of
p f for a given oscillating P(t) is reported (Fig. 9.1). The local p f is predicted for different
frequencies ( f ∈ [10−2; 102]Hz) and for three sensors’ positions using the constants from
Table 9.1 in case of glycerine saturation.

The amplitudes of the induced p f oscillations increase with increasing frequency, up
to f ∼ 10 Hz (Fig. 9.1e) where they become independent of frequency. Beyond this fre-
quency, the maximum amplitude of p f is 0.15 MPa, which consistently relates to case of
B = p f /Pc = 0.75. The pore pressure response is initially shifted in time (i.e. phase shift)
with respect to P(t), by about π/2 at lowest frequency of f = 10−2 Hz (Fig. 9.1a). The
phase shift decreases, down to zero beyond f ∼ 10 Hz (Fig. 9.1e).

The frequency-dependent variation occurs over a very large frequency band, of about
f ∈ [10−2; 101]Hz. Owing to the boundary conditions, a large dependence to the position
of the strain (or pore pressure) sensor is observed. This point is further investigated below.

Spatial dependence The position (z) dependence of both amplitude and phase of the
“local” pore pressure (i.e. p f ) and strain (i.e. εv) is reported in Fig. 9.2. The properties
are calculated for different frequencies of the applied P in the range of f ∈ [10−2; 102]Hz.
Consistently, p f amplitudes are low and εv are high (i.e., low bulk modulus), at lowest f .
For the fluid pressure p f , amplitude and phase show a similar monotonous behaviour. As
frequency increases, the amplitude (Fig. 9.2a) increases and the phase (Fig. 9.2b) decreases.
The volumetric strain εv amplitude is also monotonous (Fig. 9.2c), but the phase is not (Fig.
9.2d). At low frequency, the amplitude decrease and phase increase as frequency increases.
However, there exists a critical frequency (i.e. f ∼ 0.1 Hz) beyond which the strain phase
decreases when frequency keeps increasing.
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Figure 9.2: Position dependence of the predicted (a-b) pore pressure and (c-d) mean strain
(i.e. εv/3) response to the applied confining pressure oscillations for different frequencies
in the range of f ∈ [10−2; 102] Hz. Both signals’ amplitudes and phases are investigated.
The properties for the prediction are the ones from Table 9.1 in case of glycerine saturation.

At low f , the largest amplitude is observed at the sample’s center. As frequency in-
creases, almost all of the sample shows the same response. Because of the symmetry cho-
sen for the boundary conditions, the variations are symmetric with respect to the sample’s
center. Note that, for each position, it exists a frequency at which the signal (e.g. p f or
εv) exceeds the maximum value obtained at highest frequency. This observation was also
reported by Dunn (1987) and Wang (2000).

“Local” versus “Global” predictions As in Pimienta et al. (2015a), a local pseudo-Skempton
coefficient B∗ is defined. Similarly, a local pseudo-bulk modulus K∗ may be directly de-
duced from the complex volumetric strain:

B∗(z, ω) =
p f (z, ω)

P(ω)
, & K∗(z, ω) = − P(ω)

εv(z, ω)
. (9.10)

The parameters depend on the intrinsic properties (i.e. B and K) of a given rock sample
for the specific conditions of the experiment. But, because both parameters bear a dynamic
information, those are addressed as “pseudo”-properties. The locally calculated K∗ and B∗

can be averaged over the sample’s length L to get global (or volume-averaged) properties
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Figure 9.3: Predicted drained to undrained transition of the frequency-dependent (a-b)
hydraulic and (c-d) elastic properties of a representative sandstone sample saturated by
water (i.e. thin curves) or glycerine (i.e. thick curves). Both “local” (i.e. dashed colour
curves) and “global” (i.e. continuous black curves) predictions are compared. The two
cases of water and glycerine saturating conditions are tested.

of the rock (i.e. Kg and Bg) such that:

Bg(ω) =
1
L

∫ L
0 p f (z, ω) dz

P(ω)
, & Kg(ω) = − P(ω)

1
L

∫ L
0 εv(z, ω) dz

. (9.11)

Both Bg and Kg also bear a dynamic information and are “pseudo”-properties.

Again, the “local” and “global” predictions can be characterised by their amplitudes (e.g.
‖B∗‖ and ‖K∗‖) and phases (e.g. φB∗ and φK∗). The amplitudes are related to the material
constants, i.e. Kd and B. The phase φB∗ describes the shift in fluid pressure as compared
to the applied confining pressure, and depends on the sample hydraulic diffusivity. The
phase φK∗ is the phase shift between the applied confining pressure and volumetric strain,
and Tan(φK∗) is the bulk modulus attenuation (i.e. Q−1

K ).

Both “local” and “global” hydraulic (Figs. 9.3a & 9.3b) and solid (Figs. 9.3c & 9.3d)
responses to the applied confining pressure oscillation are predicted as a function of fre-
quency using the parameters from Table 9.1. Three positions have been chosen along the
sample’s length at z = [L/2; L/4; L/10]. Overall, (i) ‖B∗‖ (Fig. 9.3a) and ‖K∗‖ (Fig. 9.3c)
show a consistent increase from drained to undrained domain; (ii) the phase shift φB∗ shows
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large decrease with frequency, from π/2 down to zero; and (iii) a large Q−1
K peak is ob-

served. For all properties, owing to the water intrinsic viscosity, the transition is shifted to
higher frequency in comparison to the glycerine saturation.

Consistently, the “local” predictions show no frequency dependence at either very high
(i.e., f > 102 Hz for glycerine) or very low (i.e., f < 10−3 Hz) frequencies, i.e. corresponding
to the undrained and drained regimes respectively. In the characteristic frequency domain
of the drained/undrained transition, a clear dependence to the position is predicted for all
properties.

9.4.3 “Experimentally undrained” boundary condition

The two typical boundary conditions most often considered are the “drained” (Fig. 9.4a)
and “undrained” (Fig. 9.4b) conditions (e.g. Dunn, 1986, 1987). They correspond to the ex-
tremal cases of fluid either fully blocked or fully unblocked in the sample. A third bound-
ary condition should be addressed, which combines the purely “drained” and “undrained”
conditions: the “Experimentally undrained” condition described below (Fig. 9.4c). This last
condition is the most realistic one because (i) it is often difficult to attain experimentally the
purely “undrained” (e.g. Ghabezloo and Sulem, 2009) experimental conditions ; and (ii) it has
been shown (e.g. Pimienta et al., 2015a) that measuring precisely attenuations under purely
“drained” conditions was technically challenging.

Figure 9.4: Schematic view of the sample associated with the three possible boundary
conditions. The theoretical (a) “drained” and (b) “undrained” boundary conditions are com-
plemented with the more realistic (c) “experimentally undrained” boundary condition, which
in fact combines the two theoretical ones.

165



CHAPTER 9. MODELLING THE DRAINED/UNDRAINED TRANSITION: EFFECT
OF THE MEASURING METHOD AND THE BOUNDARY CONDITIONS.

9.4.3.1 Role of the dead volumes

The “experimentally undrained” boundary condition consists in an undrained system not
only constituted of the sample but also of a dead volume at both sample’s upper and lower
ends. Such boundary condition is also that considered for the “oscillating pulse” technique
(e.g. Brace et al., 1968; Lin, 1977; Hsieh et al., 1981; Song and Renner, 2006, 2007). Fluid
mass continuity at both ends of the sample is imposed, i.e. the change of fluid mass in the
sample equals the fluid mass change in the dead volume. Following earlier studies, these
boundary conditions are found to be (Brace et al., 1968; Lin, 1977):S1

(
∂p1
∂t

)
z=L

+ κA
η

(
∂p f
∂z

)
z=L

= 0,

S2

(
∂p2
∂t

)
z=0
− κA

η

(
∂p f
∂z

)
z=0

= 0.
(9.12)

Where S1 and S2 are respectively the storage capacities of downstream and upstream dead
volumes, and p1 = p f (0, t) and p2 = p f (L, t) are the fluid pressures in the downstream and
upstream dead volumes. A is the sample’s cross-sectional area through which Darcy flow
takes place.

From Equation (9.12), the dead volumes contribute through their overall storage capac-
ity. Owing to the very low pressure variations applied (i.e. ∆P = 0.2 MPa), leading to even
lower pore pressure variations, the tubing’s compressibility can consistently be neglected
so that only the compressibility of the fluid in the dead volume needs to be accounted for.
Knowing the values of lower (i.e. V1) and upper (i.e. V2) dead volumes, and the fluid bulk
modulus K f , S1 and S2 are obtained such that S1,2 = V1,2 K−1

f . The sample’s storage capac-
ity is reached from the theoretical relations (e.g. Kümpel, 1991). All required parameters are
listed in Table 9.1.

The general solution can be obtained for example by solving the Equation (9.5) using
Mathematica software. Solving p f (z, t) for this realistic set of boundary conditions would
lead to a complex solution that cannot be reported in a simple formula. However, a simple
analytical solution is found if S1 = S2 (i.e. V1 ∼ V2). In the case of the set-up used
in Pimienta et al. (2015a), such assumption can consistently be made as V1 = 3.4 mL and
V2 = 3.2 mL. Using this assumption, one gets the system:p−0 (b + 1) = p+0 (b− 1)− B∆P0,

p+0 (b + 1)eaL = p−0 (b− 1)e−aL − B∆P0,
(9.13)

with b = (1− i)A(Ss/S)
√

2D/ω, and S = S1 + S2 is the dead volume storage capacity.
Subtracting the two above equations, one gets:

(p−0 − p+0 eaL)

[
(1 + b)− (1− b)

eaL

]
= 0. (9.14)
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This implies that p−0 = p+0 eaL, because a, b and L have fixed values so that the second term
differs from zero. Further solving the System (9.13) and replacing the constants in Equation
(9.5) leads to the general solution:

p f (z, t) = B∆P0eiωt

[
1− cosh(a( L

2 − z))
bsinh(a L

2 ) + cosh(a L
2 )

]
, (9.15)

Interestingly, recalling that a ∝
√

ω and b ∝ (1/
√

ω), the limiting quasi-static case (i.e.
zero frequency) can be reached from Equation (9.15) using the Taylor expansion of cosh and
sinh to the first order in ω. Further noting that a b (L/2) = (2ASs/S)(L/2) = Vs(Ss/S), the
limiting quasi-static case is: (

p f (z, t)
P(t)

)
ω=0

= B0 = B
VsSs

VsSs + S
. (9.16)

Where Vs = AL is the sample’s total volume and B is the Skempton coefficient. The
general result (i.e. with V1 6= V2) can further be found from introducing S = S1 + S2 in
Equation (9.16). This solution under quasi-static conditions is consistent with the results
from Ghabezloo and Sulem (2010), and implies that the measured B0 is equal to the Skempton
coefficient B only if S1 = S2 = 0 (i.e. V1 = V2 = 0). As shown by previous authors (e.g.
Ghabezloo and Sulem, 2010), the idealistic condition of V1 = V2 = 0 can seldomly be reached
experimentally so that the above result needs to be applied.

9.4.3.2 “Global” predictions

In order to apply the present model in a simple way to the experiment reported in Pimienta
et al. (2015a), the two dead volumes are assumed to be equal (i.e. V1 = V2) so that the total
dead volume is Vmeas = 6.6mL. As a consequence, following Equation (9.15), the problem is
symmetric with respect to L/2. The model’s “global” predictions, averaged over the entire
sample’s length, are first investigated. They are noted Kg and Q−1

Kg
for the predicted elastic

response, and Bg and φBg for the hydraulic response. The frequency-dependent hydraulic
(Figs. 9.5a & 9.5b) and elastic (Figs. 9.5c & 9.5d) model’s responses are predicted using
the parameters from table (9.1). In order to check the sensitivity to the total dead volume
value, a theoretical dead volume Vth is introduced. This parameter is varied from Vmeas to
values of 0, 10 Vmeas and 103 Vmeas, and even to 106 Vmeas for the p f phase shift.

A zero dead volume (i.e. Vth = 0) corresponds to the “undrained” boundary condition.
In that case, for all frequencies (i) the predicted Bg equals Skempton coefficient B; (ii) there
is no phase shift for p f ; and (iii) Kg = Kud (i.e. undrained bulk modulus) and Q−1

Kg = 0.
A very high dead volume (i.e. Vth ≥ 103 Vmeas) corresponds to the “drained” boundary
condition (Fig. 9.3). In that case, (i) at frequencies low enough, there is no Skempton
coefficient (i.e. Bg = 0) and Kg = Kd; and (ii) a critical frequency fc exists at which the

167



CHAPTER 9. MODELLING THE DRAINED/UNDRAINED TRANSITION: EFFECT
OF THE MEASURING METHOD AND THE BOUNDARY CONDITIONS.

Figure 9.5: Predicted frequency dependence of the (a-b) hydraulic and (c-d) elastic response
of the fluid-saturated sandstone sample. The “global” prediction are reported, i.e. the
response averaged over the sample’s length.

regime switches from “drained” to “undrained”. At fc, a maximum in Q−1
Kg is predicted.

The intermediate dead volumes (i.e. Vth = Vmeas and Vth = 10 Vmeas) lead to an interme-
diate case scenario, in between “drained” and “undrained” boundary conditions. In that final
case, at frequencies low enough, (i) Bg exists but is below B (Fig. 9.5a); (ii) Kd < Kg < Kud

(Fig. 9.5c); and (iii) a dependency to the fluid bulk modulus K f is observed (Figs. 9.5a,
9.5c & 9.5d). Moreover, as for the “drained” boundary condition, a critical frequency fc

exists at which a maximum in Q−1
Kg is predicted (Fig. 9.5d). Beyond fc, Bg and Kg reach

respectively the undrained B and Kud. As Vth decreases, the magnitudes of the variations
between drained and undrained regime decrease, and, consistently, the maximum in Q−1

Kg

decreases. Note finally that, as Vth decreases, the value for fc slightly increases.

9.4.3.3 “local” and “locally averaged” predictions

The “locally averaged” predictions can be calculated by averaging over the strain gauge
length (i.e. 6 mm) at the sample’s center, i.e. (L/2)± 3 mm. They are noted Kla and Bla.
In case of the pseudo-Skempton coefficient, a second “local” prediction Bl is investigated
at a position infinitely near to the boundary, so that the frequency-dependent variations
measured experimentally in the dead volume (Pimienta et al., 2015a) can be approached.
The frequency-dependent variations predicted for Kla, Bla and Bl under glycerine saturation
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Figure 9.6: Predicted frequency dependence of Kla, Bla and Bl for the glycerine-saturated
sandstone sample. Different values of dead volume Vth are chosen, starting from zero, up
to a value a thousand times higher than the one measured (Vth = Vmeas).

are reported (Figs. 9.6a & 9.6b).

A strong effect of the dead volume is again predicted. At lowest and highest frequen-
cies, the values equal the ones of the “global” predictions. However, a sharper increase is
predicted for the transition of Kla and Bla, which is similar to a characteristic transition of
a viscoelastic Zener-like material. Interestingly, Bl decreases as frequency increases (Fig.
9.6b). It indicates that fluid can less and less flow out of the sample as frequency increases,
i.e. the sample becomes undrained.

9.4.4 Transient regime & Numerical solution

The analytical solution obtained (Eq. 9.8), corresponds to the steady-state response of the
pore pressure to an oscillating confining pressure. However, considering the time t0 = 0
to be the beginning of the oscillation, a transition exists between the initial static state (at
t0 < 0) and the steady-state oscillation. In order to investigate this transient regime, a 1D
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Figure 9.7: Comparison of the differences quantified by R (sum of squared residuals
through the sample’s length), between the analytical and the numerical solutions of the
pore-fluid pressure oscillations at different frequencies. The parameters used are the ones
of Table 9.1 in the case of glycerine saturation, under drained boundary conditions.

finite difference scheme, with imposed initial conditions (i.e. P(t0) = 0 and p f (z, t0) = 0), is
used to solve numerically the diffusion equation (Eq. 9.1). A first-order backward difference
for time and a second-order central difference for space has been chosen. The grid used is
uniform, with a constant mesh spacing of ∆z for space and a constant time increment of
∆t. The boundary conditions tested correspond to the drained regime, which are taken into
account with the two Dirichlet boundary conditions (i.e., p f (0, t) = 0 and p f (L, t) = 0) at
both ends of the space grid. For the initial conditions, the pore pressure is zero throughout
all the sample (i.e., p f (z, 0) = 0).

A parameter R is introduced to compare analytical and numerical solutions, respec-
tively p f and p̃ f . R is defined as the sum of the squared residuals through the sample’s
length, i.e. of the difference between analytic and numerical solution for a particular posi-
tion zi = i∆z. For each time step tj = j∆t, R is defined as:

R(j) = ∑
i

∣∣∣p f (zi, tj)− p̃ f
j
i

∣∣∣2 (9.17)

The solutions are compared as a function of time for different oscillating frequencies (Fig.
9.7). For simplicity, the drained 1D model (Fig. 9.4a) is used.

For each frequency, the sum of squared residuals R is maximum at the initial conditions
(t = 0), then decreases with time to reach a steady-state where the difference between the
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analytical and numerical solution is negligible. The transient behaviour observed for R
relates to the transient behaviour accounted for in the numerical solution. As frequency
increases, R decreases. The duration of this transient behaviour is always less than one
oscillation period for any frequency. Therefore, the analytical solution can be considered
valid after one oscillation.

9.5 Comparison with the measurements

The above model predictions are used to discuss the measurements on two sandstone (i.e.
Fontainebleau and Berea) samples. The dead volume is set to 6.6 mL, with V1 = V2. The
other required parameters are (i) the drained (i.e. dry) bulk modulus; (ii) the sample’s
porosity and permeability; and (iii) the fluid’s viscosity. All these parameters are known.
Finally, Biot-Willis, Skempton, and storage coefficients are derived from the poroelastic
relations. The skeleton bulk modulus is taken as 37 GPa for both rocks.

The model’s predictions are calculated for the appropriate experimental conditions,i.e.
what has been defined as the “experimentally undrained” boundary condition. Moreover,
the strains have been recorded at the sample’s center, and the pore pressure measurement
has been taken in the dead volume. Accordingly, the “locally averaged” Kla and Q−1

Kla
are

predicted at the sample center, and the “local” Bl is calculated very close to the dead volume.
In the following, an apparent frequency parameter (i.e., f ∗ = f (η/η0), with η0 = 10−3 Pa.s)
is introduced to account for the fluid’s viscosity.

9.5.1 Results for a Fontainebleau sandstone

9.5.1.1 “Experimentally undrained” boundary conditions

The data are those of Pimienta et al. (2015a), measured on a Fontainebleau sandstone sample
of 7% porosity. All parameters for the predictions are the ones of Table 9.1. Measurements
at an effective pressure of Pe f f = 1 MPa and model’s predictions are compared as a function
of apparent frequency f ∗ (Fig. 9.8). Three properties are investigated: (i) bulk modulus
K (Fig. 9.8a), (ii) bulk modulus dissipation Q−1

K (Fig. 9.8b), and (iii) pseudo-Skempton
coefficient B∗ (Fig. 9.8c). The model’s predictions are calculated for two extreme values of
Kd, of 5 and 13 GPa respectively.

Note first that the frequency range for the transition predicted by the model is very
consistent with the measurements, and occurs at f ∗ ∼ 10 Hz. A strong effect of the “exper-
imentally undrained” boundary condition is predicted so that, for a Kd of 13 GPa, the values
of (i) Kla at lowest f ∗ overestimates the measurements (Fig. 9.8a); (ii) Q−1

Kla
underestimates

the measured Q−1
K peak (Fig. 9.8b); and (iii) Bl at lowest f ∗ underestimates the values of B∗

measured (Fig. 9.8c).

Comparisons between measurements and model predictions thus add up and imply
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Figure 9.8: Comparison between predicted and measured frequency-dependent properties
for a 7% porosity Fontainebleau sandstone. The measured (a) bulk modulus and (b) at-
tenuation have been measured locally at the sample center, and (c) the pseudo-Skempton
coefficient has been measured in the dead volume. These data are compared to the cor-
responding model predictions with “experimentally undrained” boundary conditions. Two
values of Kd of 5 GPa (i.e. dashed curves) and 13 GPa are chosen for the predictions.
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that measurements under liquid saturation relate to an initial Kd much lower than 13 GPa.
A second prediction is thus tested with Kd = 5 GPa. The predicted properties are consistent
with the measurements under fluid-saturated conditions. For all properties, under water
saturation, a good fit is obtained between measurements and model predictions. Under
glycerine saturation, both Kla (Fig. 9.8a) and Bl (Fig. 9.8b) gain in consistency with the
measurements. Moreover, the peak in Q−1

Kla
is at about 0.25 (Fig. 9.8c), which is precisely

what has been measured.

9.5.1.2 Role of the confining cycle

As the measured value under dry conditions is of 13− 14 GPa (Fig. 9.8a), it implies that
Kd is lower under fluid-saturated conditions. Because glycerine is not a polar fluid and
this sample is well cemented, a possible fluid-related elastic weakening (e.g. Pimienta et al.,
2014b) may be ruled out. Noting that this Kd value was measured after cycling the sample
up to high pressure and back (Pimienta et al., 2015a), the effect of cycling is tested on a
sample from the same block (Fig. 9.9a).

For this rock sample, at pressures lower than Pe f f = 10 MPa, the Kd values after the load-
ing stage are higher than the ones before (Fig. 9.9a). For the particular case of Pe f f = 1 MPa,
the cycling introduces a variation from Kd = 5 GPa (before cycling) to Kd = 13 GPa (after
cycling). After unloading the sample, glycerine then water are injected in the sample, and
the drained bulk modulus is measured again under purely drained boundary conditions
(Fig. 9.9b). Under both water and glycerine saturation, the value at 1 MPa is of 5 GPa,
which equals the value measured during the (first) loading stage under dry conditions.
This is precisely this value of Kd = 5 GPa that has been chosen for the 1D model predic-
tions (Fig. 9.8), under fluid-saturated conditions. It implies that, for this sample and this
experimental protocol, the hysteresis seems to disappear when measuring again (after cy-
cling) under fluid saturation. This hysteresis effect under dry conditions may be caused
by grain-grain or cracks internal friction (e.g. David et al., 2012) that indeed largely reduces
when fluid is present and pressurized.

9.5.2 Results for a Berea sandstone

9.5.2.1 Berea sandstone

Berea sandstone has been extensively used in experimental rock physics (e.g. Sayers, Van
Munster and King, 1990; Seipold, Mueller and Tuisku, 1998) as a reference rock. As detailed
by Pimienta et al. (2014c), it is characterized by (i) a porosity in the range of φ ∈ [17; 22]% ; (ii)
a permeability in the range of κ ∈ [1; 103]mD; (iii) a variable mineralogy, with mean (over
19 Berea sandstone samples) quartz and clay contents of ∼ 75% and ∼ 11% respectively.
As shown through microstructural observation (e.g. Prasad and Manghnani, 1997), Berea
sandstone’s pore network is composed of (i) relatively equant pores; and (ii) intergranular
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Figure 9.9: (a) Measured dry bulk modulus as a function of effective pressure for two
Fontainebleau sandstone samples of 7% porosity. Kd is measured under both loading and
unloading stages. (b) Measured drained bulk modulus under loading stage for the three
fluid-saturated conditions. The first “loading stage” is the one under dry conditions, where
the sample is measured under loading then unloading. The second “loading stage” comes
after. During this stage, the rock is fully-saturated by glycerine then water. For each satu-
rating fluid, the rock is measured under loading only. Note the greyish area corresponding
to the effective pressure at which the frequency effects are investigated.
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thin discontinuities (flat geometry at two-grain junctions). The latter type of feature is
known to be the major contributor to the observed stress sensitivity of various physical
properties such as elastic wave velocities (e.g. Christensen and Wang, 1985; Sayers et al., 1990;
Seipold et al., 1998).

The Berea sandstone sample chosen has a porosity of φ = 19.3 % and a permeability
of κ ∼ 10 mD (i.e. 10−14 m2). The experimental measurements are similar to that for Fo7
(Pimienta et al., 2015a), except that the data for the dry sample have also been obtained
under loading conditions. This has been done to discard any possible hysteresis effect (Fig.
9.9a). The parameters used as model input are essentially very similar to that of Table 9.1.
The sample’s length and diameter are the same, and porosity (φ = 19.3 %), permeability
(κ = 10−14 m2) and drained bulk modulus (Kd ∼ 6.5 GPa) differ. As for before, φ, κ and Kd

are used to calculate the other properties/parameters using the theory of poroelasticity.

9.5.2.2 “Experimentally undrained” boundary conditions

Again, predictions are made according to the experimental conditions. The 1D model
with “experimentally undrained” boundary conditions is used, and the “locally averaged” Kla

and Q−1
Kla

and the “local” Bl are predicted. The dependence to f ∗ of the measured and
modelled elastic (Fig. 9.10a & 9.10b) and hydraulic (Fig. 9.10c) responses are compared for
an effective pressure of Pe f f = 1 MPa.

At lowest frequencies, the measured K (Fig. 9.10a) under fluid saturation is much higher
than Kd. This is precisely what is predicted by Kla. This difference results from the inter-
play between dead volume’s and sample’s storage capacity, and is theoretically expected.
Although the measurement under water saturation remains higher than the model’s pre-
dictions, an overall good fit is obtained between measurements and predictions for all
properties. As f ∗ increases, both predicted and measured K slightly increase, by about
2 GPa, to reach the value of Kud. A good fit is observed under glycerine saturation. Be-
cause the experimental dead volume Vmeas is small as compared to the Berea pore volume,
the measured dispersion/attenuation is much lower than the one expected in case of the
transition from Kd to Kud.

The attenuation is strongly controlled by the dead volume effect. Both measurements
and predictions indicate a peak of 0.1 (Fig. 9.10b). A good fit is also obtained between B∗

and predicted Bl (Fig. 9.10c) at lowest frequencies. The magnitude of the measured B∗ is
well predicted by the model for both water and glycerine saturations. Yet, the frequency-
dependent variations of the “local” prediction are spread out as compared to the measure-
ments. These results further indicate that, even for dead volumes much smaller than the
one of the present experiment, the drained/undrained transition may be “seen” experimen-
tally for highly porous and compressible rocks.
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Figure 9.10: Comparison between predicted and measured (a-b) elastic and (c) hydraulic
properties as a function of apparent frequency for the Berea sample saturated by different
fluids. The “experimentally undrained” model is used for the predictions, with the measured
dead volume.
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9.6 Conclusion

To better understand the experimental conditions involved in the measurement of the
drained/undrained transition, a 1D model has been developed by solving analytically the
partial derivative equation for pressure diffusion. Different boundary conditions have been
analysed. The “undrained” and “drained” boundary conditions assume that fluid is either
locked in or free to flow out of the sample. A more realistic “experimentally undrained”
boundary condition has been investigated by assuming that a dead volume is present at
both ends of the sample. Four properties may be predicted by the model, i.e. the pseudo-
Skempton coefficient B∗, the pore pressure phase shift φB∗ , the bulk modulus K, and the
attenuation Q−1

K .
The 1D model is used to test two main aspects, i.e. the the role of the measuring

condition and the role of the dead volume. Interestingly, the frequency range for the
drained/undrained transition is expected to strongly differ if the measuring method is
global (e.g. LVDT) or local (e.g. strain gage). Furthermore, the position of the local mea-
surement is also expected to play a dominant role. Finally, introducing a dead volume at
both sample’s ends appears to strongly affect the drained/undrained transition. The mea-
sured dispersion/attenuation for this effect are expected to be strongly damped if the dead
volume is small in comparison with the rock pore volume. Because it originates from an
interplay between dead volume’s and sample’s storage capacity, this effect increases as the
rock’s compliance and porosity increases.

Comparison between the model’s predictions and measurements on a Fontainebleau
and a Berea sandstone shows a good fit and an overall consistency. The rock’s storage
capacity has an important effect. It could result in a non-negligible attenuation even with
a very small dead volume if the storage capacity is high.

——————————————— End of article ————————————————
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9.7 Comparison with the experimental results on the limestones

We wish to present here complementary results to the previous article, obtained for the
studied carbonate samples. In addition, a 2D and a 3D numerical model were used to
investigate a possible effect of the boundary geometry that can not be accounted for in 1D.

The effect of the boundary conditions on the elastic properties has been studied for the
carbonate samples. The two different configurations for the drainage system, (i) open
(assimilated to drained conditions), and (ii) closed (undrained conditions for the sys-
tem {sample + dead volumes}) (Figure 3.2a) have been tested at Pdi f f = 2.5 MPa for the
Lavoux, the Rustrel and the Coquina samples. The Indiana sample, intact and thermally
cracked were only measured with the open drainage system. We recall that all the dis-
persion/attenuation results presented in the previous chapters were obtained in the open
configuration. Because the dead volumes were very large in that case (at least 45 mL), the
boundary conditions could be assimilated to drained boundary conditions (Pimienta et al.,
2016b).

Lavoux limestone in the Geodesign cell

The Lavoux limestone was measured in the Geodesign cell (Figure 2.2). The small dead-
volumes at each end of the sample when the valves are closed were measured to be around
3.3mL each for this cell. The bulk modulus results during the drained/undrained tran-
sition, visible under glycerin-saturated conditions, at Pdi f f = 2.5 MPa are compared with
the 1D model in Figure 9.11, for the two boundary configurations. The results for the
hydrostatic and the axial oscillations are used. With dead volumes (Figure 9.11b), the
drained/undrained transition is visible around the same cut-off frequency as in the drained
case (Figure 9.11a), but the amplitude of dispersion is smaller. In the drained frequency
range, the bulk modulus measured in the second case is higher than in fully drained con-
ditions. Its value is 22 GPa (Figure 9.11b) instead of 16 GPa (Figure 9.11a). In the undrained
frequency range, the bulk modulus of the sample is independent of the boundary con-
ditions, with a value of 26 GPa in both configurations (Figure 9.11a and 9.11b), which is
consistent with the definition of the undrained regime.

In the second configuration, the pore pressure in the drainage circuit (p f
∗) was moni-

tored during the stress oscillations. In order to have a non zero measurement, p f
∗ has to be

measured in a closed volume to allow for pressure build-up when fluid drains out of the
sample. The volumetric strain (εvol), induced by hydrostatic stress oscillations (σii/3), gen-
erates a flux of fluid going in and out of the sample, into the dead volumes. This volumetric
strain is defined as:

εvol =
1
K

(σii

3
− α∆p f

)
, (9.18)

where α is the Biot coefficient and ∆p f is the oscillation amplitude of the pore pressure in
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Figure 9.11: Effect of the two types of experimental boundary conditions on the measured
bulk modulus and comparison with the 1D diffusion model: (a) drained conditions and
(b) system {sample + dead volumes} undrained. The experimental results are from the hy-
drostatic and the axial oscillations in glycerin-saturated conditions at Pdi f f = 2.5 MPa. The
model is calculated from local strains at different positions (0.5 L, 0.25 L and 0.1 L), and
from global strain. The experimental results are from strains measured at z = 0.5 L. (c)
Measurements of the ratio pore pressure over hydrostatic stress (3p∗f /σii) in the second
type of boundary conditions are compared to the 1D model, at the limit z = 0. For the
hydrostatic oscillations σii/3 = ∆Pc, and for the axial oscillations σii/3 = σax/3.
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the medium. Experimentally, when we apply the hydrostatic oscillations on the sample, we
have σii/3 = ∆Pc. This pressure induces the volumetric strain εvol . On the other hand, when
we apply the axial oscillations in an isotropic medium, the equivalent hydrostatic stress to
obtain the same volumetric strain εvol is σii/3 = σax/3 (Equation 9.18). Here we assume that
the stress σ is positive in compression and represents the amplitude of oscillation, and that
the radial stress is constant during the axial stress oscillations (σrad = 0). For both stress os-
cillations at Pdi f f = 2.5 MPa on glycerin-saturated sample, the ratio between the amplitude
of the oscillating fluid pressure ∆p f

∗ and the amplitude of the equivalent hydrostatic stress
oscillation σii/3 is equal to 3∆p f

∗/σii. This ratio is reported Figure 9.11c as a function of fre-
quency. For both hydrostatic and axial oscillations, the ratio tends to zero as the frequency
crosses the drained/undrained transition range ([5 10−2; 1]Hz). In the drained frequency
range ( f < 5 10−2 Hz), the ratio measured with hydrostatic measurements is slighly higher
than with the axial oscillation, respectively 0.55 and 0.41 (Figure 9.11c). This ratio was de-
fined as the “pseudo-Skempton" coefficient B∗ = ∆p f

∗/∆Pc by Pimienta et al. (2015a) in the
case of hydrostatic oscillations, or the “pseudo-consolidation" parameter γ∗ = ∆p f

∗/σax

in case of axial oscillations in Pimienta et al. (2015b). This hydraulic parameter cannot be
considered as the real Skempton coefficient (B) of the sample, because B is solely defined
for an undrained REV, and p f

∗ doesn’t measure the pore pressure p f inside the sample,
unless the sample is fully drained.

The model’s predictions in both configurations for a glycerin-saturated sample are pre-
sented Figure 9.11. The model has been calculated for local strains at 3 different positions
(0.5 L, 0.25 L and 0.1 L) and for the global strain. We recall that the experimental results
are deduced from local strains measured at z = 0.5 L. The parameters used for the model
predictions were L = 80 mm, A = π(20)2 = 1257 mm2, Kd = 16 GPa, KS = 77 GPa,
K f = 4.36 GPa, η = 1.083 Pa.s, Φ = 24 %, κ = 10−14 m2, and Vdead vol. = 3.3 mL. Concern-
ing the bulk modulus in the drained frequency range, the model predicts Kmodel = 24 GPa
for the second configuration (Figure 9.11b). This is slightly above the experimental result
of 23 GPa (Figure 9.11b). The bulk modulus Kmodel is 16 GPa in fully drained conditions
(Figure 9.11a). In the undrained frequency range, the model predicts Kmodel = 26 GPa (Fig-
ure 9.11a), which by construction of the model corresponds to Biot-Gassmann’s prediction.
For the ratio 3p f

∗/σii, the model predicts a value of 0.41 in the drained frequency range,
which corresponds to the experimental measurement done with axial oscillations (Figure
9.11c). For the drained/undrained transition, the ratio (3p f

∗/σii)model decreases down to 0
consistently with the axial experimental results (Figure 9.11c).

When comparing the model and the experimental results both deduced from local strain
at z = 0.5 L, we can see a frequency shift of nearly one order of magnitude (Figure 9.11a
and 9.11b). The predicted cut-off frequency is around 0.04 Hz for the model, and the ex-
perimental value is 0.2 Hz (Figure 9.11a and 9.11b). The model calculated from local strain
at z = 0.1 L seems to fit better the experimental results. However, no shift in frequency ap-
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pears for the ratio (3p f
∗/σii) (Figure 9.11c). The position of the local strain mainly affects

the measured cut-off frequency of the transition: the closer to the boundary, the higher the
cut-off frequency. In other words, when the frequency of the stress oscillations increases,
the REVs at the center of the sample become undrained before the REVs close to the open
boundaries. However, the amplitude of the dispersion is unchanged. Pimienta et al. (2016b)
compared the model to experimental results on Fontainebleau sandstones, and found that
the cut-off frequency of the bulk modulus was in their case consistent with the experimen-
tal results. However, in their case, it was the ratio 3∆p f

∗/σii that had a frequency shift of
one order of magnitude compared to the experimental results.

Indiana, Rustrel and Coquina sample in the Top Industrie cell

The Indiana, Rustrel, and Coquina limestones were measured in the Top Industrie cell.
The dead volumes in the closed configuration were measured to be around 4.4 mL for
this cell. For the open configuration, symmetry of the dead volumes (upper and lower)
is insured by a hydraulic short-circuit between the up-stream and the down-stream before
reaching the pumps. In that case, the dead volume (seen from one side of the sample) is
therefore the total volume (tubings + the two pumps) divided by 2. Each of the previous
samples exhibited the drained/undrained transition under water-saturated conditions. The
frequency-dependent bulk modulus obtained from the hydrostatic oscillations at Pdi f f =

2.5 MPa will be used for the comparisons with the model. The model is calculated for
a local strain at mid-height (z = 0.5L), which corresponds in theory to our experimental
measurement, and for a global strain of the sample. For the sake of simplicity, we designate
by K the bulk modulus obtained experimentally, K1D the model’s bulk modulus obtained
from the local strain (z = 0.5L), and K1D−g the model’s bulk modulus obtained from global
strain.

The comparisons of the 1D model and the experimental results for the Indiana lime-
stone, intact and thermally cracked, are presented Figure 9.12. Results on the intact sample
show a good match between K and K1D up to 0.4 Hz corresponding to maximum peak
level of the model at about 31 GPa (Figure 9.12a). Above 0.4 Hz, while K1D decreases af-
ter the peak to a level of 29.5 GPa, K seems to remain at the peak level at about 32 GPa
(Figure 9.12a). As evoked in the previous chapters, despite having large dead volumes, a
small pore pressure oscillation was detected during the forced oscillations. The "pseudo-
Skempton" coefficient (B∗) in the drainage circuit is therefore non nil (Figure 9.12b), and the
model (calculated with the dead volumes conditions) can be adjusted to fit it. This gives
an estimated dead volume (one at each end) of Vd = 44 mL, which seems reasonable since
the volume of each pore-fluid pumps is 200 mL. In order to obtain a drained K = 21 GPa
with such a dead volume, the model was calculated with a purely drained bulk modulus
of Kd = 20 GPa, which is solely a difference of 1 GPa. For the thermally cracked sample,
K seem to follow more a trend that lies between K1D and K1D−g, with no evidence of peak
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Figure 9.12: Comparison of the bulk modulus, and the pore pressure oscillation, obtained
from the 1D drained/undrained model and the experimental hydrostatic oscillation, for the
Indiana limestone, intact (a-b) and after thermal cracking (c-d). The experimental results
and the model are compared for water-saturated conditions at Pdi f f = 2.5 MPa.
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Model 1D:
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Figure 9.13: Comparison of the bulk modulus obtained from the 1D drained/undrained
model and from the experimental hydrostatic oscillations obtained for the Rustrel limestone
under drained boundary conditions (a) and small dead volumes (b), along with the pore
pressure oscillations (c). The experimental results and the model are compared for water-
saturated conditions at Pdi f f = 2.5 MPa.

(Figure 9.12c). Again, after adjusting the pseudo-Skempton coefficient of the model to fit
the experimental measurements, the dead volume was found to be around 35 mL, and the
purely drained Kd used to calculate the adjusted model was of 9 GPa, which represents a
difference of 2 GPa with the experimental result (Figure 9.12c).

The results for the Rustrel sample are presented Figure 9.13. The sample was measured
with the two different boundary configurations. In both cases, when the model is calculated
from the measured porosity φexp = 14.9%, K1D underestimates the experimental results
K (Figures 9.13a and 9.13b). However, in the closed configuration, the model’s pseudo-
Skempton is consistent with the experimental measurements (Figure 9.13c). Adjusting the
porosity to φ = 10% would make the model fit perfectly with the measurements, in both
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the open and the closed configurations (Figures 9.13a and 9.13b). However, the pseudo-
Skempton would deviate from the measurements (Figure 9.13c). This could be explained
by local heterogeneity of the pore space that would affect the REV measured by the strain
gauge. This would not affect the pseudo-Skempton measurement, as the volume of fluid
ejected out of the sample is related to the volumetric deformation of the whole pore space,
and therefore gives an average measurement for the whole sample. The discrepancy on
the undrained bulk modulus is of maximum 4 GPa. The adjustement of the model for the
drained configuration to fit the pseudo-Skempton (Figure 9.13c), gives a dead volume of
130 mL, with a purely drained bulk modulus of 9 GPa.

The results for the Coquina sample are presented Figure 9.14. The drained configura-
tion was perfectly adjusted with a large dead volume of 176 mL and a pure drained bulk
modulus of Kd = 5 GPa. For such a low drained bulk modulus, the 1D model exhibits a
very large peak over 40 GPa (Figure 9.14a). The experimental results do not follow that
peak, which is related to the analytical formulation, but follow a more smoothed trend
corresponding to K1D−g (Figure 9.14a). In the case of the closed configuration, the model
calculated with dead volumes of 4.4 mL seems to overpredict the measurements solely
in the drained regime, either for the bulk modulus and for the pseudo-Skempton (Fig-
ures 9.14b and 9.14c). Using a dead volume of 14 mL is the only way to perfectly adjust
the model to these two measurements, as it concern solely the drained regime with dead
volumes (Figures 9.14b and 9.14c). We do not have a proper explanation for such an ad-
justment. Nevertheless, since it doesn’t seem to involve any parameter of the rock, we can
conclude that for the drained conditions, K1D−g perfectly predicts the measurements, the
peak done by K1D being too high to be physical.

9.8 Comparison of the 1D analytical model with 2D and 3D nu-
merical models

The drained / undrained model presented here makes the assumption of solely vertical
flow in the sample, between the upstream and downstream, in order to solve analytically
the pore pressure diffusion equation in one dimension (z). Question rises whether this
is a limiting assumption for the model, and what would be the impact of radial flow. If
we consider the permeability to be isotropic and homogeneous in the whole sample, this
question directly relates to the geometry of the boundary conditions (in our case lower and
upper surfaces). In our experimental setups, for both the Geodesign and the Top Industrie
cell, each endplaten (top and bottom) deliver the pore-fluid through a small drain of 2 mm
diameter. Because the samples’ diameters are always 40 mm, this necessarily induces a
radial flow at the boundary. Question is whether this radial flow occurs within the sample
(through a permeability κ), or is the planar contact rock/endplaten permeable enough
to homogenize the fluid pressure radially before entering the sample, which would be
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Figure 9.14: Comparison of the bulk modulus obtained from the 1D drained/undrained
model and from the experimental hydrostatic oscillations obtained for the Coquina sample
under drained boundary conditions (a) and small dead volumes (b), along with the pore
pressure oscillations (c). The experimental results and the model are compared for water-
saturated conditions at Pdi f f = 2.5 MPa.
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equivalent to the 1D assumption.

To investigate this, we solved the diffusion equation (Equation 9.15) in 2D and 3D using
numerical models, which were tested with purely drained boundary conditions (Dirichlet
condition Pp = 0MPa). The sample is represented by a cylinder of 80 mm length and 40
mm diameter and is meshed with an unstructured grid (triangles in 2D, tetrahetra in 3D).
We used the open-source ONELAB software, which combines the mesh generator Gmsh
(Geuzaine and Remacle, 2009) and the finite element solver GetDP (Dular et al., 1998). For each
model, we considered the contact rock/endplaten to be perfect, so that the permeability of
the contact is similar to the rock. This will enforce radial flow within the rock, and we can
investigate its possible effect on the measurements of virtual strain gauges on the lateral
surface of the sample. The Dirichlet condition (Pp = 0) applies only for a small section
representing the endplaten drain of 2 mm diameter. We designate by Db the diameter of
this section, as it can be used as a adjusting parameter for the radial flow. The boundary
conditions for the lateral jacketed surface, and the endplaten surface around the drain tube
are defined with Neumann conditions (dP/dr = 0).

The calculation of the frequency dependent bulk modulus from the numerical models
follows the same sequence as the 1D analytical model. First, we numerically simulate an
oscillation of the confining pressure (P(t) = ∆Psin(ωt)) over a few periods, and numeri-
cally solve the pore pressure oscillation at every point M in the sample’s volume (Ω). This
is achieved by solving the 2D or 3D diffusion equation followed by the pore pressure p f :

∂p f (M, t)
∂t

= D∇2 p f (M, t) + B
dP(t)

dt
, (9.19)

where D is the hydraulic diffusivity, ∇ the gradient operator, and B the Skempton coeffi-
cient (calculated here for a skeleton bulk modulus of 77 GPa). The weak formulation of the
diffusion equation (Equation 9.3), necessary for the finite element solver (GetDP), is given
by: ∫

Ω

dp f

dt
ϕdΩ + D

∫
Ω

∇p f .∇ϕdΩ− B
∫
Ω

dP
dt

ϕdΩ = 0, (9.20)

where ϕ is a test function. An example of a full script code for GetDP, implementing
Equation 9.20, is given in Annexe D. In a second, we convert the pore pressure numerically
solved at each point and time step p f (M, t) into a local volumetric strain by:

εv(M, t) =
P(t)− αp f (M, t)

Kd
, (9.21)

where α is the Biot coefficient. The local bulk modulus K∗(M, ω), for these simulated
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oscillations of angular frequency ω, is then calculated by:

K∗(M, ω) =
∆P
∆εv

, (9.22)

where ∆P and ∆εv are the amplitudes of the oscillations P(t) and εv(M, t). Like for the
experimental measurements, we have to do one oscillating simulation to obtain the bulk
modulus for one frequency.

Illustrations of the 2D and 3D pore pressure solution at a maximum peak of a pressure
oscillation, calculated for Db = 2 mm, are given Figures 9.15 and 9.16 respectively. The
frequency was chosen to have a partially undrained sample. For the 2D solution, when
radial flow occurs near the top and bottom of the sample, the pore pressure profile along the
vertical-central axis is clearly different than the profile on a vertical-lateral axis where the
strain gauges are glued (Figure 9.15). The central-vertical p f profile is drained (Pp = 0 MPa)
at both extremities, while the lateral-vertical p f and is not drained at the extremities (Figure
9.15). The similar observation can be made for the 3D model (Figure 9.16) where only the
central-vertical axis sees drained conditions at its top and bottom end.

The 2D model was tested with Db = 2 mm to enforce radial flow, and Db = 40 mm to
verify the consistency with the 1D model. The 3D model was tested solely for Db = 2 mm.
The dispersion of the bulk modulus obtained from two virtual strain gauges on the lateral
surface of the sample, one at mid-height (z = 0.5L), and one close to the boundary condi-
tions (z = 0.1L), are presented Figure 9.17, and are compared with the 1D analytical model.
The input parameters correspond to the Lavoux limestone under glycerine saturation, with
Kd = 16 GPa, KS = 77 GPa, κ = 10−14 m2, φ = 24%, K f l = 4.36 GPa and η = 1.083 Pa.s.

The results from all models show consistent values for the drained and the undrained
bulk modulus for both strain gauges, only the drained/undrained cut-off frequencies seems
to differ (Figure 9.17). We first note that the 2D model calculated with Db = 40 mm is
consistent with the 1D model for both strain gauges, with a large effect of the vertical
position, but doesn’t exhibit the 1D model’s peak before reaching the undrained value
(Figure 9.17). When Db = 2 mm, the cut-off frequencies are all lower, and the vertical
position of the strain gauge has nearly no effect, either for the 2D and the 3D model (Figure
9.17). We observe that the cut-off frequency of the 3D model is even lower than for the 2D
model when Db = 2 mm. This is due to the accumulation of two radial flux components
near the endplaten drains in 3D, instead of only one radial flux component in 2D. In order
words, the 2D model is simply infinite in the third direction.

9.9 Final conclusions

The 1D analytical model for the drained / undrained transition proved to be a powerful
tool to determine the poroelastic parameters of the sample, not only by adjusting the elastic
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Figure 9.15: Example of a numerical calculation in 2D, with the hypothesis of Dirichlet
boundary conditions only in front of the drainage tubes of diameter 2 mm in the upper
and lower endplatens.
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Figure 9.16: Example of a numerical calculation in 3D, with the hypothesis of Dirichlet
boundary conditions only in front of the drainage tubes of diameter 2 mm in the upper
and lower endplatens.
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Figure 9.17: Comparison of the 1D analytical model with 2D and 3D numerical models
for two virtual strain gauges, one glued at mid-height (z = 0.5L) (a), and the other glued
near a boundary condition (z = 0.1L) (b). The input parameters correspond to the Lavoux
limestone under glycerin-saturated conditions at Pdi f f = 2.5 MPa (Kd = 16 GPa, KS =

77 GPa, κ = 10−14 m2, φ = 24%, K f l = 4.36 GPa and η = 1.083 Pa.s).
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properties, but also by adjusting the pore pressure output in a boundary dead volume. The
confrontation of the model with the carbonate samples, gave general good results since the
undrained bulk moduli were consistent with Biot-Gassmann’s equations.

Most importantly, the cut-off frequencies of the experimental results were consistent
with the 1D model. This suggests that there is little radial flow occurring within the sam-
ple in our experimental setups, as the numerical models proved that a radial flow would
lower the cut-off frequency. Some complementary results confirming this matter can be
found in the Figure 10 of the Appendix B, where the drained/undrained transition of the
Poisson’s ratio of a sandstone was measured with strain gauges glued at different vertical
positions (one mid-height, one close to the boundary). The results are in agreement with
our conclusions.
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CHAPTER 10

EFFECTIVE MEDIUM APPROACH TO MODEL THE ELASTIC
DISPERSION RELATED TO FLUID-FLOWS AT DIFFERENT
SCALES: SQUIRT FLOW AND GLOBAL DIFFUSION.

10.1 Résumé

Dans ce chapitre, nous présentons un modèle simple qui permet de prédire la disper-
sion de tous les modules élastiques, en conditions isotropes, pour les transitions drainé /
non-drainé et non-drainé / non-relaxé. Tous les paramètres d’entrées sont directement ou
indirectement mesurables. Il n’y a donc pas de paramètre libre d’ajustement. Le modèle
est basé sur les milieux effectifs de fissures orientées aléatoirement avec l’hypothèse de
non-interaction entre les inclusions. Les avantages de ce milieu effectif est la simplicité
du formalisme, notamment pour inclure l’effet du fluide, et la possibilité d’être étendue à
l’anisotropie.

La première étape consiste à déterminer la distribution de facteurs de forme et des
densités de cracks. La méthode de Morlier est une technique pour faire ceci, en exploitant
la dépendance en pression du module K en sec. Le milieu effectif est simplifié pour être
limité à un unique facteur de forme. Le milieu est assimilé à des fissures incluses dans une
matrice d’arrière plan poreuse. Par des séquences d’homogénéisations, on peut résoudre
l’écoulement crack-pore comme si les pores étaient drainés dans une matrice modifiée.
Cela permet de calculer la contribution du fluide dans les cracks. Pour résoudre l’équation
de diffusion de l’écoulement crack-pore, un modèle micromécanique simplifié est utilisé.
Enfin, on utilise la poroélasticité pour rajouter la contribution du fluide dans les pores
précédemment drainés. Cette dernière étape utilise le modèle poroélastique 1D développé
dans le chapitre précédent.

Les comparaisons du modèle avec les résultats sur les calcaires ont montré que, en rè-
gle générale, les amplitudes de dispersions sont bien prédites, mais prédire la fréquence
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de coupure de la seconde transition se révèle plus délicat. En effet, la prédiction s’est
montrée convenable pour l’Indiana après craquage thermique et le coquina, mais a sensi-
blement sous-estimée la seconde fréquence de coupure pour l’Indiana intact et le Rustrel.
Ceci peut s’expliquer par la simplicité du modèle micromécanique de crack, qui semble
bien s’appliquer à des fissures générés thermiquement dans des gros cristaux ou des con-
tacts entre grains homogènes. Les textures plus hétérogènes dans les zones microporeuses
semblent avoir une relation différente entre les propriétés mécaniques et hydrauliques.
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10.2 Introduction

The dispersion of the elastic properties are related to the fluid flows occurring at different
scales in the porosity. Two scales are considered here: the global flow between REVs, and
the squirt flow within the REV that equalizes the fluid’s pressure between the compliant
cracks and the stiff pores. Three regimes are generally considered when considering these
two scales: the drained, the undrained, and the unrelaxed regimes (Pimienta et al., 2015a;
Borgomano et al., 2017). The undrained and the unrelaxed regimes refer to respectively the
saturated isobaric and the saturated isolated regimes described by O’Connell and Budiansky
(1977). The drained regimes occurs at low frequency where the global diffusion has time
to equalize the fluid between all the REVs. The undrained regime occurs at intermediate
frequencies when there is no time for global diffusion: the REVs are disconnected from
each other, but squirt flow has still time to equalize pressure within the REV. The unrelaxed
regime occurs at high frequency when both the global and the squirt flow have no time to
diffuse, and the inclusions are like isolated from one another.

The objective is to have an unique model, derived from a simple squirt-flow model and
the previous 1D drained/undrained model, to predict the elastic dispersion related to both
mechanisms, starting from a microstructural description of the sample, which in theory
could be deduced from the pressure dependence of the dry bulk modulus. We choose to
derive the squirt-flow model of Gurevich et al. (2010), since its formulation is rather simple
and the general approach is compatible with Gassmann (1951) low-frequency and Mavko and
Jizba (1991) high-frequency limits. The microstructure will therefore be considered binary,
with compliant cracks responsible for the pressure-dependence of the elastic moduli, and
stiff pores that correspond to the rest of the porosity.

The first step is to translate the mechanical response of the sample into an equivalent ef-
fective medium of equant pores and spheroidal cracks, which will give the microstructural
parameters of the representative elementary volume (REV). The second step is to consider
the global diffusion and how it affects the overall pore pressure in the REV. The third step
is to consider the squirt-flow occurring between the cracks and the pores within the REV
with the same approach of Gurevich et al. (2010) and combine it with 1D poroelastic model
for the drained/undrained transition. The squirt-flow diffusion and the global diffusion
are solved in parallel in order to be representative of the experimental measurements.

10.3 Characterization of the microstructure for different confining
pressures

We want to characterize the effective medium, composed of randomly orientated cracks
embedded in a porous background matrix, which has the equivalent elastic properties of
our sample. It is essential to determine the aspect ratios of the cracks as this controls the
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Figure 10.1: Typical pressure dependence of the compressibility (black) or bulk modulus
(blue) of a cracked medium. While undergoing a hydrostatic compression, the bulk modu-
lus increase as the cracks are progressively closing, then reaches a maximum when all the
cracks are closed.

relaxation time of squirt-flow we want to model. In the approach of Gurevich et al. (2010),
the crack aspect ratio is considered as an adjustement parameter. In our case, we want
to constrain it by analyzing the pressure dependence of the bulk modulus. Similarly to
the method from Walsh (1965), a crack porosity and the aspect ratios of the cracks can
be extracted from the trend of this pressure dependence. When the confining pressure
increases, the typical evolution of a rock’s bulk modulus is an increase in the first phase,
with the closure of cracks, before reaching a maximum value where the bulk modulus
becomes independent of pressure (Figure 10.1).

A method first presented by Morlier (1971) enables to determine the distribution of ini-
tial aspect ratios of the cracks present in the medium. Details of the method have been
presented by Jaeger et al. (2009). As presented previously (Equation 1.27), for a low concen-
tration of penny-shape cracks, we have the compressibility of the effective medium given
by (Walsh, 1965):

C(ρ) = CS + ρ
16(1− νS

2)

9(1− 2νS)
CS, (10.1)

where ρ is the crack density, CS and νS are respectively the compressibility and Poisson’s
ratio of the skeleton. The addition of equant (spherical) pores to the medium that are
non-closable would contribute to an additional compressibility term that is independent of
pressure. This term could be incorporated in CS without changing the following analysis.
The closure pressure of a penny-shape crack of initial aspect ratio ξ is given by (Jaeger et al.,
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2009):

P(ξ) =
3π

4
(1− 2νS)

(1− νS
2)

ξ

CS
(10.2)

If we assume that the sample is at a pressure P, the crack density ρ represents the cracks
whose aspect ratios were initially higher than P × 4(1 − ν2

S)CS/(3π(1 − 2νS)) (Equation
10.2). With the use of the chain rule, the aspect ratio distribution function γ(ξ) is given by:

γ(ξ) = −dρ

dξ
= −

(
dρ

dC

)(
dC
dP

)(
dP
dξ

)
. (10.3)

From Equation 10.1 we have dρ/dC = 9(1− 2νS)/(16(1− ν2
S)CS), and from Equation 10.2

we have dP/dξ = 3π(1− 2νS)/(4(1− ν2
S)CS). Equation 10.3 can be written as:

γ(ξ) =
−3
4π

(
3π(1− 2νS)

4(1− νS
2)CS

)2 dC
dP

∣∣∣∣
P=P∗

(10.4)

where dC/dP has to be evaluated at the crack closing pressure P∗ corresponding to the
aspect ratio ξ (Equation 10.2). This derivative is obtained from the experimental results of
the hydrostatic compression. An exponential function of the form:

C(P) = (Ci − CS) exp(−P/P̂) + CS, (10.5)

can be adjusted to the data, where Ci is the initial compressibility (at P = 0 MPa) where all
the cracks are open, CS is the final compressibility (when P → ∞) where all the cracks are
closed, and P̂ is the characteristic pressure of the crack closure (Figure 10.2a). Although
this should be applied to the hydrostatic loading, which by definition gives the evolution
of a static bulk modulus with pressure, we will apply this method to adjust the pressure
dependence of the dry dynamic bulk modulus obtained from hydrostatic oscillations, since
we attempt to model the effective dynamic properties.

To take into account the real porosity of the sample, additional porosity φS can be
embedded in the background CS. This aspect will be considered in the next section. From
Equation 10.4 and 10.5 we obtain:

γ(ξ) =
3

4π

(
3π(1− 2νS)

4(1− νS
2)CS

)
(Ci − CS)

ξ̂
exp

(−ξ

ξ̂

)
, (10.6)

where ξ̂ is related to P̂ by Equation 10.2. The initial crack density of cracks whose aspect
ratios are initially between ξ and ξ + dξ is dρ = γ(ξ)dξ. If all the cracks are assumed to
have the same radius, dρ corresponds to a crack porosity of dφ = (4/3)πξdρ if we consider
spheroidal cracks. Therefore, the crack porosity distribution function (Figure 10.2b) is given
by:

c̃(ξ) =
dφ

dξ
=

4πξ

3
γ(ξ) =

3π(1− 2νS)

4(1− νS
2)

(Ci − CS)

CS

ξ

ξ̂
exp

(−ξ

ξ̂

)
, (10.7)
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and the total crack porosity can be calculated by (Jaeger et al., 2009):

φcrack =

1∫
0

c̃(ξ)dξ ≈ P̂(Ci − CS). (10.8)

The microstructure given by Equation 10.7 describes all the cracks that are open when
P = 0 MPa. Because, we want to characterize the elastic dispersion related to fluid flow at
different effective pressures, we need to have the distribution of open cracks of the same
sample at these given pressures. A simple way to do this is to shift the origin of the
hydrostatic compression at the pressure P0 we want to describe, and to repeat the analysis
done previously (Figure 10.2a). Because the pressure sensitivity is unchanged, ξ̂ and CS

remain constant (if we keep using the exponential function), and the term Ci changes with
the change of P0, with Ci = C(P0) (Equation 10.5). The crack porosity distribution of the
open cracks at P0 becomes (Equation 10.7):

c̃(ξ, P0) =
3π(1− 2νS)

4(1− νS
2)

(C(P0)− C∞)

CS

ξ

ξ̂
exp

(−ξ

ξ̂

)
. (10.9)

Moreover, the total porosity becomes φcrack(P0) = P̂(C(P0)− CS) (Equation 10.8). Illustra-
tion of the procedure is presented in Figure 10.2, for νS = 0.1, Ki = 10 GPa, KS = 40 GPa,
and P̂ = 15 MPa. The distribution of cracks calculated at pressures P0 = [0 ; 10 ; 20 ; 30 ; 40]MPa
are presented Figure 10.2b. The total crack porosity for each pressure are respectively
φcrack(P0) = [1.13 ; 0.58 ; 0.30 ; 0.15 ; 0.08]× 10−3 (Equation 10.8). For P0 = 40 MPa, the anal-
ysis of the compression curve with a change of origin is represented Figure 10.2a. The
distribution c̃(ξ, P0) is calculated from the segment of C(P) that is above P0 (Figure 10.2a),
with P0 now considered the initial state of the medium. The porosity of the crack families
decrease with the increase of pressure (Figure 10.2b), and the distributions remain centered
around the same characteristic aspect ratio ξ̂ = 0.2× 10−3 (Equation 10.2). This would not
necessarily be the case if C(P) couldn’t be fitted by an exponential function (Equation 10.5),
for example if multiple curvatures are present in the pressure trend.

Note here that the equation for c̃(ξ, P0) (Equation 10.9) is greatly simplified by the use
of the exponential fit for C(P) (Equation 10.5). The use of this function might not always
be adapted for the experimental trend of the bulk modulus with pressure, for example if
a second family of larger cracks keep influencing the compressibility of the rock at greater
pressures (e.g., De Paula et al., 2012). The use of this function forces the distribution to be
centered around one family of cracks, which shall be used for the purpose of the squirt-flow
modelling.

A more general approach was proposed by David and Zimmerman (2012) to describe
the evolution of the crack aspect ratios with pressure. Their method demonstrates that
the relation between the closure pressure and the aspect ratio of a crack is not necessarily
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Figure 10.2: (a) Compressibility C(P) of the sample as a function of pressure P (black),
fitted by an exponential function with the parameters Ki = 10 GPa, KS = 40 GPa,
νS = 0.1, and P̂ = 15 MPa (Equation 10.5), and the corresponding bulk modulus K(P)
(blue). (b) Deduced crack porosity distribution functions c̃(ξ, P0) at different pressures
P0 = [0 ; 10 ; 20 ; 30 ; 40]MPa from Morlier’s method (Equation 10.11). At a pressure P0,
the crack distribution is deduced from the function C(P) as if the initial pressure was
P0. The characteristic aspect ratio ξ̂ = 0.2× 10−3, and the respective total crack porosities
φcrack(P0) = [1.13 ; 0.58 ; 0.30 ; 0.15 ; 0.08]× 10−3.
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linear, as presented here with Equation 10.2. Instead of using the hydrostatic compression,
they invert the compressibilities from the ultrasonic velocities, and calculate a crack closure
function depending on the pressure increment. They show that the decrease of aspect ratio
with pressure is independent of the aspect ratio of the crack considered. In other words, all
crack aspect ratios decrease by the same amount between two pressure stages (David and
Zimmerman, 2012).

10.4 Effective medium: cracks in a porous matrix

Let us consider the case where the pressure dependence of the bulk modulus can be fitted
by an exponential function (Equation 10.5). We assume here that the aspect ratio distribu-
tion of all the families of cracks are centered around ξ̂. The compressibility at P = 0 MPa is
Ci and the compressibility at infinite pressure is CS. The solution of crack aspect ratio distri-
bution, and by extension the total crack porosity, given by Equation 10.9 is valid for cracks
in a background matrix of compressibility CS. For simplification, the effective medium of
randomly orientated cracks (Equation 10.1) shall be described by the characteristic family
of aspect ratio ξ̂ solely, and the total porosity of cracks φcrack(P0), which depends on the
confining pressure. The crack density used in the effective medium, given by Equation
10.1, is calculated by (Equations 10.6 and 10.8):

ρ(P0) =

1∫
0

γ(ξ)dξ =
φcrack(P0)

4
3 πξ̂

, (10.10)

as
∫ 1

0 exp(−ξ/ξ̂)dξ ≈ ξ̂ for ξ̂ � 1. We therefore have (Equation 10.1):

C(P0) = Ci = CS +
φcrack(P0)

4
3 πξ̂

16(1− νS
2)

9(1− 2νS)
CS. (10.11)

Although the matrix compressibility CS should be taken as equal to the mineral com-
pressibility Cm when modeling the real samples, it is very rare to experimentally reach
CS = Cm during a hydrostatic compression (Figure 10.3). The bulk modulus found at
high pressure (KS = 1/CS) when the compressibility becomes independent of pressure, is
generally lower that Km = 1/Cm (Figure 10.3). This can be explained by additional com-
pressibility that is not related to the previous cracks, but related to the rest of the sample’s
porosity (φS), which is much less compressible and relatively pressure independent. KS is
also affected by the stiffness of the grain contacts.

For the purpose of modelling a real sample of total porosity φtot = φS + φcrack, the crack
distribution is calculated in a background matrix of bulk modulus KS. This matrix contains
the residual porosity φS that is considered stiff, relatively incompressible when compared
to the cracks, and pressure independent. φS explains the difference between KS and Km
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Figure 10.3: Sketch of the effective medium model, and pressure dependence of the bulk
modulus. A porosity φS is embedded in a mineral of modulus Km, and gives a homoge-
neous matrix of modulus KS. The cracks are then embedded in this latter matrix. Relatively
to cracks, φS is considered incompressible, as its effect on the elastic properties is accounted
for in KS. Moreover, KS is considered pressure independent, and equal to the bulk mod-
ulus of the medium when all the cracks are closed. The pressure dependence of K(P) is
therefore solely due to the cracks.
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(Figure 10.3). Although φS is considered stiff, it will still be sensible to the presence of an
undrained fluid. The calculation of the effective compressibility of the saturated medium,
which includes the cracks and the porous background, will require to apply poroelasticity
to the background pores (φS).

It was demonstrated by Adelinet et al. (2011) that the effective compressibility in fluid-
saturated conditions of a cracked medium (Ccr), of crack density ρ, in the case of isolated
and randomly oriented inclusions of aspect ratio ξ̂, is given by:

Ccr = CS + ρ
16(1− νS

2)

9(1− 2νS)
CS

(
δc

1 + δc

)
, (10.12)

with δc, a parameter used to characterize the coupling between matrix compliance (CS),
fluid compressibility (C f l) and crack geometry (ξ̂). It corresponds to an effective medium
developed by Kachanov (1993), based on ellipsoids in the framework of non-interaction
approximation. This parameter is equal to (Adelinet et al., 2011):

δc =
3π(1− 2νS)

4(1− νS
2)

ξ̂

CS

(
C f l − CS

)
. (10.13)

We can note that Ccr = C when C f l → +∞ (dry cracks), and Ccr = CS when C f l = CS

(absence of cracks) (Equations 10.12 and 10.13). Adelinet et al. (2011) also demonstrated that
the shear modulus of such medium is given by:

1
Gcr

=
1

GS
+

ρ

GS

[
16(1− νS)

15
(
1− νS

2

) + 32(1− νS)

45

(
δc

1 + δc

)]
, (10.14)

where GS is the shear modulus of the matrix. The dry shear modulus G is obtained from
Equation 10.14 when C f l → +∞, i.e., when δc → ∞ (Equation 10.13).

The porosity φS is embedded in the mineral background Km (Figure 10.3). Similarly
to Gurevich’s model, the effective compressibility of the whole medium that includes the
cracks and the background porosity in undrained conditions, will then be calculated by
applying poroelasticity to φS.

10.5 Frequency dependent fluid-flow at different scales

Our objective is to model the drained/undrained and the undrained/unrelaxed transitions,
in a single formalism, for the microstructure characterized in Section 3. For this, the fre-
quency dependence of the local and the global diffusions will be solved separately. Then,
their effect on the elastic properties will be combined to obtain a single formalism that
accounts for local and global diffusion.
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Figure 10.4: Sketch of the model configuration (Murphy III et al., 1986; Gurevich et al., 2010).
The compliant crack forms a disc-shaped gap in the matrix of modulus KS, and its edge
opens into the matrix porosity φS, which is considered here incompressible.

10.5.1 Squirt-flow from the cracks to the drained matrix porosity

The squirt-flow model here follows the logic of the squirt-flow model presented by Gurevich
et al. (2010), but uses a different formalism. The results are expected to be analogue, and
the use of this formalism will be discussed at the end of the section.

We study here the squirt flow occurring between the saturated compliant cracks and
the matrix porosity φS considered drained (or dry). We assume here a particular geometry
that was used by Murphy III et al. (1986) and Gurevich et al. (2010). The compliant crack
forms a disc-shaped gap in the matrix of modulus KS, and its edge opens into the matrix
porosity φS (Figure 10.4). The height of the crack is h, and its radius is a (Figure 10.4).

For a sinusoidal loading ∆h exp(iωt) of frequency f = ω/2π, Murphy III et al. (1986)
and Gurevich et al. (2010) showed that the fluid pressure p in the crack can be obtained as a
solution of the differential equation:

d2 p
dr2 +

1
r

dp
dr

+ k2 p = H, (10.15)

where r is the radial coordinate, H = iωD∆h where ∆h is the displacement amplitude of
the crack, D = 12η/h3 is the viscous resistance, η being the dynamic viscosity of the fluid,
and k is the wavenumber given by:

k2 =
−iωhD

K f l
. (10.16)

The inertial terms were all ignored here, as they are much smaller than the viscous resis-
tance terms, for the small gaps and for the studied frequency range. Murphy III et al. (1986)
showed that in a worse case scenario, the ratio of inertial to viscous terms is 0.1 for a gap
of 100 nm at 10 MHz.
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When the REV is drained, the solution of Equation 10.15 is given by (Gurevich et al.,
2010):

p(r, t) = −K f l
∆h
h

(
1− J0(kr)

J0(ka)

)
, (10.17)

where J0 and J1 are Bessel’s functions of the first kind of order 0 and 1. For a crack aspect
ratio ξ̂ = h/(2a), we have (Equation 10.16):

ka =
1
ξ̂

√
−3iωη

K f l
. (10.18)

The equivalent force ∆F on the crack’s surface is given by:

∆F = 2π

a∫
0

p(r, t)rdr = −πa2K f l
∆h
h

(
1− J1(ka)

ka
2 J0(ka)

)
, (10.19)

and the additional effective stiffness K∗ it gives to the crack, can be calculated by (Gurevich
et al., 2010):

K∗ =
∆F
−∆h

=
πa2

h
K f l

(
1− J1(ka)

ka
2 J0(ka)

)
. (10.20)

We can observe here that in the limit of high frequency (ω → ∞), Equation 10.20 becomes:

K∗ =
∆F
−∆h

=
πa2

h
K f l , (10.21)

which corresponds to an isolated inclusion. Therefore, for all the frequencies, we can define
a virtual fluid, of frequency-dependent bulk modulus K∗f l(ω), which would give the same
additional stiffness to the crack K∗, but as if the crack was isolated (e.g., Gurevich et al.,
2010). From Equations 10.20 and 10.21, we can deduce:

K∗f l(ω) = K f l

(
1− J1(ka)

ka
2 J0(ka)

)
. (10.22)

This virtual fluid is valid for a drained REV, isolated inclusions. It can be used in the
formulation of the saturated effective compressibility and effective shear modulus given by
Equations 10.12 and 10.14, through the parameter δc. The frequency-dependent compress-
ibility Ccr

∗(ω) is given by (Equation 10.12):

Ccr
∗(ω) = CS + ρ

16(1− νS
2)

9(1− 2νS)
CS

(
δc
∗(ω)

1 + δc
∗(ω)

)
, (10.23)
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=
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Figure 10.5: Sequence of homogenizations used by to model the squirt-flow of cracks in an
undrained porous background φS.

with the new coupling parameter being (Equation 10.13):

δc
∗(ω) =

3π(1− 2νS)

4(1− νS
2)

ξ̂

CS

(
C f l
∗(ω)− CS

)
, (10.24)

where C f l
∗(ω) = 1/K f l

∗(ω). The saturated effective shear modulus Gcr, given by Equation
10.14, can be calculated with the new parameter δc

∗(ω):

1
Gcr
∗(ω)

=
1

GS
+

ρ

GS

[
16(1− νS)

15
(
1− νS

2

) + 32(1− νS)

45

(
δc
∗(ω)

1 + δc
∗(ω)

)]
. (10.25)

The sequence of the different homogenizations are presented Figure 10.5. C∗cr is the com-
pressibility of the saturated cracked medium embedded in an homogeneous background
CS, which is still composed of dry pores at this stage. By homogenization, C∗cr equals the
compressibility of the medium composed by the residual dry pores (φS) embedded in the
mineral matrix Cm (Figure 10.5). Because φcr << φS, saturating the whole pore space is
now equivalent of saturating the background pores φS of dry compressibility C∗cr in the
mineral skeleton Cm (Figure 10.5). The fluid-substitution in φS is given by Biot-Gassmann’s
equation:

Csat
∗(P, ω) = Cm +

1
1

Ccr
∗(P,ω)−Cm

+ 1
φS(C f l−Cm)

, (10.26)

where Csat
∗ is the compressibility of the undrained saturated medium, which includes the

effect of squirt-flow. Since this last fluid-substitution does not affect the shear modulus,
according to Biot-Gassmann’s theory, we directly have:

Gsat
∗(P, ω) = Gcr

∗(P, ω). (10.27)

The only differences between this model and the model done by Gurevich et al. (2010)
resides in Equations 10.23 and 10.25. Because the cracks are randomly oriented and have
similar aspect ratio, they are isobaric under loading, therefore allowing Gurevich et al. (2010)
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to use a poroelastic formulation to do the fluid substitution in the cracks. This gives the
modified frame compressibilty Cm f (Gurevich et al., 2010):

Cm f (P, ω) = CS +
1

1
C(P)−CS

+ 1
φcr(P)×(C f l

∗−Cg)

, (10.28)

which plays the role of C∗cr (Equation 10.23) in our model. The modified frame shear
modulus is given by (Gurevich et al., 2010):

1
Gm f (P, ω)

=
1

G(P)
− 4

15
(
C(P)− Cm f (P, ω)

)
. (10.29)

G(P) can be measured independently using for example the pressure dependence of the
ultrasonic S-wave velocities. For the sake of comparison with our model, G(P) will be
calculated from Equation 10.14 in dry conditions (δc/(1 + δc) = 1). Similarly to Csat

∗ and
Gsat

∗ (Equations 10.26 and 10.27), the partially relaxed moduli of the medium are then
calculated from Biot-Gassmann’s equations (Gurevich et al., 2010):

C̃∗sat(P, ω) = Cm +
1

1
Cm f

∗(P,ω)−Cm
+ 1

φS(C f l−Cm)

, (10.30)

and
1

G̃∗sat(P, ω)
=

1
G(P)

− 4
15

(C(P)− Cm f (P, ω)). (10.31)

When ω = 0, since φS ≈ φtot and C∗cr = Cm f = C, both models are compatible with
Biot-Gassmann’s undrained prediction.

10.5.2 Combination of the squirt-flow and the global diffusion through the REV

The frequency dependence of the global flow connecting the REVs has yet to be included
in the squirt-flow model. Csat

∗(ω) and Gsat
∗(ω) (Equations 10.26 and 10.27) are valid for

an undrained REV. We now want to include the effect of the global drainage of the REV,
which occurs in our experimental set up when the sample has open boundary conditions.

The 1D poroelastic model for the drained/undrained transition presented in the pre-
vious chapter will be used. We recall that the principle of the model is to solve the 1-D
diffusion equation related to the vertical global flow in the jacketed sample. When a hydro-
static stress oscillation Pc(t) = ∆Pceiωt is applied on the sample, the steady-state solution for
the REV’s pore pressure at the center of the sample, is given by Equation 9.15. The drained
boundary conditions can be obtained for S → +∞, i.e., b = 0. The volumetric strain of the
REV can be calculated from εv(t) = Kd

−1 (Pc(t)− αp f (t)
)

where Kd = 1/C is the drained
bulk modulus, and α is the Biot coefficient. The frequency dependent compressibility of
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the REV is then calculated from CREV(ω) = |εv| / |Pc|. This gives:

CREV(ω) = C
(

1− αB + αB
sinh(az) + sinh(a(L− z))

sinh(aL)

)
. (10.32)

For experimental drained conditions around the sample (b = 0), when ω → 0 we have
a → 0, which leads to CREV(0) = C (Equation 10.32). On the other hand, regardless of the
boundary conditions, when ω → +∞,

∣∣p f
∣∣ → B∆Pc (Equation ??), which gives from the

definition of the Skempton coefficient (B), CREV = Cundrained. This model gives consistent
results when compared to experimental data on sandstones (Section 9.5) or on limestones
(Section 9.8). It allows to predict the cut-off frequency of the drained/undrained transition,
and to evaluate the effect of the experimental dead volumes around the sample on the
measured elastic properties.

CREV(ω) is the compressibility of the REV that has open boundary conditions, and is
connected to the neighbor REVs. Similarly to the previous subsection, we can define a
virtual fluid, that would give the similar compressibility CREV(ω), but as if the REV was
closed or unconnected. Because the REV is now closed, and the porosity φtot within the
REV is perfectly connected, the compressibility of this virtual fluid (C f l−REV

∗(ω)) has to be
compatible with Biot-Gassmann’s equations applied to φtot. CREV(ω) being now, virtually,
an undrained compressibility, Biot-Gassmann’s equation gives:

1
CREV(ω)− Cm

=
1

C− Cm
+

1
φtot(C f l−REV

∗(ω)− Cm)
. (10.33)

We deduce that:

C f l−REV
∗(ω) = Cm +

1
φtot

1(
1

CREV(ω)−Cm

)
−
(

1
C−Cm

) . (10.34)

This virtual fluid compressibility can now be included in Equation 10.26 (respectively Equa-
tion 10.30 for Gurevich’s model) to calculate the compressibility of the saturated medium
with partially drained pores. This gives:

Csat
∗∗(P, ω) = Cm +

1
1

Ccr
∗(P,ω)−Cm

+ 1
φS(C f l−REV

∗−Cm)

. (10.35)

The shear modulus remains unchanged:

Gsat
∗∗ = Gcr

∗. (10.36)

The attenuations Q−1 related to the different moduli can be calculated from the extraction
of the imaginary parts of Csat

∗∗ and Gsat
∗∗ (or the isotropic combinations for E and ν), and

dividing them by the respective real parts (Equation 1.35).
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For the crack distributions presented Figure 10.2b, predictions of the bulk and shear
moduli dispersions, and their related attenuations, are presented Figure 10.6. The model
is applied here to a laterally jacketed sample that is 8 cm long, with experimental drained
conditions on the top and bottom. The matrix porosity is set to φS = 0.15. We recall that the
characteristic aspect ratio of the cracks is ξ̂ = 0.2× 10−3 for all pressures, the high-pressure
(crack closed) dry bulk modulus KS = 40 GPa. For the sake of illustration, the mineral bulk
modulus is taken as Km = 77 GPa. The permeability of the sample is set to κ = 10−16 m2 and
is saturated with water (K f l = 2.24 GPa and η = 10−3 Pa.s). The dispersions of the moduli
can be compared to the cut-off frequency predictions for both the drained/undrained and
the squirt flow transitions, which are respectively given by (O’Connell and Budiansky, 1977;
Cleary, 1978):

fundrained =
4κK
ηL2 and fsquirt =

KSξ3

η
. (10.37)

In this configuration, two dispersive transitions are observed for Ksat
∗∗(ω), in the ranges

[10−1 ; 100]Hz and [102 ; 104]Hz (Figure 10.6a), related to two attenuation peaks (Figure
10.6b). The first transition, consistent with fundrained, corresponds to the drained/undrained
transition that is compatible with Biot-Gassmann’s prediction. The second transition cor-
responds the undrained/unrelaxed transition related to the squirt flow. The frequency
range of this transition is consistent with the cut-off frequency fsquirt, although there seems
to be a pressure dependent frequency shift of the attenuation peaks (Figure 10.6b). This
undrained/unrelaxed transition is the only one seen for the shear modulus (Figures 10.6c
and 10.6d), the undrained regime being equivalent to the drained regime consistently with
Biot-Gassmann (Gassmann, 1951). The attenuation peaks are perfectly consistent with fsquirt

and no pressure dependence of the frequency ranges is seen. For both Ksat
∗∗(ω) and

Gsat
∗∗(ω), the amplitude of dispersions and the attenuation peaks decrease with the in-

crease of pressure P0, as more cracks are closed.

The corresponding virtual fluid moduli as a function of frequency are given Figure 10.7.
The dispersion of K f l−REV

∗ begins around 10−1 Hz and is related to the drained/undrained
transition (Figure 10.7). After 100 Hz, the REV can be considered undrained with K f l−REV

∗ =

K f l . Above 102 Hz, K f l
∗ increases due to the increasing viscous dragging in the crack’s

squirt-flow. At the high-frequency end, the fluid is considered immobile, and K f l
∗ = K f l as

if the inclusions were isolated.

From Equations 10.35 and 10.36, we respectively obtain the frequency dependent bulk
modulus and shear modulus, in isotropic conditions. Therefore the frequency-dependence
of E and ν can simply be calculated from the relationships relating the elastic parameters
for isotropy:

E∗sat(P, ω) =
9K∗satG

∗
sat

3K∗sat + G∗sat
and ν∗sat(P, ω) =

3K∗sat − 2G∗sat
2(3K∗sat + G∗sat)

. (10.38)
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c
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P0 = 10 MPa
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P0 = 30 MPa

P0 = 40 MPa

P0 = 0 MPa
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P0 = 20 MPa

P0 = 30 MPa

P0 = 40 MPa

Model from this study.
Model derived from 
Gurevich et al. (2010).

squirtfundrainedf squirtfundrainedf

Figure 10.6: (a) Frequency dependence of the bulk modulus Ksat
∗∗ of sample with drained

boundary conditions, calculated from the model of this study (red lines) (Equation 10.35)
and compared with Gurevich’s model (blue circles) (Equation 10.30). (b) Related attenua-
tion QK

−1 calculated from Equation 1.35. (c) Frequency dependence of the shear modulus
Gsat

∗∗ (Equation 10.36) and (d) its related attenuation QG
−1. The dispersions and attenu-

ations were calculated for the crack distributions presented Figure 10.2b, at effective pres-
sures P0 = [0 ; 10 ; 20 ; 30 ; 40]MPa. The model is calculated with φS = 0.15, KS = 40 GPa,
νS = 0.1, Km = 77 GPa, κ = 10−16 m2, and with water as saturating fluid (K f l = 2.24 GPa
and η = 1 mPa.s).
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Figure 10.7: Virtual fluid moduli K f l−REV
∗ and K f l

∗∗ as function of frequency, correspond-
ing to the dispersion in bulk modulus Ksat

∗∗ (Figure 10.6a). The dispersion of K f l−REV
∗

beginning around 10−1 Hz is related to the drained/undrained transition. After 100 Hz, the
REV can be considered undrained with K f l−REV

∗ = K f l . After 102 Hz, the increase of K f l
∗

with frequency is related to the squirt flow between the cracks and the matrix porosity,
with K f l

∗ = K f l when f → ∞.
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The corresponding attenuations Q−1 are deduced from Equation 1.35.

10.5.3 Extension to anisotropy

The model presented here, which combines the drained, undrained and unrelaxed fluid-
flow regimes, is valid solely for isotropic conditions, that is, for randomly oriented cracks
of same aspect ratio. One important point of the non interaction approximation (NIA) for-
malism (Equation 10.12) is the compatibility with Biot-Gassmann’s poroelastic formalism
in the low-frequency limit. This was well illustrated by the perfect match with Gurevich’s
model (Gurevich et al., 2010).

The similar NIA formalism can be extented to an anisotropic medium (Guéguen and
Sarout, 2009, 2011). The effective compliances are therefore given by (Guéguen and Sarout,
2011):

Sijkl = SS
ijkl + ∆Sijkl , (10.39)

where SS
ijkl are the matrix material compliances. We can assume from this point that the

background matrix is an isotropic medium defined by the parameters KS and νS. If we
assume that all the cracks embedded in the isotropic matrix are planar, and with circular
shape of same radius a, the additional compliances ∆Sijkl for the general case of non-
randomly oriented cracks, in the dry case, is given by (Kachanov, 1993; Guéguen and Sarout,
2009):

∆Sijkl = h
[

1
4
(
δikαjl + δilαjk + δjkαil + δjlαik

)
− νS

2
βijkl

]
, (10.40)

where:

h =
32(1− νS

2)

3(1− νS)ES
. (10.41)

α is the second rank crack density tensor defined as:

αij =

(
Na3

V

)
< ninj >, (10.42)

with N the total number of cracks in a volume V, and n is the unit vector normal to a
crack. The brackets represent a statistical angular average of the orientations of the cracks
(Guéguen and Sarout, 2011). The fourth-rank tensor β is given by:

βijkl =

(
Na3

V

)
< ninjnknl > . (10.43)

Because −νS/2 is a relatively small factor in Equation 10.40, the tensor β plays little role
in the dry case. However, in fluid-saturated conditions, the β-terms get more important.
The presence of the saturating fluid, which stiffens the cracks, transforms Equation 10.40
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into (Shafiro and Kachanov, 1997; Guéguen and Sarout, 2011):

∆Sijkl = h
[

1
4
(
δikαjl + δilαjk + δjkαil + δjlαik

)
+

((
1− νS

2

) δc

1 + δc
− 1
)

βijkl

]
, (10.44)

where δc is exactly the same solid/fluid coupling parameter defined previously in isotropic
conditions (Equation 10.13).

The same squirt-flow modeling done through Equations 10.15 to 10.22, which defines
a virtual fluid modulus K∗f l seen by the cracks, can still be applied as it is a generic elastic
response to an oscillatory stress-field normal to the crack, regardless of its orientation. Sim-
ilarly to the isotropic case, K∗f l is injected in the parameter δc, which gives the frequency
dependent fluid/solid coupling parameter δ∗c (Equation 10.24). Following the same se-
quence as previously, δ∗c can be injected into Equation 10.44 to give a frequency-dependent
additional compliances tensor ∆Sijkl

∗, which, from Equation 10.39, gives the frequency-
dependent effective compliances Sijkl

∗ in saturated conditions of the anisotropic cracked
medium.

We propose here to follow the same homogenization sequence as proposed for the
isotropic case (Figure 10.5). We consider cracks of similar aspect ratios with anisotropic
orientations, embedded in a homogenous matrix SS

ijkl that contains a porosity φS. SS
ijkl

corresponds to the compliances of the medium at high confining pressure when all the
cracks are closed. The squirt-flow model gives the solution Sijkl

∗(ω) for saturated cracks
embedded in a dry homogeneous matrix SS

ijkl . As previously in the isotropic case, the
compliances S∗ijkl(ω) are homogenized, and now correspond to the compliances of the dry
background matrix SS

ijkl of porosity φS embedded in a mineral of compliances Sm
ijkl . Sm

ijkl

can also be considered isotropic and be defined solely from Km and νm. Poroelasticity can
be finally used to do the fluid substitution in φS, taking S∗ijkl(ω) as the dry compliances.
For anisotropic mediums, this is achieved by Brown and Korringa equation (Brown and
Korringa, 1975), which, with the assumption of homogeneity, gives (with Voigt notations):

Ssat
ijkl
∗
(ω) = Sijkl

∗(ω) +

(
Sij
∗(ω)− Sij

m) (Skl
∗(ω)− Skl

m)

φS
(
K f l − Km

)
+ (Sii

∗(ω)− Km)
, (10.45)

where Ssat
ijkl
∗ is the frequency-dependent saturated compliances of the effective medium,

when the REV is undrained. If we focus on TI medium, the results could then be converted
to frequency dependent Thomsen parameters (Thomsen, 1986) for practical purposes and be
compared to the anisotropic squirt-flow model developed by Collet and Gurevich (2016), who
extented the formalism of Gurevich’s model (Gurevich et al., 2010) to anisotropic media. For
TI symmetry (x3 considered as the symmetry axis), 5 elastic constants are required instead
of 2 in the isotropic case. The tensors α and β are simplified, with α11 = α22, β1111 = β2222

and β1133 = β2233.

Experimentally, the crack density tensors (α and β) could be deduced from ultrasonic
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P- and S-waves velocities in different directions, with different stress configurations in a
triaxial cell. If we assume that the anisotropy of the effective medium is solely due to
the orientations of the cracks, SS

ijkl can be characterize at high confining pressure, where
the ultrasonic P- and S-waves show no more anisotropy and no more dependence to pres-
sure. The forced-oscillation technique could be used (axial+hydrostatic) for a TI rock, but
would require 3 samples cored in different directions relatively to the bedding planes (e.g.
Szewczyk et al., 2016) to be able to determine the 5 independent compliances.

Similarly to the isotropic case, if we want to consider a global drainage that is uni-
directional due to the external boundary conditions (vertical for a jacketed sample in a
triaxial cell), the drained/undrained transition could be incorporated in the anisotropic
squirt-flow model. The 1D poroelastic diffusion model presented in the previous chapter
would have to be solved for an anisotropic medium, allowing for the definition of a REV
frequency-dependent virtual fluid modulus K∗f l−REV that will be injected into Equation
10.45 to cumulate the effects of squirt-flow and global drainage.

10.6 Comparison of the model with experimental results on the
carbonate samples, in the isotropic case

The fluid-flow model at different scales (squirt-flow + global diffusion) in the isotropic case
has been compared to the experimental results obtained by forced-oscillations in saturated-
conditions presented in the previous part of the manuscript. The model is solely compared
to the samples that presented pressure-dependent bulk moduli, which are, the Indiana
limestone, intact and after thermal cracking, the Rustrel sample and finally the Coquina
sample. The first step consists of characterizing the crack distributions of the samples
for different confining pressures by applying Morlier’s method (Equations 10.5 to 10.9).
Because we want the NIA effective medium formulation (Equation 10.12) to be perfectly
consistent with the measured frequency-dependent dynamic moduli, the exponential com-
pressibility function C(P) (Equation 10.5) is adjusted on the dynamic dry bulk moduli ob-
tained from hydrostatic oscillations, rather then on the static moduli (as initially required
from the method).

One parameter that still needs to be adjusted is the frequency-independent νS. In some
cases, the experimental axial oscillations in dry conditions, from which ν can be calculated,
were not done at sufficiently high pressure. One method we propose to define it with rel-
atively good precision, is to observe the pressure dependence of the drained/undrained
transition of ν in saturated conditions (water saturation for the 4 samples). We previously
noted from our experimental results the presence of a crossing point at the drained/undrained
cut-off frequency, which was independent of pressure (Figures 5.7, 6.6 and 7.7). This point
is the consequence of an increase of the drained ν and a decrease of the undrained ν with
effective pressure. From the isotropic relationships relating the elastic moduli, if G = cst,
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which is the case for the drained/undrained transition, ν increases with K. Since Ku can
only be greater than Kd, the same applies for ν. The high pressure value νS is therefore
bounded by νd and νu and should be independent of pressure (and frequency). This cor-
responds to the crossing point. However, this can only apply if this crossing point exists,
that is, if the variations of νd and νu are opposite with pressure, which is not necessarily the
case for every rock as it depends on the combined pressure-dependence of the bulk and
the shear modulus. Moreover, the drained/undrained cut-off frequency, which is related
to the permeability, should be relatively constant with pressure.

The results of the crack distributions of the 4 carbonate samples are presented Figure
10.8. The crack distributions are all plotted on the same scale (Figure 10.8). The fitting
parameters for each sample are presented Table 10.1. The 4 samples exhibit crack aspect
ratios in the range [1.44; 2.75]× 10−4 (Figure 10.8, Table 10.1). We can see that the thermal
cracking had a large impact on the Indiana limestone: the crack density substantially in-
creased from 0.22 to 0.99. It was concluded from the analysis of the SEM photomicrographs
that the thermally induced cracks were mainly created in the large calcitic crystals of the
blocky cement. The Indiana limestone is well cemented and no cracks were observed in the
cement of the intact sample. The Rustrel sample exhibits a high crack density of 0.52 for
ξ̂ = 1.84× 10−4, which could be related to the extensive intercrystalline porosity observed
within the calcite cement. The microporous grains or the grain/cement contacts could also
generate the pressure-dependence of the elastic properties.

Ki KS (GPa) νS P̂ (MPa) ξ̂(×10−4) ρ φcrack (%) fsq (Hz)
Indiana intact 19 34 0.27 7 1.76 0.22 0.016 421
Indiana th. cr. 5 20 0.22 4 1.44 0.99 0.060 230
Rustrel 9.5 26 0.25 6 1.84 0.52 0.040 477
Coquina 5 28 0.27 9 2.75 1.28 0.15 1600

Table 10.1: Fitting parameters for Morlier’s method, and obtained results for the character-
istic crack aspect ratio (ξ̂), the unconfined crack density (ρ), the total crack porosity (φcrack)
and the squirt-flow cut-off frequency ( fsq) for water-saturated conditions.

For the Coquina sample, the lack of data at high-pressure forced us to make an adjust-
ment for KS. We were able to define νS = 0.27 from the crossing point in Figure 7.7). Since
Ki is also known from the experimental results, we adjusted KS so that the high-frequency
end of the model fits with the ultrasonic bulk modulus in glycerin-saturated conditions.
We obtained KS = 28 GPa. A very high crack density of 1.28 is obtained for the Coquina
sample (Table 10.1). From the SEM photomicrographs, this probably relates to the grain
contacts that can act like microcracks, as the sample is poorly cemented and doesn’t bear
much intragranular microporosity.

Once the characteristic aspect ratio and the pressure-dependence of the crack density
are defined, the model can be calculated for the whole frequency range. We focus here on
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Figure 10.8: Pressure dependence of the bulk modulus and deduced crack distributions at
different differential pressures for the intact Indiana (a-b), the thermally cracked Indiana
(c-d), the Rustrel (e-f) and the Coquina samples (g-h). We use the pressure-dependence of
the dynamic bulk modulus Kd obtained from hydrostatic oscillations in dry conditions to
adjust the crack distributions with Morlier’s method. For a given pressure, Kd is plotted for
all the measured frequencies. The fitting parameters for each sample are presented Table
10.1.
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K∗sat (Equation 10.35), but the results for G∗sat (Equation 10.36) and the deduced E∗sat and ν∗sat

(Equation 10.38) compared to the ultrasonic and axial oscillations results are presented in
Appendix E. Since the experimental bulk moduli obtained from hydrostatic and axial were
in general consistent with each other, the data used for the comparison with K∗sat is the
hydrostatic oscillations results as they correspond to a direct measurement, and therefore
bear less uncertainty. One exception is made for the glycerin-saturated data of the Coquina
sample, where we used the axial oscillations to present higher-frequency results.

For the intact Indiana limestone (Figure 10.9), the model fits perfectly the drained /
undrained transition visible under water saturation (Figure 10.9a) for the different pres-
sures. The high-frequency end is consistent the ultrasonic results (Figure 10.9a). The atten-
uation seem to slightly over-predict the experimental results, with a maximum peak of 0.3
instead of 0.2 at Pdi f f = 2.5 MPa (Figure 10.9b). For the glycerin saturation (Figures 10.9c
and 10.9d), the model predicts squirt-flow dispersion and attenuation between 10 Hz and
103 Hz but the experimental data show no dispersion nor attenuation in this range. The
undrained values of the model (between 1 Hz and 10 ) seem consistent with the experimen-
tal results for Pdi f f >= 5 MPa. For Pdi f f = 2.5 MPa, the hydrostatic results are much lower
than what the model predicts. The high-frequency end remains consistent with ultrasonic
results. This suggests that some squirt-flow dispersion is expected to occur at frequencies
greater than 103 Hz.

For the thermally cracked Indiana sample in water-saturated conditions (Figure 10.10a-
b), the model’s prediction for the drained / undrained transition fits the amplitude of
dispersion, but seems to have a higher slope than the data (Figure 10.10a). Consequently,
the model’s attenuation over-predicts greatly the experimental results, with a peak at 0.95
instead of 0.35 for the attenuation results at Pdi f f = 2.5 MPa (Figure 10.10b). The water-
saturated ultrasonic results are lower than model as they were also found to be lower
than the undrained experimental results (Figure 10.10a). For the glycerin-saturated condi-
tions (Figure 10.10c-d), the model does predict dispersion and attenuation at the same fre-
quency range than the experimental data, but with far less amplitudes. However, the high-
frequency end of the model corresponds well with the ultrasonic results (Figure 10.10c).
Somehow, the experimentally undrained value of Kgly at Pdi f f = 2.5 GPa is much lower
than what Biot-Gassmann would predict, and is equivalent to the undrained Kwat. Inter-
estingly, this was also observed for the intact sample (Figure 10.9), which was a completely
different set of experiments (other strain-gauges) following the same experimental protocol,
making this a reproducible observation. At this stage, we do not have a proper explanation
for this. These observations have to put in parallel with the Poisson’s ratio experimental
results, which fail to be adjusted by the model (see Appendix E). For the thermally cracked
Indiana sample, the squirt-flow dispersion seen by ν seems to differ in frequency range:
when K should be undrained above 1 Hz, ν seems to be still equal to the drained value,
and only increase to the unrelaxed value after 102 Hz. Anisotropy of the thermally induced
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Figure 10.9: Drained/Undrained/Squirt-flow model compared to the experimental bulk
modulus results of the intact Indiana limestone. The ultrasonic results under water-
saturated and glycerin-saturated conditions are within the red rectangles (Table 5.2).
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Figure 10.10: Drained/Undrained/Squirt-flow model compared to the experimental bulk
modulus results of the thermally cracked Indiana limestone. The ultrasonic results under
water-saturated and glycerin-saturated conditions are within the red rectangles (Table 5.2).

cracks orientations could explain this, but this fails to explain why the same phenomenon
appeared in the intact sample. A chemical interaction seems unlikely as it would have to be
specific to the glycerin, since the water-saturated results do not exhibit this weakening, and
the high-frequency unrelaxed bulk modulus would also be affected, which doesn’t seem to
be the case. Unfortunately we do not have the shear modulus results to see if there is any
shear weakening. The hypothesis of non-interaction between cracks could also be violated
at low-pressure, but this would still not explain why the undrained value is much lower
than Biot-Gassmann’s prediction.

For the Rustrel sample in water-saturated conditions (Figure 10.11a-b), the model seems
generally consistent with the experimental results of the drained/undrained transition, and
with the high-frequency ultrasonic results (Figure 10.11a). The amplitude of dispersion of
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Figure 10.11: Drained/Undrained/Squirt-flow model compared to the experimental bulk
modulus results of the Rustrel sample. The ultrasonic results under water-saturated and
glycerin-saturated conditions are within the red rectangles (Table 6.1).

the experimental results seem greater than what the model predicts (Figure 10.11a), which
results in greater attenuation than the models prediction (Figure 10.11b). In the glycerin-
saturated case, the undrained values (around 1 Hz) of the model and the experimental
data are consistent. However, similarly to the intact Indiana sample, the experimental data
show no dispersion nor attenuation where the model predicts it (Figure 10.11c-d). The
model being consistent with the unrelaxed ultrasonic results, it suggests that the squirt-
flow dispersion should occur at frequencies greater than 103 Hz. The results for E, ν and G
(see Appendix E) are in agreement with these observations.

Finally, for the Coquina sample under water saturation (Figure 10.12a-b), the model is
in very good agreement with the experimental results of the drained / undrained tran-
sition, either for dispersion (Figure 10.12a) and attenuation (Figure 10.12b) at every dif-
ferential pressure. The ultrasonic results are in agreement with what the models predicts
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at high frequency (Figure 10.12a). In glycerin-saturated conditions (Figure 10.12c-d), the
model predicts squirt-flow at slightly lower frequencies than the experimental results (Fig-
ure 10.12c). The high-frequency values of the model are consistent with the unrelaxed
ultrasonic results (Figure 10.12c). The amplitude of the dispersion predicted by the model
seem lower than the experimental results (Figure 10.12c), and consistently the attenuation
was found to be lower also (Figure 10.12d). The experimental undrained values (visible
around 100 Hz, seem to be slightly lower than what Biot-Gassmann, and therefore the
model, would predict, explaining the differences in dispersions (Figure 10.12c). To a less
extent, this is what we observed for the Indiana sample, i.e., a lower undrained bulk mod-
ulus with glycerin, and a higher cut-off frequency for the squirt-flow. These observations
have to be put in parallel with the results of the other elastic moduli obtained from axial
oscillations (see Appendix E). The results on E, ν and G seem to confirm these observa-
tions, and the small mismatch between the model and the experimental results could be
related to inconsistencies between the bulk modulus obtained from the hydrostatic and the
axial oscillations, as the crack determination uses solely the pressure-dependence of the
hydrostatic oscillations results in dry conditions.

10.7 Conclusions

The combination of a squirt-flow model similar to Gurevich et al. (2010) and the 1D drained
/ undrained poroelastic model (Pimienta et al., 2016b) proves to be a useful tool to interpret
and discuss the experimental results of dispersion and attenuation over large frequency
ranges. The model can be extended to anisotropic media, but has yet to be compared to
experimental results (e.g. Szewczyk et al., 2016). The model was here compared to results
obtained with drained boundary conditions, but it can also take into account the effect of
possible small dead volumes at the boundaries of the sample. One of the major application
of the model would be to predict the whole frequency behavior of the elastic properties of
a rock by simply measuring a static loading curve.

The general observations we can make when the model is confronted to the experi-
mental results on the carbonate samples are: (i) the water-saturation results were always
consistent with Biot-Gassmann and the 1D drained/undrained model, and (ii) the ampli-
tude of squirt-flow is consistent but the cut-off frequency of the model is often lower than
observed experimentally, except for the thermally cracked Indiana. For the coquina sample,
the cut-off frequency is only slightly underpredicted. The first point confirms observations
done by Adam et al. (2006), although we did not observe much shear weakening due to fluid
saturation. The second point could be related to the micromechanical model used to model
the squirt-flow between cracks and rounded pores (Figure 10.4).

One major simplification of the model is the use of a single crack family of aspect ratio
ξ̂, instead of the full distribution of crack aspect ratios determined by Morlier’s method.
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Figure 10.12: Drained/Undrained/Squirt-flow model compared to the experimental bulk
modulus results of the Coquina sample. The ultrasonic results under water-saturated and
glycerin-saturated conditions are within the red rectangles (Table 7.1).
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This would surely broaden the frequency range of the squirt-flow dispersion. However, the
characteristic crack aspect ratio ξ̂ being the dominant family with the other crack aspect
ratios distributed around it, the squirt-flow transition will not be shifted in frequency, but
rather broaden around the cut-off frequency corresponding to ξ̂. Such distribution is in fact
intrinsically related to the effective medium that was used to deduce it in the first place,
and therefore, by definition, is not a geometrical description of the rock. A small difference
in ξ̂ would imply a large difference in the squirt-flow cut-off frequency since fsq = ξ̂3KS/η.

The general microporous nature of carbonate rocks may imply that the fluid in a crack
does not simply flow radially between two mineral planes like in the present model, but
these planes in question could bear micropores that would leak-off part of the fluid. In con-
trast, the thermally induced cracks in the homogeneous cement of the Indiana limestone
seem not to have this issue. Although the compliance of the whole dry crack would not
be changed, the presence of micropores could add drained or partially drained boundary
conditions within the crack, and not simply at the circumference. For a same crack aperture
h, the same differential equation followed by the fluid pressure (Equation 10.15) would be
solved locally between the distance separating two drained micropores, i.e., on a diffusion
length smaller than the crack radius. Locally, the fluid would see a crack of similar com-
pliance, but with a smaller radius (distance between two micropores acting as boundary
conditions). The local virtual fluid modulus defined Equation 10.22 would be calculated
with a higher apparent crack aspect ratio (h is constant). This would therefore increase the
cut-off frequency of the squirt-flow.
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Conclusions

The dispersion and the attenuation of the elastic moduli of fully-saturated limestones have
been characterized experimentally using forced oscillations in a new triaxial cell at ENS
of Paris, in addition to ultrasonic measurements. The limestones presented different mi-
crostructures characteristic of carbonate rocks, and the full set of dispersion and attenuation
results of all the elastic moduli were obtained, either for seismic, logging, and ultrasonic
frequencies. The main guideline of the study was to correlate any fluid-flow related dis-
persion, to microstructure observations in SEM. Five main conclusions can be emphasized.

1) - For all the samples, the drained/undrained transition was characterized to clearly
identify the different fluid-flow regimes. The resulting dispersion was in good agreement
with Biot-Gassmann’s predictions and the frequency of the transitions were perfectly pre-
dictable from the permeability measurements. A 1D poroelastic model, solving the vertical
diffusion in the sample, was developed to model this transition and include the effects of
different boundary conditions, such as small dead volumes.

2) - For the bimodal-porosity Lavoux limestone, no squirt-flow dispersion was de-
tected beyond the undrained regime, which was expected as the bulk modulus is pressure-
independent up to 20 MPa of effective pressure. This suggests that the equivalent aspect
ratios of intergranular macropores and intragranular micropores are relatively similar. For
the Indiana sample, the results show that a small amount of squirt-flow is expected be-
tween 10 kHz and 1 MHz for water-saturated conditions. The thermal cracking increased
substantially the amount of squirt-flow dispersion, with a much lower cut-off frequency
measured around 100 Hz. The results for the Rustrel sample suggest that a small amount
of squirt-flow dispersion is expected between 20 kHz and 1 MHz, and the coquina sam-
ple exhibited a sandstone-like behavior due to its detritic nature, with a large squirt-flow
dispersion detected around 10 kHz.

3) - Except for the thermally induced cracks, it would seem that most of the ob-
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served squirt-flow dispersions in water-saturated conditions were at the logging frequen-
cies. Therefore, we can state that Biot-Gassmann’s fluid substitution is generally valid
for the seismic frequencies. Only thin cracks in large homogeneous crystals, such as the
thermally induced cracks in the Indiana, would induce dispersion at seismic frequencies.
The velocities would then be underestimated by Biot-Gassmann equation. The ultrasonic
measurements seem to fall systematically within the unrelaxed regime. The previous state-
ments apply solely for water-saturated conditions. The presence of a much more viscous
fluid will shift the squirt-flow frequency to much lower frequencies. The logging mea-
surements would fall within the unrelaxed regime, while the seismic measurements could
either be undrained or unrelaxed. However, we found that for the samples of this study,
the undrained and unrelaxed relaxed properties become equivalent for effective pressure
higher than 20 MPa.

4) - The pressure-dependence of the dry bulk modulus enables to determine a crack
distribution of the rock, susceptible to generate squirt-flow. We found that cracks in ho-
mogeneous large crystal, such as the thermally cracked Indiana or the coquina sample
(grain contacts), are susceptible to generate squirt-flow at the predicted cut-off frequency
applicable to sandstones. On the other hand, the results from the intact Indiana and the
Rustrel limestones, showed that the squirt-flow mechanism is at higher frequencies than
expected. A simple squirt-flow model was developed and is in agreement with the previ-
ous observations. Since no cracks were visible in the calcitic cements in the SEM images
for both samples, we suspect that the "microcracks" (or the pressure-dependent compliant
porosity) were located within the microporous grains or at the grain boundaries, resulting
in a different hydraulic response.

5) - The non-interaction approximation effective medium was adapted to model both the
drained/undrained transition and the squirt-flow phenomenon from penny-shaped cracks
randomly oriented. The crack distribution is determined by Morlier’s method from the
pressure dependence of the dry, or drained, dynamic bulk modulus. The forward proce-
dure attempts to predict the full dispersion and attenuation profiles with a limited number
of measurable input parameters, and excluding any free adjustable parameter. In principle,
the model can be easily extended to anisotropic crack orientations. The comparison with
the experimental results on the carbonates shows that the amplitudes of dispersions are
generally well predicted, but in some cases, the underlying micro-mechanical model is not
appropriate, and predicts a much lower squirt-flow cut-off frequency.

Perspectives

Four main perspectives can be outlined.

1) - The experimental investigations in laboratory prove to be essential to characterize
the dispersion and attenuation mechanisms in controlled conditions. However, the major

224



10.7. CONCLUSIONS

limitation of the current experiments is the requirement of small homogeneous samples,
from which we can only characterize the dispersive effects of heterogeneities less than
several millimeters size. In the field, dispersive effects from larger heterogeneities, such
as fractures, are likely to occur and their effects would add to the dispersion at small
scale. We can expect an additional flow from the fracture to the porous background that
will depend on the permeability. Such upscaling problems regarding frequency effects
were investigated numerically (Quintal et al., 2012, 2014, 2016; Rubino et al., 2014), but these
models could not be confronted to experimental results obtained in laboratory. We propose
here a new experiment to investigate the effect of a larger fracture using forced oscillations
procedures as previously, and a cylindrical sample with one preexisting fracture, either
vertical or horizontal. In a first approach, the fracture could be created by saw-cut in a
known limestone. The main challenge is the strain measurement. Strain gauges could be
glued far from the fracture as background references, and next to the fracture to observe
fluid-flow related dispersion in the vicinity of the fracture. If the fracture is vertical, a radial
extensiometer could be used to measure the radial strain of the fracture.

2) - We have found that thermal cracking (500°C) in the Indiana limestone, generates
randomly oriented cracks in the cement, which were responsible for extensive dispersion
due to squirt-flow. However, the subsurface reservoir rocks are more susceptible to have
cracks generated by previous tectonic deformations or by compaction during production as
the pore pressure drops. The squirt-flow mechanism of these mechanically induced cracks
could be studied in the triaxial cell, after the sample was loaded near the yield envelops,
either in the dilatant brittle failure domain, or in the compactant domain (Figure 10.13).
Note that mechanical cracks orientation distribution is expected to anisotropic, especially
in the dilatant domain with vertical cracks (Figure 10.13). In the compactant domain, the
orientation distribution is expected to be more isotropic (Figure 10.13).

3) - One important field that requires more study is the comparison between the static
and the dynamic moduli. The static moduli is essential as it is relevant for well-bore sta-
bility and reservoir compaction problems. Only few studies attempt to find correlations
between static and dynamic measurements in rocks (e.g. Fjær, 2009). The principal mech-
anism proposed to explain the static/dynamic difference is the frictional sliding in closing
cracks, occurring for large amplitudes of deformation. We propose here a new experiment
using hydrostatic oscillations around a mean confining pressure, at low-frequency (e.g.
f ∈ [0.004; 0.02]Hz), where the frequency is kept constant but the amplitudes of the oscilla-
tions increases. For each amplitude, several cycles are performed to exclude any seasoning
effects and to calculate the modulus using Fourier transform. The strain amplitude would
start in the linear elastic domain (ε ∼ 10−6) and progressively be increased step by step
to large amplitudes (ε ∼ 10−3) corresponding to the conventional static measurements.
The effect of saturation on the possible frictional sliding could be investigated by doing
the same cycles in dry and in drained-saturated conditions. The frequency should be low
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Figure 10.13: Example of the deformation map in the principle stress space for sandstones.
Vertical cracks develop near the dilatancy envelop prior to brittle failure (left ellipse), while
randomly oriented cracks may develop prior to the pore collapse failure with no deviatoric
stress (right ellipse). Modified after Fortin (2005).

enough to ensure the drained conditions. Preliminary results were obtained on the water-
saturated Rustrel limestone and are presented Figure 10.14. We observe the hysteresis loops
in the stress-strain domain, which seem to exhibit a non-linear viscoelastic response as the
amplitude increases due to the asymmetry between the loading and the unloading phase.
For comparison, the endplaten aluminium remained in the linear elastic domain whatever
the amplitude of deformation (Figure 10.14). The dissipated energy due to the frictional
sliding in a cycle, represented by the surface of the loop in the stress-strain domain (Fig-
ure 10.14), can be calculated by numerical integration, and could give the estimation of
an intrinsic "non-linear attenuation" that would be dependent on the strain amplitude, and
would help to quantify the difference between static and dynamic measurements. However,
Kramers-Kronig relations do not apply here as the viscoelasticity is not linear.

4) - Finally, one promising perspective would be the measurements of the frequency
dispersion on well cores in the laboratory, for which seismic and log data are available
on the field. The samples should be representative in terms of pore type or facies. This
study would constitute a major step in order to integrate the frequency measurements in
laboratory with the field observations.

226



10.7. CONCLUSIONS

0.02 Hzf =

Figure 10.14: Preliminary results of hydrostatic oscillations at 0.02 Hz around 10 MPa
and 20 MPa confining pressure, with increasing amplitude, on the water-saturated Rustrel
limestone. The hysteresis increases with increasing amplitude, but is not comparable to a
linear viscoelastic material that would give symmetrical ellipses. Instead, we observe non-
linear viscoelasticity (asymetric) with a larger dissipation in the low-pressure part of the
loop. The phenomenon is more pronounced at a mean pressure of 10 MPa than at 20 MPa,
which could be correlated to the crack closure. The aluminum standard (endplaten strain
gauge) exhibits a linear elastic response whatever the amplitude of oscillations.
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Conclusions

Les dispersions et atténuations des modules élastiques de calcaires saturés ont été carac-
térisées expérimentalement par l’utilisation d’oscillations forcées combinées à des mesures
ultrasoniques, dans une nouvelle presse triaxiale à l’ENS de Paris. Les calcaires présen-
taient des microstructures différentes mais caractéristiques des roches carbonatées, et nous
avons obtenu de nombreux résultats de dispersion et d’atténuation de tous les modules
élastiques, pour les fréquences sismiques, de diagraphie et ultrasoniques. Le fil directeur
de cette étude était de corréler la dispersion d’un écoulement local à une observation sur la
microstructure observable au MEB. On peut mettre en avant cinq conclusions principales.

1) - Pour tous les échantillons, la transition drainé/non-drainé a été complètement car-
actérisée pour bien identifier les différents régimes d’écoulements. Cette transition s’est
montrée en accord avec les équations de Biot-Gassmann, et sa fréquence de coupure est
parfaitement prévisible si l’on mesure la perméabilité. Un modèle poroélastique 1D, qui
résout l’équation de diffusion dans la direction verticale, a été développé pour modéliser
cette transition et y inclure les effets de différentes conditions aux limites, tels que les petits
volumes morts du système experimental.

2) - Pour le calcaire à porosité bimodale Lavoux, aucune dispersion d’écoulement crack-
pore n’a été détecté au-delà du régime non-drainé, ce qui se corrèle bien avec l’insensibilité
des modules élastiques à la pression effective, en dessous de 20 MPa. Cela suggère que
les facteurs de forme des micropores intragranulaires et des macropores intergranulaires
sont très similaires. Pour le calcaire Indiana, les résultats montrent qu’une faible dispersion
liée aux écoulements cracks-pores est attendue entre 10 kHz et 1 MHz pour des conditions
saturées en eau. Le craquage thermique a significativement augmenté cette dispersion,
tout en diminuant sa fréquence de coupure autour de 100 Hz. Les résultats sur le Rustrel
suggère également qu’une faible dispersion est attendue entre 20 kHz et 1 MHz, pendant
que le coquina semble lui se comporter comme un grès due à sa nature détritique, avec une
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large dispersion d’écoulement crack-pore observée autour de 10 kHz.

3) - A part pour les fissures induites thermiquement dans l’Indiana, il semblerait que
les dispersions liées aux écoulements locaux soient systématiquement dans la gamme
de fréquence des diagraphies en conditions saturées à l’eau. Ainsi, la théorie de Biot-
Gassmann est en général valide pour les fréquences sismiques. Seuls des cracks à faible fac-
teur de forme dans de larges cristaux, tels que dans l’Indiana craqué thermiquement, peu-
vent induire une dispersion aux fréquences sismiques. Les vitesses prédites par l’équation
de Biot-Gassmann seraient alors sous-estimées. Les mesures ultrasoniques semblent être
systématiquement dans le régime d’écoulement non-relaxé. Les observations précédentes
ne sont valides que pour des saturations à l’eau. La présence d’un fluide beaucoup
plus visqueux décalerait les transitions entre régimes d’écoulements vers de plus basses
fréquences. Les diagraphies pourraient être dans le régime non-relaxé, et les mesures sis-
miques pourraient être en régime non-drainé ou non-relaxé. En revanche, pour l’ensemble
des roches étudiées dans cette thèse, les propriétés non-drainées et non-relaxées deviennent
équivalentes pour des pressions effectives supérieures à 20 MPa.

4) - La dépendance en pression du module d’incompressibilité en sec permet de déter-
miner une distribution de fissures dans la roche, susceptible de générer de la dispersion.
Nous avons observé que des fissures dans de larges cristaux homogènes, telles que l’Indiana
après craquage thermique ou le coquina (contacts entre grains), étaient susceptibles de
générer une dispersion importante autour de la fréquence de coupure prédite fsq, qui sem-
blait en général bien s’appliquer aux grès. D’un autre côté, les résultats sur l’Indiana intact
et le Rustrel montrent que cette dispersion à lieu à des fréquences bien plus élevées que la
prédiction. Le modèle simple de dispersion est en accord avec ces observations. Puisque
qu’aucune fissure n’était vraiment visible dans le ciment, sur les photomicrographies au
MEB de ces deux échantillons, nous suspectons que la porosité compressible se trouve au
sein de la microporosité des grains ou en périphérie, se qui pourrait modifier la réponse
hydraulique.

5) - Le modèle effectif de non-interaction a été adapté pour modéliser la dispersion
drainé / non-drainé et la dispersion d’écoulement crack-pore, pour des géométries de
cracks proche de disques aplatis (penny-shaped), avec des orientations et distributions
aléatoires dans l’espace. Les distributions des facteurs de formes et des densités de cracks
sont calculées par la méthode de Morlier qui s’appuie sur la dépendance en pression du
module K dynamique en sec, ou drainé. La procédure permet de simuler la dispersion des
modules élastiques sur toute la gamme de fréquence, avec un nombre limité de paramètres
d’entrée mesurables. Aucun paramètre libre d’ajustement n’est présent. En principe, ce
modèle peut être étendu à des orientations anisotropes de cracks. La comparaison avec
les données expérimentales montrent que les amplitudes de dispersion sont bien prédites,
mais que parfois le modèle micromécanique utilisé sous-estime la fréquence de coupure de
la transition d’écoulement crack-pore.

230



10.7. CONCLUSIONS

Perspectives

Quatre grandes perspectives peuvent être proposées.

1) - Les études expérimentales au laboratoire sont essentielles pour caractériser les mé-
canismes de dispersions et d’atténuations dans des conditions contrôlées. En revanche,
une limitation majeure de nos expériences est qu’elles nécessitent de petits échantillons ho-
mogènes, pour lesquels on peut étudier les phénomènes dispersifs à une échelle d’hétérogénéité
inférieure à quelques millimètres. Sur le terrain, des phénomènes dispersifs d’hétérogénéités
beaucoup plus larges peuvent exister, par exemple liés aux fractures. Leurs effets viendraient
s’additionner aux effets dispersifs à petite échelle. On pourrait s’attendre à un écoulement
de la fracture vers la porosité du milieu environnant, qui dépendrait de la perméabilité.
Les problèmes de changement d’échelle, liés aux effets de fréquences, peuvent être étudiés
numériquement (Quintal et al., 2012, 2014, 2016; Rubino et al., 2014), mais ces modèles n’ont
pas de données expérimentales de laboratoire sur lesquelles s’appuyer. On propose ici une
nouvelle expérience pour comprendre l’effet d’une fracture, qui utilise les mêmes procé-
dures d’oscillations forcées que précédemment, mais appliquées sur un échantillon qui
aurait une fracture préexistante, soit verticale ou horizontale. En première approche, cette
fracture pourrait être artificiellement sciée dans un calcaire homogène connu. Le défi réside
dans la mesure de déformation. Des jauges de déformations pourraient être collées loin de
la fracture pour servir de référence d’arrière plan, et près de la fracture pour voir son influ-
ence sur les dispersions des zones en marge. Si la fracture est verticale, un extensiomètre
radial pourrait être utilisé pour mesurer la déformation intrinsèque de la fracture.

2) - Nous avons montré que le craquage thermique, à 500°C dans l’Indiana, a produit
de larges populations de cracks isotropes dans le ciment calcitique qui génèrent de fortes
dispersions. En revanche, les roches réservoir en subsurface sont plus susceptibles d’être
fissuré à cause de mouvement tectoniques ou de compaction des réservoirs lors de la pro-
duction, à mesure que la pression de pore diminue. Les phénomènes dispersifs liés à ce
type de fissures, générées mécaniquement, peuvent être étudiés dans nos presses triaxiales,
après que la roche soit emmenée près de son enveloppe limite. On note que la distribution
d’orientation des fissures est suscéptible d’être anisotrope. Dans le domaine dilatant, des
fissures verticales seraient générées, alors que dans le domaine compactant, les fissures
auraient des orientations isotropes (Figure 10.13).

3) - Un domaine d’étude essentiel est la comparaison entre modules statiques et dy-
namiques. Les modules statiques sont les modules pertinents dans les études de stabilité
des puits ou de compaction des réservoirs. Très peu d’études proposent des corrélations en-
tre modules statiques et dynamiques dans les roches (e.g. Fjær, 2009). Le mécanisme princi-
pal qui expliquerait les différences entre modules statiques et dynamiques est le glissement
frictionnel dans les fissures qui se ferment, se qui ne se produit que pour des larges am-
plitudes de déformation. On propose ici un nouveau protocole expérimental qui utiliserait
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CHAPTER 10. EFFECTIVE MEDIUM APPROACH TO MODEL THE ELASTIC
DISPERSION RELATED TO FLUID-FLOWS AT DIFFERENT SCALES: SQUIRT FLOW

AND GLOBAL DIFFUSION.

les oscillations hydrostatiques à basse fréquence ( f ∈ [0.004; 0.02]Hz) autour d’une pres-
sion moyenne, à fréquence constante, et en augmentant progressivement l’amplitude des
oscillations. Pour chaque amplitude, les oscillations dureraient quelques périodes afin de
pouvoir calculer un module K dans le domaine de Fourier, et de vérifier la réversibilité
des cycles. L’amplitude de déformation commencerait dans le domaine linéaire élastique
(ε ∼ 10−6), et augmenterait étape par étape aux larges déformations proche des mesures
statiques (ε ∼ 10−3). L’effet d’un fluide saturant sur le glissement frictionnel dans les fis-
sures pourrait être étudié, en comparant les résultats de ces oscillations en sec et saturé,
sous condition que la fréquence soit suffisamment basse pour que la roche soit totalement
drainée. Des résultats préliminaires ont déjà été obtenus sur le Rustrel saturé en eau,
et sont présentés Figure 10.14. On peut clairement observer les cycles d’hystérésis dans
l’espace contrainte-déformation, qui semble tendre vers un comportement viscoélastique
non-linéaire à mesure que l’amplitude augmente due à l’asymétrie prononcé entre charge-
ment et déchargement. En comparaison, l’aluminium del’embase est resté dans le domaine
élastique linéaire pour toutes les amplitudes de déformations (Figure 10.14). L’énergie dis-
sipée par friction interne pourrait être évaluée en calculant numériquement la surface de
ces boucles d’hystérésis. Cela donnerait une estimation d’atténuation intrinsèque qui serait
dépendante de l’amplitude, et permettrait de quantifier l’écart entre statique et dynamique.
En revanche, les relations de causalités de Kramers-Kronig ne peuvent pas s’appliquer ici
car la viscoélasticité est non-linéraire.

4) - Finalement, une perspective prometteuse serait de mesurer les effets de fréquence
sur des échantillons de puits en laboratoire, pour lesquels des données sismiques et de
diagraphie de terrain sont disponibles. Les échantillons devront être représentatif d’un
type poreux ou d’un faciès. Cette étude serait une grande étape pour intégrer les effets de
fréquence mesurés au laboratoire avec des données de terrains.
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Dispersion and attenuation measurements of the elastic
moduli of a dual-porosity limestone

J. V. M. Borgomano1 , L. Pimienta1, J. Fortin1, and Y. Guéguen1
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Abstract The dispersion and the attenuation of the elastic moduli of a Lavoux limestone have been
measured over a large frequency range: 10−3 Hz to 101 Hz and 1 MHz. The studied sample comes from
a Dogger outcrop of Paris Basin and has the particularity to have a bimodal porosity distribution, with
an equal proportion of intragranular microporosity and intergranular macroporosity. In addition to
ultrasonic measurements, two different stress-strain methods have been used in a triaxial cell to derive all
the elastic moduli at various differential pressures. The first method consists of hydrostatic stress oscillations
(f ∈ [0.004; 0.4] Hz), using the confining pressure pump, from which the bulk modulus was deduced.
The second method consists of axial oscillations (f ∈ [0.01; 10] Hz), using a piezoelectric oscillator on top
of the sample, from which Young’s modulus and Poisson’s ratio were deduced. With the assumption of an
isotropic medium, the bulk modulus (K) and the shear modulus (G) can also be computed from the axial
oscillations. The sample was studied under dry, glycerin- and water-saturated conditions, in order to scale
frequency by the viscosity of the fluid. Results show a dispersion at around 200 Hz for water-saturated
conditions, affecting all the moduli except the shear modulus. This dispersion is related to the
drained/undrained transition, and the bulk modulus deduced from the axial and hydrostatic oscillations
are consistent with each other and with Biot-Gassmann’s equations. No dispersion has been detected
beyond that frequency. This was interpreted as the absence of squirt flow or local diffusion between
the microporous oolites and the macropores.

1. Introduction

In fluid-saturated porous media, the dependence to frequency of the body wave velocities (VP and VS) rises
questions on how to compare low-frequency field measurements (100 Hz for seismic data and 10 kHz for
sonic logs) to conventional high-frequencymeasurements in the laboratory (1 MHz for ultrasonic). These dis-
persions in elastic wave velocities are related to the dispersion of the elastic moduli, which can be affected by
fluid flows occurring at different scales in the porosity [Batzle et al., 2006;Muller et al., 2010; Sarout, 2012].

When the porous medium is submitted to an oscillating stress field, the deformation of the solid frame may
induce a fluid pressure variation if the fluid has no time to diffuse through the pore network. In fully saturated
conditions, this fluid diffusion can occur at different scales [Sarout, 2012]: global within the wavelength scale
or localwithin a representative elementary volume (REV). Local flow, or squirt flow,mayequalize thefluidpres-
sure between compliant cracks and rounded pores within one REV [Mavko and Jizba, 1991], whereas global
flow equalizes pressure through all the connected REVs. Three fluid flow regimes can be considered from this:
drained, undrained, and unrelaxed regimes [Pimienta et al., 2016a]. The undrained and unrelaxed regimes
refer to, respectively, the saturated isobaric and the saturated isolated regimes described by O’Connell and
Budiansky [1977]. The drained regime occurs when the fluid has time to diffuse by local and global flow
throughall the REVs. The elastic properties of theporousmediumare similar to dry conditions. Then,when the
frequency increases, thefluid stopsdiffusing atwavelength scale, lettingplace to theundrained regime. In this
regime, the REVs are as disconnected from each other and remain isobaric. Because of the deformation of the
frame, the fluid pressure increases in the porosity, therefore increasing the stiffness of the medium. The two
previous regimes are well accounted for in quasi-static poroelasticity [Gassmann, 1951]. Finally, when the fre-
quency is highenough, pressuremaynot equilibrateby local flowwithin theREVs. This is the case, for example,
of squirt flow between cracks and stiff pores, leading to the unrelaxed regime [Dvorkin et al., 1995; Shafiro
and Kachanov, 1997]. In this regime, the fluid can be considered immobile, and higher pressure gradients are
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maintained in the cracks. This increases further the stiffness of the medium. Effective medium theories are
possible tools to predict the elastic properties in this last regime [e.g., Adelinet et al., 2011].

While the elastic properties are not frequency dependent within a specific regime, they show dispersion and
attenuation in the transitions between these regimes [Pimienta et al., 2015a]. The two cutoff frequencies, f1
and f2, respectively for the drained/undrained transition and undrained/unrelaxed transition, can be ex-
pressed as follows [O’Connell and Budiansky, 1977; Cleary, 1978]:

f1 =
4kKd
𝜂L2

and f2 =
Ks𝜉

3

𝜂
, (1)

where k is the permeability, Kd is the drained bulk modulus, Ks is the skeleton’s bulk modulus, 𝜉 the average
crack aspect ratio, 𝜂 the fluid’s dynamic viscosity, and L the wavelength. At low frequencies in the laboratory,
the corresponding wavelength is generally larger than the sample’s length, in which case L is taken equal to
the sample’s length. When there is dispersion of an elastic modulusM, in other words, when there is viscous
dissipation in the fluid, the rheology of the medium is similar to that of a viscoelastic material [O’Connell and
Budiansky, 1977]. One can measure a phase shift Δ𝜙 between the stress and the strain response. The dissi-
pation related to M is usually quantified from the inverse of the quality factor Q−1

M , such that [O’Connell and
Budiansky, 1978]:

Q−1
M = tan(Δ𝜙). (2)

Carbonate rocks are characterized by complex microstructures and heterogeneous pore types [Lucia, 1995].
For a given porosity, carbonate rocks were shown to exhibit a wide range of Pwave and Swave velocities, due
to the large variety of pore types [Eberli et al., 2003]. Their elastic properties are affected by the pore network
and the mineralogy, which can be modified through diagenetic processes [Fournier and Borgomano, 2009].
Several studies have attempted to understand the relationship between seismic wave velocity and porosity
[e.g., Anselmetti and Eberli, 1993; Verwer et al., 2010] or to verify the applicability of Biot-Gassmann’s fluid sub-
stitution theory [e.g., Baechle et al., 2009; Fabricius et al., 2010]. Very few studies aimed at characterizing the
dispersion and the attenuation at seismic frequencies in carbonate rocks, due to the interplay between
microstructure and fluid flow [e.g., Adamet al., 2006, 2009;Mikhaltsevitch et al., 2016a]. This is, however, essen-
tial in hydrocarbon exploration and reservoir characterization, to improve the inversion of the rock properties
using seismicdata. In this study,wepresent our firstmeasurements of dispersion andattenuationof theelastic
moduli of a pure calcite oolitic limestone from Lavoux (France).

2. Experimental Setup

Tomeasure the dispersion and the attenuation of the elasticmoduli over a large frequency range,we used the
stress-strain method, combined with ultrasonic measurements, in a triaxial cell at the ENS of Paris (Figure 1)
[Fortin et al., 2005, 2014; Adelinet et al., 2010; David et al., 2013]. The detailed experimental protocol and the
calibration of the apparatus on standard materials can be found in Pimienta et al. [2015a] and Pimienta et al.
[2015b]. With this apparatus, two types of stress oscillations can be achieved: hydrostatic (Figure 1a) to mea-
sure the bulkmodulus (K) and axial (Figure 1b) tomeasure the Young’s modulus (E) and the Poisson’s ratio (𝜈).
To investigate the effect of the fluid’s viscosity, the sample’s properties were measured under dry, glycerin-
saturated and finally water-saturated conditions. At room temperature (22∘ C), the viscosity of pure glycerin
and water is, respectively, 𝜂gly = 1 Pa s and 𝜂water = 10−3 Pa s [Segur and Oberstar, 1951] . We also studied the
effect of the boundary conditions on the measured elastic properties, with two different configurations
for the drainage system: (1) open (drained conditions) and (2) closed (undrained for the system {sample +
dead volumes}) (Figure 1a). Pimienta et al. [2016b] demonstrated that the effect of the dead volumes on the
measured properties depends upon the ratio of the storage capacities of the sample and the drainage system.
In the drained frequency range, the measured properties would tend to their undrained value if the dead
volumes tend to zero. The dead volumes of the closed drainage system (second case) weremeasured at about
Vd=3.3 mL for the top and bottom end platens [Pimienta et al., 2016b]. Pimienta et al. [2016b] showed that if
the dead volumes are greater than 10Vd , themeasuredproperties converge to the fully drained values. For our
experiments, when the drainage system is open (first case), the dead volumes are in fact much larger and cor-
respond to the volumeof all the hydraulic tubings added to the volumeof fluid in theQuizix pumps (∼60mL).
During the stress oscillations, the pore pressure pumps are shut off, to avoid a fluid-induced response back to
the sample.
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Figure 1. Schematics of the experimental setup for (a) hydrostatic oscillations and (b) axial oscillations, in the triaxial
cell at the ENS of Paris. The hydrostatic oscillations were imposed by the confining pump, in the frequency range of
[0.004; 0.4] Hz. The axial oscillations were imposed by a piezoelectric actuator mounted over the top end platen,
in the frequency range of [0.01; 10] Hz. Strains are measured by axial and radial strain gauges bonded on the sample
at midheight. Ultrasonic transducers are settled in the end platens to obtain the P and S wave velocities at 1 MHz.

The sample is 8 cm long and 4 cmdiameter cylinder. Tomeasure the strains, four pairs of 350Ωmetal foil strain
gauges with axial and radial orientations are glued at midheight all around the lateral surface (Figure 1). Axial
strain (𝜀ax) and radial strain (𝜀rad) are averaged from all the strain gauges. The sample is under a rubber jacket
that separates the pore pressure (pf ) from the confining pressure (Pc) (Figure 1a). When the sample is fluid
saturated, the pore pressure is controlled by a Quizix dual pump system connected to the top and bottom of
the sample through a drainage circuit (Figure 1a). Throughout all the measurements, the pore pressure was
maintained at 2 MPa. Measurements at different differential pressures (Pdiff = Pc − pf ) were done, in a range
below the pore-collapse pressure (P∗) of the sample.

2.1. Hydrostatic Stress Oscillations—Bulk Modulus

The hydrostatic stress oscillations give a direct measurement of the bulkmodulus Khyd [Pimienta et al., 2015a].
The oscillations are obtained from the confining pressure ΔPc that oscillates with an amplitude of 0.2 MPa
aroundameanvaluePc (Figure 1a). This amplitude valuehasbeen calibrated inorder toobtain small strains on
the sample (𝜀∼10−6) to remain in the linear elastic domain (Figure 2a) [Winkler and Murphy, 1995]. The fre-
quency of these hydrostatic oscillations is between 4×10−3 Hz and 4×10−1 Hz. The induced volumetric strain
signal (𝜀vol) is calculated by 𝜀vol=𝜀ax+2𝜀rad. Thus, the bulkmodulus Khyd is obtained from themeasured stress
ΔPc and the measured strain 𝜀vol such that

Khyd =
−ΔPc
𝜀 vol

, (3)

with the convention ΔPc =−𝜎ii∕3. A linear regression of the stress signal versus the strain signal is then
processed to calculate Khyd (Figure 2b).

2.2. Axial Stress Oscillations—Young’s Modulus and Poisson’s Ratio

In order to perform axial stress oscillations [e.g., Batzle et al., 2006; Mikhaltsevitch et al., 2014; Tisato and
Madonna, 2012;Madonna and Tisato, 2013; Pimienta et al., 2015b; Szewczyk et al., 2016], we used a piezoelec-
tric actuator that is mounted between the axial piston of the triaxial cell and the top end platen (Figure 1b).
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Figure 2. Example of stress and strain versus time recordings during (a, b) hydrostatic oscillations and (c, d) axial
oscillations. The elastic moduli are calculated from the linear regressions of the stress versus strain curves
(Figures 2b–2d). The ellipse shapes (hysteresis) result from the phase shift between stress and strain when
dispersion occurs, similarly to viscoelastic materials.

A small deviatoric stress of 1 MPa is maintained on the assemblage in order to have a good contact. The fre-
quency range of the oscillations applied on the Lavoux sample is 10−2 Hz to 10Hz. The top end platen ismade
out of AU4G aluminum and is bonded with two axial strain gauges acting as a axial stress sensor (Figure 1b).
During the measurements, the two axial strains are averaged (𝜀alu) and the axial stress is computed from
𝜎ax = Ealu.𝜀alu (Figure 2c), where Ealu is the Young’s modulus of AU4G (Ealu=72 GPa). With the measurements
of the axial strain (𝜀ax) and the radial strain (𝜀rad) of the sample (Figure 2c), we can directly obtain the Young’s
modulus (E) and the Poisson’s ratio (𝜈) of the sample:

E =
𝜎ax

𝜀ax
and 𝜈 = −

𝜀rad

𝜀ax
. (4)

E and 𝜈 are determined by linear regression of the signals, respectively, 𝜎ax over 𝜀ax and −𝜀rad over 𝜀ax
(Figure 2d). A bulkmodulus (Kax) and a shearmodulus (Gax) are calculated, with the assumption of an isotropic
medium:

Kax =
E

3 (1 − 2𝜈)
and Gax =

E
2 (1 + 𝜈)

. (5)

Kax can then be compared to the bulk modulus Khyd obtained from the hydrostatic oscillations to validate the
assumption of isotropy and to check the consistency of the results.

2.3. Attenuation—Q−1 Measurements

The factor Q−1 measures the elastic energy dissipation within the sample. When this dissipation occurs, the
rheology of the medium is similar to a viscoelastic material [O’Connell and Budiansky, 1977]. The stress-strain
curve presents an elliptic shape that clearly highlights the nonelastic behavior (e.g., Figures 2b and 2d). This
results from the phase shift between the stress and the strain (equation (2)). During a dynamic oscillation
of frequency f , the complex stress can be expressed as 𝜎̄ = 𝜎ei(2𝜋ft+𝜙𝜎 ) and the resulting complex strain
𝜀̄=𝜀ei(2𝜋ft+𝜙𝜀), where 𝜙𝜎 and 𝜙𝜀 are the phases of 𝜎̄ and 𝜀̄. For each elastic modulus, the calculation of the Q−1

factor is based on the causality principle, where the complex modulus M̄ relates the stress 𝜎̄ to its resulting
strain 𝜀̄:

𝜎̄ = M̄𝜀̄. (6)
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The factor Q−1
M of the modulus M̄ is then defined as follows [O’Connell and Budiansky, 1978]:

Q−1
M = Im(M̄)

Re(M̄)
=

Im ( 𝜎̄∕𝜀̄)
Im ( 𝜎̄∕𝜀̄)

= tan
(
𝜙𝜎 − 𝜙𝜀

)
, (7)

In the case of the bulk modulus measured from hydrostatic oscillations,Q−1
Khyd

is deduced from the phase shift
between the hydrostatic stress −ΔPc, with the convention ΔPc =−𝜎ii∕3, and the volumetric strain 𝜀vol. With
the combination of equations (3) and (7), we obtain the following:

Q−1
Khyd

= tan
(
𝜙−ΔPc − 𝜙𝜀vol

)
. (8)

The Young’s modulus and Poisson’s ratio factors Q−1
E and Q−1

𝜈
are deduced from equations (4) and (7):

Q−1
E = tan

(
𝜙𝜎ax

− 𝜙𝜀ax

)
and Q−1

𝜈
= tan

(
𝜙𝜀ax

− 𝜙𝜀rad

)
. (9)

To derive Q−1 for Kax and Gax, with the assumptions of isotropy and small strains, we combine equations (4)
and (5) as follows:

Kax =
1
3
.

𝜎ax

𝜀ax + 2𝜀rad
and Gax =

1
2
.

𝜎ax

𝜀ax − 𝜀rad
. (10)

For both Kax and Gax the stress is 𝜎ax and the resulting strains are, respectively, 𝜀ax + 2𝜀rad and 𝜀ax − 𝜀rad. After
combining equations (7) and (10), the related attenuations are as follows:

Q−1
Kax

= tan
(
𝜙𝜎ax

− 𝜙𝜀ax+2𝜀rad

)
and Q−1

Gax
= tan

(
𝜙𝜎ax

− 𝜙𝜀ax−𝜀rad

)
(11)

Three different methods can be used to calculate the Q−1 factors [e.g., Tisato and Madonna, 2012]. The first
method consists of fitting two sine functions y=A sin(2𝜋f+𝜙) through the stress and strain signals andextract
𝜙 from each signal to calculate the phase shift 𝜙𝜎 − 𝜙𝜀. The secondmethod consists in extracting the phases
from a Fourier analysis of the signals. For this purpose a fast Fourier transform (FFT) algorithm is applied on
the stress and strain signals. And finally, the last method is based on the definition of Q−1 factor that relates
Q−1 to the dissipated elastic energy (ΔE) during a stress-strain cycle and to the average elastic energy stored
(Em) as follows [O’Connell and Budiansky, 1978]:

Q−1 = ΔE
4𝜋Em

. (12)

When viscous dissipation occurs in the fluid, the stress-strain curve presents an elliptic shape, similarly to
viscoelastic materials (e.g., Figures 2b and 2d). The dissipated energyΔE is equal to the surface of this ellipse,
and Em is equal to the average surface under the stress-strain curve. The surfaces that represent ΔE and Em
can be calculated from the stress versus strain curve by numerical integration [Tisato andMadonna, 2012]:

ΔE =
N−1∑
n=1

(
𝜎n+1 + 𝜎n

) (
𝜀n+1 − 𝜀n

)
2Nc

and Em =
N∑

n=1

𝜎n𝜀n

2N
, (13)

where 𝜎n and 𝜀n are all the data points of, respectively, 𝜎̄ and 𝜀̄ signals during one recording, N is the total
number of sampled data and Nc = f .ttot is the number of cycles, f being the frequency of the oscillation,
and ttot the total time of the sequence. For simplicity, the three methods presented above are, respectively,
denominated as “Sines,” “FFT,” and “Ellipse” methods in the following text. The experimental measurements
presented later in the results section were calculated from the Ellipse method, and comparison between the
three methods will be provided for the axial oscillations.

The relation between the dispersion and the attenuation of the complex modulus, M̄, arises from the
causality principle between the stress and strain that is expressed through the Kramers-Kronig equations
[Mikhaltsevitch et al., 2016b]. If M̄ = MR + iMI, with i the imaginary unit,MR the real part, andMI the imaginary
part of M̄, an approximation of the Kramers-Kronig equations was found by O’Donnell et al. [1981]:

MI(𝜔) =
𝜋

2
𝜔
dMR(𝜔)
d𝜔

, (14)
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Figure 3. Zener’s viscoelastic model used to calculate the attenuation from the dispersion. (a) Model applied to the
dispersion of the modulus M of relaxed value M0 and unrelaxed value M1. (b) Spring-damper representation of Zener’s
model, with the relationships between the springs elastic moduli (Ma and Mb) and dispersion’s relaxed and unrelaxed
values (M0 and M1). The viscosity (𝜂b) of the damper is a function of M1 and the cutoff frequency fc : 𝜂b = M1∕2𝜋fc .

where 𝜔 = 2𝜋f . The major drawback of applying equation (14) to experimental data is that an accurate
calculation of the derivative dMR∕d𝜔 by finite difference requires a good resolution in 𝜔.

Because our experimental measurements did not necessarily have a proper resolution in 𝜔, the consistency
between the measured dispersion and attenuation was verified instead with a Zener viscoelastic model
[Pimienta et al., 2015a]. The equivalent spring-damper model is represented in Figure 3b, and its transfer
function M̄ can be expressed with the viscoelastic parameters of the system:

M̄ = 1 + i𝜔𝜏(
1
Ma

+ 1
Mb

)
+ i𝜔𝜏

Ma

, (15)

where Ma and Mb are the moduli of the two springs and 𝜏 = 𝜂b
/
Mb where 𝜂b is the viscosity of the dashpot

element (Figure 3b). This model follows the assumption that only one viscous dissipation mechanism is
involved. With the approximationMa<< Mb, equations (7) and (15) give the following:

Q−1
M ≃ 𝜔𝜏

1 + 𝜔2𝜏2

Ma

Mb
. (16)

If we consider a dispersive transition where the sample’s modulus (M̄) varies fromM0 toM1 around the cutoff
frequency fc (Figure 3a), the elastic parameters of the Zener model becomeMa=M1 andMb

−1=M0
−1 −M1

−1,
and the viscosity of the dashpot becomes 𝜂b = M1∕2𝜋fc (Figure 3b). Therefore, only three parameters are
required to calculate theQ−1 factor fromZener’smodel: themoduliM0 andM1 and the cutoff frequency fc. It is
to note here that if the dispersion is related to the global flow,M0 andM1 would be the drained and undrained
(isobaric) moduli. If the dispersion is related to squirt flow,M0 andM1 would be the undrained (isobaric) and
unrelaxed (isolated) moduli.

2.4. Ultrasonic Measurements

In addition to the stress-strain oscillations, the apparatus enables the measurement of ultrasonic (∼ 1 MHz)
moduli from P and Swave transducers, glued in the end platens at both ends on the sample (Figure 1a). P and
Swave velocities VP and VS are inferred from the traveltime (Δt) of the ultrasonic waves through the sample’s
length (L = 80 mm), after correction of the traveltime through the end platens. The arrival times of the P and
Swaves are handpicked with amaximum error of±0.1μs. The velocity (V) is then calculated by V=L∕Δt. With
a maximum error on L of ±0.01 mm, the relative uncertainty on the velocities is about ΔV∕V = 0.5%. The
high-frequency moduli KHF and GHF are obtained by the well-known formulas:

KHF = 𝜌

(
VP

2 − 4
3
VS

2
)

and GHF = 𝜌VS
2, (17)

where 𝜌sample is the density of themedium, calculated from the density of the dry sample 𝜌dry = 2160 kgm−3,
the density of the saturating fluid 𝜌fluid, and the porosity 𝜙 by 𝜌sample=𝜌dry + 𝜙.𝜌fluid. The densities of glycerin
and water are, respectively, 𝜌gly = 1250 kg/m3 and 𝜌water = 1000 kg/m3 [Bosart and Snoddy, 1927]. With a
relative uncertainty on 𝜌 estimated around 1%, the relative uncertainty of the product 𝜌V2 is about 2%. From
this we can deduce the relative uncertaintiesΔKHF∕KHF≃4%andΔGHF∕GHF≃2 for, respectively, the ultrasonic
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Figure 4. SEM photomicrograph of the Lavoux sample. The sample is a
pure calcite grainstone composed of microporous oolites (marker A),
surrounded by macropores (marker B). The average size of the oolites is
around 300μm.

bulk and shear modulus. Before measur-
ing the traveltimes of the elastic waves
in the sample, an aluminum standard
(2007A/AU4G) of 80mm length wasmea-
sured to calibrate the traveltimes in the
top and bottom end platens.

3. Sample Description

The studied sample is a Lavoux limestone
that was quarried in Paris Basin and was
extensively studied in the literature [e.g.,
Fabre and Gustkiewicz, 1997; Rasolofosaon
and Zinszner, 2002; Youssef et al., 2008;
Bemer and Lombard, 2010; Vincent et al.,
2011; Zinsmeister, 2013]. It is fromDogger
age and is considered as an analogue to
the White Oolitic Formation of Paris Basin
[BemerandLombard, 2010]. It is a pure cal-
cite oolitic grainstone with intergranular

macroporosity and intragranularmicroporosity (Figure4).Mercuryporosimetrymeasurements fromZinsmeis-
ter [2013] or Vincent et al. [2011] confirm the presence of a connected bimodal porosity distribution with pore
entry diameters around 0.6 μm and 20 μm, which corresponds, respectively, to the intra-oolite micropores
and the interoolite macropores. Moreover, the NMR unimodal distribution results from Vincent et al. [2011]
were interpreted as indicating a good connectivity between the intragranular-micropore network and the
intergranular-macropore network.

The porosity was measured around 23% from the triple-weight method, where the sample’s mass is mea-
sured under three different conditions: dry, fluid saturated, and suspended in the saturant. Image analysis
of the SEM photomicrograph enables to evaluate the proportion of macroporosity in the total porosity.
A threshold was applied on the gray scale of the photomicrograph to turn it into a binary image showing
solely themacropores (Figure5). Themacropores’ proportion in thebinary image, combinedwith theprevious

Figure 5. Determination of the proportion macroporosity/microporosity in the sample from the gray scale analysis
of the SEM photomicrograph. A threshold is applied on the initial photomicrograph (left), to create a binary image
representing solely the macropores (right). The porosity of the macropores is calculated from the number of black
pixels over the total number of pixels of the image, evaluated at 10.35%. With a total porosity of 23% measured
experimentally, the proportion of macroporosity over microporsity is therefore around 45/55.
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Figure 6. Intrinsic permeability of the Lavoux sample as a function
of differential pressure. The measurements were obtained by
Darcy’s law under water-saturated conditions. The results show
no dependence to the effective pressure.

experimental porosity, gives a contribution
to the total porosity of 45% and 55% for
the macroporosity and the microporosity,
respectively. The permeability wasmeasured
to be around 10 mD, under water-saturated
conditions, and shows no dependence to dif-
ferential pressure (Figure 6).

4. Results
4.1. Pressure Dependence of the

Sample’s Elastic Properties

Ultrasonic measurements and the axial oscil-
lations have been performed at differen-
tial pressures from 2.5 MPa to 20 MPa, to
check the pressure dependence of the elastic
moduli. The traveltimes measured for the
Lavoux limestone are reported in Table 1,
along with the deduced P wave and S wave

velocities and high-frequency moduli KHF and GHF (equation (17)). KHF and GHF for dry-, water-, and glycerin-
saturated conditions as a function of differential pressure are represented in Figure 7. No variation in pres-
sure is to be noted. KHF is constant at about 14.5 GPa, 21.5 GPa, and 25.5 GPa, respectively, for the dry-, water-,
and glycerin-saturated conditions. We can see that the fluid nature strongly affects the high-frequency bulk
moduli. On the other hand, GHF remains constant at 9.5 GPa, with no sensitivity to the fluid nature.

For the axial oscillations at different pressures, the Young’smodulus (E) andPoisson’s ratio (𝜈) resultsmeasured
at 5 × 10−2 Hz, 10−1 Hz, and 5 Hz are presented in Figure 8. Again, no dependence to differential pressure
is observed, either for Young’s modulus (Figure 8a) or Poisson’s ratio (Figure 8b). Under dry conditions, no
dependence to f is observed. Under glycerin-saturated conditions, nearly no dependence to f is observed on
E (Figure 8a), but a large one is observed on 𝜈 (Figure 8b).

We can conclude that, similarly to the permeability, the elastic properties of the Lavoux limestone seem to
not depend on the differential pressure. Therefore, in the following, all the results will be presented solely for
a differential pressure of 2.5 MPa and can be considered as independent of differential pressure.

4.2. Axial Stress Oscillations Results at Pdiff = 2.5 MPa

The dispersion and attenuation results from the axial and the hydrostatic oscillations under dry-, water-, and
glycerin-saturated conditions are presented in Figures 9–11. The results are represented as a function of an

Table 1. Ultrasonic Measurements (1 MHz) on the Lavoux Limestone Under Dry-, Water-, and Glycerin-Saturated
Conditionsa

Saturating Fluid Pdiff (MPa) tP (μs) tS (μs) VP (m s−1) VS (m s−1) KHF (GPa) GHF (GPa)

2.5 23.0 38.5 3520 2103 14.0 9.6

Dry 5 22.4 38.0 3614 2131 15.4 9.8

𝜌sample = 2160 kg m−3 10 23.0 38.0 3520 2131 13.7 9.8

15 22.4 38.0 3614 2131 15.1 9.8

20 22.5 38.0 3598 2131 14.9 9.8

Water 2.5 21.4 40.8 3783 1984 21.7 9.4

𝜌sample = 2391 kg m−3 10 21.5 40.6 3766 1994 21.2 9.5

2.5 20.6 42.3 3930 1914 25.9 9.0

Glycerin 5 20.4 42.2 3969 1918 26.5 9.0

𝜌sample = 2448 kg m−3 10 20.8 42.0 3892 1928 25.0 9.1

15 20.7 41.6 3911 1946 25.1 9.3

20 20.6 41.4 3930 1956 25.3 9.4
aThe traveltimes tP and tS were corrected from the traveltimes in the end platens. The length of the sample

is 80 mm. KHF and GHF are deduced from equation (17).
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Figure 7. Ultrasonic results (1 MHz) at different differential pressures (Pdiff =Pc − pf ) for (left) the bulk modulus (KHF)
and (right) the shear modulus (GHF), for dry-, water-, and glycerin-saturated conditions.

apparent frequency f ∗ = f .(𝜂fluid∕𝜂water) to take into account the effect of the fluid’s viscosity, with water as the
reference fluid (𝜂water=10−3 Pa s). For dry conditions, the viscosity of air is considered at about 𝜂air = 10−5 Pa s.
The Q−1 factor results are calculated from the Ellipse method and are systematically compared to Zener’s
viscoelastic model. The measurements are done with the valves of the drainage circuit open (Figure 1a), i.e.,
in drained boundary conditions, with a pore pressure of pf =2 MPa.

The Young’s modulus and Poisson’s ratio dispersion and attenuation results from the axial oscillations at
Pdiff =2.5 MPa are presented in Figure 9. The Young’s modulus (E) is constant around 22.5 GPa between
10−3 Hz and 102 Hz, with a good agreement between the dry, water, and glycerin saturations (Figure 9a). Then,
E increases slightly between 102 Hz and 103 Hz from 22.5 GPa to 24 GPa (Figure 9a). The factor Q−1

E results
are consistent with the dispersion data: no attenuation under 102 Hz, a small peak around Q−1

E = 0.025 at
3× 102 Hz, and nomore attenuation beyond 103 Hz (Figure 9b). Moreover, the results are in good agreement
with Zener’s model, using the parametersM0=22.5 GPa,M1=24 GPa, and fc=220 Hz (Figure 3).

Similarly to E, the Poisson’s ratio (𝜈) below 102 Hz shows no dispersion, but a slight disagreement subsists
between the dry- (𝜈 = 0.25) and the water- and glycerin-saturated results (𝜈 = 0.275) (Figure 9c). Then 𝜈

increases from 0.275 to 0.35 between 5× 101 Hz and 103 Hz (Figure 9c), in correlation with aQ−1
𝜈

peak of 0.08
at around 3×102 Hz (Figure 9d). For this case, Zener’s model seems to overpredict the attenuation. The Zener
peak is around 0.13 at 3 × 102 Hz, with the parametersM0=0.275 andM1=0.35. (Figure 9d).

Assuming isotropic conditions, thedispersion andattenuation results of thebulkmodulus and the shearmod-
ulus, deduced from E and 𝜈, are presented in Figure 10. The bulk modulus deduced from the axial oscillations
(Kax) shows a large dispersion from 16 GPa to 26 GPa between f ∗ = 5 × 101 Hz and f ∗ = 103 Hz, visible under
glycerin-saturated conditions (Figure 10a). The corresponding attenuation peak reaches Q−1

Kax
=0.225 around

f ∗ =3×102 Hzwith a good fitwith Zener’smodel with the parametersM0=16 GPa andM1=26 GPa. The shear

Figure 8. Axial oscillations results at different differential pressures (Pdiff=Pc − pf ) for (a) Young’s modulus (E) and
(b) Poisson’s ratio (𝜈). The results for dry- and glycerin-saturated conditions are presented, for 0.05 Hz, 0.1 Hz, and 5 Hz.
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Figure 9. (a) Young’s modulus E, (b) Q−1
E , (c) Poisson’s ratio 𝜈, and (d) Q−1

𝜈
resulting from the axial oscillations at

Pdiff = 2.5 MPa, under dry-, water-, and glycerin-saturated conditions. The frequency is scaled with the viscosity of the
saturating fluid 𝜂fluid. The factors Q

−1
E and Q−1

𝜈
are compared to Zener’s model. The range for the drained/undrained

cutoff frequency f∗1 is represented by the gray area.

modulus Gax shows no dispersion at all, with a constant value around Gax = 9 GPa (Figure 10c). Consistently,
the related attenuation Q−1

Gax
is nil throughout the whole frequency range (Figure 10d).

4.3. Hydrostatic Oscillations Results at Pdiff = 2.5 MPa

The results of the purely hydrostatic oscillations at Pdiff = 2.5 MPa are presented in Figure 11. The measured
bulkmodulus Khyd shows a dispersion from16GPa to 25GPa between f ∗ =2×101 Hz and f ∗ =4×102Hz, visible
under glycerin-saturated conditions (Figure 11a). The related factorQ−1

Khyd
has apeak at aboutQ−1

Khyd
=0.22 around

f ∗ =2 × 102 Hz and is nil elsewhere (Figure 11b). The attenuation seems to compare well with Zener’s model
with the parameters used previously for Kax (M0=16 GPa,M1=26 GPa) (Figure 11b).

4.4. Uncertainty Analysis

For the hydrostatic oscillations, the uncertainty on the bulk modulus measurements (𝛿K) depends on the
confining pressure uncertainty (𝛿P) and the uncertainty of the strain measurements (𝛿𝜀). From equation (3),
the relative uncertainty on K is given by:

𝛿Khyd
Khyd

= 𝛿P
P

+ 𝛿𝜀

𝜀
. (18)

The pressure sensor of the confining cell is capable to measure pressure with a resolution of 𝛿P = 0.001 MPa.
The amplitude of the confining pressure oscillations being around 0.2 MPa, the relative uncertainty on pres-
sure becomes 𝛿P∕P = 0.005, which can be considered negligible. Therefore, the uncertainty on the bulk
modulus highly depends on the quality of the strain measurement. The higher the number of strain gauges,
the lower this uncertainty becomes. A total of n = 8 strain gauges was used (four axial and four radial). When
proceedingwith the oscillations, the amplitude of the strain gaugesmay vary slightly fromone another. These
variations could be related to the quality of the contact between the strain gauge and the sample or to small
heterogeneities in the sample despite being considered perfectly homogeneous. Although the orientation
of the strain gauges relatively to the vertical and horizontal axis can be determinant for axial oscillations, it is
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Figure 10. (a) Bulk modulus Kax, (b) Q
−1
Kax

, (c) shear modulus Gax, and (d) Q−1
Gax

deduced from the results of the axial
oscillations (Figure 9). Kax and Gax are deduced from E and 𝜈 (equation (5)) under the assumption of an isotropic
medium. Q−1

Kax
and Q−1

Gax
, deduced from equations (10) and (11), are compared to Zener’s model. The frequency is

scaled with the viscosity of the saturating fluid 𝜂fluid. The range for the drained/undrained cutoff frequency f∗1 is
represented by the gray area.

irrelevant for hydrostatic oscillations on an isotropic medium. For the hydrostatic oscillations at f = 0.004 Hz
and Pdiff=2.5 MPa, the average of the eight measured strain was 𝜀=2.22 μm/m, with a standard deviation of
std=0.266μm/m. The error on the average strain (𝛿𝜀) canbe calculated from 𝛿𝜀=std∕

√
n=0.094μm/m. From

equation (18), we deduce the relative uncertainty on Khyd for the hydrostatic oscillations: 𝛿Khyd∕Khyd = 4.2%.
This corresponds to an error of about ± 0.3 GPa for Khyd.

The similar approach can be done to calculate the uncertainties for the axial oscillations results. From
equation (4), we can deduce the following:

𝛿E
E

=
𝛿𝜀alu

𝜀alu
+

𝛿𝜀ax

𝜀ax
and

𝛿𝜈

𝜈
=

𝛿𝜀rad

𝜀rad
+

𝛿𝜀ax

𝜀ax
. (19)

With two strain gaugesmeasuring 𝜀alu, four measuring 𝜀ax, and four measuring 𝜀rad, the relative uncertainties
on E and 𝜈 were found to be 𝛿E∕E=12% and 𝛿𝜈∕𝜈=8%. These uncertainties correspond to errors of± 1.3 GPa
for E and ± 0.01 for 𝜈. We can then use equation (5) to propagate the error to Kax and Gax. This gives an error
of ± 1.5 GPa for Kax and ± 0.6 GPa for Gax.

4.5. Comparison of the Three Methods Used to Infer Q−1

Q−1 factors of all the elastic properties deduced from the axial oscillations at Pdiff = 2.5 MPa under glycerin-
saturated conditions were also calculated using the Sines and the FFT method. Those are compared to the
previously presented results from the Ellipse method (Figure 12). For E, Kax, and Gax (respectively Figures 12a,
12c, and 12d) the three methods compare well over the experimental frequency range f ∈ [2 × 10−2 ; 5] Hz.
In case of 𝜈 (Figure 12b), the FFT and Ellipse methods are consistent with each other but not with the Sines
method. The results obtainedwith the Sinesmethod for 𝜈 are unstable andgive erratic resultswith data points
off the chart (Figure 12b). The Sinesmethod shows also some slight inconsistencieswith the othermethods at
10−2 Hz for E and Kax (Figures 12a and 12c). We can therefore conclude that only the Ellipse and FFT methods
are reliable to calculate Q−1 in our case.
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Figure 11. (a) Bulk modulus Khyd and (b) Q−1
Khyd

resulting from the hydrostatic oscillations at Pdiff=2.5MPa, under dry-,

water-, and glycerin-saturated conditions. The frequency is scaled with the viscosity of the saturating fluid 𝜂fluid.
The factor Q−1

Khyd
is compared with Zener’s model. The range for the drained/undrained cutoff frequency f∗1 is

represented by the gray area.

5. Discussion

5.1. The Drained and Undrained Regimes

With respect to the cutoff frequencies (equation (1)), and especially the drained/undrained cutoff frequency,

a viscosity contrast for the fluid results in a shift in frequency of the transition. The results presented with the

three different saturating fluids show a good continuity in scaled frequency (Figure 13). A slight discrepancy

exists between the dry- and water-saturated conditions, the dry bulk modulus being about 2.5 GPa lower

than the water-saturated bulk modulus (Figure 13a). This discrepancy is seen in both the hydrostatic and

axial oscillations and seems larger than the uncertainties of themeasurements (Figure 13a). It is possible that

the sample was not fully dry during the measurements, with the presence of moisture that would induce

a weakening effect. Although this effect is known to be important in sandstones and rather negligible in

limestones [Clark et al., 1980; Pimienta et al., 2014], measurements on a Leuders limestone from Clark et al.

[1980] still show an increase of about 5 GPa for K and 0.04 for 𝜈 when going from a relative humidity of 35%

(ambient room) to a vacuum state.

The drained/undrained cutoff frequency (f1) was experimentally measured around 2 × 10−1 Hz in glycerin-

saturated conditions, which is a frequency that is equivalent to 2 × 102 Hz in water-saturated conditions.

Therefore, when studying dispersion and attenuation phenomenon related to diffusion processes at differ-

ent scales, the experimental frequencies can be scaled by the dynamic viscosity of the fluid 𝜂 [Pimienta et al.,

2015a, 2015b, 2016a; Spencer and Shine, 2016]. This has the major advantage to increase the apparent fre-

quency range reachable by the experimental setup up, in our case for the axial oscillations from 10−2−101 Hz

to 10−4 − 104 Hz, and therefore characterize the dispersion of the sample over amuch larger frequency band.
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Figure 12. Comparison of the three methods used to calculate Q−1: Sines, FFT, and Ellipse methods. Example for the
axial oscillations at Pdiff = 2.5 MPa under glycerin-saturated conditions, for (a) Young’s modulus, (b) Poisson’s ratio,
(c) bulk modulus, and (d) the shear modulus.

5.1.1. Elastic Moduli

The common elastic modulus we can extract from the hydrostatic and axial oscillations is the bulk modulus,
respectively, Khyd and Kax (deduced from E and 𝜈). The comparison between the dispersion and Q−1 of both
moduli at Pdiff =2.5 MPa is presented in Figure 13. The hydrostatic and axial results compare well over their
overlapping frequencies, both for the dispersion (Figure 13a) and for Q−1 (Figure 13b). This tends to validate
our hypothesis of an isotropic medium and shows a good consistency between both stress-strain methods
for the drained and undrained regimes.

Using the measured permeability value (i.e., 𝜅 = 10−14 m2) and the dry bulk modulus (i.e., Kd=15 GPa) and
assuming a diffusion length L in the sample between 40mmand 80mm, the expected cutoff frequency f ∗1 for
the drained/undrained transition (equation (1)) is between 102 Hz and 4×102 Hz. All the previous dispersions
and Q−1 results are in agreement with this frequency transition (Figures 9–11, and 13). The maximum Q−1

peaks for E, 𝜈, Kax, and Khyd, and the dispersion slopes of the elastic moduli are systematically in the expected
range of f ∗1 (Figures 9–11, and 13).

The undrained elastic properties of a rock are generally deduced from the drained (or dry) properties using
Biot-Gassmann relations [Gassmann, 1951]:

Ku = Kd +
Kf
(
1 − Kd

KS

)2

Φ +
((

1 − Kd
KS

)
− Φ

)
Kf
KS

and Gu = Gd, (20)

where Kd and Gd are, respectively, the drained bulk modulus and shear modulus, Φ the porosity, Kf the
saturating fluid’s bulk modulus, KS the skeleton bulk modulus, and Ku and Gu, respectively, the undrained
bulk modulus and shear modulus. The Biot-Gassmann predictions for the bulk modulus with water- and
glycerin-saturated conditions are presented in Figure 13a, using the parameters Kd = 15 GPa, Φ = 23%,
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Figure 13. (a) Comparison of the hydrostatic, the axial, and the ultrasonic measurements for the bulk modulus and
(b) the bulk modulus Q−1 factor deduced from the hydrostatic and axial oscillations for dry-, water-, and glycerin-
saturated conditions at Pdiff = 2.5 MPa. Biot-Gassmann’s predictions for water and glycerin are represented for the
undrained regime in addition to the ultrasonic results (Figure 13a). The frequency is scaled with the viscosities
of the saturating fluids.

Kf−water=2.21 GPa, Kf−glycerin=4.36 GPa [Bridgman, 1931], and KS=77 GPa, which is the bulkmodulus of calcite
[Mavko et al., 2009]. The predictions give an undrained bulkmodulus with water of Ku−wat=20.8 GPa andwith
glycerin Ku−gly=25.8 GPa. These results are consistent with the bulk modulus results independently obtained
from the stress-strain oscillations under glycerin-saturated conditions (Figure 13a). Moreover, the shear mod-
ulus Gax deduced from the axial oscillations is constant over the frequency range of the drained/undrained
transition (Figure 10c), which is again consistent with Biot-Gassmann’s theory.
5.1.2. Q−1 Factors

The Zener viscoelastic model (Figure 3), used to calculate Q−1 from the modulus’ dispersion, gives accurate
results for the Young’s modulus (Figure 9b), the bulk modulus (Figures 10b and 11b), and the shear modulus
(Figure 10d). However, themodel seems tooverpredictQ−1 for the Poisson’s ratio (Figure 9d),with apeak value
of 0.13 instead of 0.09. These results, added to similar observations in Fontainebleau sandstones [Pimienta
et al., 2015a], show the general good applicability of Zener’s model to the drained/undrained transition.

In an isotropicmedium, we previously showed that the bulkmodulus and the shearmodulus can be deduced
from axial solicitations and that the bulkmodulus gives consistent results with the hydrostaticmeasurements
in the drained and undrained regimes. Therefore, the axial oscillations allow to measure all the moduli if we
measure the axial and radial strains. The Young’s modulus Q−1

E and Poisson’s ratio Q−1
𝜈

are directly measured
from the phase shifts between the output signals 𝜎ax, 𝜀ax and 𝜀rad (equation (9)). We presented a method
to deduce the bulk modulus Q−1

Kax
and the shear modulus Q−1

Gax
from different combinations of the previous

output signals (equation (11)). It is therefore of great interest to check the consistency of these Q−1 values
with existing equations that give relationships betweenQ−1 of all the different moduli. Our aim is to calculate
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Figure 14. Comparison between Q−1
Kax

and Q−1
Gax

obtained experimentally (equation (11)) with the FFT and the Ellipse
methods for the drained/undrained transition under glycerin-saturated conditions at Pdiff = 2.5 MPa (Figures 12c and
12d) and the same factors deduced from Q−1

E , Q−1
𝜈
, and 𝜈 (equations (22) and (23)).

Q−1
K and Q−1

G from the measured Q−1
E and Q−1

𝜈
. Such relationships have been given byWinkler and Nur [1979]

but with the hypothesis of a constant Poisson’s ratio 𝜈. Pimienta et al. [2016c] introduced a dispersive 𝜈 into
Winkler and Nur’s [1979] equations and obtained the following relationship between 𝜈, Q−1

𝜈
, Q−1

E , and Q−1
G :

Q−1
𝜈

[
𝜈 + Q−1

G

(
(1 + 𝜈)Q−1

E − Q−1
G

)]
= (1 + 𝜈)Q−1

E − (1 + 𝜈)Q−1
G . (21)

For our purpose, the previous equation can be turned into a second-order polynomial on Q−1
G :

− Q−1
𝜈

[
Q−1
G

]2 + (1 + 𝜈)
(
1 + Q−1

𝜈
Q−1
E

) [
Q−1
G

]
+
(
𝜈Q−1

𝜈
− (1 + 𝜈)Q−1

E

)
= 0, (22)

which admits two solutions that can be numerically calculated. The order of magnitudes of these two solu-
tions is around Q−1

G ∼0.01 and Q−1
G ∼ 10. The second solution being unrealistic as it would give a phase shift

between the stress and the strain of nearly𝜋∕2,we keeponly the first one.We then calculate thebulkmodulus
attenuation Q−1

K with the relationship fromWinkler and Nur [1979]:

Q−1
K = 3

1 − 2𝜈
Q−1
E − 2 (1 + 𝜈)

1 − 2𝜈
Q−1
G . (23)

For the axial oscillations, in the frequency range of the drained/undrained transition under glycerin-saturated
conditions at Pdiff = 2.5 MPa, the results for Q−1

K and Q−1
G deduced from equations (22) and (23) are reported

in Figure 14, along with Q−1
Kax

and Q−1
Gax

obtained experimentally from the output signals with the FFT and the
Ellipse method (equation (11) and Figures 12c and 12d). The results show a general good match between
the two methods to calculate Q−1

K and Q−1
G . Q−1

K as deduced from Q−1
EEllipse

and Q−1
𝜈Ellipse

through equations (22)
and (23), seems to be a bit lower than the direct experimental result, with a value of 0.15 instead of 0.22 at
f =0.3Hz (Figure 14). This error is solely related to the small difference that wasmeasured betweenQ−1

𝜈Ellipse
and

Q−1
𝜈FFT

(Figure 12b). Note thatQ−1
EEllipse

=Q−1
EFFT

(Figure 12a).We can therefore conclude that, in an isotropicmedium
and for thedrained/undrained transition, the axial oscillations allow tomeasure allmoduli and their respective
Q−1 factors, directly calculated either from 𝜎ax, 𝜀ax, and 𝜀rad (equation (11)) or from the relationships relating
𝜈, Q−1

E , Q−1
𝜈
, Q−1

K , and Q−1
G (equations (22) and (23)).

5.2. Absence of Dispersion at Higher Frequencies

Once the drained and undrained properties of the rock are clearly identified, one can investigate the possible
existence of other dispersive transitions at higher frequencies. This concerns a possible unrelaxed (saturated
isolated) regime.
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Figure 15. Model of the Lavoux, composed of spherical microporous oolites surrounded by macropores. The global
diffusion within the REV and the local diffusion in the oolites are represented. The oolites’ porosity (𝜙oolite) is deduced
from the experimental total porosity (23%) and from the ratio macroporosity/microporosity (45∕55), calculated from the
photomicrograph’s analysis (Figure 5). A 1-D pipe model (equation (24)) is used to calculate the local permeability of the
oolites (𝜅oolite). The obtained results are 𝜙oolite = 14.2% and 𝜅oolite = 1.6 × 10−15 m2. The calculated local permeability
of the micropores (𝜅oolite) is smaller than the sample’s permeability measured experimentally (𝜅 = 10−14 m2).

5.2.1. No Squirt Flow—Absence of Cracks

Undrained/unrelaxed transitions can exist when local flows occur within the REV in the undrained regime,
for instance, squirt flows from compliant cracks to rounded pores [Mavko and Jizba, 1991]. The only high-
frequency properties available to us in this study are the ultrasonic results (1MHz) reported Table 1. The high-
frequency bulk modulus KHF for dry-, water-, and glycerin-saturated conditions are reported in Figure 13a.
In dry conditions, the ultrasonic result corresponds clearly to the drained properties. For water- and glycerin-
saturated conditions, the ultrasonic results show a good correspondence with the undrained properties or
the Biot-Gassmann’s predictions (Figure 13a). We can conclude that no distinct unrelaxed regime is expected
beyond the drained/undrained transition for this dual-porosity limestone. In the Lavoux limestone, the elastic
moduli are independent of the differential pressure (Figures 7 and 8), suggesting the absence of cracks. Con-
sistently, no squirt flow is thus possible between cracks or from cracks to rounded pores. This is corroborated
by the sample’s permeability that is also independent of differential pressure (Figure 6) [Gueguen et al., 2011].
5.2.2. No Local Diffusion Between the Microporosity and the Macroporosity

In a bimodal porosity medium, question rises whether there could be a local diffusion between the macro-
porosity and the microporosity, delayed relative to the global diffusion, due to a lower permeability of the
micropores contained in the oolites. The macroporosity of the Lavoux limestone being connected indepen-
dently of themicroporosity, we canmodel this grainstone as a pile of sphericalmicroporous oolites, of diame-
ters 100μmto500μm, solely surroundedbymacropores (Figure 15). TheREVof the Lavouxwouldbe a volume
containing a few oolites separated by macropores, as no heterogeneity larger than the oolites seems to exist
(Figure 4). At f =1 MHz in saturated conditions, the ultrasonic velocities of both the P and Swaves are greater
than 1914m s−1 (Table 1) corresponding to aminimumwavelength of approximately 2mm. This wavelength
represents a square area similar to half the area of the photomicrograph presented in Figure 4, containing
at least a dozen of oolites. Thus, we can safely assume that, during the propagation of the ultrasonic P and
S waves, the volume of the oscillating stress field is much larger than the limestone’s REV. In the undrained
regime, the pore pressure is isobaric in the REV [Gassmann, 1951], meaning that the fluid’s pressure in the
macropores (pf−Macro) is equal to the fluid’s pressure in the oolites’ micropores (pf−micro) (Figure 15).

Similar to the drained/undrained transition characterized by the cutoff frequency f ∗1 that concerns the global
fluid flow, a local cutoff frequency f ∗1 oolite

could characterize the fluid flow occurring locally from the oolites to
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themacropores. The permeability of the oolites 𝜅oolite should be lower than the total permeability of the sam-
ple because of a much smaller pore entry radius compared to the macropores (Figure 4). A 1-D permeability
model from Gueguen and Dienes [1989] can be used to have an estimation of 𝜅oolite. The oolite’s microporous
network is modeled as a set of pipes of variable radii r and lengths 𝜆, isotropically distributed (Figure 15).
If we assume that all the pipes are connected, with respect to the definition of percolation theory, Gueguen
and Dienes [1989] showed that the permeability of the medium can be given by:

𝜅oolite =
r̄2

32
Φoolite. (24)

The porosity of the oolite Φoolite is calculated from the proportion of microporosity in the total porosity,
which was deduced from the SEM image analysis at about 55% (Figure 5), and the total porosity measured
experimentally at about 23%. If we consider all the microporosity to be in the oolites and the total volume
Vtot=VMacropores + Voolites, we can deduceΦoolite=14.2%. The average radius r̄ is taken as the pore entry radius
of the micropores measured from the porosimetry measurements from Zinsmeister [2013], and corroborated
with the SEMphotomicrograph (Figure 4), at about r̄=0.6 μm. Therefore, equation (24) gives a permeability of
𝜅oolite=1.6×10−15 m2, which is smaller than the sample’s global permeability (𝜅 = 10−14 m2). Now if we apply
the drained/undrained cutoff frequency (equation (1)) to the oolite, with a diffusion length L of about 300μm
(Figure 15) and a drained bulk modulus Kd taken as 15 GPa, we obtain f ∗1 oolite

= 106 Hz in scaled frequency,
which is far above the cutoff frequency of the global diffusion (f ∗1=2 × 102 Hz). This frequency measures the
minimumtimescale that allows total diffusion in theoolite and therefore to equilibrate the inner porepressure
pf−micro and the surrounding pore pressure pf−Macro (Figure 15). Above f

∗
1 oolite

, no fluid exchange by diffusion
is possible between the oolites and the macropores.

The only measurement we have above f ∗1 oolite
is the ultrasonic measurement in glycerin-saturated conditions

(f ∗ =109 Hz). The bulkmodulus and shearmodulus KHF−gly andGHF−gly of the samplewere found to be equal to
their respective undrained values (Table 1 and Figures 10a and 10c). Therefore, no dispersion is visible around
f ∗1 oolite

, which suggests that there is no flow between the oolites and themacropores in the undrained regime
(f ∗ > f ∗1 ). This is consistent with the idea that the micropores and the macropores have similar aspect ratios
(𝜉 = 1), implying no pressure gradients to relax, and that the fluid is isobaric in the REV because the sample
is already in the undrained regime. If f ∗1 oolite

had been less than f ∗1 , one could imagine a “partially undrained”
regime, for a frequency between f ∗1 oolite

and f ∗1 , where the oolites are undrained while themacropores are still
drained. A local transition around f ∗1 oolite

could then be expected with dispersion and attenuation.

5.3. Effect of the Boundary Conditions—1-D DiffusionModel for the Drained and Undrained Regimes

The effect of the boundary conditions on the elastic properties has been studied, with two different config-
urations for the drainage system: (1) open (drained conditions) and (2) closed (undrained conditions for the
system sample + dead volumes) (Figure 1a). We recall that all the results presented previously were obtained
in the first configuration. Because the dead volumes are very large in that case (∼ 60 mL), the boundary con-
ditions can be assimilated to drained boundary conditions [Pimienta et al., 2016b]. Analogue measurements,
using axial and hydrostatic oscillations for a glycerin-saturated sample, have been performed in the closed
configuration, with dead volumes of 3.3 mL. The results for the bulk modulus at Pdiff = 2.5 MPa are reported
in Figure 16b, along with the previous results obtained with fully drained conditions (Figure 16a). With dead
volumes, the drained/undrained transition is visible around the same cutoff frequency as in the first case,
but the dispersion is smaller (Figure 16b). In the drained frequency range, the bulk modulus measured in
the second case is higher than in fully drained conditions. Its value is 22 GPa (Figure 16b) instead of 16 GPa
(Figure 16a). In the undrained frequency range, the bulkmodulus of the sample is independent of the bound-
ary conditions, with a value of 26 GPa in both configurations (Figures 16a and 16b), which is consistent with
the definition of the undrained regime.

In the second configuration, the pore pressure in the drainage circuit (pf
∗) was monitored during the stress

oscillations. In order to have a nonzero measurement, pf
∗ has to be measured in a closed volume to allow

for pressure buildup when fluid drains out of the sample. The volumetric strain (𝜀vol), induced by hydrostatic
stress oscillations (𝜎ii∕3), generates a flux of fluid going in and out of the sample, into the dead volumes. This
volumetric strain is defined as follows:

𝜀vol =
1
K

(𝜎ii
3

− 𝛼Δpf
)
, (25)
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Figure 16. Effect of the two types of experimental boundary conditions on the measured bulk modulus and comparison with the 1-D diffusion model:
(a) drained conditions and (b) system sample + dead volumes undrained. The experimental results are from the hydrostatic and axial oscillations in glycerin-
saturated conditions at Pdiff = 2.5 MPa. The model is calculated from local strains at different positions (0.5 L, 0.25 L, and 0.1 L) and from global strain.
The experimental results are from strains measured at z = 0.5 L. (c) Measurements of the ratio pore pressure over hydrostatic stress (3p∗

f
∕𝜎ii) in the second

type of boundary conditions are compared to the 1-D model, at the limit z = 0. For the hydrostatic oscillations 𝜎ii∕3 = ΔPc and for the axial oscillations
𝜎ii∕3 = 𝜎ax∕3.

where 𝛼 is the Biot coefficient andΔpf is the oscillation amplitude of the pore pressure in themedium. Experi-
mentally, whenweapply the hydrostatic oscillations on the sample,wehave𝜎ii∕3=ΔPc. This pressure induces
the volumetric strain 𝜀vol. On the other hand, whenwe apply the axial oscillations in an isotropicmedium, the
equivalent hydrostatic stress to obtain the same volumetric strain 𝜀vol is 𝜎ii∕3=𝜎ax∕3 (equation (25)). Here we
assume that the stress 𝜎 is positive in compression and represents the amplitude of oscillation and that the
radial stress is constant during the axial stress oscillations (𝜎rad=0). For both stress oscillations at Pdiff=2.5MPa
on glycerin-saturated sample, the ratio between the amplitude of the oscillating fluid pressure Δpf ∗ and the
amplitude of the equivalent hydrostatic stress oscillation 𝜎ii∕3 is equal to 3Δpf ∗∕𝜎ii . This ratio is reported in
Figure 16c as a function of frequency. For both hydrostatic and axial oscillations, the ratio tends to zero as the
frequency crosses the drained/undrained transition range ([5 × 10−2; 1] Hz). In the drained frequency range
(f <5×10−2 Hz), the ratiomeasuredwith hydrostaticmeasurements is slightly higher thanwith the axial oscil-
lation, respectively, 0.55 and 0.41 (Figure 16c). This ratio was defined as the “pseudo-Skempton” coefficient
B∗ =Δpf ∗∕ΔPc by Pimienta et al. [2015a] in the case of hydrostatic oscillations or the “pseudo-consolidation”
parameter 𝛾∗ =Δpf ∗∕𝜎ax in case of axial oscillations in Pimienta et al. [2015b]. This hydraulic parameter cannot
be considered as the real Skempton coefficient (B) of the sample, because B is solely defined for an undrained
REV, and pf

∗ does not measure the pore pressure pf inside the sample, unless the sample is fully drained.

A 1-D diffusion model has been developed by Pimienta et al. [2016b] to take into account these effects of the
boundary conditions and has been compared to the previous experimental results (Figure 16). The principle
of the model is to find the steady state solution of the diffusion equation for the pore pressure pf , when the
sample undergoes hydrostatic pressure oscillations Pc. Because the lateral surface of the sample is jacketed
and thedrainage systemacts on the top andbottom faces (Figure 1), it was proposedby Pimientaetal. [2016b]
to solve only the 1-Ddiffusion along the vertical axis (z) of the sample. For the sakeof simplicity,pf =pf (z, t)−p̄f
and Pc = Pc(t) − P̄c, where p̄f and P̄c are the mean pressures during the oscillations, such that Pdiff = P̄c − p̄f .
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The 1-D diffusion equation writes as follows:

𝜕pf
𝜕t

= 𝜅

𝜂Ss

𝜕2pf
𝜕z2

+ B
𝜕Pc
𝜕t

, (26)

where Ss is the storage coefficient of the sample, B the Skempton coefficient, and 𝜅 the permeability. Accord-
ing to theporoelastic relationships providedby Kumpel [1991], B=(1∕Kd−1∕Ku)∕(1∕Kd−1∕KS) and Ss=𝛼∕BKd .
For themodel, Ku is deduced from Biot-Gassmann’s relationship (equation (20)) to limit the number of adjust-
ment parameters. The applied stress Pc(t) is supposed to be of sinusoidal form such that Pc(t)=ΔPcei𝜔t . For a
sample of length L, Pimienta et al. [2016b] give the steady state solution of equation (26) for drained boundary
conditions (pf (0, t)=pf (L, t) = 0):

pf (z, t) = BΔPcei𝜔t
[
1 − sinh (a (L − z)) + sinh (az)

sinh (aL)

]
, (27)

with a = (1 + i)
√
𝜔𝜂Ss∕2𝜅. With symmetric dead volumes on top and bottom of the sample, the solution

becomes [Pimienta et al., 2016b]:

pf (z, t) = BΔPcei𝜔t
⎡⎢⎢⎢⎣
1 −

cosh
(
a
(

L
2
− z

))
b. sinh

(
a L
2

)
+ cosh

(
a L
2

)
⎤⎥⎥⎥⎦
, (28)

with b = (1 − i)A
(
Ss∕S

)√
2𝜅∕𝜔𝜂Ss, A being the cross-sectional area of the sample, and S = Vdead vol.∕Kf the

storage capacity of the dead volumes. Then, the local volumetric strain is obtained from 𝜀vol(z, t) = Kd
−1(

Pc(t) − 𝛼pf (z, t)
)
, which is a local result. A global volumetric strain can be calculated from 𝜀̄vol(t) =

1
L
∫ L
0 𝜀vol(z, t)dz and can be used to calculate a global bulk modulus. For local or global strain, the bulk modu-

lus is deduced from Kmodel = − ||Pc|| ∕ ||𝜀̄vol||. Thanks to themodel, the ratio fluid pressure over hydrostatic stress
(3pf∕𝜎ii) could be calculated along the z axis of sample, but for the comparison with the fluid’s pressure mea-
sured in the dead volumes (pf

∗), the ratio is evaluated for z = 0, i.e., (3pf ∗∕𝜎ii)model = ||pf (0, t)|| ∕ ||Pc(t)||. Here
we assume that the pore pressure at the boundary is the fluid pressure in the dead volume.

The model’s predictions in both configurations for a glycerin-saturated sample are presented in Figure 16.
The model has been calculated for local strains at three different positions (0.5 L, 0.25 L, and 0.1 L) and for the
global strain. We recall that the experimental results are deduced from local strains measured at z = 0.5 L.
The parameters used for the model predictions were L = 80 mm, A = 𝜋(40)2 = 5027 mm2, Kd = 16 GPa,
KS=77 GPa, Kf = 4.36 GPa, 𝜂 = 1.083 Pa s, Φ= 24%, 𝜅 = 10−14 m2, and Vdead vol. = 3.3 mL. Concerning the bulk
modulus in the drained frequency range, the model predicts Kmodel = 24 GPa for the second configuration
(Figure 16b). This is slightly above the experimental result of 23 GPa (Figure 16b). The bulk modulus Kmodel

is 16 GPa in fully drained conditions (Figure 16a). In the undrained frequency range, the model predicts
Kmodel=26 GPa (Figure 16a), which by construction of the model corresponds to Biot-Gassmann’s prediction.
For the ratio 3pf

∗∕𝜎ii , themodel predicts a value of 0.41 in the drained frequency range, which corresponds to
the experimentalmeasurement donewith axial oscillations (Figure 16c). For thedrained/undrained transition,
the ratio (3pf ∗∕𝜎ii)model decreases down to 0 consistently with the axial experimental results (Figure 16c).

When comparing the model and the experimental results both deduced from local strain at z=0.5 L, we can
see a frequency shift of nearly 1 order of magnitude (Figures 16a and 16b). The predicted cutoff frequency is
around0.04Hz for themodel, and theexperimental value is 0.2Hz (Figures 16a and16b). Themodel calculated
from local strain at z=0.1 L seems to fit better the experimental results. However, no shift in frequency appears
for the ratio (3pf ∗∕𝜎ii) (Figure 16c). The position of the local strain mainly affects the measured cutoff fre-
quency of the transition: the closer to the boundary, the higher the cutoff frequency. In otherwords, when the
frequency of the stress oscillations increases, the REVs at the center of the sample become undrained before
the REVs close to the open boundaries. However, the amplitude of the dispersion is unchanged. Pimienta et al.
[2016b] compared themodel to experimental results on Fontainebleau sandstones and found that the cutoff
frequency of the bulk modulus was in their case consistent with the experimental results. However, in their
case, it was the ratio 3Δpf ∗∕𝜎ii that had a frequency shift of 1 order of magnitude compared to the experi-
mental results. Therefore, there seems to be a systematic frequency shift between the bulk modulus and the
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ratio 3Δpf ∗∕𝜎ii predicted by the model. This could be due to the limitation to a 1-D diffusion. Experimentally,
radial diffusionmay occur near the end platens because of the sample’s cross section beingmuch larger than
the exit holes for the fluid.

6. Conclusion

The elasticmoduli (E, 𝜈, K , andG) dispersion and their associatedQ−1 factors have beenmeasured on a Lavoux
limestone, using stress-strain oscillations and ultrasonic measurements in a triaxial cell. The sample wasmea-
sured under dry-, water-, and glycerin-saturated conditions, which enabled to extend the apparent frequency
range of our measurements. Two types of stress oscillations were performed: axial and hydrostatic.

The bulk modulus obtained from both the axial and hydrostatic oscillations compared well over their mutual
frequency range, confirming the consistency of both methods when applied on an isotropic material in the
drained and undrained regimes. Therefore, the axial oscillations enable to calculate all the moduli and Q−1

factors. The formalized relationships between the Q−1 factors [Winkler and Nur, 1979; Pimienta et al., 2016c]
are in agreement with the experimental results, with the condition of a dispersive Poisson’s ratio.

The drained/undrained transition has been successfully characterized, with a dispersive effect on all the elas-
tic moduli except for the shear modulus. The Q−1 factors were also measured and correlate well with the
measured dispersions. The dispersion on K and G is consistent with Biot-Gassmann’s theory, either in the
water-saturated sample or the glycerin-saturated sample. Experimentally, the boundary conditions around
the sample were either drained or undrained for the system sample + dead volumes. A 1-D diffusion model
was used to successfully take into account the effect of these boundary conditions on the measured drained
moduli.

No other dispersive transitions are detected above the drained/undrained cutoff frequency. We interpret this
as an absence of squirt flowdue to the absence of cracks. This is corroborated by the fact that the elastic prop-
erties and the permeability are independent of effective pressure. We conclude that both the intragranular
micropores and intergranular macropores are rounded pores (𝜉Macro = 𝜉micro = 1). The sample has a bimodal
porosity distribution. Local diffusion between the oolites’ micropores and the surrounding macropores is
however faster than the global diffusion. In other words, the cutoff frequency of the global flow (drained/
undrained transition) f ∗1 is lower than the theoretical cutoff frequency of the local flow in the oolites f ∗1 oolite

.

The drained/undrained transition is measurable in the laboratory. Its critical frequency concerns a global dif-
fusion process on a small length scale, which in our case is the size of the sample L. In the field, with seismic or
sonic logs, the global diffusionprocesswould occurwithin the scale of thewavelength,which is far larger than
L for frequencies under 105 Hz. Therefore, at the seismic and sonic frequencies, the mediumwould always be
in the undrained regime and be nondispersive. This would not be the case if an open, or drained, boundary
condition would exist, for example, a permeable fault.
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Abstract.8

Because measuring the frequency dependence of elastic properties in the lab-9

oratory is a technical challenge, not enough experimental data exist to test the10

existing theories. We report measurements of three fluid-saturated sandstones11

over a broad frequency band: Wilkenson, Berea and Bentheim sandstones. Those12

sandstones samples, chosen for their variable porosities and mineral content, are13

saturated by fluids of varying viscosities. The samples elastic response (Young’s14

modulus and Poisson’s ratio) and hydraulic response (fluid flow out of the sam-15

ple) are measured as a function of frequency. Large dispersion and attenuation16

phenomena are observed over the investigated frequency range.17

For all samples, the variation at lowest frequency relates to a large fluid flow18

directly measured out of the rock samples. These are the cause (i.e. fluid flow)19

and consequence (i.e. dispersion/attenuation) of the transition between drained20

and undrained regimes. Consistently, the characteristic frequency correlates with21

permeability for each sandstone. Beyond this frequency, a second variation is22

observed for all samples, but the rocks behave differently. For Berea sandstone,23

an onset of dispersion/attenuation is expected from both Young’s modulus and24

Poisson’s ratio at highest frequency. For Bentheim and Wilkenson sandstones,25

however, only Young’s modulus shows dispersion/attenuation phenomena. For26

Wilkenson sandstone, the viscoelastic-like dispersion/attenuation response is in-27

terpreted as squirt-flow. For Bentheim sandstone, the second effect does not fully28

follow such response, which could be due to a lower accuracy in the measured29

attenuation.30
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1. Introduction

When interpreting seismic data obtained at the field scale, accounting for the frequency de-31

pendence of the elastic wave velocities is a major challenge. Indeed, porous crustal rocks are32

known to be dispersive media. Their elastic properties are frequency dependent. In the upper33

crust, elastic dispersion and attenuation in fluid-saturated sedimentary rocks is expected to orig-34

inate from fluid flow at different scales [Biot, 1941; O’Connell and Budiansky, 1977; Cleary,35

1978; Mavko et al., 1979; Müller et al., 2010]. As detailed in Müller et al. [2010], various the-36

ories have been developed to describe those different mechanisms. In partially-saturated rocks,37

several mechanisms are expected to occur [e.g., Müller et al., 2010; Tisato et al., 2015; Chap-38

man et al., 2016; Papageorgiou et al., 2016; Amalokwu et al., 2017]. In fully saturated homoge-39

neous rocks, only two mechanisms [Gardner, 1962; O’Connell and Budiansky, 1977; Cleary,40

1978; Mavko et al., 1979] are expected to occur over the allowed frequency range [e.g., Adelinet41

et al., 2010; Sarout, 2012; Fortin et al., 2014]: the drained/undrained and undrained/unrelaxed42

(or ”squirt flow”) transitions, which separate the three distinct drained, undrained and unrelaxed43

elastic regimes. Yet, such conclusion relies on a very limited amount of data acquired on very44

few rock types.45

Despite the technical complexity of measuring such effects in the laboratory, different teams46

aimed at investigating the frequency dependence of elastic properties in rocks using different47

methodologies (see Subramaniyan et al. [2014], and references therein). Under the lead of48

Spencer [1981], Jackson and Paterson [1987] and Batzle et al. [2001], the forced oscillation49

method, allowing measurements over a wide frequency range and under varying confining pres-50

sure, was shown promising and faced important technical advances over the last decade [e.g.,51
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Adelinet et al., 2010; Tisato and Madonna, 2012; Madonna and Tisato, 2013; Fortin et al., 2014;52

Mikhaltsevitch et al., 2014; Szewczyk et al., 2016; Pimienta et al., 2016a; Spencer and Shine,53

2016]. The aim of most teams was in particular to investigate the squirt-flow phenomenon54

[O’Connell and Budiansky, 1977; Mavko et al., 1979], responsible for inducing a transition55

from the undrained to the unrelaxed regime. For this purpose, most teams applied experimental56

undrained condition on the rock sample in order to investigate effects beyond the undrained57

regime. Several authors [e.g., Mikhaltsevitch et al., 2014; Pimienta et al., 2015a; Subramaniyan58

et al., 2015; Mikhaltsevitch et al., 2015, 2016a; Pimienta et al., 2016b, a; Spencer and Shine,59

2016] interpreted the measured dispersion and attenuation in terms of squirt flow. Consistent60

with squirt-flow theory, the observed dispersion/attenuation effect depends both on frequency61

and fluid viscosity.62

Several experimental artifacts need however to be accounted for [e.g., Gardner, 1962; Dunn,63

1987; Pimienta et al., 2016c]. In the experimental methodology usually chosen [e.g., Bat-64

zle et al., 2006; Tisato and Madonna, 2012; Madonna and Tisato, 2013; Mikhaltsevitch et al.,65

2014], a valve is placed at the nearest of the rock sample to obtain experimental undrained66

conditions. However, a pure nil dead volume can seldom be achieved experimentally. As dis-67

cussed by Pimienta et al. [2016c], the existence of a small but non-zero dead volume implies68

that the sample will not be purely undrained. In that case, the measured effect could be the69

Biot-Gardner effect (i.e. drained/undrained transition). This observation has long-reaching70

consequences when interpreting laboratory data on dispersion and attenuation in fluid-saturated71

rocks. To counter this limit, a new methodology has been designed at ENS [Pimienta et al.,72

2015b] in which a large dead volume is maintained at both ends of the sample. Using this ap-73

proach, the drained/undrained transition has been evidenced [Pimienta et al., 2015b, a, 2016a].74
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When a second frequency effect is measured at higher frequencies, with no fluid flow out of75

the sample, it can be safely interpreted as the undrained/unrelaxed transition [Pimienta et al.,76

2015a, 2016b].77

Those two transitions were documented in two quartz-pure Fontainebleau sandstones of low78

porosity [e.g., Pimienta et al., 2016a]. As sandstones found in the nature are seldom clean79

(i.e. quartz pure) and can cover a broad range in porosity, this work reports measurement of80

dispersion and attenuation in three sandstone samples ranging in porosity and mineral content.81

First, the experimental method, and the samples mineralogy and microstructure are described.82

Then, the frequency dependent properties are reported for different effective confining pres-83

sures. Ultimately, comparing this dataset with previous ones, interpretations are suggested and84

discussed.85

2. Experimental set-up & rock samples

2.1. Experimental set-up

The experimental set-up used for the study is a oil confining cell equipped of a maneuverable86

axial piston, allowing to apply pure confining pressures up to Pc = 300 MPa and deviatoric87

stress up to σax = 1000 MPa [Fortin et al., 2007]. Two set-ups can be used: (i) Bulk modulus88

and its intrinsic dissipation are measured from pure hydrostatic oscillations by lifting the piston89

[Adelinet et al., 2010; David et al., 2013; Pimienta et al., 2015b; Borgomano et al., 2017]; (2)90

Young’s modulus and Poisson’s ratio (and their intrinsic dissipations) are measured from axial91

stress oscillations by shifting down the piston [Pimienta et al., 2015a, 2016b; Riviere et al.,92

2016; Borgomano et al., 2017]. The piston is equipped with a piezo-electric actuator PI piezo-93

ceramics able to apply small axial stress oscillations at frequencies from 1 mHz up to 100 Hz.94

All rock samples are equipped with three couples of radial and axial strain gages. The gages95
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are glued on the cylindrical surface, at the sample center. For this study, the confining pressure96

range chosen did not exceed Pc = 32 MPa that is the blocking pressure for the actuator. Axial97

stress was kept to a minimum in order to avoid an effect of pressure-induced anisotropy on98

the measurements [Pimienta et al., 2015a]. In the present contribution, Young’s modulus E99

and Poisson’s ratio ν as well as their related dissipation coefficients are investigated. E and100

ν are obtained from linear regression between axial stress and axial strain and between radial101

strain and axial strain, respectively. Their related dissipations, Q−1
E and Q−1

ν , are obtained from102

the tangent of the signal phase of those two end-members [e.g., Pimienta et al., 2015a, 2016b;103

Borgomano et al., 2017].104

The pore fluid set-up and procedure has been described in Pimienta et al. [2015b]. The fluid105

tubing is linked to a Quizix pump, able to deliver pressures in the range of [0; 10] MPa. The106

fluid line can be either opened (i.e. drained conditions) or closed (i.e. experimentally undrained107

conditions) thanks to two valves situated at both sides of the sample. The total dead volume, at108

both ends of the sample has been measured to be 6.6 mL. A pore pressure sensor is introduced109

in this dead volume. When changing confining pressures, the valves are opened to maintain110

a constant pore fluid pressure, and the sample is drained. When the measurement begins, the111

valves are closed and pore pressure variations are measured.112

All samples are measured under both dry and liquid-saturated conditions. However, the liquid113

chosen differs for the rock samples: (i) Bentheim sandstone is measured under glycerine satura-114

tion; (ii) Wilkenson sandstone is measured under water saturation; and (iii) Berea sandstone is115

measured under saturation of glycerine and a water-glycerine mixture. To ascertain the repeata-116

bility of the measurements under water-glycerine saturation and investigate boundary effects,117

the sample is measured twice, i.e. it is water-saturated and dried after the first measurement,118
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then saturated again by the water-glycerine mixture. For the second measurement, the sample is119

equipped differently. Two strain gages are glued at the sample center, and two strain gages are120

glued near the bottom end-platen to investigate boundary effects. More information is given in121

the discussion section.122

2.2. Rock samples

The three sandstones investigated are Wilkenson, Bentheim and Berea sandstone. Wilkenson123

sandstone is a low porosity (about 9 % porosity) sandstone, with a quartz content of about124

50 % [Duda and Renner, 2013]. Berea sandstone is a reference in the rock mechanics and125

rock physics community [e.g. Christensen and Wang, 1985; Sayers et al., 1990; Tao et al.,126

1995; Prasad and Manghnani, 1997; Pagoulatos and Sondergeld, 2004; Hart and Wang, 2010;127

Mavko and Vanorio, 2010; Pimienta et al., 2016c; Spencer and Shine, 2016]. Samples from128

this rock have porosities ranging from 17 % to 23 %, and a quartz content ranging from 75 %129

to 95 % [Pimienta et al., 2014]. Bentheim sandstone is a quartz-rich sandstone also used as a130

reference rock [e.g. Klein et al., 2001; Vajdova et al., 2004; Louis et al., 2005; Blöcher et al.,131

2014; Pimienta et al., 2017], which porosity is in the range of 20 % up to 25 %. All three rock132

samples are documented to be isotropic and homogeneous at the sample scale, thus allowing for133

a good applicability of the method tested in this contribution.134

As qualitatively shown from the SEM images (Fig. 1), the selected samples cover a large135

porosity range (i.e. from about 10 % up to 25 %) and a wide range in mineral content (i.e.136

from about 50 % up to 98 % in quartz). Fig. (1) shows the variability from one sample to137

the other: (i) Bentheim sandstone is almost quartz-pure, showing only traces of feldspars; (ii)138

Berea sandstone shows presence of feldspars, present as inclusions in a quartz-dominated rock139

matrix; and (iii) Wilkenson sandstone shows a large quantity of feldspars and alumino-silicate140
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minerals. From processing the various images acquired using ImageJ free software allows to141

infer the approximate mineral content (Table 1). From the thin section, Wilkenson, Berea and142

Bentheim sandstone samples have respectively (i) a quartz content of about 51 %, 82 % and143

98 %; and (ii) a porosity of about 10 %, 22 % and 25 %. A good consistency is obtained with144

literature data and with the three weighting method, leading to porosities of 9.1 %, 19.2 % and145

24.8 %, respectively.146

3. Results

3.1. Physical properties of the sandstones

3.1.1. Permeability and elastic properties147

For the three rock samples, permeability is measured as a function of Terzaghi effective pres-148

sure (Peff ). Moreover, the variation in volumetric strain of the sample is also recorded for char-149

acterization purposes. For comparison, we also report the permeability and volumetric strain on150

the two Fontainebleau sandstones investigated in Pimienta et al. [2015a]. The dependence of151

these two properties on Peff is reported in Fig. (3).152

The samples permeability (Fig. 3a) range over five orders of magnitude, from about 10−18m2
153

for Wilkenson sandstone up to 2 10−13m2 for Bentheim sandstone, and exhibit varying de-154

pendences to confining pressure. The less permeable Wilkenson sandstone has a permeabil-155

ity that decreases from about 5 10−18m2 down to 1 10−18m2 as Peff increases from 1 to 30156

MPa. The permeabilities of Berea sandstone (i.e. 2 10−14m2) and Bentheim (i.e. 5 10−13m2)157

sandstones are constant with pressure. The two Fontainebleau sandstones from Pimienta et al.158

[2015a] appear to be in between these two extremes, with permeabilities of about 5 10−15m2
159

and 1 10−14m2, and with a slight dependence on Peff .160
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Comparing the volumetric strain variations (Fig. 3b), all samples exhibit a transition from161

non-linear variations at low Peff up to linear variations at higher Peff . However, the charac-162

teristic pressure for the change of slope and the magnitude of variations differ from one rock163

to the other. Bentheim, Berea and Wilkenson sandstones have very similar magnitudes of vari-164

ations over the pressure range. Those variations have larger magnitudes than the ones of the165

Fontainebleau samples. It directly implies smaller stiffnesses (i.e. elastic moduli) than those166

of the Fontainebleau samples. In case of Wilkenson sandstone, as highlighted by the slope at167

higher pressures, the static bulk modulus reaches 30 GPa at Peff = 30 MPa.168

3.1.2. Elastic dispersion at 1 MPa effective pressure169

Owing to the range in permeability observed for the different sandstone samples, a specific170

fluid is chosen to saturate each of the rock samples. The reason is that the critical frequency171

for the drained/undrained transition (i.e. Biot-Gardner flow) varies as κ/η [e.g., Cleary, 1978].172

To account for the viscosity effect [e.g., Batzle et al., 2006; Spencer and Shine, 2016], we de-173

fine an apparent frequency f ∗ = f(η/η0), with η0 = 10−3 Pa.s [e.g., Pimienta et al., 2015b].174

The properties of the high permeability Bentheim sandstone are investigated under glycerine175

saturation (i.e. high viscosity fluid). The properties of the lower permeability Berea sandstone176

are investigated under saturation of both glycerine and a water-glycerine mixture. The proper-177

ties of the low permeability Wilkenson sandstone are investigated under water saturation (i.e.178

low viscosity) only. The samples properties are reported as a function of apparent frequency179

[e.g., Pimienta et al., 2015b] at lowest Terzaghi effective pressure of Peff = 1 MPa (Fig. 4).180

The elastic properties measured are (i) Young’s modulus E; (ii) Poisson’s ratio ν; (iii) Young’s181

modulus dissipation Q−1
E ; and (iv) Poisson’s ratio dissipation Q−1

ν . The hydraulic property, ad-182
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dressed here as ”fluid flow parameter”, refers to the frequency-dependent pseudo-consolidation183

parameter [e.g., Pimienta et al., 2015b, 2016a], an in-situ proxy of fluid flow out of the sample.184

For all sandstone samples, both Young’s modulus and Poisson’s ratio show an increase with185

increasing apparent frequency. Yet, different trends are observed for Young’s modulus and186

Poisson’s ratio. Young’s modulus of Wilkenson sandstone slightly increases but remains in the187

range of [16, 18] GPa for frequencies below f ∗ = 10 Hz (Fig. 4b). Beyond this frequency, a188

steep increase is observed, up to about E = 27 GPa at 100 Hz. In case of Berea sandstone, a189

slow increase from E = 20 GPa to E = 30 GPa is observed over the frequency range of mea-190

surement (i.e. f ∗ = [1; 3.104] Hz). For this rock, measurements under glycerine saturation are191

slightly shifted up as compared to the water-glycerine saturation. Young’s modulus of Bentheim192

sandstone shows the largest increase, from E = 31 GPa up to E = 52 GPa. Similar to Wilken-193

son sandstone, a slow increase is observed at frequencies below f ∗ = 2 − 5 kHz. Beyond this194

frequency, a steep increase is observed.195

For all rocks, Poisson’s ratio increases with the measuring frequency (Fig. 4b). The largest196

variation is observed for Wilkenson sandstone, i.e. from ν = 0.24 up to ν = 0.37 as frequency197

increases. Beyond f ∗ = 10 Hz, a plateau is reached and Poisson’s ratio remains constant. Berea198

sandstone Poisson’s ratio also shows a large increase, from ν = 0.25 up to ν = 0.34, at frequen-199

cies below f ∗ = 1 kHz. The values remain relatively constant in the range of f ∗ = [1; 10] kHz,200

and then decrease slightly beyond f ∗ = 20 kHz. For Bentheim sandstone, an increase up to201

ν = 0.35 is observed at f ∗ = 10 kHz. Beyond this frequency, ν remains constant.202

Overall, the variations in E and ν correlate with the measured dissipations (Figs. 4c & 4d).203

TheQ−1
ν peaks are consistent with the monotonous variations in ν. For Wilkenson and Bentheim204

sandstones, large increases in E and ν correlate with large peaks in Q−1
E and Q−1

ν . Consistently205
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also, the almost linear increase in Berea sandstone Young’s modulus correlates to a constant206

Q−1
E ∼ 0.05 over the frequency range. From the sample hydraulic response, a large frequency-207

dependent decrease in fluid flow is observed for all samples (Fig. 4e). This indicates that, for f ∗
208

beyond 10 Hz, 100 Hz and 1 kHz respectively, the Wilkenson, Berea and Bentheim sandstones209

are undrained.210

3.2. Role of effective confining pressure

Different frequency dependences of Young’s modulus and Poisson’s ratio are observed for the211

different sandstones. For Bentheim and Wilkenson sandstones, E and Q−1
E data are consistent212

with two distincts transitions in frequency. But, this not the case for ν and Q−1
ν for which213

only one transition seems to exist. Moreover, large variations in E and ν are observed over the214

frequency range. In the following, the pressure effect on these transitions is examined for the215

two rocks.216

3.2.1. Bentheim sandstone217

Elastic and hydraulic properties of the Bentheim sandstone sample under glycerine saturation218

are measured as a function of frequency for different effective pressures in the range of Peff =219

[1; 10] MPa (Fig. 5). For all values of Peff , an increase in E (Fig. 5a) and ν (Fig. 5b) is220

observed with increasing frequency. These increase in elastic properties correlate to Q−1
E (Fig.221

5c) and Q−1
ν (Fig. 5d) peaks. Two peaks are observed on Q−1

E at f1 = 3 Hz and f2 = 50 Hz, and222

one for Q−1
ν at f1 = 3 Hz. For all pressures, consistently with E, the first peak is of much lower223

magnitude than the second, and the characteristic frequencies remain the same. By reporting224

the characteristic frequencies for the two Q−1
E peaks in all graphs, one notes that the Q−1

ν peak225

occurs at f1.226
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The fluid flow parameter (Fig. 5e) shows a large frequency dependent decrease, down to 0227

beyond 10 Hz. Consistently, this value of 10 Hz corresponds to the frequency at which a change228

of slope is observed on E, and a plateau is reached for ν. Interestingly, no effect of pressure229

on the fluid flow is observed. In terms of pressure dependence, E and ν differ. Beyond 10 Hz,230

the dependence of E to effective pressure is very small. A large dependence of ν to Peff is231

observed over the whole frequency range.232

3.2.2. Wilkenson sandstone233

Wilkenson sandstone properties are measured as a function of frequency for pressures in the234

range of Peff = [1; 20] MPa (Fig. 6). For all Peff , two Q−1
E peaks and one Q−1

ν peak are235

again observed, which correlates with the variations in E and ν. Similar to variations for the236

Bentheim sandstone, the first Q−1
E peak (at f1 = 0.2 Hz) is much smaller than the second one237

(at f2 = 40 Hz). The Q−1
ν peak occurs again at the frequency f1, and no variation is observed at238

f2.239

As for Bentheim sandstone, Peff affects differently the frequency dependence of E (Fig.240

6a) and ν (Fig. 6b). Consistently with the first Q−1
E peak, E is shifted to higher values as241

Peff increases, so that dispersion decreases, yet the frequency dependence remains apparently242

unaffected by pressure. The second peak (i.e. at f2) decreases down to half its initial value as243

Peff increases. Poisson’s ratio decrease with Peff , but the magnitude of dispersion (Fig. 6b)244

and attenuation (Fig. 6d) remain constant. Consistently, the amount of fluid flow decreases as245

Peff increases.246

4. Interpretation : Dispersion/Attenuation in sandstones over the frequency range

Different effects are observed in the three different sandstones. In the following, to bet-247

ter investigate those variations, measurements are first compared to previous results on two248
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Fontainebleau sandstones [Pimienta et al., 2015a, 2016b] to attain a larger overview of fre-249

quency effects in sandstones. While different authors reported results on sandstones [e.g.,250

Spencer and Shine, 2016], because the role of the measuring method was shown to be of ma-251

jor importance [e.g., Pimienta et al., 2016c], only measurements using the same apparatus and252

procedure are used in this part. A comparison between the different measurements methods is253

then discussed.254

4.1. Variability of frequency effects in sandstones: Microstructural control

4.1.1. Measured frequency effects in five sandstones255

The frequency-dependent elastic properties of up to five sandstones samples can be compared256

over the frequency range (Fig. 7). Note that two different porosities are investigated: (i) the two257

Fontainebleau and the Wilkenson sandstones have similar porosities in the range of φ = [7; 9] %,258

and (ii) the Bentheim and Berea sandstones have a similar porosity of φ = [20; 25] %. Overall,259

a large variability can be observed between the five different sandstones. Very different charac-260

teristic frequencies are observed (Fig. 7). Table (2) reviews the samples properties as well as261

the observed frequency of the variations for the different sandstone samples. The variability be-262

tween the characteristic frequencies observed does not directly correlate to the sample porosity263

or mineral content.264

In the available frequency range, two distinct fluid flow phenomena are expected to occur265

[e.g., Pimienta et al., 2016a]: (i) Biot-Gardner flow (i.e. drained/undrained transition), sep-266

arating the drained and the undrained regimes, and (ii) squirt-flow (i.e. undrained/unrelaxed267

transition), separating the undrained and the unrelaxed regimes. Both Fontainebleau sand-268

stone samples [Pimienta et al., 2015a, 2016b] were shown to exhibit both the Biot-Gardner269

(i.e. drained/undrained) and squirt-flow (i.e. undrained/unrelaxed) transitions, leading to dis-270
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persion/attenuation on both Young’s modulus and Poisson’s ratio. But, although of similar271

porosity (i.e. about 7 % and 8 %), the two samples showed evidence of very different behav-272

iors. For the 7 % porosity Fontainebleau sample, two large dispersion/attenuation effects were273

measured on both Young’s modulus and Poisson’s ratio. For the 8 % porosity Fontainebleau274

sample, both critical frequencies overlapped, leading to a single transition from the drained to275

the unrelaxed regime.276

For the three sandstones examined in this work, a dispersion/attenuation effect is observed on277

both Young’s modulus and Poisson’s ratio in the low frequency range. At higher frequency, very278

different behaviors are observed for the three rocks. From the slope change inE and ν at highest279

frequency, the beginning of a second frequency-dependent dispersion/attenuation phenomena is280

observed for Berea sandstone. For Wilkenson and Bentheim sandstones, a second frequency281

effect is clearly observed. For both rocks, only Young’s modulus and its dissipation seem to be282

affected by the second effect.283

4.1.2. Fluid flow theories: Apparent frequency vs microstructure284

According to Cleary [1978] and O’Connell and Budiansky [1977], the two transitions relate

to a characteristic frequency that depends on microstructural variables of the rock sample. The

Biot-Gardner flow (i.e. drained/undrained transition) separates the drained regime (i.e. flow out

of a volume) and the undrained regime (i.e. fluid pressurization in the volume). As shown by

Cleary [1978], this transition is proportional to the rock hydraulic conductivity (i.e. κ/η) and a

fluid diffusion length L such that:

f1 =
4κKd

ηL2
. (1)

Where η is the fluid viscosity and Kd and κ are respectively the drained bulk modulus and the

permeability of the investigated rock sample. In the experimental conditions, L is a length as-
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sociated to the rock sample size [e.g., Adelinet et al., 2011]. L is expected to be between the

sample length and half of it, i.e. L ∈ [40; 80] mm. At higher frequencies, fluid has no more

time to equilibrate in the REV (Representative Elementary Volume) so that a third flow regime

is present that is called ”unrelaxed”. Since, in general, a porous rock contains inclusions of

different shapes (i.e. pores and microcracks), fluid can flow from a compliant microcrack to

a neighbouring less compliant pore [O’Connell and Budiansky, 1977]. This squirt-flow phe-

nomenon is associated with a critical frequency that depends on the skeleton bulk modulus (i.e.

Ks), on the microcrack aspect ratio ξ and on the fluid viscosity η such that [O’Connell and

Budiansky, 1977]:

f2 =
ξ3Ks

η
. (2)

Using realistic parameters (i.e. Kd ∈ [5; 15] GPa, L ∈ [40; 80] mm, Ks ∈ [35, 40] GPa), range285

of values can be predicted for f1 (Eq. 1) and f2 (Eq. 2). Fig. (8) compares the observed charac-286

teristic frequencies f for the different attenuation peaks to the predicted ranges for f1 and f2. In287

case of Biot-Gardner flow, the theory predicts an increase in the cut-off frequency as permeabil-288

ity increases or as fluid viscosity decreases. The two parameters being measured directly and289

with accuracy, it is possible to compare directly measurements and prediction (Fig. 8a). Overall,290

a good fit is observed for all rock samples and all saturating fluids. In case of squirt-flow (Fig.291

8b), the characteristic frequency is controlled by the aspect ratio of microcracks, a parameter292

not measurable directly with accuracy in rocks. Comparing the predicted and observed critical293

frequency, a range of aspect ratio is assessed for all rock samples: About ξ = 10−4 in both the294

Wilkenson sandstone and in Fo8, a slightly higher value of about ξ = 5 10−4 for Fo7, and larger295

values of ξ = 1 − 3 10−3 for Bentheim and Berea sandstones. These aspect ratio values are296

realistic for sandstones [e.g., Walsh, 1965; Fortin et al., 2007; David et al., 2013; Fortin et al.,297
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2014], and could be inferred from different methods [e.g., De Paula et al., 2012]. Ultimately298

comparing the results of Fig. (8) with the ones of Table (2), different dependences to the perme-299

ability, porosity and mineral content are observed: (i) consistent with Eq. (1), the first transition300

correlate to permeability, which in turn is dependent on porosity and mineral content. For sim-301

ilar porosities, permeability decreases as the content in clay mineral increases. (ii) as expected302

from Eq. (2), the frequency for the second transition is independent of the rock permeability.303

Note finally that the first transition correlates with a fluid flow out of the sample (Fig. 4e).

Consistent with results on the two Fontainebleau sandstones [Pimienta et al., 2016b], the much

larger dispersion/attenuation in Poisson’s ratio than Young’s modulus for this transition is ex-

pected. Following Biot-Gassmann theory, the rock shear modulus G is expected to be constant

for this transition. From linear elasticity in an isotropic medium:

E = 2G(1 + ν). (3)

Assuming linear viscoelasticity, one gets:

∆E

E
=

∆ν

ν

ν

(1 + ν)
≈ 0.3

∆ν

ν
. (4)

Hence, the small effect on Young’s modulus is consistent. These additional information confirm304

that the first dispersion/attenuation phenomenon is caused by the transition from drained to305

undrained regime.306

4.2. Zener rheological model : Fluid flow in the high frequency range ?

Large dispersion/attenuation on Young’s modulus are observed at high frequencies in Ben-307

theim and Wilkenson sandstones, when no flow out of the sample occurs anymore. Are the308

observed variations in modulus and dissipation consistent with a linear viscoelastic behavior ?309

Indeed, viscoelasticity is a robust way to test the measured variations in modulus and the mea-310
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sured dissipation [e.g., Pimienta et al., 2015b; Mikhaltsevitch et al., 2016a; Borgomano et al.,311

2017]. Kramers-Kronig equations, expressing the causality principle between dispersion and312

dissipation, could be used [e.g., Mikhaltsevitch et al., 2016a]. A simpler approach is to use313

Zener rheological model [e.g., Pimienta et al., 2015a; Borgomano et al., 2017], which follows314

Kramers-Kronig principle but assumes only a single relaxation time. This assumption may not315

be valid if, for instance, there is a broad spectrum of crack aspect ratio. Consistent with what316

has been already described in other works [e.g., Pimienta et al., 2015b, a; Borgomano et al.,317

2017], the first transition can be shown to follow Kramer-Kronig causality principle for all sam-318

ples. This is expected as quasi-static poroelasticity fits the viscoelastic framework [e.g., Rubino319

et al., 2008]. This should theoretically be the case also for the squirt-flow effect [e.g., Carcione320

and Gurevich, 2011; De Paula et al., 2012]. It is thus of interest to investigate the links between321

measurements and viscoelasticity for this second transition.322

For the two Fontainebleau sandstones, it was also shown to be true but one sample did not fol-323

low the Zener-like frequency dependence [e.g., Pimienta et al., 2015a, 2016b]. For Wilkenson324

sandstone (Figs. 9b & 9d), an excellent fit is observed between data and Zener model predic-325

tions. Because both the amplitude and the band-width of the peak fit, it further implies that only326

one relaxation time, i.e. only one single family of aspect ratio, is observed in this frequency327

range. Combining with the results of Fig. (8b), the cracks family has an inferred average aspect328

ratio of ξ = 10−4. For Bentheim sandstone, however, the E variations and the Q−1
E peak do329

not fit (Figs. 9a & 9c). Fitting Zener model to the E variations, the predicted attenuation peak330

is of 0.20, higher than the data that indicates a maximum of Q−1
E = 0.15. Moreover, the peak331

band-width is not consistent with a Zener-like model. Such effect could be due to either (i) a332

lower accuracy on Q−1
E ; or (ii) the existence of phenomenon that deviates from viscoelasticity.333
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A possible low accuracy in the measurement of Q−1
E is likely and cannot be ruled out at this334

point. However, could another physical effect be the cause of an uncoupling between dispersion335

and attenuation ? Interestingly, out of the sandstones studied, Bentheim sandstone is the most336

porous (i.e. φ = 24 %) and permeable (i.e. κ = 5 10−13 m2).337

5. Discussion: Other datasets & Effect of the measuring method

In section 4, no comparison was made with other datasets as very different experimental338

methods have been used by other authors. However, it is important to compare the results to339

other published data in order to gain a better insight on on the effects, independently of the340

measuring set-up and conditions.341

5.1. Previous measurements on Berea sandstone

In comparison with other sandstones (e.g. Fontainebleau sandstone) showing large variabil-342

ities, elastic properties for different Berea sandstone samples are similar [e.g., Pimienta et al.,343

2014]. In the framework of the investigation of the frequency dependence of elastic properties,344

samples of this rock were measured by Tisato and Madonna [2012], Chapman et al. [2016],345

Mikhaltsevitch et al. [2016b], Spencer and Shine [2016] and in this study. Tisato and Madonna346

[2012] and Chapman et al. [2016] investigated mainly effects under partial saturation condi-347

tions. As in this work, Mikhaltsevitch et al. [2016b] and Spencer and Shine [2016] measured348

a Berea sandstone under full saturation by fluids of varying viscosity. As shown in Table (3),349

porosity is relatively similar for all samples but variable permeabilities are observed in the sam-350

ples. The sample used by Spencer and Shine [2016] has a permeability two orders of magnitudes351

larger than the one used in this study. The sample used by Mikhaltsevitch et al. [2016b] is simi-352

lar to that of this study. Interestingly, one observes a good correlation between permeability and353
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cut-off frequency observed by the authors: the effect for Spencer and Shine [2016] occurs at354

frequency f ∗ = 40 kHz , that is two orders of magnitude higher than f ∗ = 0.3− 0.5 kHz found355

in this study and in Mikhaltsevitch et al. [2016b]. Moreover, comparing results on Young’s356

modulus and Poisson’s ratio by Mikhaltsevitch et al. [2016b] with the ones in this study, a very357

good fit is observed in both magnitude and frequency dependence of the effects.358

Mikhaltsevitch et al. [2016b] and Spencer and Shine [2016] interpreted the measured dis-359

persion/attenuation as induced by squirt-flow phenomena. The present paper reports also the360

hydraulic response that was not measured with other set-ups. This confirms in our case that the361

observed transition is the transition between drained and undrained elastic regimes. It is possi-362

ble that they measured also the Biot-Gardner flow: a transition from partially-drained [Pimienta363

et al., 2016c] to undrained regime. The same possibility holds for the data of Spencer and Shine364

[2016]. It could be also that Spencer and Shine [2016] measured an effect that is a combina-365

tion of the two transitions, similar to what was observed on the Fo8 sample by Pimienta et al.366

[2015b].367

5.2. Role of the measuring method over the frequency range

Pimienta et al. [2016c] showed theoretically that ”global” or ”local” measurements, or ”local”368

measurements in different localisations, would lead to different apparent behaviors of the rock369

sample. To investigate this effect, the second experiment on the Berea sample reported in Figs.370

(4b & 4d) was measured with a different set-up. Strain gages were glued at different axial371

positions on the sample, i.e. at the middle length (i.e. dark-green symbols in Fig. 10) and near372

the end-platen (i.e. light-green symbols in Fig. 10). Moreover, the effect of changing the fluid373

pressure on the measurement was also tested. The dispersion/attenuation measurements on the374

sample under dry and fluid-saturated conditions are reported in Fig. (10). Under dry conditions,375
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consistently, no frequency dependence is observed, and no differentiation is made between the376

strain gages positions. Under saturation by the water-glycerine mixture, large deviations are377

observed depending on the strain gage positions.378

For the strain gage positioned in the middle of the sample (i.e. dark-green symbols), results379

are the same as those previously obtained (Figs. 4b & 4d). At lowest frequency, because the380

rock is partially undrained [Pimienta et al., 2016b, c], Poisson’s ratio is much larger than under381

dry conditions (Fig. 10b). At very low pore fluid pressure (i.e. pf = 0.1 MPa), because it gets382

more difficult for fluid to pressurise in the dead volume and oppose the sample strain, values383

are initially much lower and then strongly increase with frequency to reach the same value in384

the undrained regime. For all pf values, the effect occurs in approximately the same frequency385

range of f ∈ [10−1, 101] Hz. In case of the strain gauge located near the end platen (i.e. light-386

green symbols), the values initially fit with the ones under dry conditions. Then, as frequency387

increases beyond f = 10 Hz, a dramatic increase is measured, leading to values close to the388

previous ones (Fig. 10b). Interestingly, in this case, no effect of pf is observed. Note further389

that, in both cases, dispersion (Figs. 10a & 10b) and attenuation (Figs. 10c & 10d) fit with390

Zener models. The effects are also consistent with predictions from the model Pimienta et al.391

[2016c].392

Hence, the measuring position appears to lead to very different results. Spencer and Shine393

[2016] used capacitive displacement sensors, a set-up measuring the ”global” response of the394

sample, a response expected to average all ”local” measurements across the sample length395

[Pimienta et al., 2016c]. Then, the results should be in-between the two responses in Figs.396

(10b) & (10d), with a transition spanning several orders of magnitude in frequency. Note that397

Spencer and Shine [2016] data show dispersion/attenuation phenomena over more than four or-398
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ders of magnitude in frequency. Mikhaltsevitch et al. [2016b] used a ”local” method, as in our399

study, which is consistent with the very similar response in terms of frequency range and mag-400

nitude of the effect. Note finally that squirt-flow phenomena are not expected to be dependent401

on the measured location, provided that the sample is homogeneous, i.e. that each REV of the402

sample are the same.403

6. Conclusion

Young’s modulus and Poisson’s ratio of different sandstones, saturated by different fluids,404

have been measured as a function of frequency. Large frequency dependent variations are ob-405

served for all sandstones. The measured transitions differ in the characteristic frequency of406

occurence, magnitude or amount of elastic constants involved. Further comparing with pub-407

lished data, two different effects are observed for all samples over the allowed frequency range.408

Overall, the drained/undrained transition is observed for all samples. The characteristic fre-409

quency for this effect is consistent with the measured permeabilities. At higher frequency, a410

second effect is also observed that is however more difficult to assess. Interpreting this second411

transition in terms of squirt-flow effect yields very realistic aspect ratio families for all rock412

samples.413

For the second effect, large dispersions and attenuation are measured for Wilkenson and Ben-414

theim sandstones. In case of Bentheim sandstone, the measured dispersion and attenuation do415

not fit with Zener-like variations. This implies either that the measured dissipation is not ac-416

curate or that another physical effect is here observed. Noting that the sample is much more417

permeable than the others, its large pore entry diameters could be a cause for this effect. Ul-418

timately, Berea sandstone is used as a comparison mean with published data by other teams.419

Very consistent results are observed. Experimental evidence of a strong control by the measur-420
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ing method and conditions is highlighted in case of the drained to undrained transition. In case421

of squirt-flow, no effect is expected.422
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measurements of the elastic moduli of a bimodal-porosity limestone, Journal of Geophysical446

Research, accepted.447

D R A F T September 8, 2017, 6:46pm D R A F T



X - 24 PIMIENTA ET AL.: ELASTIC DISPERSION AND ATTENUATION IN SANDSTONES

Carcione, J. M., and B. Gurevich (2011), Differential form and numerical implementation of448

biots poroelasticity equations with squirt dissipation, Geophysics, 76, N55–N64.449

Chapman, S., N. Tisato, B. Quintal, and K. Holliger (2016), Seismic attenuation in partially450

saturated berea sandstone submitted to a range of confining pressures, Journal of Geophysical451

Research: Solid Earth, 121(3), 1664–1676.452

Christensen, N., and H. Wang (1985), The influence of pore pressure and confining pressure on453

dynamic elastic properties of berea sandstone, Geophysics, 50(2), 207.454

Cleary, M. P. (1978), Elastic and dynamic response regimes of fluid-impregnated solids with455

diverse microstructures, International Journal of Solids and Structures, 14(10), 795–819.456
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Table 1. Grain size, porosity and content in elements from the SEM-EDS images. Average grain

size is qualitatively deduced from the image. Porosity and elements content are quantatively obtained

using ImageJ processing software, by applying thresholds on the different mineralogy images. From

the content in silicium, assuming that no amorphous silica are present, the quartz (i.e. Si02) content is

directly inferred. Combining contents in aluminium (Al) and potassium (K) or sodium (Na) elements,

content in feldspars minerals can be inferred.

Sandstone Grain size (µm) φ(%) Quartz (%) Al (%) Ca (%) Fe (%) K (%) Mg (%) Na (%)
Bentheim 150 25.09 97.87 2.88 0.02 0.05 1.13 0.07 0.17
Berea 100 21.69 81.71 9.35 0.27 0.54 6.18 2.88 1.81
Wilkenson 400 10.08 51.09 19.51 0.94 3.54 12.01 2.22 11.47

Figures
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Table 2. Properties measured for the five rock samples at an effective pressure of Peff ∼ 1 MPa.

Porosity and quartz content are from SEM-EDS images. Permeability and bulk modulus are measured

at Peff ∼ 1 MPa. Frequency is picked from the Q−1
E peaks. Results on the Fontainebleau are from

Pimienta et al. [2015b, a, 2016c].
Sample ] Fo7 Fo8 WilkS BeS BhS
Porosity (φ) 7.2 % 8.7 % 9.1 % 19.2 % 24.8 %
Quartz content 99.9 % 99.9 % 51.1 % 81.7 % 97.9 %
Permeability (κ in m2) 4 10−15 1 10−14 3 10−18 2 10−14 5 10−13

Drained Bulk modulus (Kd) 7 GPa 25 GPa 7 GPa 5 GPa 5 GPa
Frequency (f ∗

obs1) 10 Hz 20 Hz 0.3 Hz 30− 300 Hz 1 kHz
Frequency (f ∗

obs2) 1 kHz – 30 Hz 20− 40 kHz 10 kHz

Table 3. Comparison of measured physical properties (i.e. porosity, quartz content and permeability)

by different teams on Berea sandstone: [1] this study, [2] Mikhaltsevitch et al. [2016b] and [3] Spencer

and Shine [2016]. For the three studies, the sample is measured under glycerin full saturation. The

reported frequency is the one corresponding to the Q−1
E peak in the different studies, by normalising by

the fluid viscosity to obtain f ∗.
Study ] [1] [2] [3]
Porosity (φ) 19.2 % 19 % 24.4 %
Quartz content 81.7 % 80 % –
Permeability (κ in m2) 2 10−14 7.1 10−14 1.3 10−12

Drained Bulk modulus (Kd) 5 GPa – –
Frequency (f ∗ = f(η/η0)) 0.3 kHz 0.5 kHz 40 kHz
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(b) Berea Sandstone(a) Bentheim Sandstone

100 μm100 μm

(c) Wilkenson Sandstone

100 μm

Figure 1. Scanning Electron Microscopy (SEM) images of thin sections of the (a) Bentheim sandstone,

(b) Berea sandstone, and (c) Wilkenson sandstone. From the different grey levels, the denser materials

are brighter as compared to the less dense ones. Quartz crystals dominantly appear as bright grains.

For Berea and Bentheim sandstones, open grain contacts are observed. For Wilkenson sandstone,

microcracked grains are also observed.

Image
Al

(aluminium)
Si

(silicium)

Bentheim
Sandstone

Berea
Sandstone

Wilkenson
Sandstone

K
(potassium)

Na
(sodium)

Figure 2. Energy Dispersion Spectrometry (EDS-SEM) image on the same thin sections as in Fig. (1),

showing the different atoms and their localisation in the thin section of the rock sample.
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Figure 3. Measured physical properties of the sandstones investigated: (a) Permeability of the water-

saturated rocks as a function of confining pressure; (b) Young’s modulus of the dry rocks; Poisson’s

ratio of the dry rocks. The measurement from Pimienta et al. [2015a] on a 7 % porosity Fontainebleau

sandstone sample are reported for comparison.
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Figure 4. Measured (a) Young’s modulus and (b) Poisson’s ratio as a function of apparent frequency in

the fluid-saturated samples for an effective pressure of Peff = 1 MPa. The samples studied are a water-

saturated Wilkenson sandstone, a glycerine-saturated Bentheim sandstone and a Berea sandstone under

either glycerine or water-glycerine saturation. The Poisson’s ratio of the Berea sandstone is measured

twice under water-glycerine saturation. The in-situ liquid viscosity (η) used to determine the apparent

frequency (f ∗) is obtained from the measured hydraulic diffusivity for the different samples.
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Figure 5. Measured frequency dependence of all available properties on a glycerine-saturated Ben-

theim sandstone for varying effective pressures in the range of [1; 10] MPa. The properties measured are

(a) Young’s modulus; (b) Poisson’s ratio (c) Young’s modulus associated dissipation (i.e. addressed as

Young’s attenuation); (d) Poisson’s ratio associated dissipation (i.e. addressed as Poisson’s attenuation);

and (e) Pseudo-consolidation parameter γ∗, direct indication of fluid flow out of the sample.
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Figure 6. Measured frequency dependence of all available properties on a water-saturated Wilkenson

sandstone for varying effective pressures in the range of [1; 10] MPa. The properties measured are

(a) Young’s modulus; (b) Poisson’s ratio (c) Young’s modulus associated dissipation (i.e. addressed as

Young’s attenuation); (d) Poisson’s ratio associated dissipation (i.e. addressed as Poisson’s attenuation);

and (e) Pseudo-consolidation parameter γ∗, direct indication of fluid flow out of the sample.
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Figure 7. Comparison of the (a-b) Young’s modulus E and Q−1
E , and (c-d) Poisson’s ratio ν and Q−1

ν

as a function of apparent frequency for the five sandstone samples saturated by either water (i.e. gray

squares), glycerine (i.e. diamonds) and a water-glycerine mixture (i.e. black squares). In addition to

the three sandstones studied, the Fontainebleau sandstone samples from Pimienta et al. [2015a, 2016b]

are reported for comparison.
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Figure 8. Comparison plot of the predicted characteristic frequency for the (a) Biot-Gardner flow and

(b) squirt-flow phenomena. The frequency is calculated from Eqs. (1) and (2) using three different fluid

viscosities (i.e. blue for water, green for the water-glycerine mixture and red for glycerine). For the two

transitions, domains of realistic of frequency values are drawn by using a range of realistic parameters

(i.e. Kd = [5, 15] GPa, L = [40, 80] mm and Ks = [35, 40] GPa).
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Figure 9. Comparison between measured (a-b) Young’s modulus E and its related (c-d) Young’s

dissipation for the second frequency-dependent variation using Zener rheological models. Only the

magnitude of the effect is of interest here, and the dashpot viscosity is adjusted to fit the frequency

dependence. For the glycerine-saturated Bentheim sandstone, two comparisons are tested, from using

either the data of E (i.e. dashed lines) or of Q−1
E (i.e. continuous lines).
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Figure 10. Measured frequency dependence of (a-b) Poisson’s ratio and (c-d) its associated dissipation

in a Berea sandstone sample at a Terzaghi effective pressure of Peff = 1 MPa. The sample is either (a-

c) dry or (b-d) saturated by a water-glycerine mixture. Under both dry and liquid-saturated conditions,

the role of the measuring position is tested from the measuring the strains at sample’s half-length (i.e.

dark-green) or near the sample’s bottom (i.e. light-green). Under liquid-saturated conditions, the role

of pore fluid pressure is tested while keeping a Terzaghi effective pressure of Peff = 1 MPa.
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Abstract 

We performed forced hydrostatic and axial oscillation experiments on dry and fully glycerine 

saturated Berea sandstone samples to determine their dynamic stiffness moduli and 

attenuation at micro-seismic and seismic frequencies (0.004 – 30 Hz). In a sample (BS-H3) 

with pronounced horizontal bedding layers with respect to its vertical axis we observe an 

attenuation peak at 0.07 – 0.1 Hz with corresponding bulk modulus dispersion, associated 

with the pore pressure diffusion from the sample into the pore fluid lines. By reducing the 

volume of the pore fluid lines the attenuation magnitude is reduced. In a second sample (BS-

V5) with poorly defined vertical bedding layers a good agreement is observed between the 

bulk modulus and corresponding attenuation determined from the hydrostatic and axial 

oscillations, suggesting that the sample is approximately isotropic. For the glycerine saturated 

sample two transitions are observed in the frequency dependent bulk and Young’s moduli, 

with corresponding attenuation peaks. The first attenuation peak at 0.1 – 0.2 Hz is again 

associated with the diffusion of pore pressure from the sample into the fluid lines. A second, 



partial, attenuation peak is observed beginning at ~5 Hz and is likely in response to squirt 

flow. The later is supported by the observation that the shear modulus and attenuation become 

increasingly frequency dependent above 1 Hz, while negligible shear attenuation is observed 

at lower frequencies.  

 

Key Words 

- Attenuation 

- Rock physics 

 

1. Introduction 

 

Porous rocks saturated with fluids can strongly attenuate seismic waves. Different forms of 

wave-induced fluid flow (WIFF) are thought to be the primary intrinsic mechanism for 

seismic wave attenuation (e.g. Pride et al. 2004). Fluid flow arises predominantly from 

contrasts in compressibility either in the solid matrix of the rock, for instance between 

compliant grain contacts and stiff pores, or in the saturating fluids, such as a heterogeneous 

distribution of water and gas. In response to such compressibility contrasts, seismic waves 

induce pressure gradients, resulting in viscous fluid flow and the conversion of the waves’ 

mechanical energy into heat. The frequency dependence of the associated seismic attenuation 

depends strongly on the spatial distribution of the heterogeneities in the rock matrix and/or the 

saturating fluids (Masson and Pride 2007, 2011; Müller et al. 2008). A direct consequence of 

the frequency dependent attenuation is that the corresponding stiffness modulus of the rock 

will also be frequency dependent. 

 



Much focus has been given to squirt flow, pressure diffusion arising from microscopic 

compressibility heterogeneities in the rock, as one of the dominant mechanism for wave 

attenuation in fluid saturated rocks. Numerous theoretical models (e.g. O’Connell and 

Budiansky 1977; Mavko and Jizba 1991; Chapman et al. 2002; Gurevich et al. 2010; Adelinet 

et al. 2011) have been developed to try to explain laboratory observations at sonic and 

ultrasonic frequencies. More recently, with the progress made in using the forced oscillation 

method (e.g. McKavanagh and Stacey 1974), squirt flow has been studied also at seismic 

frequencies by using high viscosity fluids such as glycerine. On a Fontainebleau sandstone 

sample saturated with glycerine, Pimienta et al. (2015a) observe an extensional mode 

attenuation peak at 1 to 10 Hz, which was reduced in amplitude with increasing effective 

stress. Subramanyian et al. (2015) also measured the extensional mode attenuation and 

Young’s modulus in Fontainebleau sandstone with similar properties, in this case varying the 

fluid viscosity by mixing water and glycerine. For the sample fully saturated by glycerine 

they observe an attenuation peak in a similar frequency range and with similar amplitude, 

supporting the observation of Pimienta et al. (2015a). Subramanyian et al. (2015) used 

Gurevich et al.’s (2010) analytical solution of squirt flow to interpret their observations, 

however the analytical solution consistently underestimated the attenuation magnitude 

measured in the laboratory. The broad attenuation peaks observed are possibly related to a 

distribution of crack aspect ratios (Subramanyian et al. 2015). Mikhaltsevtich et al. (2015; 

2016) measured the dynamic Young’s modulus and Poisson ratio of a glycerine saturated 

Berea sandstone, from which they inferred the bulk and shear moduli as well as the 

corresponding attenuation modes. By performing measurements at temperatures from 31 to 23 

°C, they observe a shift of the extensional-mode attenuation peak from ~ 2 to ~ 0.4 Hz, 

associated with the reduction of the glycerine viscosity. Mikhaltsevtich et al. (2015) 

interpreted the attenuation as being caused by squirt flow. All these laboratory observations 



appear to confirm that squirt flow can be a significant source of attenuation at seismic 

frequencies in those two types of sandstone, for fluids of high viscosity. Following on these 

observations it seems reasonable that bedding plane orientation, which at ultrasonic 

frequencies cause significant anisotropy (Prasad and Manghnani 1997), and deviatoric 

stresses (Collet and Gurevich 2016) could influence the crack aspect ratio distribution, which 

could in turn affect the frequency dependence of the attenuation measured in the laboratory. 

 

In the laboratory, the boundary conditions of the experiment can be an additional source of 

frequency dependent moduli dispersion and attenuation. Fluid pressure diffusion across the 

lateral boundary of the sample was theoretically shown to produce strong modulus dispersion 

and attenuation by Gardner (1962) and Dunn (1987), and experimentally at seismic 

frequencies by Mörig and Burkhardt (1989). By sealing the lateral boundary this effect can be 

mitigated. However, fluid pressure diffusion can also occur from the sample into the pore 

fluid lines. Pimienta et al. (2015b) studied this effect, referring to it as the drained-undrained 

transition, and later provided a simple analytical solution for the 1D fluid pressure diffusion 

(Pimienta et al. 2016) in response to hydrostatic compression. They show that the amplitude 

of the attenuation and modulus dispersion is dependent on the ratio between the storage 

capacity of the sample and the storage capacity of the pore fluid lines. One way to mitigate 

the influence of this boundary effect is to strongly reduce the volume of the pore fluid lines 

relative to the pore volume of the sample, for example, by placing mechanical valves in the 

pore fluid lines close as to as possible to the sample (Batzle et al. 2006). However, even when 

the volume in the pore fluid lines is considerably reduced, the influence of the pore pressure 

diffusion from the sample to the pore fluid lines can still be significant in low porosity rocks, 

meriting further study and quantification.  

 



In the following sections we will present the results of forced hydrostatic and axial oscillation 

experiments on Berea sandstone samples, complemented with ultrasonic P- and S- wave 

measurements. The experiments where performed on the dry and fully glycerine saturated 

samples for a range of effective stresses and static axial loadings. We will provide a 

description of the samples used and how they were prepared, as well as the experimental set-

up and conditions used. Following the presentation of the results we will briefly discuss the 

results and provide our conclusions.  

 

2. Samples and experimental methodology 

 

2.1 Sample description 

 

A total of six cylindrical samples, 4 cm in diameter and 8 cm in length, were cored from two 

different Berea sandstones blocks. Three of the samples have poorly defined bedding planes 

parallel to the vertical axis (Figure 1a, BS-V4 to BS-V6) and the other three have pronounced 

bedding planes perpendicular to the vertical axis  (Figure 1b, BS-H1 to BS-H3). Besides the 

variation in bedding orientation, the samples are similar with respect to glycerine 

permeability, porosity and dry bulk density (Table 1). The permeability is determined from 

applying a pressure gradient across the sample and measuring the associated fluid flow. For 

effective stresses, here defined as the difference between the confining and fluid pressure, eff 

= Pc – Pf, of 2.5 to 25 MPa, the permeability of sample BS-H3 was moderately stress 

dependent, which is why we provide the permeability in Table 1 as range. The permeability 

provided for BS-V5 is the mean permeability for a range of flow rates at 2.5 MPa effective 

stress. The porosity was determined with a pyknometer, using subsections of samples BS-H1 



and BS-V6. The dry density is the mean density determined from the dry masses and 

dimensions of the two sets of samples.  

 

Figure 1. Photograph of samples a) BS-V6 with poorly defined bedding planes parallel to the 

vertical axis and b) BS-H1 with pronounced bedding planes perpendicular to the vertical axis. 

The data presented in this article are from experiments performed on samples cored form the 

same source blocks as BS-V6 and BS-H1. 

 
2.2 Sample preparation 

 

After coring and cutting the samples, they were fixed in a cylindrical steel holder and 

mounted on a lathe.  A diamond-studded grinder was then used to parallelize the sample ends. 

Four pairs of radial and axial strain gauges were glued at approximately 90 degrees to each 

other and centred on the lateral surface of the samples. The strain gauges on BS-H3 were 

glued directly on the sample, with the result of them being forced into the sample’s pores at 

high effective stresses, breaking their circuits and causing the failure of a number of strain 

gauges. To avoid the failure of strain gauges on BS-V5, a thin layer of epoxy was first applied 

to fill the pores near the sample’s surface. The epoxy layer was polished down until the grains 

4 cm

a) BS‐V6 b) BS‐H1



came through the epoxy. The strain gauges were then glued onto these polished surfaces. The 

samples where placed in a rubber jacket, with epoxy sealed feed-throughs for the wires 

connected to the strain gauges, to isolate the samples from the confining oil.   

 

Table 1. Sample properties 

 BS-H1 to BS-H3 BS-V4 to BS-V6 

Glycerine Permeability (mD) 25.5 – 32.0* 58.7  1.14** 

Porosity (%) 21.1 22.15 

Dry Density (kg/m3) 2144 12.8 2087  6.55 

* Measured at 25 and 2.5 MPa effective stress. ** Measured at 2.5 MPa effective stress. 

 

2.3 Experimental setup - dynamic moduli and attenuation modes 

 

Forced oscillation and ultrasonic measurements were performed in a tri-axial cell at ENS 

Paris. Borgomano et al. (2017) provide a detailed description of the experimental setup, data 

processing and uncertainty analysis of the measurements. Pimienta et al. (2015a,b) provide 

further details on the calibration of the apparatus with standard materials.  We will briefly list 

the governing relations used to determine the various moduli and associated attenuation 

modes. 

 

Two types of stress oscillation on the sample, producing strains on the order of ~10-6, can be 

performed in this cell: hydrostatic and axial. The hydrostatic oscillation (410-3 to ~1 Hz) is 

induced by the confining pressure pump (Adelinet et al. 2010; David et al. 2013) and allows 

for directly measuring the sample’s dynamic bulk modulus from the confining pressure 

oscillation Pc = -ii/3, where ii (i = 1,2,3) are the principal stresses, and the associated 

average volumetric strain vol as follows: 



K
hyd


P

c


vol

.           (1) 

The axial oscillation (110-1 to 30 Hz) is induced by a piezo-electric actuator placed between 

the sample and the axial piston of the cell and allows for measuring the sample’s Poisson ratio 

 and Young’s modulus E: 
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
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

ax


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,         (2) 

where the axial stress ax, is determined from the deformation of the aluminium end plate of 

known Young’s modulus, and rad and ax are the average radial and axial strains on the 

sample. Given the Poisson ratio and Young’s modulus, the axial bulk Kax and shear Gax 

moduli can be inferred as follows: 

K
ax
 E

3 1 2 
 and G

ax
 E

2 1 
.        (3) 

 

For each mode of deformation, the attenuation can be determined from the phase shift 

between the applied stress and resulting strain ( = stress - strain)  (O’Connell and Budiansky 

1978). The bulk attenuation for the hydrostatic oscillation can be determined from the phase 

shift between the hydrostatic stress Pc and the volumetric strain vol, such that: 

 Pc
vol

.          (4) 

The extensional mode attenuation is in turn determined from the phase shift between the axial 

stress ax and strain ax, such that: 


extensional

 ax
ax

.         (5) 

Assuming that the sample is isotropic, the bulk and shear attenuation can be inferred from the 

phase shift between the axial stress ax and the axial and radial strains ax and rad (Borgomano 

et al. 2017):  




bulk

ax
ax2rad

and 
shear

 ax
axrad

,      (6) 

where the phases of ax + 2rad and ax - rad are derived from combining equations 2 and 3. 

The attenuation corresponding to each deformation mode can be calculated as (O’Connell and 

Budiansky 1978): 

Q1  tan   .          (7) 

 

2.4 Experimental conditions 

 

Axial and hydrostatic oscillations, as well as ultrasonic measurements, were performed on the 

dry and glycerine saturated samples BS-H3 and BS-V5. Axial oscillations and ultrasonic 

measurements were performed at effective stresses between 2.5 and 25 MPa, with additional 

axial static loads of 2, 4 and 6 MPa. The hydrostatic oscillations were performed for the same 

range of effective stresses, while the axial piston was raised off of the sample. Additional 

ultrasonic measurements were also performed on the dry samples BS-H2 and BS-V4 for 

effective stresses up to 39 MPa. Before saturating each sample with glycerine, a vacuum 

pump was used to remove air from the sample and the pore fluid lines. Glycerine was then 

pumped into the sample using two Quizix pumps that subsequently regulated the fluid 

pressure at 4 MPa. 

 

3. Results 

 

3.1 Ultrasonic and hydrostatic measurements - dry samples 

 

Figure 2 presents the variation of the ultrasonic P- and S-wave velocities with effective stress 

in the dry samples, BS-H2 and BS-V4. Below 20 MPa effective stress the P- and S-wave 



velocities rapidly increase with effective stress, though the increase is more gradual for BS-

H2 (Figure 2a) than for BS-V4 (Figure 2b). Above 20 MPa effective stress the velocities are 

comparable for both samples, and gradually increase with effective stress. The evolution of 

the velocities under hydrostatic conditions suggests that the bedding only minimally 

influences the samples compressibility and that for effective stresses above 20 MPa the 

majority of cracks and grain contacts are likely closed (e.g. Johnston et al. 1979).  

 

Figure 3 shows the attenuation and bulk modulus determined from the hydrostatic oscillation 

as a function of frequency at effective stress up to 20 MPa for samples BS-H3 and BS-V5. As 

with the ultrasonic measurements the bulk modulus determined from the hydrostatic 

oscillation is dependent on the effective stress. Moreover, it is frequency independent. As a 

first approximation we assume that the samples are isotropic so that, from the ultrasonic 

velocity measurements and the samples density , we can infer the bulk KHF and shear GHF 

moduli: 

K
HF

  V
p
2  4

3
V

s
2









 and G

HF
 V

s
2,       (8) 

where, the subscript HF denotes the high frequency measurement. The results for selected 

effective stresses are provided in Table 2. For both samples the ultrasonic bulk modulus is 

generally consistent with that determined from the hydrostatic oscillations for the 

corresponding samples.  

 
 
 
 
 
 
 
 
 



Table 2. Ultrasonic measurements (1 MHz) of travel time tp and ts on the dry samples BS-H2 

and BS-V4, the corresponding p-wave and s-wave velocities Vp and Vs and the derived bulk 

KHF and shear GHF moduli (equation 8) for selected effective stresses eff.  

 eff (MPa) tp (s) ts (s) Vp (m/s) Vs (m/s) KHF (GPa) GHF (GPa) 

BS-V4 

2 30.4 46.2 2738 1801 6.6 6.8 
4 28.3 42.1 2914 1977 7.2 8.2 
14 23.6 36.4 3527 2286 11.4 10.9 
18 22.8 35.3 3651 2357 12.4 11.6 

BS-H2 
5 27.5 43.4 3039 1924 9.2 7.9 
14 24.2 40.3 3447 2070 13.2 9.2 
20 23.3 38.4 3580 2175 14.0 10.1 

 

 

 

Figure 2. P- and S-wave velocities Vp and Vs versus effective stress for the dry samples BS-

H2 a) and BS-V4 b). 

 



 

Figure 3. Bulk modulus K and attenuation QK
-1 of the dry samples BS-H3 a) and BS-V5 b) 

determined from the hydrostatic oscillation of the confining pressure. The legend provides the 

applied effective stress eff. 

 

3.2 Hydrostatic measurements - glycerine saturation and dead volume 

 

The drained-undrained transition is a boundary condition problem of fluid saturated samples. 

In the laboratory this generally means that the data is representative not only of the properties 

of the sample and saturating fluids, but also the properties of the measuring device. In the case 

of the drained-undrained transition it is predicted that the volume of the pore fluid lines, or 

dead volume, is a primary control of the amplitude of the attenuation and modulus dispersion 

(Pimienta et al. 2016). For our experiments, we increased the dead volume by essentially 

lengthening the pore fluid lines. The total volume of the pore fluid lines for the large dead 

volume was 26 millilitres, while the small dead volume was 11 millilitres. 

 

 



These experiments were performed on sample BS-H3 using hydrostatic oscillations. In Figure 

4 we show the bulk modulus and attenuation from the glycerine saturated sample, for the 

small and large dead volumes. For the larger dead volume (Figure 4a) we observe a 

significantly larger attenuation peak than for the smaller dead volume (Figure 4b), which in 

both cases is reduced as the effective stress is raised. For the bulk modulus we observe a 

similar high frequency limit for all effective stresses, but for the larger dead volume the 

sample is significantly more compressible at low frequencies. 

 

The influence of the dead volume is also noticeable in the pseudo-skempton coefficient, 

defined as (Pimienta et al. 2015b): 

B* 
p

f

P
c

,           (10) 

where pf is the fluid pressure amplitude measured in the pore fluid line and Pc is the 

confining pressure amplitude. For both dead volumes the pseudo-skempton coefficient is 

elevated at low frequencies, indicating that the glycerine had enough time to flow in response 

to the confining pressure oscillation and raise the pressure in the pore fluid lines (Figure 4). 

At low frequencies (0.01 Hz) the sample can therefore be considered partially drained. The 

pseudo-skempton coefficient drops off as the frequency of the confining pressure oscillation 

increases, because the fluid no longer has the time to diffuse form the sample and raise the 

pressure in the pore fluid lines. At high frequencies (1 Hz) the sample is therefore undrained. 

When approximately the same fluid volume is expelled from the sample during the forced 

oscillation, increasing the dead volume results in smaller pressure amplitude in the pore fluid 

lines, because of the compressibility of glycerine, and consequently resulting in a smaller 

pseudo-skempton coefficient. Increasing the effective stress increases the sample stiffness, 

which means that a larger portion of the load is carried by the sample’s frame and not 



transferred to the fluid. The consequence of increasing the effective stress is that the pseudo-

skempton coefficient is also reduced, which is consistent with the observations of Hart and 

Wang (1999) for variation of the Skempton’s coefficient with effective stress for Berea 

sandstone. 

 

 

Figure 4. Bulk modulus K and attenuation QK
-1 as well as the Pseudo-Skempton coefficient 

B* of the glycerine saturated sample BS-H3 determined from the hydrostatic oscillation of the 

confining pressure. a) large dead volume (26 millilitres) and b) small dead volume (11 



millilitres) achieved by varying the length of the pore fluid lines. The legend provides the 

range of applied effective stress eff. 

 

3.3 Axial and hydrostatic measurements - dry and glycerine saturation 

 

From the axial oscillation the Young’s modulus and Poisson ratio are determined, which 

allow for inferring the bulk and shear moduli and the corresponding attenuation modes. For 

the dry sample BS-V5 the extensional (Figure 5a), bulk (Figure 5c) and shear attenuation 

(Figure 5d) modes show no frequency dependence and are only moderately influenced by the 

increase in effective stress. The various moduli have also no frequency dependence and 

increase with increasing effective stress. The Poisson ratio (Figure 5b) is frequency 

independent and increases moderately with increasing effective stress. For all axial 

oscillations measurements presented in this section the sample was subjected to a static axial 

stress of 2 MPa. 

 

When the sample is glycerine saturated (Figure 6) all modes show significant frequency 

dependent attenuation. For the extensional and bulk attenuation (Figure 6a and c) two peaks 

are observed: one at ~0.1 Hz and another beginning at ~5 Hz and above. For the shear 

attenuation (Figure 6d) however only the attenuation peak at higher frequencies is observed. 

The attenuation peak at ~0.1 Hz is reduced in amplitude as the effective stress is increased, 

but is still observed at 25 MPa effective stress. The second partial peak at higher frequencies 

is likewise reduced in amplitude, however at 25 MPa effective stress the measured attenuation 

is comparable in amplitude to the attenuation measured for the dry sample.  

 



As with the attenuation the various stiffness moduli are frequency dependent once the sample 

was glycerine saturated (Figure 6). The overall increase in the sample’s stiffness is 

particularly observed in the Young’s and bulk moduli (Figure 6a and 6c). The shear modulus 

(Figure 6d) at low frequencies is on the order of the shear modulus of the dry sample (Figure 

5d). Towards higher frequencies the shear modulus shows some dispersion. The Young’s and 

bulk moduli are dispersive at both ~0.1 Hz and again beginning at ~5 Hz. Overall the moduli 

become less dispersive with increasing effective stress. At high frequencies the bulk modulus 

possibly converges to a common limit. The Poisson ratio (Figure 6b) is significantly increased 

with respect to the Poisson ratio measured in the dry sample (Figure 5b) and is frequency 

dependent. For the saturated sample, with increasing effective stress the Poisson ratio is 

reduced and at high frequencies it is nearly frequency independent. 

 

In Table 3 we provide results of the ultrasonic measurements for the dry and glycerine 

saturated sample to complement the axial measurements. The high frequency bulk KHF and 

shear moduli GHF are inferred using Equations 8. The density of the glycerine saturated 

sample sat is approximated from the dry sample density dry, the sample’s porosity  and 

fluid density fluid (glycerine = 1250 kg/m3) as:  


sat
 

dry


fluid
.          (11) 

For the dry measurements the inferred high frequency bulk moduli (Table 3) are moderately 

elevated compared to the bulk moduli determined from the axial oscillations (Figure 5a), 

while the inferred high frequency shear moduli are in good agreement with the shear moduli 

determined from the axial oscillations (Figure 5d). Under glycerine saturation the high 

frequency bulk modulus corresponds well with the bulk moduli of the axial oscillations at ~30 

Hz, while the high frequency shear modulus is slightly higher than the shear modulus deduced 

from the axial oscillations (Figure 6d). 



 

Because the stress applied to the sample for the hydrostatic oscillation is determined from a 

pressure transducer close to the sample in the confining oil, while for the axial oscillation the 

stress it is determined from the deformation of the aluminium end plate on which the sample 

is placed, the bulk modulus and attenuation can be measured independently by these two 

methods. If the sample BS-V5 is in fact isotropic then the bulk modulus and attenuation 

measured by these two methods should be the same. In Figure 7 we show the bulk modulus 

and attenuation determined from both the hydrostatic and axial oscillations for the dry and 

glycerine saturated sample BS-V5, at different effective stresses. We observe for both the dry 

(Figure 7a) and glycerine saturated (Figure 7b) states, that the bulk modulus and attenuation is 

generally independent of the measurement type. However as the effective stress is increased 

the hydrostatic measurements do show a slightly higher bulk modulus than the axial 

measurements, seen for both the dry and glycerine saturated states.  

 

Table 3. Ultrasonic measurements (1 MHz) of travel times tp and ts, on the dry and glycerine 

saturated sample BS-V5 and the corresponding p- and s-wave velocities Vp and Vs and the 

bulk KHF and shear GHF moduli for selected effective stresses. The axial stress is 2.5 MPa. 

 eff (MPa) tp (s) ts (s) Vp (m/s) Vs (m/s) KHF (GPa) GHF (GPa) 

Dry 

2.5 27.8 46.0 3000 1813 9.6 6.9 
5 25.3 42.0 3296 1985 11.7 8.2 

15 23.1 36.0 3610 2315 12.3 11.2 
25 22.3 33.9 3740 2459 12.4 12.6 

Glycerine  
Saturated 

2.5 20.4 36.3 4088 2297 22.9 12.5 
5 20.5 35.3 4068 2362 21.5 13.2 

15 20.1 33.4 4149 2496 21.1 14.7 
25 19.9 33.0 4191 2526 21.4 15.1 

  



 

Figure 5. a) Extensional attenuation QE
-1 and Young’s modulus E, b) Poisson ratio, c) bulk 

modulus Kax and attenuation QK
-1, and d) shear modulus Gax and attenuation QG

-1 of the dry 

sample BS-V5 determined from the forced axial oscillations. The sample was subjected to a 

static axial stress of 2 MPa. The legend provides the range of applied effective stresses eff. 

 



 

Figure 6. a) Extensional attenuation QE
-1 and Young’s modulus E, b) Poisson ratio, c) bulk 

modulus Kax and attenuation QK
-1, and d) shear modulus Gax and attenuation QG

-1 of the 

glycerine saturated sample BS-V5 determined from the forced axial oscillations. The sample 

was subjected to a static axial stress of 2 MPa. The legend provides the range of applied 

effective stresses. 

 



 

Figure 7. Bulk modulus K and attenuation QK
-1 of the dry a) and glycerine b) saturated 

sample BS-V5 determined from the forced axial and hydrostatic oscillations. For the axial 

oscillations the sample was subjected to a static axial stress of 2 MPa. The legend provides 

the range of applied effective stress eff. 



 
3.4 Ultrasonic and axial measurements with static axial stress - dry and glycerine saturation 

 

One of the controlling parameters of squirt flow is the aspect ratio of the micro cracks and 

grain contacts (O’Connell and Budiansky 1977). When planning our experiments, one idea 

was to investigate if the attenuation and modulus dispersion in response to squirt flow could 

be sensitive to the applied axial stress. To investigate this, the sample BS-V5 was subjected to 

static axial stresses of 2, 4 and 6 MPa.  

 

The ultrasonic P-wave velocity of the dry sample shows some sensitivity to the applied static 

axial stress (Figure 8). At low effective stress, increasing the static axial stress resulted in a 

small increase of the P-wave velocity. For example, at 2.5 MPa effective stress the P-wave 

velocity increased by 200 m/s for an increase in the static axial stress from 2 to 6 MPa. With 

increasing effective stress the sensitivity to the static axial stress of the P-wave velocity 

becomes negligible. This is to be expected given that the relative importance of the static axial 

stress decreases as the effective stress is increased because of a reduction in the deviatoric 

stress. The S-wave velocity is less sensitive to the static axial stress. For the saturated 

samples, neither the P- or S-wave velocity is sensitive to the static axial stress.  

 

In Figure 9 we show the different moduli and corresponding attenuation for the dry and 

glycerine saturated sample BS-V5, for static axial stresses of 2, 4 and 6 MPa. Given that the 

static axial stress has more influence at low effective stresses (Figure 8), we only show the 

results at 2.5 MPa effective stress. Both for the dry and saturated sample, increasing the static 

axial stress results in a moderate increase in the bulk and Young’s moduli and corresponding 

decrease in the attenuation amplitude. On the other hand the shear modulus of the saturated 

sample decreases moderately with respect to the shear modulus of the dry sample as the static 



axial stress is increased (Figure 9d). The Poisson ratio of the dry sample increases with 

increasing static axial stress and the reverse is observed for the saturated sample (Figure 9b). 

Since the attenuation peak beginning at ~5 Hz lies predominately outside the investigate 

frequency range it is not clear whether the scaling of the attenuation with respect to frequency 

is influenced by changes in the axial stress. Overall the variation in the stiffness moduli is on 

the order of the measurement uncertainty (Borgomano et al. 2017), making the impact of the 

applied static axial stress approximately negligible. 

 
Figure 8. P- and S-wave velocities Vp and Vs versus effective stress for the dry and glycerine 

saturated sample BS-V5. The legend provides the applied axial stresses ax. 

 



 
Figure 9. a) Extensional attenuation QE

-1 and Young’s modulus E, b) Poisson ratio, c) bulk 

modulus Kax and attenuation QK
-1, and d) shear modulus Gax and attenuation QG

-1 of the dry 

(open circles) and glycerine saturated (closed circles) sample BS-V5 determined from the 

forced axial oscillations. The sample was subjected to an effective stress of 2.5 MPa. The 

legend provides the range of applied axial stresses ax. 

 

4. Discussion 



For the drained-undrained transition Pimienta et al. (2016) derived a 1-D analytical solution 

for the fluid pressure diffusion along the vertical axis of a sample subjected to a hydrostatic 

pressure oscillation. The analytical solution makes a number of predictions for the response of 

the measured attenuation and modulus dispersion to changes in the experimental conditions 

that we observe in our data. Among these are the reduction of the measured attenuation when 

the dead volume is reduced and the increasing partially-drained bulk modulus with increasing 

effective stress (Figure 4). Another key observation that indicates that the attenuation peak 

measured at low frequencies for both samples is in response to the drained-undrained 

transition are the frequency dependent pseudo-Skempton coefficient (Figure 4). Furthermore 

because the sample frame is homogenous, the shear modulus is not dispersive (Figures 6d and 

9d). These observations are consistent with those of Borgomano et al. (2017) for limestone. 

The frequency dependent pseudo-Skempton coefficient is the primary indicator for the 

drained-undrained transition because it shows a direct response of the pressure diffusion from 

the sample into the pore fluid lines. Although qualitatively our observations are entirely 

consistent with the analytical solution’s predictions for the drained-undrained transition, our 

measured undrained limit of the bulk modulus is higher than that predicted by Gassmann’s 

(1951) fluid substitution. As consequence, Pimienta et al.’ (2016) analytical solution 

underestimates the amplitude of the bulk modulus dispersion and corresponding attenuation 

measured in the laboratory.  

 

There are also a number of analytical solutions that have been developed to explain modulus 

dispersion and attenuation related to squirt flow (e.g. Mavko and Jizba 1991; Chapman et al. 

2002; Gurevich et al. 2010). A number of predictions of these models are also observed in our 

data for the second attenuation peak that occurs above ~5 Hz. Among these is a dispersive 

shear modulus and associated shear attenuation (Figure 6d and 9d). The transition frequency 



for squirt flow in this glycerine saturated sample is likely above the highest measured 

frequency (Figure 9c and 9d). The broad shear attenuation curve, when compared to the bulk 

attenuation, possibly suggests a distribution of crack aspect ratios. We made use of Gurevich 

et al.’s (2010) analytical solution for squirt flow to analyse the observed bulk modulus 

dispersion and attenuation in sample BS-V5 at 2.5 MPa effective stress. However, again the 

analytical solution underestimated the amplitude of the measured bulk modulus dispersion 

and attenuation. Subramanyian et al. (2015) also used Gurevich et al.’s (2010) squirt flow 

model and observed elevated attenuation compared to the analytical solution. 

 

Of interest is also how our measurements compare to those of other studies that interpret their 

results as in response to squirt flow. The most appropriate comparison is to Mikhaltsevitch et 

al. (2015; 2016), who performed forced axial oscillation experiments on a glycerine-saturated 

Berea sandstone sample with a permeability of 71 mD and 19 % porosity. Both of these 

properties are similar to those of the samples used in this study. Mikhaltsevitch et al. (2015) 

saturated their sample by pumping five pore volumes of glycerine through the sample and 

then maintaining a 13 MPa confining pressure and 3 MPa fluid pressure to achieve an 

effective stress of 10 MPa on the sample, as well as maintaining a temperature of 23 °C. 

Under these conditions they observed a single attenuation peak at ~0.4 Hz with a magnitude 

of QE
-1 ~0.055. In addition to the Young’s modulus they also measured the Poisson ratio, 

which they use to infer the shear and bulk moduli. Both of which are dispersive, with the 

shear modulus having a transition frequency at higher frequencies than the bulk modulus. 

While the dispersion amplitude in the Young’s and shear moduli are comparable to our 

measurements, the bulk modulus measured by Mikhaltsevitch et al. (2015) is significantly 

more dispersive than in our measurements. In the study of Mikhaltsevitch et al. (2015) the 

transition peak attributed to squirt flow in the extensional attenuation and Young’s modulus is 



at a frequency almost two orders of magnitude lower to the one observed here, which suggests 

that even if the two Berea sample have the same porosity and permeability, they do not 

contain the same pre-existing cracks.  

 

We hoped that it would be possible to detect an impact of either the orientation of the bedding 

planes or the induced applied static axial stress on the measured attenuation related to squirt 

flow. However, in the case of BS-H3, which had pronounced horizontal bedding planes (e.g. 

Figure 1b), some of the strain gauges were lost during the experiments and we subsequently 

decided to not show the results of the axial oscillation. On the other hand sample BS-V5 only 

had very poorly defined bedding planes (e.g. Figure 1a), which proved to be approximately 

isotropic as seen in the good match of the bulk modulus and attenuation from the axial and 

hydrostatic oscillations (Figure 7). Given these circumstances we cannot draw any 

conclusions on the impact of the bedding plane orientation as it relates to squirt flow. As 

noted in the results the impact of the axial stress is also largely negligible as the variation is 

near the uncertainty limit of our measurements. Furthermore we only partially resolve the 

attenuation peak that we interpret as in response to squirt flow and therefore cannot draw any 

conclusion about the variation in scaling of the attenuation with frequency either. The applied 

static axial stress did not exceed 6 MPa in order to not damage the piezo-electric actuator, 

which applied the axial oscillations. 

 

5. Conclusions 

 

We performed hydrostatic and axial forced oscillations experiments on dry and glycerine 

saturated Berea sandstone samples subjected to effective stresses up to 25 MPa. For the 

sample with poorly defined bedding layers we found a good agreement between the bulk 



attenuation and modulus directly measured from the hydrostatic oscillations and those 

inferred from the axial and radial strains measured during the axial oscillations. In the 

glycerine saturated sample the measured attenuation is frequency dependent with an 

attenuation peak at ~0.1 Hz and a second, partial, peak beginning at ~5 Hz. Both of these 

attenuation peaks are also observed in the extensional mode, while in the shear attenuation is 

only frequency dependent above 1 Hz. The first attenuation peak is in response to fluid 

pressure diffusion from the sample into the pore fluid lines, referred to as the drained-

undrained transition. The second partial attenuation peak is likely in response to squirt flow, 

resulting from microscopic heterogeneities in compressibility of the sample matrix. Reducing 

the volume of the pore fluid lines lowers the attenuation and modulus dispersion related to the 

drained-undrained transition. The applied static axial stress on the sample appears to induce 

negligible anisotropy in the sample. 
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Appendix D

Script code for the numerical modelling of the
drained/undrained transition in 2D and 3D using GetDP

solveur.

333



 

Input file (.PRO) for GetDP. 
 

/*====================== 

  Constants definitions 

======================*/ 

// OSCILLATIONS 

DefineConstant[f = {1e-3, Name 

"Frequency", Choices {1e-3,2e-3,4e-3,7e-

3,1e-2,2e-2,4e-2,7e-2,1e-1,2e-1,4e-1,7e-

1,1,2,4,7}} ]; 

 

deltaP = 0.2; // MPa 

 

// ROCK 

Kd = 16.2*1e9;   //PA 

Ks = 77.*1e9;   //PA 

poro = 23.8; // (%) ! 

k = 1.1e-14;  //  m2 

 

// FLUID + Dead Volume 

eta = 1.087; // Pa.s 

Kfl = 4.36*1e9;   //PA 

Vu = 3.3; // mL : volume of dead volume 

(hyp = for upper and lower) 

 

// Calculations 

B = (1/Kd - 1/Ks)/(1/Kd - 1/Ks + 

poro*0.01*(1/Kfl - 1/Ks)); 

alpha = 1 - Kd/Ks; 

D = 1e6*k*B*Kd/(eta*alpha); // mm2/s  

 

/*====================== 

  Geometrical Entities 

======================*/ 

Group { 

  Sample = Region[ 85 ]; 

  VolUp = Region[ 86 ]; 

  VolDown = Region[ 87 ]; 

  Drainage = Region[{VolDown,VolUp}]; 

  AllOmega = 

Region[{Sample,VolDown,VolUp}]; 

} 

/*===================== 

Functions 

=====================*/ 

Function { 

  // Initial State 

   InitialState[AllOmega] = 0.; 

 

  // control oscillations  

  osc[] = deltaP* 1e6 * B * 2.*Pi*f * 

Cos[2.*Pi*f*$Time]; 

 

  // time discretisation 

  t0 = 0.; // t_ini 

   T = 4*(1./f); // t_max 

  dt = T/600.; 

 

  // type of scheme // see crank nicolson 

on the manual 

   gamma = 1; 

} 

/*=============================== 

  Constraints and Initial State 

===============================*/ 

Constraint { 

  // initial state 

  { Name InitialData; Type Init; 

     Case { 

        { Region AllOmega; Value 

InitialState[];} 

     } 

  } 

  // boundary condition "drained" 

  { Name Drained ; Type Assign; 

   Case { 

      { Region Drainage ; Value 0. ; } 

    } 

  } 

} 

/*==================== 

  Functional Spaces 

====================*/ 

FunctionSpace{ 

  { Name Vh; Type Form0; 

    BasisFunction{ 

      {Name wn; NameOfCoef vn; Function 

BF_Node; 

    Support AllOmega; Entity 

NodesOf[All];} 

    } 

    Constraint { 

    { NameOfCoef vn; EntityType NodesOf; 

         NameOfConstraint Drained; } 

    { NameOfCoef vn; EntityType NodesOf; 

         NameOfConstraint InitialData; } 

    } 

  } 

} 

/*==================== 

    Jacobian 

====================*/ 

Jacobian { 

  { Name JVol ; 

    Case { 

      { Region All ; Jacobian Vol ; } 

    } 

  } 

  { Name JSur ; 

    Case { 

      { Region All ; Jacobian Sur ; } 

    } 

  } 



  { Name JLin ; 

    Case { 

      { Region All ; Jacobian Lin ; } 

    } 

  } 

} 

/*====================== 

   Integral Parameters 

======================*/ 

Integration { 

  { Name I1 ; 

    Case { 

      { Type Gauss ; 

        Case { 

          { GeoElement Point ; 

NumberOfPoints  1 ; } 

          { GeoElement Line ; 

NumberOfPoints  4 ; } 

          { GeoElement Triangle ; 

NumberOfPoints  6 ; } 

          { GeoElement Quadrangle ; 

NumberOfPoints 7 ; } 

          { GeoElement Tetrahedron ; 

NumberOfPoints 15 ; } 

          { GeoElement Hexahedron ; 

NumberOfPoints 34 ; } 

        } 

      } 

    } 

  } 

} 

/*====================== 

  Weak formulations 

======================*/ 

Formulation{ 

  {Name Diffusion; Type FemEquation; 

    Quantity{ 

      {Name phi; Type Local; NameOfSpace 

Vh;} 

    } 

    Equation{ 

      Galerkin{ DtDof[ Dof{phi}, {phi} ]; 

        In Sample; Jacobian JVol; 

Integration I1;} 

 

      Galerkin{ [D*Dof{Grad phi}, {Grad 

phi}]; 

        In Sample; Jacobian JVol; 

Integration I1;} 

 

      Galerkin{ [-osc[$TimeStep], {phi}]; 

        In Sample; Jacobian JVol; 

Integration I1;} 

    }  

  } 

} 

/*====================== 

  Resolution 

======================*/  

Resolution{ 

  {Name DiffusionSolver; 

 

    System{ 

      {Name SysDiffusion; 

NameOfFormulation Diffusion;} 

    } 

  Operation{ 

      // initialisation 

      InitSolution[SysDiffusion]; 

SaveSolution[SysDiffusion]; 

 

      // computation on [t0 + dt,T] 

      TimeLoopTheta[t0, T, dt, gamma] { 

  //IterativeLoop[ 80 , 1e-4 

, 1 ] { 

          Generate[SysDiffusion]; 

Solve[SysDiffusion]; 

GenerateJac[SysDiffusion]; 

SolveJac[SysDiffusion];         

  //} 

 SaveSolution[SysDiffusion];           

      } 

    } 

  } 

} 

/*============== 

Post Processing 

==============*/  

PostProcessing { 

   { Name DiffusionSolver; 

NameOfFormulation Diffusion; NameOfSystem 

SysDiffusion; 

      Quantity{ 

         { Name Pressure_MPa; Value 

{Local{[{phi}*10^(-6)]; In AllOmega; 

Jacobian JVol; }}}      

      } 

   } 

} 

/*============= 

Post Operation 

=============*/  

PostOperation { 

   {Name Map_Pressure; 

NameOfPostProcessing DiffusionSolver; 

      Operation{ 

         Print[Pressure_MPa, OnElementsOf 

AllOmega, File "PressureResults.pos"]; 

 

      } 

   } 

} 
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Appendix E: Model results of E, ν and G compared to the axial
oscillations results for the Indiana, Rustrel and Coquina samples.

Intact Thermally cracked
A B

Dry
Water saturated
Glycerin saturated

Pdiff = 5 MPa
Pdiff = 10 MPa
Pdiff = 20 MPa
Pdiff = 30 MPa

Indiana

Ultrasonic

Figure 15: Model prediction of the Poisson’s ratio compared to the axial oscillations and
ultrasonic results for the Indiana limestone, intact (a), and after thermal cracking (b). The
model is calculated for glycerin-saturated conditions.
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Pdiff = 2.5 MPa
Pdiff = 5 MPa
Pdiff = 10 MPa
Pdiff = 20 MPa

Dry
Water saturated
Glycerin saturated

Axial oscillations:

Ultrasonic

A)

B)

C)

Model from this study

Rustrel

Figure 16: Model prediction of the E (a), ν (b) and G (c) compared to the axial oscillations
and ultrasonic results for the Rustrel sample. The model is calculated for glycerin-saturated
conditions.
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b

c

Coquina

Pdiff = 2.5 MPa
Pdiff = 5 MPa
Pdiff = 10 MPa
Pdiff = 20 MPa

Ultrasonic

Model from this study

Dry
Water saturated
Glycerin saturated

Axial oscillations:

Figure 17: Model prediction of the E (a), ν (b) and G (c) compared to the axial oscilla-
tions and ultrasonic results for the Coquina sample. The model is calculated for glycerin-
saturated conditions.
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Résumé 
 

Pour les roches saturées, la comparaison 

entre les mesures ultrasoniques (1 MHz) au 

laboratoire et les mesures sismiques (100 Hz) 

ou de diagraphie (10 kHz) sur le terrain n’est 

pas directe à cause de la dispersion des 

vitesses des ondes. Les mécanismes 

impliqués dans la dépendance en fréquence 

sont les écoulements de fluides à différentes 

échelles provoqués par le passage de l’onde. 

La dispersion et l’atténuation des modules 

élastiques de roches carbonatées ont été 

étudiées expérimentalement. Les calcaires 

étudiés sont : un Lavoux, un Indiana intact et 

craqué thermiquement, un calcaire Urgonien 

de Provence (Rustrel), et un coquina pré-sel 

du Congo. Les mesures ont été faites sur une 

large gamme de fréquence, en combinant les 

techniques d’oscillations forcées (10
-3

 to 10
2
 

Hz) et ultrasoniques (1 MHz) dans une presse 

triaxiale, pour différentes pressions effectives. 

Le forçage peut être hydrostatique pour 

mesurer un module d’incompressibilité, ou 

axial pour mesurer le module de Young et le 

coefficient de Poisson. Pour étudier l’effet de 

la viscosité, les mesures ont été faites en 

condition sèche, puis saturée en glycérine et 

en eau. Le drainage global et le mécanisme 

d’écoulement crack-pore ont été caractérisés, 

en termes d’amplitude de dispersion, 

d’atténuation viscoélastique, et de fréquence 

de coupure. Pour nos échantillons, la théorie 

de Biot-Gassmann s’est montrée valide pour 

les fréquences sismiques (10-100 Hz) sauf 

pour l’Indiana craqué thermiquement. La 

dispersion liée à des écoulements cracks-

pores a été observée pour tous les 

échantillons sauf le Lavoux. Les fréquences 

de coupures de ceux-ci sont toutes dans la 

gamme des fréquences des diagraphies (10 

kHz) pour des conditions de saturation en 

eau. Un modèle simple, combinant 

poroélasticité et milieux effectifs, a été 

développé pour prédire la dispersion des 

modules sur toute la gamme de fréquence, et 

s’est montré généralement en accord avec 

les résultats expérimentaux.  
 

Mots Clés 
 

Dispersion, atténuation, carbonate,  modules 

élastiques, statique-dynamique, oscillations 

forcées, ultrasons, élasticité, viscoélasticité, 

poroélasticité, milieux effectifs, calcaire, 

Lavoux, Indiana, Rustrel, pré-sel coquina. 

 

Abstract 
 

For fluid-saturated rocks, comparing 

ultrasonic measurements (1 MHz) in the 

laboratory and seismic (100 Hz) or logging 

(10 kHz) measurements in the field is not 

straightforward due to dispersion of the body-

wave velocities. The frequency-dependent 

mechanisms involved are wave-induced fluid 

flows that occur at different scales. The 

dispersion and the attenuation of the elastic 

moduli of four fluid-saturated carbonate rocks 

have been studied experimentally. The 

selected limestones were a Lavoux, an intact 

and thermally cracked Indiana, a Urgonian 

limestone from Provence (Rustrel), and a pre-

salt coquina from offshore Congo. 

Measurements were done over a large-

frequency range, by the combination of forced 

oscillations (10
-3

 to 10
2
 Hz) and ultrasonic 

measurements (1 MHz) in a triaxial cell, at 

various effective pressures. The forced 

oscillations were either hydrostatic to deduce 

the bulk modulus, or axial to deduce Young’s 

modulus and Poisson’s ratio. The 

measurements were done in dry-, glycerin- 

and water-saturated conditions to investigate 

the effect of viscosity. For all our samples, the 

global drainage and the squirt-flow 

mechanisms were characterized 

experimentally, in terms of amplitude of 

dispersion, amount of viscoelastic 

attenuation, and cut-off frequencies. Biot-

Gassmann’s theory was found to be valid at 

seismic frequencies (10-100 Hz) for all the 

samples except the thermally cracked 

Indiana. Squirt-flow transitions were observed 

for all the samples, except the Lavoux. The 

cut-off frequencies were all in the range of 

logging frequencies (10 kHz), for water-

saturated conditions. A simple model, 

combining poroelasticity and the non-

interaction approximation effective medium, 

was developed to predict the dispersion of the 

moduli over the whole frequency range, and 

was generally in agreement with the 

experimental results. 
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