Thèse soutenue

Modélisation et simulation à base de règles pour la simulation physique

FR  |  
EN
Auteur / Autrice : Fatma Ben Salah
Direction : Philippe MeseureAgnès ArnouldHakim Belhaouari
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 13/11/2018
Etablissement(s) : Poitiers
Ecole(s) doctorale(s) : École doctorale Sciences et ingénierie pour l'information, mathématiques (Limoges ; 2009-2018)
Partenaire(s) de recherche : Laboratoire : XLIM - XLIM / XLIM
faculte : Université de Poitiers. UFR des sciences fondamentales et appliquées
Jury : Président / Présidente : David Cazier
Examinateurs / Examinatrices : Philippe Meseure, Agnès Arnould, Olivier Terraz, Annie Luciani
Rapporteurs / Rapporteuses : David Cazier, Guillaume Damiand

Résumé

FR  |  
EN

La simulation physique des objets déformables est au cœur de plusieurs applications dans l’informatique graphique. Dans ce contexte, nous nous intéressons à l’élaboration d’une plate-forme, qui combine le modèle topologique des Cartes Généralisées avec un ou plusieurs modèles mécaniques, pour l’animation physique d’objets maillés déformables, pouvant endurer des transformations topologiques comme des déchirures ou des fractures.Pour offrir un cadre aussi général que possible, nous avons adopté une approche à base de règles de manipulation et de transformation de graphes, telle que proposée par le logiciel JERBOA. Cet environnement offre des possibilités de prototypage rapide de différents modèles mécaniques. Il nous a permis de définir précisément le stockage des informations mécaniques dans la description topologique du maillage et de simuler les déformations en utilisant une base topologique pour le calcul des interactions et l’affectation des forces. Toutes les informations mécaniques sont ainsi stockées dans le modèle topologique, sans recours à une structure auxiliaire.La plate-forme réalisée est générale. Elle permet de simuler des objets 2D ou 3D, avec différents types de maillages, non nécessairement homogènes. Elle permet de simuler différents modèles mécaniques, continus ou discrets, avec des propriétés diverses d’homogénéité et d’isotropie. De plus, différentes solutions d’évolution topologique ont été proposées. Elles impliquent la sélection d’un critère déclenchant les modifications et un type de transformation proprement dit. Notre approche a également permis de réduire les mises à jour du modèle mécanique en cas de déchirure/fracture.