Conception d'un cadre d'optimisation de fonctions d'énergies : application au traitement d'images

par Amira Kouzana

Thèse de doctorat en Signal, Image, Automatique

Sous la direction de Amir Nakib.

Soutenue le 14-12-2018

à Paris Est en cotutelle avec l'Université de Tunis El Manar , dans le cadre de École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2015-....) , en partenariat avec Laboratoire Images, Signaux et Systèmes Intelligents (Créteil) (laboratoire) et de Laboratoire Images- Signaux et Systèmes Intelligents / LISSI (laboratoire) .

Le président du jury était Boubaker Daachi.

Le jury était composé de Amir Nakib, Khaled Bsaïes, Hugues Talbot, Narjes Doggaz.

Les rapporteurs étaient Abdelmalik Taleb-Ahmed, Youssef Chahir.


  • Résumé

    Nous proposons une nouvelle formulation de minimisation de fonctions d’énergies pour la traitement de la vision sur toute la segmentation d'image. Le problème est modélisé comme étant un jeu stratégique non coopératif, et le processus d'optimisation est interprété comme étant la recherche de l'équilibre de nash. Ce problème reste un problème combinatoire sous cette forme d'où nous avons opté à le résoudre en utilisant un algorithme de Séparation-Évaluation. Pour illustrer la performance de la nouvelle approche, nous l'avons appliqué sur des fonctions de régularisation convexe ainsi que non convexe

  • Titre traduit

    New framework design for optimizing energy functions : application to image processing


  • Résumé

    We propose a new formulation of the energy minimisation paradigm for image segmentation. The segmentation problem is modeled as a non-cooperative strategic game, and the optimization process is interpreted as the search of a Nash equilibrium. The problem is expressed as a combinatorial problem, for which an efficient Branch and Bound algorithm is proposed to solve the problem exactly. To illustrate the performance of the proposed framework, it is applied on convex regularization model, as well as a non-convex regularized segmentation models

Accéder en ligne

bibliorespect


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Communautés d’Universités et d'Etablissements Université Paris-Est. Bibliothèque universitaire.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.