Stochastic optimization problems : decomposition and coordination under risk

par Henri Gérard

Thèse de doctorat en Mathématiques

Sous la direction de Michel De Lara et de Jean-Christophe Pesquet.

Soutenue le 26-10-2018

à Paris Est , dans le cadre de École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2015-....) , en partenariat avec Centre d'enseignement et de recherche en mathématiques et calcul scientifique (Champs-sur-Marne, Seine-et-Marne) (laboratoire) et de Centre d'Enseignement et de Recherche en Mathématiques- Informatique et Calcul Scientifique / CERMICS (laboratoire) .

Le président du jury était Ralph Tyrrell Rockafellar.

Le jury était composé de Michel De Lara, Jean-Christophe Pesquet, Andy Philpott, Jean-Philippe Chancelier, Radu Ioan Boţ.

Les rapporteurs étaient Andrzej Ruszczyński, Marianne Akian.

  • Titre traduit

    Problèmes d'optimisation stochastique : décomposition et coordination avec risque


  • Résumé

    Nous considérons des problèmes d'optimisation stochastique et de théorie des jeux avec des mesures de risque. Dans une première partie, nous mettons l'accent sur la cohérence temporelle. Nous commençons par prouver une équivalence entre cohérence temporelle et l'existence d'une formule imbriquée pour des fonctions. Motivés par des exemples bien connus dans les mesures de risque, nous étudions trois classes de fonctions: les fonctions invariantes par translation, les transformées de Fenchel-Moreau et les fonctions supremum. Ensuite, nous étendons le concept de cohérence temporelle à la cohérence entre joueurs, en remplaçant le temps séquentiel par un ensemble non ordonné et les fonctions par des relations binaires. Enfin, nous montrons comment la cohérence entre joueurs est liée à des formes de décomposition séquentielles et parallèles en optimisation. Dans une seconde partie, nous étudions l'impact des mesures de risque sur la multiplicité des équilibres dans les problèmes de jeux dynamiques dans les marchés complets et incomplets. Nous concevons un exemple où l'introduction de mesures de risque conduit à l'existence de trois équilibres au lieu d'un dans le cas risque neutre. Nous analysons la capacité de deux algorithmes différents à trouver les différents équilibres. Nous discutons des liens entre la cohérence des joueurs et les problèmes d'équilibre dans les jeux. Dans une troisième partie, nous étudions l'optimisation robuste pour l'apprentissage automatique. En utilisant des mesures de risque convexes, nous fournissons un cadre unifié et proposons un algorithme adapté couvrant trois ensembles d'ensembles d'ambiguïté étudiés dans la littérature


  • Résumé

    We consider stochastic optimization and game theory problems with risk measures. In a first part, we focus on time consistency. We begin by proving an equivalence between time consistent mappings and the existence of a nested formula. Motivated by well-known examples in risk measures, we investigate three classes of mappings: translation invariant, Fenchel-Moreau transform and supremum mappings. Then, we extend the concept of time consistency to player consistency, by replacing the sequential time by any unordered set and mappings by any relations. Finally, we show how player consistency relates to sequential and parallel forms of decomposition in optimization. In a second part, we study how risk measures impact the multiplicity of equilibria in dynamic game problems in complete and incomplete markets. We design an example where the introduction of risk measures leads to the existence of three equilibria instead of one in the risk neutral case. We analyze the ability of two different algorithms to recover the different equilibria. We discuss links between player consistency and equilibrium problems in games. In a third part, we study distribution ally robust optimization in machine learning. Using convex risk measures, we provide a unified framework and propose an adapted algorithm covering three ambiguity sets discussed in the literature


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Communautés d’Universités et d'Etablissements Université Paris-Est. Bibliothèque universitaire.
  • Bibliothèque : École des Ponts ParisTech (Marne-la-Vallée, Seine-et-Marne). Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.