
UNIVERSITÉ D’ORLÉANS

ÉCOLE DOCTORALE MATHÉMATIQUES, INFORMATIQUE,
PHYSIQUE THÉORIQUE ET INGÉNIERIE DES SYSTÈMES

Laboratoire d’Informatique Fondamentale d’Orléans

Thèse présentée par :

Diego MALDONADO

soutenue le : version soutenance 26 novembre 2018

pour obtenir le grade de : Docteur de l’Université d’Orléans

Discipline/ Spécialité : Informatique

Universalité et complexité des automates cellulaires
coagulants

Thèse dirigée par :

Eric GOLES Professeur, Universidad Adolfo Ibañez

Nicolas OLLINGER Professeur, Université d’Orléans

RAPPORTEURS :

Julien CERVELLE Professeur, Université Paris-Est Créteil

Sylvain SENE Professeur, Aix-Marseille Université

JURY :

Julien CERVELLE Professeur, Université Paris-Est Créteil

Eric GOLES Professeur, Universidad Adolfo Ibañez

Ines KLIMANN Maître de conférences, Université Paris Diderot

Nicolas OLLINGER Professeur, Université d’Orléans

Nicolas SCHABANEL Directeur de recherche, CNRS

Sylvain SENE Professeur, Aix-Marseille Université

Véronique TERRIER Maître de conférences, Université de Caen Basse

Normandie

2

Contents

1 Introduction (French version) 1

2 Introduction (English version) 11

3 Preliminaries 19
3.1 Basic Notions . 19

3.1.1 Some terminology of topology . 24
3.1.2 Some terminology of dynamical systems . 27
3.1.3 Some graph terminology . 27
3.1.4 Some generalizations of cellular automata . 29

3.2 Computational Complexity . 32
3.2.1 The big-O notation . 32
3.2.2 Parallel Computation . 33
3.2.3 Sequential Computation . 34
3.2.4 Parallel subroutines . 34
3.2.5 Decision problems in cellular automata . 35

3.3 Simulation Between Cellular Automata and Universality 36
3.3.1 Geometric transformations . 36
3.3.2 Quasi-order and simulation . 41

4 Freezing Cellular Automata 45
4.1 Basic Dynamical Properties . 45
4.2 Computational Complexity . 47
4.3 Turing universality . 49

4.3.1 Turing universality on Counter Machine . 49
4.3.2 Freezing cellular automata with P-complete Stability problem 52

4.4 Monotone freezing cellular automata . 58

5 Universality in Freezing Cellular Automata 61
5.1 Classical Limitation . 62
5.2 Constructing Intrinsically Universal FCA . 63

5.2.1 A 2D, 2-change, von Neumann Neighborhood Intrinsically Universal FCA 67
5.2.2 A 3D, von Neumann neighborhood, 1-change, intrinsically universal FCA 69
5.2.3 2D, Moore Neighborhood, 1-change, intrinsically universal FCA 69

5.3 Obstacles to FCA-Universality . 71
5.4 On the simulation power of FCA . 75
5.5 Conclusion . 76

6 On the Complexity of the Stability Problem of Binary FTCA 79
6.1 Preliminaries . 80
6.2 Triangular Grid . 80

6.2.1 Topological Rules . 81
6.2.2 Algebraic Rule . 84

6.3 Square Grid . 86
6.3.1 Topological Rules . 87

i

CONTENTS

6.3.2 Algebraic Rules . 91
6.3.3 Turing Universal Rules . 99

6.4 Rotation Invariant Rules . 100
6.4.1 Trivial Rules . 100
6.4.2 Topological Rules . 103
6.4.3 Algebraic Rules . 105
6.4.4 Turing Universal Rules . 105

6.5 Reachability . 106
6.6 Concluding Remarks . 109

6.6.1 Summary of our results . 109
6.6.2 About Fractal-Growing Rules . 110
6.6.3 On P-Completeness on the triangular grid . 111
6.6.4 Limitation on the complexity for the rule 234 . 112
6.6.5 About non-quiescent rules . 112

7 Fast-Parallel Algorithms for Asynchronous FTCA 113
7.1 Definitions . 114
7.2 Triangular grid . 114

7.2.1 The infiltration technique . 115
7.2.2 Monotone rules . 117

7.3 Square grid . 118
7.3.1 The infiltration technique . 118
7.3.2 Monotone rules . 121

7.4 Rules with 0 non quiescent . 122
7.5 NP completeness . 123
7.6 Concluding Remarks and Future Works . 127

8 Conclusion et travaux futurs 129
8.1 Universalité des automates cellulaires coagulants . 129
8.2 Sur la complexité du problème de stabilité des AC binaires coagulants totalistiques 130
8.3 Algorithmes parallèles pour les AC totalistes et coagulants 131
8.4 Remarques finales et problèmes ouverts . 132

9 Conclusion and Future Works 135
9.1 Universality in Freezing Cellular Automata . 135
9.2 On the Complexity of the Stability Problem of Binary Freezing Totalistic CA 136
9.3 Fast-Parallel Algorithms for Freezing Totalistic Asynchronous CA 137
9.4 Final remarks and open problems . 137

ii

List of Figures

3.1 Example of different neighborhoods on Z2. 20
3.2 Glider . 20
3.3 pulsar . 21
3.4 Example of space-time diagram for the rule 110. In this image the time is top to bottom. 22
3.5 Lava . 23
3.6 Ladder . 23
3.7 Example of graphs. 28
3.8 Triangular (a) and square (b) grids with the von Neumann neighborhood of a cell u. . . . 29
3.9 Dynamics on an automata network considering the parallel update scheme. 31
3.10 Dynamics on an automata network considering the block sequential update scheme. . . . 31
3.11 Different patterns in Z2. 37
3.12 Tiling with pattern P and base V . 38
3.13 Packaging function . 38
3.14 Example of a packaging. 39
3.15 Example of a cutting. 39
3.16 Example of a shifting. 40
3.17 Example of injective simulation. 42

4.1 Scheme of a k-counter machine. 50
4.2 Finite state representation of a 2-counter machine. 51
4.3 A 1D freezing CA simulating a 2-CM . 52
4.4 Building a crossing gate from XOR gates. 53
4.5 Signal traveling on a wires. 54
4.6 Elements to build a monotone circuit on a configuration of Majority-Vote CA. 54
4.7 Example of a simulation of a circuit by the Majority-Vote Cellular Automata. 55
4.8 Logic gates for a graph with maximum degree at less 5. 56

5.1 Matcher and macro-cell. 64
5.2 Connection between macro-cells. 66
5.3 Crossing signal in 3-D. 69
5.4 Crossing signal in Moore neighborhood. 70
5.5 Changing paths Pn and P ′

n that must cross each other. 73
5.6 Configurations yn and y∞ and the limit fixed point reached under F 74

6.1 Example of fixed point for the rule 23 . 81
6.2 Triangular grid divided in semi-planes. 84
6.3 Construction of the finite configuration D(x). 88
6.4 Four possible cases for u1, u2 and u3. 89
6.5 Divition of the interior of D(x) into nine regions. 90
6.6 Computation in a diamond of size τ . 92
6.7 Notation for the cells in the small diamond. 93
6.8 Possibles cases of rule 12 at time τ such that u remains inactive. 94
6.9 Computation of east corridor. 95
6.10 Possible cases of rule 124 at time τ such that u remains inactive. 96

iii

LIST OF FIGURES

6.11 Schedule for to compute xτu if xτ−2
f = xτ−2

g = xτ−2
h = 0. 96

6.12 Possible cases of rule 124 at time τ + 1 such that u remains at state 0. 97
6.13 Schedule to compute xτs if xτ−1

f = xτ−1
g = xτ−1

h = 0. 97
6.14 Gadgets for the implementation of logic circuits for the rules 2 and 24. 99
6.15 Stable pattern. 101
6.16 Possibles cases for rules I I4 . 101
6.17 Fixed point for FCA I34 and L34. 103
6.18 Different edges for I34 and L34. 104
6.19 Gadgets for the implementation of logic circuits for the rules L and L4. 106
6.20 Example of fixed point and distance in rule 1. 107
6.21 Examples of rules with fractal dynamics on on square grid. 111
6.22 Examples of rules with fractal dynamics on on triangular grid. 111
6.23 Gadgets for the implementation of logic circuits on the triangular grid. 112
6.24 Non-tri-connected graph of inactive cells. 112

7.1 Example of V+1 and B+1 for rule 1. 115
7.2 Example of a fixed point for the rule 23. 117
7.3 Example of V+1 and B+1 for rule 1. 119
7.4 Example of fixed points for the rule 34 and 234. 121
7.5 Gadget sending at most one signal for one of two outputs. 126

8.1 NQuartier simulant sur grille 2D un automate cellulaire 1D 133

9.1 Neighborhood simulating 1D cellular automaton . 138

iv

List of Tables

3.1 Local function of elementary CA 110 . 21

6.1 Summary of rules and their complexity of Stability on triangular grid. 110
6.2 Summary of rules and their complexity of Stability on square grid. 110
6.3 Summary of invariant by rotation rules and their complexity of Stability on square grid. 110

7.1 Logical operator on T. 124

v

LIST OF TABLES

vi

List of Algorithms

1 Solving Prediction 1D . 48
2 Multiplying by 2 CM . 51
3 LOGSPACE reduction for Majority-Vote Cellular Automata 55
4 Solving Stability for bootstrap percolation rule . 58
5 Solving Stability 2 . 83
6 Solving Stability 12 . 86
7 Solving Stability 234 . 91
8 Solving Stability 124 . 98
9 Solving Stability I, I4 . 103
10 Solving Reachability 1 . 109
11 AsyncStability solving 1, 12 and 13 . 116
12 AsyncStability solving 2 . 118
13 AsyncStability solving 1, 12, 13, 14, 123, 134 and 124 . 120
14 AsyncStability solving 23 (3) . 122
15 AsyncStability solving infiltration rules with 0 non quiescent. 123

vii

LIST OF ALGORITHMS

viii

Chapter 1

Introduction

Automates cellulaires

Dans les années 40, John von Neumann, à la recherche d’un système théorique capable de modéliser des
systèmes naturels auto-reproductifs, suit les conseils de Stanislaw Ulam et décide d’étudier un système
dynamique local, discret et synchrone que nous appelons désormais automate cellulaire. Il s’agit d’un
réseau régulier, généralement une grille de dimension d, où chaque cellule a un nombre fini d’états possibles
qui lui sont associés. Ces cellules changent d’état simultanément selon un règle qui dépend des états des
cellules voisines et qui est le même pour toutes les cellules. Les voisinages les plus utilisés en dimension
un sont :

• le voisinage des premiers voisins, il se compose de la cellule centrale, de la cellule gauche et de la
cellule droite ; et

• le voisinage à sens unique, il se compose de la cellule centrale et de la cellule gauche ou de la cellule
droite.

et en dimension deux :

• le voisinage de von Neumann, il consiste en la cellule centrale, la cellule nord, la cellule sud, la
cellule est et la cellule ouest ; et

• le voisinage de Moore, il s’agit du voisinage de von Neumann ajoutant la cellule nord-est, nord-ouest,
sud-est et sud-ouest.

Il est possible d’étendre les voisinages précédents à des dimensions supérieures selon le même principe.

De manière synthétique, les automates cellulaires sont :

• discrets dans le temps et dans l’espace,

• homogènes dans le temps et dans l’espace (la manière de changer est la même pour chaque cellule
à chaque fois),

• locaux et synchrones dans leurs interactions.

1

Nous obtenons ainsi des systèmes dynamiques qui montrent un comportement très complexe à partir
de règles très simples. L’exemple le plus simple est la famille des automates cellulaires élémentaires. C’est
la famille des automates cellulaires dans la dimension un, deux états et le voisinage des premiers voisins

et chaque automate cellulaire dans cette famille est représenté par le nombre
7∑

i=0

f(JiK)2i , où f est la

règle à trois voisins et JiK est la codification binaire á trois chiffres de i, de J0K = 000 à J7K = 111 . Ces
règles sont au nombre de 256, dont 88 sont deux à deux distinctes.

C’est dans cette famille que l’on trouve la règle 110 qui est capable de simuler n’importe quelle
machine-ordinateur, la règle 184 simulant un flux de trafic et la règle 30, une règle au comportement
«chaotique».

Les automates cellulaires ont été étudiés sous de nombreux angles : comme environnement pour les
phénomènes physiques, chimiques, sociaux entre autres, comme systèmes dynamiques discrets, comme
modèle de calcul ou simplement pour le plaisir.

Ainsi, l’automate le plus exploré en dimension deux est sans conteste le Jeu de la Vie [5] introduit
par John H. Conway en 1970. C’est un automate cellulaire défini sur la grille bidimensionnelle avec deux
états pour les cellules ({0, 1} ou {mort, vivant}), où chaque cellule considère son voisinage Moore. La
règle pour chaque cellule est la suivante

• Toute cellule vivante ayant moins de deux voisins vivants meurt, comme si elle était sous-peuplée.

• Toute cellule vivante avec deux ou trois voisins vivants survit jusqu’à la prochaine génération.

• Toute cellule vivante ayant plus de trois voisins vivants meurt, comme si elle était surpeuplée.

• Toute cellule morte ayant exactement trois voisins vivants devient une cellule vivante, comme par
reproduction.

Cette règle simple montre un comportement très complexe, par exemple nous pouvons trouver un
ensemble fini de cellules vivantes se déplaçant sur le plan appelé Gliders, d’autres ayant un comportement
périodique celluled Pulsars et d’autres encore sont capables de reproduire des calculs universels.

Modélisation

Les automates cellulaires comme modèle du monde réel partagent, par définition, des propriétés impor-
tantes avec les lois physiques classiques :

• les règles, de la même manière que les lois physiques, sont uniformes dans le temps et dans l’espace,
c’est-à-dire que peu importe les coordonnées de la cellule sur la grille, la règle est la même,

• est défini par un réseau régulier, de la même manière que les lois physiques sont définies uniformé-
ment sur l’espace.

Il y a aussi des automates cellulaires avec d’autres propriétés physiques intéressantes, comme les
automates cellulaires dont le comportement est réversible, c’est-à-dire un automate cellulaire inversible
dont l’inverse est aussi un automate cellulaire. Ce sont des automates cellulaires qui préservent pleinement
l’information. Le modèle HPP [6, 7], nommé d’après les initiales des noms de ses auteurs : Hardy, Pomeau
et de Pazzis, est un bon exemple d’automate cellulaire réversible. Il s’agit d’un modèle de gaz au niveau
microscopique, où chaque particule dans le gaz est représentée par une flèche représentant la direction des
particules et se trouve dans une cellule sur une grille bidimensionnelle. Chaque cellule ne peut contenir

2

qu’un maximum d’une particule pour chaque direction, c’est-à-dire qu’elle contient au total entre zéro et
quatre particules et, facultativement, nous ajoutons des cellules “paroi” pour contenir les particules.

Les règles suivantes régissent le modèle :

• Une seule particule se déplace dans une direction fixe jusqu’à ce qu’elle entre en collision avec une
autre.

• Deux particules subissant une collision frontale sont déviées perpendiculairement.

• Deux particules subissent une collision qui n’est pas frontale, se traversent et continuent dans la
même direction.

• Lorsqu’une particule entre en collision avec les parois, elle va rebondir.

Ici nous pouvons obtenir un automate cellulaire inverse en déplacent les particules dans le sens inverse.

Une autre propriété importante des automates cellulaires réversibles est leur implémentation de hard-
ware, qui peut - théoriquement - être plus efficace énergétiquement que les implémentations des systèmes
irréversibles utilisés de nos jours. Selon le principe de Landauer [8], l’énergie de dissipation minimale pour
l’effacement d’un bit d’information à température absolue de T est au moins de kT ln 2 Joule d’énergie, où
k est la constante de Bolzmann. Cela finira par devenir prohibitif pour la miniaturisation et l’emballage
de plus en plus dense de portes irréversibles telles que AND et OR. Le calcul réversible a été proposé
comme alternative où aucun bit n’a besoin d’être effacé, évitant ainsi la limite inférieure (kT ln 2) de la
dissipation d’énergie par bit.

Une autre classe d’automates cellulaires est la classe des automates cellulaires conservateurs, où il
existe une fonction des états aux nombres réels, appelée quantité additive, et pour toute configuration
où l’addition de la quantité additive de son état est un nombre et ce nombre ne change pas après avoir
appliqué l’automate cellulaire conservatif. Cette classe d’automates cellulaires s’intéresse à la physique
comme source de modèles de systèmes de particules régis par les lois de conservation de la masse et/ou
de l’énergie, en particulier les automates cellulaires de flux de trafic (règle 184), le flux fluide, les alliages
eutectiques, les échanges entre individus, etc. et englobe le modèle HPP où la quantité additive de cellule
représente le nombre de flèches dans cette cellule.

Dynamique discrète et topologie

Dans l’espace cellulaire, nous pouvons définir une métrique entre les configurations c et c′ comme suit :
d(c, c′) = 0 si c = c′ et d(c, c′) = 2−min{‖z‖:cz 6=c′z} , satisfaisant aux trois propriétés élémentaires d’une
métrique : d est positive, d(c, c′) = 0 si et seulement si c = c′, d est symétrique, et d satisfait à l’inégalité
triangulaire. La valeur d(c, c′) s’appelle distance entre c et c′.

Toute paire d’un ensemble et d’une métrique avec ces propriétés précédentes est appelée espace

métrique, en particulier l’espace cellulaire est un espace métrique. Avec notre définition de la distance,
nous pouvons caractériser les automates cellulaires comme les fonctions continues qui commute avec la
fonction shift dans toutes les directions, où la fonction shift est la fonction qui déplace chaque cellule
dans une position dans une direction. L’espace cellulaire est compact et est généré par le cylindres Cyl
(c,D) un ensemble de toutes les configurations qui sont égales à la configuration c cellule par cellule sur
les cellules sur D ⊆ Zd . Chaque cylindre est topologiquement et ouvert et fermé simultanément.

Par compacité, tout automate cellulaire inversible est réversible. De même, toute fonction continue
sur un espace compact définit un système dynamique, puis un automate cellulaire définit un système
dynamique sur l’espace de configuration.

3

Dans le système dynamique est étudié le ensembles de limites, l’ensemble de toutes les configurations
un t-ème pré-images pour tout t ∈ N . Dans les automates cellulaires, l’ensemble des limites est un
sous-shift, c’est-à-dire qu’il est fermé non vide et shift-invariant.

Complexité

Le point de vue informatique est basé sur la thèse de Church-Turing, dans laquelle tous les modèles de
calcul “raisonnables” sont équivalents, c’est-à-dire que chacun peut calculer les mêmes choses. Parmi ces
modèles de calcul figurent le lambda-calcul [9], tag systèmes [10], machines à compteurs [11] et machines
de Turing [12], parmi d’autres, et nous disons qu’il s’agit de modèles universels pour le calcul (aussi
appelés Turing universels).

Universalité Turing

Dès le début, l’universalité pour le calcul apparaît dans les automates cellulaires, comme les automates
cellulaires auto-reproductifs de von Neumann [13] simulant l’autoreproduction de systèmes biologiques.
Von Neumann construit un automate cellualire à 29 état, deux dimensions et voisinage von Neumann
simulant une machine de Turing qui contrôle le bras du constructeur qui construit la copie de la config-
uration originale. Les chercheurs ont cherché des automates de plus en plus simples, avec moins d’états,
de dimensions et de voisins, qui montrent une universalité pour le calcul. Smith (1971) [14] a montré que
18 couleurs et premières voisines des règles unidimensionnelles pouvaient être universelles, et Lindgren et
Nordahl (1990) [15] ont construit un automate cellulaire universel 7 couleurs pour les premiers voisins,
mais le cas le plus important est celui de Cook (2004) [16] où, en simulant un système de balises sur
l’automate cellulaire élémentaire 110, il montre que deux états et les premier voisin suffisent pour obtenir
l’universalité pour le calcul.

Universalité intrinsèque

L’idée de complexité dans les automates cellulaires donnée par sa capacité à simuler les machines de
Turing ne semble pas être tout à fait pratique.

Alors que les machines de Turing sont des modèles informatiques séquentiels et finis, les automates
cellulaires sont un modèle extrêmement parallèle et spatialement infini. C’est ainsi qu’est née la notion
d’universalité intrinsèque d’un automate cellulaire, qui est la capacité d’un automate cellulaire à simuler
tout autre automate cellulaire. Quelques exemples d’automates intrinsèquement universels sont les au-
tomates unidimensionnels d’Albert et Culik avec 14 états et premiers voisinages [17], le jeu de la vie de
Conway [18] et le automates cellulaire unidimensionnel d’Ollinger et Richard avec 4 états et premiers
voisins [19] . Le dernier est, à notre connaissance, l’automate cellulaire avec le moins d’états intrinsèque-
ment universels en dimension 1 et le voisinage des premiers voisins. Restez ouvert pour savoir si la règle
110 est intrinsèquement universelle.

L’étude de l’universalité intrinsèque ne peut pas seulement être explorée à travers la réduction des
états des automates intrinsèquement universels, il est également intéressant de voir quelles propriétés sup-
plémentaires nous pouvons exiger et nous continuons à trouver des automates intrinsèquement universels.
Si nous ajoutons la conservation, il est possible de trouver un automate intrinsèquement universel qui est
aussi conservateur [20] . Ce n’est pas vrai avec la réversibilité, car les automates réversibles ne peuvent
simuler que des automates réversibles. Ainsi commence l’étude de l’universalité intrinsèque seulement

4

pour les automates cellulaires réversibles, où il y a un automate cellulaire intrinsèquement universel pour
les automates réversibles [21] . De plus, il en existe aussi un qui est réversible et conservateur [22] et
même conservateur à symétrie temporelle [1] (la symétrie temporelle est une sous-classe des automates
cellulaires réversibles, pour la définition formelle et les propriétés voir [23]).

Bien que chacun des auteurs précédents considère sa propre notion de la simulation, y compris la
simulation cellule par cellule, cellule par macro-cellule, échelle temporelle ou même translation spatiale,
ceci est formalisé dans [24, 25] qui regroupe tous ces cas dans une seule définition.

Complexité des calculs

Un autre aspect calculatoire très étudié est la complexité de calcul, qui compte le nombre maximum
d’opérations effectuées par une machine de Turing pour effectuer un calcul en fonction de la taille de
l’entrée, c’est-à-dire le temps (ou le nombre d’opérations) utilisé pour résoudre le pire des cas. Cette idée
de la mesure du temps, ainsi que celle de la mesure spatiale, a été introduite par Hartmanis et Stearns
[26]. Edmonds propose comme problèmes qui peuvent être efficacement calculés à ceux dont la complexité
peut être limitée par un polynôme sur la taille de l’entrée, appelés problèmes polynomiaux ou problèmes
dans la classe P. Edmonds donne également une description informelle pour le temps polynomial sur
les machines de Turing non déterministes [27], ouvrant l’une des questions les plus importantes dans la
complexité des calculs, est P = NP ? et plus tard formalisé par Cook [28] et Levin [29] .

Il existe également une classe de complexité pour les ordinateurs parallèles avec un grand nombre
de processeurs, appelée classe NC, qui correspond au type de problèmes qui peuvent être résolus en
temps poly-logarithmique en utilisant un nombre polynomial de processeurs. Il porte le nom de Nick
Pippenger pour ses études sur les circuits à profondeur poly-logarithmique et nombre polynomial de
portes logiques. Il s’agit d’une sous-classe de P, c’est-à-dire NC ⊆ P et reste ouverte pour savoir si
NC = P est disponible.

Pour P et NP, il existe un sous-ensemble de problèmes appelés P-complet et NP-complet respec-
tivement. Dans ces problèmes, n’importe quel problème dans P (NP) peut lui être réduit en temps
poly-logarithmique en utilisant un nombre polynomial de processeurs (temps polynomial utilisant un
processeur), où réduire le problème A à B c’est-à-dire transformer les entrées de A en entrées pour B
par une fonction calculable en temps NC (P) tel qu’une entrée de A soit accepté si et seulement si la
transformation de cette entrée est accepté par B .

Donc si un problème P-complet (NP-complet) est aussi dans NC (P), alors les deux classes
s’effondrent, c’est-à-dire P = NC (P = NP).

En supposant que P 6= NP, alors les problèmes NP-complets peuvent être résolus “effectivement”
dans une machine séquentielle . De même, il est largement admis que P 6= NC c’est-à-dire qu’il existe des
problèmes polynomiaux qui ne peuvent pas améliorer exponentiellement leurs performances en ajoutant
un nombre raisonnable de processeurs (polynômes), ce qui signifie qu’ils ne peuvent être “efficacement” mis
en parallèle, puis les problèmes P-complètes sont les candidats pour être les problèmes non parallélisés.
Les problèmes complets sont les plus complexes de sa classe, parce que n’importe quel autre problème
dans la classe peut être résolu par ceux-ci par une réduction en préservant la complexité du premier
problème.

Une façon d’étudier les automates cellulaires de ce point de vue est par le problème de décision suivant
: Décider si, étant donné une configuration, un état et un temps, la cellule à l’origine de la grille est dans
l’état donné au temps donné. Ce problème est connu sous le nom de problème Prediction, et il est
polynomial, en simulant simplement la règle des automates. Si nous trouvons un algorithme “vite” pour
Prediction (plus vite que P), alors nous pouvons obtenir des itérations d’automates beaucoup plus
rapides que l’itération cellule par cellule, simplement en "prédisant" la valeur de chaque cellule. L’un des

5

premiers à étudier ce problème a été Moore [30, 31] montrant que les automates majoritaires et la vie
sans mort sont à la fois P-complets. Ils peuvent simuler des circuits logiques dans une configuration, de
sorte qu’il est possible de résoudre le problème de valeur de circuit en prédisant la valeur de la cellule de
sortie du circuit dans la configuration. Le problème de la valeur du circuit est P-Complet. Donc, même
dans le cas NC = P, il n’y aurait pas de méthode plus efficace pour calculer les itérations que l’itération
des automates. Il est également important de souligner l’automate cellulaire élémentaire 110, qui est le
seul automate élémentaire pour lequel nous savons jusqu’à présent que Prediction est P-Complet[32].

Automates cellulaires coagulants

C’est la principale famille d’automates cellulaires dans ce travail, les Automates cellulaires coagulants,
introduits dans [33]. Ce sont des automates cellulaires où l’ensemble des états est partiellement ordonné
et les cellules ne peuvent passer d’un état à un autre qu’en respectant cet ordre partiel. Cette définition
induit un nombre limité de changements par cellule, si chaque cellule peut changer jusqu’à k fois, on parle
d’automate cellulaire à k-changements.

Le nom "coagulant" vient de la propriété qu’en automate cellulaire coagulant, toute configuration se
termine asymptotiquement à un point fixe, c’est-à-dire qu’à long terme, la configuration est «coagulée».
A partir de cette propriété, nous intuitions rapidement l’irréversibilité de ces automates cellulaires. En
fait, le seul automate cellulaire coagulant réversible (ou même subjectif) est la fonction d’identité [33].

Ce comportement coagulant est observé dans des phénomènes naturels tels que la percolation Boot-
strap [34], modélisant les phénomènes physiques suivants [34] :

“Consider a pure magnetic system in which the exchange forces on a given spin

from its neighbours are barely strong enough to overcome the crystal field. The

introduction of non-magnetic impurities would then clearly have a strong effect: if

the number of magnetic neighbours is sufficiently reduced, a spin with a magnetic

moment can become non-magnetic by being forced into the singlet state.”

“Considérez un système magnétique pur dans lequel l’échange de forces sur une ro-

tation donnée à partir de son les voisins sont à peine assez forts pour surmonter le

champ de cristal. L’introduction des impuretés amagnétiques auraient alors claire-

ment un fort effet : si le nombre de voisins magnétiques est suffisamment réduit, un

spin avec un moment magnétique peut devenir amagnétique en étant forcé à l’état

de singulet.”

Ce problème peut être modélisé par un automate cellulaire coagulant avec états {0, 1} . (0 : magné-
tique, 1 : non magnétique) suivant la règle locale : f(c) = 1 si c0 = 1 , f(c) = 1 si c0 = 0 et

∑n
i=0 ci > θ

et f(c) = 1 sinon, où n est le nombre de voisins de la cellule à changer et θ est le seuil des cellules non
magnétiques nécessaire pour rendre la cellule non magnétique.

D’autres modèles sont les modèles de feux de forêt [35] ou le modèle SIR [36] de propagation de
l’infection (Susceptible, Infected and Recover and acquire immunity), mais on observe aussi d’autres
modèles théoriques qu’ils sont “coagulé” comme le modèle d’assemblage abstrait de tuiles (aTAM) [37]
ou la vie sans mort [30], où la complexité du problème Prediction a été démontrée.

Ces automates cellulaires en dimension un sont moins complexes que ceux qui ne sont pas congelés,
car Prediction est au maximum NLOGSPACE (NLOGSPACE ⊆ NC) alors que Prediction est
P-complet en général.

6

Dans cette thèse, nous étudions les automates cellulaires coagulants et montrons, à l’exception du cas
des automates cellulaires de dimension un, que malgré les limites apparentes dues au fait que les états
ne peuvent avancer et donc ne peuvent changer qu’un nombre fini de fois, ceux-ci montrent une grande
complexité, tant du point de vue de l’universalité intrinsèque que de la complexité calculatoire.

Dans le cas de l’universalité intrinsèque, nous montrons d’abord qu’il n’existe pas d’automates intrin-
sèquement universels pour les automates cellulaires coagulants selon la définition donnée dans [24, 25].
Une définition de simulation un peu plus flexible est donc nécessaire. Étant donnée la bonne définition
de la simulation, nous montrons que même dans ce contexte, il n’est pas possible de trouver un automate
cellulaire intrinsèquement universel dans la dimension un, nous passons donc à l’étude dans la dimension
2 ou plus. Pour la dimension deux, nous montrons qu’il n’est pas possible de trouver un automate cellu-
laire intrinsèquement universel avec voisinage de von Neumann pour les automates cellulaires coagulants
où les cellules peuvent changer au plus une fois, mais cela est possible avec deux changements ou plus par
cellule. Nous montrons explicitement un qui est intrinsèquement universel pour les automates cellulaires
coagulants avec deux changements et le voisinage de von Neumann. Nous explorons peu de changements,
la forme du voisinage et les dimensions pour trouver les automates cellulaires coagulants intrinsèquement
universels les plus simples.

D’autre part, pour étudier la complexité des calculs, nous avons exploré la famille des automates cel-
lulaires coagulants dans le voisinage de von Neumann, totalistiques et à deux états, sur des configurations
périodiques. Puisque les automates cellulaires coagulants atteignent toujours un point fixe dans un temps
fini, alors nous étudierons une variante de Prediction, appelée Stability, dans laquelle la question
est de savoir si une cellule de l’automate cellulaire coagulant aura la même valeur au point fixe atteint
ou non. Ce problème est P, parce que le point fixe est atteint dans un temps polynomial. Il reste donc
à voir si l’on peut faire mieux. En résolvant Stability cellule par cellule, il est possible de calculer le
point fixe atteint par l’automate coagulant en un temps polynomial ou plus rapidement si on trouve des
algorithmes plus efficaces pour Stability.

Nous avons montré que pour cette famille d’automates cellulaires, il y a des problèmes P-complets,
pour lesquels nous ne pouvons pas améliorer significativement le temps d’exécution, sauf si P = NC .
Nous avons également constaté que la plupart des automates cellulaires de cette famille ont une complexité
moindre, la stabilité est en NC, sauf dans les cas triviaux, où sa complexité est encore plus faible.

Nous terminons l’étude de la complexité des calculs en répétant l’étude précédente mais en utilisant
des schémas de mise à jour des séquences, c’est-à-dire que les cellules changent une à une suivant un
ordre préétabli. Pour trouver la complexité maximale du problème Stability dans ce cas (NP) nous
devons recourir à la troisième dimension et nous en montrons une avec cette complexité. Le problème de
savoir si les automates où Stability est P-complet dans le cas de schémas de mise à jour parallèles est
NP-complet dans le cas séquentiel est toujours ouvert.

Nous montrons donc que, sauf dans le cas de la dimension un, où il n’y a pas d’automates cellulaires
coagulants intrinsèquement universels ou où la complexité de calcul est au mieux NLOGSPACE, le reste
des automates coagulants cellulaire a une complexité élevée. Qu’il s’agisse d’automates intrinsèquement
universels ou d’automates cellulaires coagulants où le problème Stability atteint son maximum complété
avec très peu d’états et de très petits voisinages.

Les résultats précédents sont répartis dans les chapitres comme suit :

Chapter 3

Le chapitre suivant aborde les définitions élémentaires des automates cellulaires et les éléments généraux
de topologie, la théorie des graphes des systèmes dynamiques et quelques extensions de la notion habituelle

7

d’automate cellulaire. Il comprend également une section sur la complexité des calculs parallèles et séquen-
tiels, ainsi qu’une brève description des algorithmes NC qui seront utilisés dans ce travail. Ce chapitre
se termine par les définitions de la simulation standard dans les cellules et des exemples d’automates
cellulaires intrinsèquement universels.

Chapter 4

Le chapitre suivant présente le sujet des automates cellulaires coagulants. Après avoir expliqué la nature
irréversible de ces automates cellulaires du point de vue des systèmes dynamiques, il est montré que le
problème Stability dans automates cellulaires coagulants est moins complexe dans le dimension 1 que
dans les dimensions supérieures, de plus, en passant à la dimension 2, le problème atteint la complexité
informatique maximale. En outre, dans la dimension 2, il y a déjà un automate cellulaire coagulant
Turing universel. Ceci est d’abord démontré par l’encodage de machines à compteurs Turing universelles
dans un automate cellulaire coagulant. Le chapitre se termine par les propriétés des automates cellulaires
monotones coagulants et leur relation avec le schéma de mise à jour asynchrone.

Chapter 5

Notre première contribution traite d’un automate coagulant cellulaire intrinsèquement universel, en
d’autres termes, un automate cellulaire coagulant capable de simuler tout autre automate cellulaire co-
agulant, et commence par un résultat négatif : il n’y a pas de tels automates avec la définition habituelle
de la simulation, il est donc nécessaire de relâcher un peu la définition de la simulation. Maintenant,
au lieu de simuler une cellule par une macrocellule (bloc de cellules) qui ne dépend que de la cellule
simulée, nous allons simuler une cellule par une macrocellule qui dépend de la cellule simulée et son
voisinage. Etablissant la bonne notion de simulation, nous avons construit un automate cellulaire coag-
ulant intrinsèquement universel avec le voisinage de von Neumann. Les cellules peuvent changer deux
fois et fonctionner en stockant les états dans des câbles et en envoyant cette information aux voisins.
La simulation s’effectue en calculant la fonction locale à l’aide de circuits logiques. Ce résultat est le
meilleur en ce qui concerne le nombre de changements par cellule dans la dimension deux. Pour ce qui
précède, nous montrons d’abord que les automates cellulaires coagulants avec un changement et voisinage
von Neumann ne peuvent pas croiser les signaux, ce qui est possible avec deux changements. Essayer
de construire un automate cellulaire coagulant avec un seul changement qui peut simuler un autre auto-
mate cellulaire coagulant qui traverse des signaux mène à une contradiction. Cette limitation est perdue
dans la dimension trois ou plus, où l’on peut utiliser la troisième dimension pour croiser l’information.
Dans ce cas nous trouvons donc un automate cellulaire coagulant intrinsèquement universel avec un seul
changement.

De plus, en utilisant l’automate cellulaire coagulant qui active une cellule avec exactement deux voisins
actifs (règle 2 du chapitre 6), nous trouvons que notre automate celluaire coagulant universel ne possède
que deux états. Le dernier résultat de ce chapitre est une caractérisation des automates cellulaires qui
peut être simulée par un automate cellulaire coagulant. Ce sont celles que l’on peut définir comme étant
celles qui diminuent une énergie locale.

8

Chapter 6

Notre deuxième contribution est l’étude du point de vue de la complexité calculatoire du problème
Stability dans la famille des automates cellulaires totalistiques figés à deux états (actif et inactif) et
considérant deux grilles différentes : grille à cellules triangulaires (trois voisins par cellule) et grille à
cellules carrées (quatre voisins par cellule). Au total, il y a 16 règles pour la grille triangulaire et 32
règles pour la grille carrée, mais au départ nous ne considérons que les règles où les cellules inactives sont
quiescentes, laissant dans chaque cas la moitié des règles à étudier. Nous désignons cette règle par un
nombre, où chaque chiffre signifie que la règle active les cellules avec exactement ce nombre de voisins
actifs. Dans les règles de la grille triangulaire, la chose la plus complexe que nous avons trouvée était des
règles avec une complexité en NC, alors que dans la grille carrée, nous avons également trouvé des règles
P-complètes à savoir 2 et 24.

Chapter 7

Enfin, nous étudions la même famille de règles que dans le chapitre précédent, mais en considérant les
mise à jour asynchrones, où chaque cellule change à un moment différent des autres. Avec cette simple
modification du schéma de mise à jour, nous étudions le problème AsyncStability, où une cellule est
stable si pour tout schéma de mise à jour choisi, la cellule reste inactive. Nous ne trouvons ici que les
règles sont NC, à l’exception des règles 2 et 24 de la grille carrée, qui sont les règles P-complètes du
chapitre précédent, où le problème reste ouvert. En en dimension 3, c’est lorsque ces règles deviennent
NP-complètes.

Chapter 8

Le dernier chapitre conclut que malgré les limites apparentes des automates cellulaires coagulants, ils
présentent un comportement très intéressant. Si nous considérons le voisinage de von Neumann dans la
dimension deux, avec deux états, nous ne pouvons trouver qu’un automate cellulaire coagulant P-complet,
mais si nous permettons plus de ceux-ci, mais seulement deux changements, nous obtenons un automate
cellulaire coagulant, intrinsèquement universel. La question reste ouverte de savoir s’il est possible de le
faire avec seulement trois états (le nombre minimum de cellules pour obtenir deux changements), ce qui
est déjà possible dans des dimensions supérieures avec seulement deux cellules.

9

10

Chapter 2

Introduction

Cellular automata

During the 40’s John von Neumann in his search for a theoretical system capable of modeling natural
auto-repoductive systems follows the advice of Stanislaw Ulam and decides to study a local dynamic
system, discreet and synchronous that we now know as cellular automata. It consists of a regular network,
generally a d dimensional grid, where each cell has a finite number of possible states associated with it.
These cells change states simultaneously according to a rule that depends on the states of neighbors cells
and that is the same for all the cells. The more used neighbors in dimension one are:

• the first neighbors neighborhood, it consists in the center cell, the left cell and the right cell; and

• the one-way neighborhood, it consists in the center cell and the left cell or the right cell.

and in dimension two they are:

• the von Neumann neighborhood, it consists in the center cell, the north cell, south cell, east cell
and west cell; and

• the Moore neighborhood, it consists in von Neumann neighborhood adding the north-east cell,
north-west , south-east cell and south-west cell.

It is possible to extend this previous neighborhood to higher dimensions following the base idea.

In short, the cellular automata are

• discrete in both time and space,

• homogeneous in both time and space (the way to change is the same for each cell for each time),

• local and synchronous in its interactions.

Thus we obtain dynamical systems that show a very complex behavior from very simple rules. The
most simple example is the family of elementary cellular automata. This is the family of cellular automata
in dimension one, two states and first neighbors neighborhood and each cellular automata in this family

11

is represented by the number
7∑

i=0

f(JiK)2i, where f is the three neighbors rule and JiK is the three digits

binary codification of i, from J0K = 000 to J7K = 111. This rules are 256, which 88 are inequivalent.

From there are studied the rule 110 as a rule able to simulate any computer machine, the rule 184
simulating a traffic flow and the rule 30 as a rule with a chaotic behavior.

Thus, cellular automata have been studied from many points of view: as an environment for the
physical, chemical, social phenomena among others, as discrete dynamic systems, as model of computation
or simply for fun.

About fun with cellular automata, the most explored one in dimension two is the Game of Life [5],
introduced by John H. Conway in 1970. This is a cellular automata defined on the two-dimensional grid
with two state for the cells ({0, 1} or {die, live}), where each cell considers its Moore neighborhood and
the following rule for each cell

• Any live cell with fewer than two live neighbors dies, as if by underpopulation.

• Any live cell with two or three live neighbors lives on to the next generation.

• Any live cell with more than three live neighbors dies, as if by overpopulation.

• Any dead cell with exactly three live neighbors becomes a live cell, as if by reproduction.

This simple rule shows a very complex behavior, as example we can find a finite set of live cells
moving on the plane called Gliders, others with a periodical behavior celled Pulsars and others are able
to reproducing universal computation.

Modeling

The cellular automata as model of the real world shares, by definition, important properties with the
classical physical laws:

• the rules, in the same way that the physical laws, are uniform in time and spaces, i.e. no matter
the coordinates of a the cell on the grid the rule is the same,

• is defined by a regular network, analogously to the physical laws are defined uniformly on the space.

Also there is cellular automata with others interesting physical properties, there is cellular automata
where its behavior is reversible, i.e. is an invertible cellular automata and the inverse is a cellular automata
too. The HPP model [6, 7] for the initials of the authors last name: Hardy, Pomeau and de Pazzis is
a very good example of a reversible cellular automaton. This is a model for gas in microscopic level,
where each particle in the gas is represented by a arrow representing the particle direction and it is in a
cell on a two-dimensional grid. Each cell can only contain a maximum of one particle for each direction,
i.e., contain a total of between zero and four particles and optionally we add wall-cells to contain the
particles. The following rules also govern the model:

• A single particle moves in a fixed direction until it experiences a collision.

• Two particles experiencing a head-on collision are deflected perpendicularly.

• Two particles experience a collision which isn’t head-on simply pass through each other and continue
in the same direction.

12

• When a particles collides with the edges of a lattice it can rebound.

Here we can obtain a inverse cellular automata moving the particles in reverse direction.

Other important property of reversible cellular automata is their hardware implementation, this may
– theoretically – be more energy efficient than the implementations of irreversible systems used today.
Following the Landauer’s principle [8] the minimum dissipation energy for erasure of one bit of informa-
tion at absolute temperature T is at least kT ln 2 Joule of energy, where k is the Bolzmann’s constant.
Reversible computation has been proposed as an alternative where no bits need to be erased, hence
avoiding the kT ln 2 lower bound on the energy dissipation per bit.

Another class of cellular automata is the conserving cellular automata, this satisfies that there is a
function from the states to real numbers, called additive quantity, and for any configuration where the
addition of the additive quantity of its state is a number and this number not changes after to apply the
conserving cellular automaton.

This class of cellular automata is interest in physics as a source for models of particles systems ruled
by conservations laws of mass and/or energy, particularly highway traffic cellular automata (rule 184),
fluid flow, eutectic alloys, the exchange of goods between individuals, etc. and includes the HPP model,
where the additive quantity of a cell is the number of arrows in this cell.

Discrete dynamics and topology

In the cellular space we can define a metric between to configurations c and d as follow: d(c, d) = 0 if
c = d and d(c, d) = 2−min{‖z‖:cz 6=dz}, satisfying the three elemental properties of a metric: d is positive,
d(c, d) = 0 if and only if c = d, d is symmetric and d satisfies the triangular inequality.

The value d(c, d) is called distance between c and d.

Any pair of a set and a metric with this previous properties is called metric space, in particular the
cellular space is a metric space. With our definition of distance, we can characterize the cellular automata
as the continuous function commuting with the shift function in any direction, where the shift function
is the function that moves each cell one position in a direction.

The cellular space is compact and is generated by the cylinders Cyl(c,D) a sets of all configurations
that are equals to configuration c cell by cell over the cells on D ⊆ Zd. Each cylinder is topologically
closed and open simultaneously.

By compactness any invertible cellular automata is reversible. Also any continuous function over a
compact space define a dynamical system, then a cellular automata define a dynamical system over the
configuration space.

In dynamical system is studied the limit set, the set of all configurations a t-th pre-images for any
t ∈ N. In cellular automata the limit set is a sub-shift i.e. is closed non-empty and shift invariant.

Complexity

The computational viewpoint is based on Church-Turing’s thesis, in which all “reasonable” computational
models are equivalent, i.e. everyone can compute the same things. Among these computational models
are lambda calculus [9], tag systems [10], counter machines [11] and Turing machines [12], among others,
and we say that these are computationally universal (also called Turing universal).

13

Turing universality

From the beginning, the computational universality appears in the cellular automata, as the von Neu-
mann’s auto-reproductive cellular automata [13] simulating self-reproduction in nature. Von Neumann
build a 29 state, two dimension and von Neumann neighborhood simulating a Turing machine controlling
constructor arm that build the copy of the original configuration. Researchers have looked for more and
more simple automata, with fewer states, dimensions and neighbors, that show computational universal-
ity. Smith (1971) [14] showed that 18 colors and firsts-neighbor 1-dimensional rules could be universal,
and Lindgren and Nordahl (1990) [15] constructed a 7-color firsts-neighbor universal cellular automaton,
but the most important case is Cook (2004) [16], where, simulating a tag system on the elementary cellular
automata 110, shows that two states and firsts-neighbor are enough to show computational universality.

Intrinsic universality

The idea of complexity in cellular automata given by its ability to simulate Turing machines does not
seem to be entirely practical. While Turing machines are sequential and finite computer models, cellular
automata are an extremely parallel and spatially infinite model. This is how the notion of intrinsic
universality of a cellular automata is born, which is the ability of a cellular automaton to simulate any
other cellular automata. Some examples of intrinsically universal automata are Albert and Culik’s one-
dimensional with 14 states and first neighbor neighborhoods [17], Conway’s life game [18] and Ollinger
and Richard’s one-dimensional with 4 states and first neighbor neighborhoods [19]. The last one is, as
far as we know, the cellular automata with the least states intrinsically universal in dimension 1 and first
neighbors neighborhood. Remain open to know if the rule 110 is intrinsically universal.

The study of intrinsic universality can not only be explored through the reduction of the states of
intrinsically universal automata, it is also interesting to see what additional properties we can demand
and we continue to find intrinsically universal automata. If we add conserving it is possible to find an
intrinsically universal automata that is also conservative [20].. It is not true with reversibility, because
reversible automata can only simulate reversible automata. Thus begin the study of intrinsic universal-
ity only for reversible cellular automata, where there is an intrinsically universal cellular automata for
the reversible ones [21]. Moreover, there is also one that is reversible and conservative [22] and even
conservative time-symmetric [1] (time-symmetric is a subclass of reversible cellular automata, for formal
definition and properties see [23]).

Although each of the previous authors considers his own notion of simulation, including simulating
cell by cell, cell by macro-cell, temporal scales or even space translations, this is formalized in [24, 25],
including all these cases in a single definition.

Computational complexity

Another computational aspect studied is the computational complexity, which counts the maximum
number of operations performed by a Turing machine to perform a calculation as a function of the
size of the input, i.e. the time (or number of operations) used to solve the worst case. This idea of
time measurement, along with one for space measurement, was introduced by Hartmanis and Stearns
[26]. Edmonds proposes as problems that can be efficiently calculated to those whose complexity can be
bounded by a polynomial on the size of the input, called polynomial problems or problems in P class.
Edmonds also gives an informal description for polynomial time on non-deterministic Turing machines
[27], opening one of the most important questions in computational complexity, is P = NP?, later
formalized by Cook [28] and Levin [29].

There is also a class of complexity for parallel computers with a large number of processors, called
class NC, which corresponds to the kind of problems that can be solved in poly-logarithmic time using

14

a polynomial number of processors. It is named after Nick Pippenger for his studies on circuits with
poly-logarithmic depth and polynomial number of logic gates. This is a subclass of P, i.e NC ⊆ P and
remains open to know if NC = P.

For both P and NP there is a sub-set of problems called P-completeand NP-complete respectively.
In these problems any problem in P (NP) can be reduced to it in poly-logarithmic time by using a
polynomial amount of processors (polynomial time using a processor), where reduction the problem A to
B meaning transform the inputs for A in inputs for B through a function computable in NC (P) time
such that a input of A is accepted if and only if the transformation of this input is accepted by B. So if a
P-complete (NP-complete) problem is also NC (P), then both classes collapse i.e., P = NC (P = NP).

Assuming that P 6= NP, then the problems NP-complete can be solved “efficiently” in a sequential
machine . Analogously, it is widely believed that P 6= NC i.e. there is polynomial problems that cannot
exponentially improve their performance by adding a reasonable number of processors (polynomial), it
meaning, they cannot be “efficiently” parallelized, then the problems P-complete are the candidates to
be the problems not parallelized. The complete problems are the most complex in its class, because any
other problem in the class can be solved by these through a reduction preserving the complexity of the
first problem.

One way to study at cellular automata for this point of view is through the following decision problem:
to decide if, given a configuration, a state and a time, the cell in the origin of the grid is in given state
at the given time. This problem is known as the Prediction problem, and is polynomial, by simply
simulating the automata rule. If we find an “fast” algorithm for Prediction (faster that P), then we
can get automata iterations much faster than iterating cell by cell, simply ’predicting’ the value of each
cell. One of the first to study this problem was Moore [30, 31] Showing that the problem of knowing if
a cell is going to change is P-complete for majority automata and life without death. They can simulate
logic circuits in a configuration, so it is possible to solve the circuit value problem by predicting the value
of the circuit output cell in the configuration. The circuit value problem is P-complete. Thus, even if
that NC = P, there would be no more efficient way to calculate iterations than iterate the automata. It
is also important to mention the elementary cellular automaton 110, which is the only elementary one in
which it is known until now that Prediction is P-Complete [32].

Freezing cellular automata

This is the main family of cellular automata in this work, the freezing cellular automata, introduced
in [33]. These are cellular automata where the set of states is partially ordered and the cells can only pass
from one state to another minor respecting this partial order. This definition induces a limited number
of changes per cell, if each cell can change to as much as k times it is known as a cellular automaton with
k-changes.

The name “freezing” comes from the property that in freezing cellular automata any configuration
ends asymptomatically at a fixed point, i.e. in the long term the configuration is “freezed”. From this
property we quickly intuit the irreversibility of these cellular automata. In fact, the only reversible (or
even surjective) freezing cellular automata is the identity map [33].

This freezing behavior is seen in natural phenomena such as Bootstrap percolation [34], modeling the
following physical phenomena:

“Consider a pure magnetic system in which the exchange forces on a given spin
from its neighbours are barely strong enough to overcome the crystal field. The
introduction of non-magnetic impurities would then clearly have a strong effect: if
the number of magnetic neighbours is sufficiently reduced, a spin with a magnetic
moment can become non-magnetic by being forced into the singlet state.”

15

This problem can be modeled by a freezing cellular automata with states {0, 1} (0: magnetic, 1:
non-magnetic) following local rule: f(c) = 1 if c0 = 1, f(c) = 1 if c0 = 0 and

∑n
i=0 ci > θ and f(c) = 1

otherwise, where n is the number of neighbors of the cell to changes and θ is the threshold of non-magnetic
cells necessary to make the cell non-magnetic.

Other models are forest fire models [35] or the SIR model [36] of infection propagation (Susceptible,
Infected and Recover and acquire immunity), but it is also observed other theoretical models that they
are “freezing” such as Abstract Tile Assembly Model (aTAM) [37] or the life without death [30], where
the completeness of the Prediction problem was shown.

This cellular automata in dimension one are less complex that the non-freezing ones, because Pre-

diction is at most NLOGSPACE (NLOGSPACE⊆ NC) while Prediction is P-complete in general
case.

In this thesis we study the freezing cellular automatons and show that, except for the case of the
cellular automatons of dimension one, in spite of the apparent limitations due to the fact that states can
only advance and therefore can only change a finite number of times, these show a high complexity, both
from the point of view of intrinsic universality and computational complexity.

In the case of intrinsic universality, we first show that there is not a intrinsically universal automata for
the freezing cellular automata using the definition given in [24, 25], so a slightly more flexible simulation
definition is necessary. Given the good definition of simulation, we show that even in this context it is
not possible to find an intrinsically universal cellular automata in dimension one, so we move on to study
in dimension two or higher. For dimension two we show that it is not possible to find an intrinsically
universal cellular automata with von Neumann neighborhood for the freezing cellular automata where
cells can change at most once, but this is possible with two or more changes per cell. We show explicitly
one that is intrinsically universal for freezer cellular automata with two changes and von Neumann
neighborhood. We explore few changes, neighborhood shape and dimensions to find the most simple
intrinsically universal freezer cellular automata.

On the other hand, to study computational complexity, we explored the family of cellular freezing
automata in the vicinity of von Neumann, totalistic and two-state on periodic configurations. Since
freezing cellular automatons always reach a fixed point in a finite time, then we will study a variant of
Prediction, called Stability, in which the question is whether a cell of the freezing cellular automaton
will have the same value at the reached fixed point or not. This problem is P, because the fixed point is
reached in a polynomial time. So it remains to see if there is can be done better. By solving Stability

cell by cell it is possible to calculate the fixed point reached by the freezing automaton in a polynomial
time or faster if we find more efficient algorithms for Stability.

We showed that for this family of cellular automata there are P-complete problems, where we cannot
significantly improve the execution time, except that P = NC. We also found that most of the cellular
automata of this family have a lower complexity, stability is in NC, except in trivial cases, where its
complexity is even lower.

We finish the study of computational complexity repeating previous study but using sequences update
schemes, i.e. the cells change one by one following a pre-established order. To find the maximum
complexity of the problem Stability in this case (NP) we must resort to the third dimension and we
show one with this complexity. It is still open the problem of knowing if the automata where Stability

is P-complete in the case of parallel updates is NP-complete in the sequential case.

So we show that, except for the case of dimension one, where there is no intrinsically universal freezing
cellular automata or computational complexity is at best NLOGSPACE, the rest of the freezing cellular
automata has a high complexity. Whether there is an intrinsically universal automata or a freezing cellular
automata where the Stability problem reaches its maximum complemented with very few states and
very small neighborhoods.

The previous results are distributed in the chapters as follows:

16

Chapter 3

Next chapter deals with the elementary definitions of cellular automata and general elements on topology,
dynamic systems graph theory and some extensions of the usual notion of cellular automata. It also
includes a section on computational complexity for both parallel and sequential calculations, as well as a
brief description of the NC algorithms that will be used throughout this work. This chapter closes with
the definitions of standard simulation in cells and examples of intrinsically universal cellular automata.

Chapter 4

The following chapter presents the topic of the freezing cellular automata. After explaining the irreversible
nature of these cellular automata from the point of view of dynamic systems, it is showed that Stability

problem in freezing cellular automata is less complex in dimension one than in higher dimensions, more-
over, passing to dimension two the Stability problem reaches the maximum computational complexity.
Moreover, in dimension 2 there is already freezing cellular automaton Turing universal. This is shown
first by the universal Turing of the counting machines and encoding this in a freezing cellular automata.
The chapter ends with the properties of monotones freezing cellular automata and their relationship to
asynchronous updating scheme.

Chapter 5

Our first contribution deals with an intrinsically universal freezing cellular automata, in other words, a
freezing cellular automata capable of simulating any other freezing cellular automata, and begins with
a negative result: there is no such automata with the usual definition of simulation, so it is necessary
to relax a little the definition of simulation. Now instead of simulating a cell by a macro-cell (block of
cells) that only depends on the simulated cell, we will simulate a cell by a macro-cell that depends on the
simulated cell and its neighborhood. Established the good notion of simulation, we built an intrinsically
universal freezing cellular automaton with von Neumann neighborhood. Cells can change twice and work
by storing the states in cables and sending that information to the neighbors. The simulation is performed
by calculating the local function through logical circuits. This result is the best with respect to the number
of changes per cell in dimension two. For the above, we first show that freezing cellular automatons with
a von Neumann neighborhood and one change cannot cross signals, which is possible with two changes.
Trying to build a freezing cellular automata with a one change that can simulate a freezing cellular
automata crossing signals leads to a contradiction. This limitation is lost in dimension three or higher,
where we can use the third dimension to make crosses. So we find an intrinsically universal freezing
cellular automaton with only one change. Moreover, using the freezing cellular automaton that activates
a cell with exactly two active neighbors (rule 2 of the chapter 6) we find our intrinsically universal freezing
cellular automaton has only two states. The last result of this chapter is a characterization of the cellular
automata that can be simulated by a freezing cellular automata. These are those that can be defined as
decreasing local energy.

Chapter 6

Our second contribution is the study from the point of view of the computational complexity of the
Stability problem in the family of freezing totalistic cellular automata with two states (active and
inactive) and considering two different grids: grid with triangular cells (three neighbors per cell) and grid
with square cells (four neighbors per cell). In total there are 16 rules for the triangular grid and 32 rules

17

for the square grid, but initially we only consider the rules where the inactive cells are quiescent, leaving
in each case half of the rules for study. We denote this rule by a number, where each digit means that
the rule activates the cells with exactly that number of active neighbors. In the rules on the triangular
grid the most complex thing we found were rules with complexity in NC, while in the square grid we
also found P-complete rules namely 2 and 24.

Chapter 7

Finally we study the same family of rules as in the previous chapter, but considering asynchronous rules,
where each cell changes at a different time than the others. With this simple modification in the updating
scheme we study the AsyncStability problem, where a cell is stable if for any updating scheme chosen
the cell remains inactive. Here we only find NC rules, except rules 2 and 24 in the square grid, which are
the P-complete rules of the previous chapter, where the problem remain open. In dimension 3 is when
these rules become NP-complete.

Chapter 8

The last chapter concludes that despite the apparent limitations of freezing cellular automata they show
a very interesting behavior. If we consider the von Neumann neighborhood in dimension two, with two
states we can only find a freezing cellular automata P-complete, but if we allow more of these, but only
two changes, we get an automata cellular freezing intrinsically universal. It remains open the question if
it is possible to do this with only three states (the minimum number of cell to get two change), which is
already possible to do in higher dimensions with only two cells.

18

Chapter 3

Preliminaries

In the present chapter we give the elementary definitions in the framework of the study of cellular
automata and the notation that we have chosen for the development of this thesis. There are also
definitions and results of related study topics, for example elements of graph theory or computational
complexity, which are used throughout this work. All this accompanied by examples that facilitate the
understanding of these concepts.

3.1 Basic Notions

Let us first recall the classical definition of cellular automata (CA).

Definition 3.1.1. A cellular automaton F of dimension d and state set Q is a tuple F = (d,Q,N, f),
where d, its dimension is an integer, Q, its set of states is a finite set, N (Zd is its finite neighborhood,
and f : QN → Q is its local function.

It induces a global function, which we also note F , acting on the set of configurations QZ
d

as follows:

∀c ∈ QZ
d

, ∀z ∈ Z
d, F (c)z = f(c|N(z))

where N(z) denotes the set of all neighbors of z, i.e., N(z) = {z + v : v ∈ N}.

Definition 3.1.2. Let N ⊆ Zd be a finite set. We call a pattern or finite configuration to any function
c : N → Q. The patterns are simililar to configuration, but they are defined on a finite part of the space.

We define VNd = {(x1, ..., xd) ∈ Zd : |x1| + ... + |xd| ≤ 1} as the von Neumann neighborhood in
dimension d. We also use the following neighborhoods in dimension 2: MN = {(x, y) ∈ Z2 : x, y ∈
{0, 1,−1}} is the Moore Neighborhood ; LN = {(0, 0), (1, 0), (0, 1)} is the L-neighborhood.

In Figure 3.1 we show this neighborhoods in dimension 2.

19

3.1. BASIC NOTIONS

(a) Von Neumann neighborhood. (b) Moore neighborhood. (c) L neighborhood.

Figure 3.1: Example of different neighborhoods on Z2. The cells inside of the red line are the neighborhood
and the cells with dashed lines are the center cell of the neighborhood.

A configuration c is periodic with period n if

∀z ∈ Z
d, ∀i = 1, ..., d : cz = cz+nei ,

meaning that the configuration c is a periodical repetition of the hypercube [0, ..., n− 1]d. In dimension
2 this is equivalent to work on the torus. We will define [k] = {1, 2, 3, ..., k}. Given a finite configuration
x ∈ Q[0,...,n−1]d , c(x) is the periodic configuration with period n such that x = c(x)|[0,...,n−1]d .

Example 3.1.1 (Game of life). The Game of Life (GoL) is probably the most famous cellular automaton.
It was created by the British mathematician John Conway in 1970 [5] and it is a CA on the bi-dimensional
grid with states {0, 1} or {dead, alive} and Moore neighborhood, where a dead cell becomes alive if it
has exactly 3 living neighbors and cell remains alive if it has 2 or 3 living neighbors alive. Formally
GoL = (2, {0, 1},MN, f), where

f(c) =

{

1 if (c0 = 0 ∧
∑

w∈M cw = 3) ∨ (c0 = 1 ∧
∑

w∈M cw ∈ {2, 3})

0 otherwise.

Some configuration of finite alive cells that can be observed in the GoL are:

the glider , 5 alive cells configuration that reappears shifted one cell at direction north-est after 4
iterations, see Figure 3.2, and

the pulsar , 48 alive cells configuration that reappears in the same position after 3 iterations, see Figure
3.3.

(a) Initial configura-
tion.

(b) Step 1. (c) Step 2. (d) Step 3. (e) Step 4.

Figure 3.2: A glider. After 4 iterations, the initial pattern appears again but shifted one cell in the
northeast direction.

20

3.1. BASIC NOTIONS

(a) Initial configuration. (b) Step 1. (c) Step 2. (d) Step 3.

Figure 3.3: A pulsar. After 3 iterations, the initial pattern appears again in its initial position.

A simple and very studied family of CA is the family of elementary cellular automata, the one dimen-
sional CA with two states and von Neumann neighborhood.

Definition 3.1.3. The elementary cellular automata, Ei = (1, {0, 1}, (−1, 0, 1), fi) are CA with 2 states
and the von Neumann neighborhood (three cells). We have 23 = 8 possible configurations with 3 cells,
then there are 8 possible inputs for a local function with this neighborhood. For each possible neighbor-
hood (n2, n1, n0) ∈ {0, 1}

3, we can associate a number k = n22
2 + n12

1 + n02
0 ∈ {0, ..., 7}. Then we can

represent each local function fi : {0, 1}3 → {0, 1} a table, where in each row appear NK and fi(Nk).

Also we can denote this rules by a number i given by
∑7

k=0 f(Nk)2
k.

Example 3.1.2. The elementary cellular automata 110 or simply rule 110 (110 = 0 · 27 +1 · 26 +1 · 25 +
0 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 0 · 20), is given by the table 3.1.

Neighborhood(N) f30(N)
000 0
001 1
010 1
011 1
100 0
101 1
110 1
111 0

Table 3.1: Table of local function of elementary CA 110.

A very simple way to see the dynamic on a 1-dimensional CA is in its space-time diagram. Given a
configuration c, its space-time diagram is a configuration in QZ×Nwhere in the cell at coordinate (z, t) is
the state F t(c)z. We define Diagr(F) as the set of all space-time diagram of the CA F .

A space-time diagram for a random initial configuration for the rule 110 is given in Figure 3.4.

21

3.1. BASIC NOTIONS

T
im

e

Figure 3.4: Example of space-time diagram for the rule 110. In this image the time is top to bottom.

We generalize the space-time diagram for a d-dimensional configuration c as a (d + 1)-dimensional
configuration where in its coordinate (z, t) is in the state F t(c)z, z ∈ Zd.

In several cellular automata from the literature [38, 36, 34, 39, 30], there is a global bound on the
number of times a cell can change: they are bounded-change cellular automata. This property is found in
the bootstrap percolation [34], as well as in other well-known examples such as “Life without death” [30]
and various models of propagation phenomena like in [36].

Moreover, in all those examples, the bound is defined through an explicit order on states. Such
an automaton is a freezing cellular automaton. This freezing-order on state can also be used to define
interesting subclasses (see Section 5.3).

The main subject in this thesis is to study the family of freezing cellular automata.

Definition 3.1.4 (Freezing Cellular Automaton [33]). A CA F is a ≺-freezing CA, for some (partial)
order ≺ on states, if F (c)z ≺ cz for any configuration c and any cell z. A CA is freezing if it is ≺-freezing
for some order.

Definition 3.1.5. We say that a cellular automaton is k-change if any cell in any orbit changes at most
k times its state.

Example 3.1.3 ([33]). The one dimensional cellular automaton given by the following local rule f :
{0, 1, 2}2 → {0, 1, 2}is a 2-change cellular automata non-freezing:

f(a, b) =

{

1 if b = 0

2 otherwise.

because both 2 → 1 and 1 → 2 are possible state changes in one cell, but after 2 steps all cells are in
state 2.

Every freezing CA is k-change for some k (at most the depth of its freezing order, but possibly less,
as in [35], where a cell can be unburnable [U], not currently ignited[N], ignited[I] or consumed [C], but
the only possible transitions are N → I → C and U). For V (Zd, we note FCAV for the class of
d-dimensional freezing cellular automata with neighborhood V . Finally, we set FCAd =

⋃

V(Zd FCAV

and omit d when context makes it clear.

Example 3.1.4 (Life without death). The life without death (LWoD) is the freezing version of the
game of life, where alive cells remains in this state forever. Formally life without death is defined as
LWoD = (2, {0, 1},MN, f), where

f(c) =

{

1 if c1 = 1 ∨
∑

w∈M cw = 3)

0 otherwise.

22

3.1. BASIC NOTIONS

This meaning that a cell is born when it has exactly 3 alive neighbors cells. Some patterns that can
be observed in the Game of Life are:

• the Chaotic lava, cells growing indefinitely connected in at less 2 directions like a stain, see Figure
3.5, and

• the ladders, cells growing indefinitely in one direction, see Figure 3.6.

(a) Initial configuration. (b) Step 100.

Figure 3.5: A lava. Alive cells grow in all directions.

(a) Initial configuration. (b) Step 51.

Figure 3.6: A ladder. After 51 iterations, an 8-cell-wide signal begins to grow to the right.

Another family of CA that we will study is the monotone cellular automata. Monotony in cellular
automata is analogous to the monotony in functions of real numbers, when we apply a monotone function
over two points, the first one is less or equal that the second one, then the image of the first one is less or
equal that the image of the second one. These CA include the majority vote CA [31] and the bootstrap
percolation model [34].

Definition 3.1.6 (Monotone Cellular Automaton). A CA F is a ≺-monotone CA, for some (partial)
order ≺ on configurations, if c ≺ c′ ⇒ F (c) ≺ F (c′) for any configurations c and c′. A CA is monotone
if it is ≺-monotone for some order.

Example 3.1.5 (Majority vote CA). The majority vote CA is a CA with states 0 and 1 and a cell
changes to 1 if the majority of its neighbors is in state 1, i.e. if the number of neighbors is greater (or
equal) that the half of the size of the neighborhood. If in the previous case we do not admit the equality

23

3.1. BASIC NOTIONS

to change to 1 it is the strict majority CA, but if we admit the equality it is the non-strict majority CA.
The difference between them is that in the strict majority there are no changes in the ties.

Formally the (non-)strict majority CA is defined as (d, {0, 1}, N, f), where

f(c) =

1 if
∑

w∈N cw >
|N |

2

(

≥
|N |

2

)

0 otherwise.

The order (≺) defined in the set of states for freezing cellular automata induces a partial order for
the configurations, where a configuration c ≺ c′ if and only if for all z , cz ≺ c′z. Thus, we say that a CA
is a monotone freezing CA if it is freezing and monotone for the order in the configurations induced by
the order in the states. For example, the bootstrap percolation model is a freezing monotone CA, this is
the freezing version of the majority CA.

Definition 3.1.7 (Totalistic Cellular Automaton [40]). A CA F is a totalistic CA, if its states are
numbers and its local function depend only of the value of the center cell and the sum of its neighbors
values, i.e.

f(cN) = f

(

cθ,
∑

z∈N

cn

)

.

Note that in a totalistic CA the position of the neighbors does not matter, only the total sum. Thus,
in the case of symmetric neighborhoods, we obtain invariant rules for rotations and reflections. We can
see this symmetry in physical processes, such as Bootstrap percolation [34], where a cell changes its state
to another if the number of neighbors in the other state passes a certain threshold.

Example 3.1.6. The game of life, life without death, and Majority vote CA are totalistic CA.

3.1.1 Some terminology of topology

We will give the basic notions of topology on the configuration space. Along with these we include classic
results on the topological aspects of cellular automata.

It is possible to define a metric on the set of configurations and with this look at the CA as functions
in a metric space. In particular, we will show that CAs are continuous functions [41] and with this we
can use the analysis tools to obtain interesting properties.

Definition 3.1.8. Let Q be a finite set. We define the distance function d between two configurations
x, y ∈ QZ

d

as

d : QZ
d

×QZ
d

−→ R

(x, y) 7−→ d(x, y) =

{
0 if x = y
2−min{‖i‖: xi 6=yi} if x 6= y

Proposition 3.1.1.
(

QZ
d

, d
)

is a metric space.

Proof. We must prove the following properties:

a) ∀ x, y ∈ QZ
d

, (d(x, y) ≥ 0) ∧ (d(x, y) = 0 ⇔ x = y).

b) ∀ x, y ∈ QZ
d

, d(x, y) = d(y, x).

c) ∀ x, y, z ∈ QZ
d

, d(x, z) ≤ d(x, y) + d(y, z).

24

3.1. BASIC NOTIONS

Indeed,

a) It is true by definition of d.

b) Let x, y ∈ QZ
d

.

• If d(x, y) = 0, then x = y, given x = y ⇐⇒ y = x, then d(y, x) = 0.

• If d(x, y) 6= 0, then ∃n ∈ N : n = min{|i| : xi 6= yi} = min{|i| : yi 6= xi}, thus d(x, y) = d(y, x).

c) Let x, y, z ∈ QZ
d

and d(x, y) = 2−i, d(y, z) = 2−j , then:

|k| < i =⇒ xk = yk

|k| < j =⇒ yk = zk

Without loss of generality let us suppose that i ≤ j, then |k| ≤ i =⇒ |k| ≤ j then |k| ≤ i =⇒ xk =
yk = zk. Finally,

⇐⇒ min{|k| : xk 6= zk} ≥ i

⇐⇒ −min{|k| : xk 6= zk} ≤ −i

⇐⇒ 2−min{|k|:xk=zk} ≤ 2−i

⇐⇒ d(x, z) ≤ d(x, y)

=⇒ d(x, z) ≤ d(x, y) + d(y, z)

Note that, from the proof of property c) we see that this is a little more general; in fact the property
we have is

∀ x, y, z ∈ QZ
d

, d(x, z) ≤ min{d(x, y), d(y, z)}

The metrics with this property are known as ultrametrics.

Definition 3.1.9. The ball centered in x and with radius r is the set B(x, r) = {y ∈ QZ
d

: d(x, y) < r}.

The ball centered in x and with radius r is the set of all configurationS equal to x in a hyper-cube
centered in θ and with width 2r + 1.

Definition 3.1.10. Given a set of configurations U ⊆ QZ
d

, we say that x ∈ U is an interior point if
∃r > 0 : B(x, r) (U .

If every point in U is an interior point we say that U is a open set. If the complement of U is an open
set we say that U is closed.

Proposition 3.1.2. The open sets of QZ
d

satisfy the following properties:

• ∅ and QZ
d

are open.

• the arbitrary union of open sets is an open set.

• the intersection of finitely many opens is an open set.

In general, given a set X and T ⊆ P(X), where P(X) is the power set of X, we say that (X, T) is a
topological space if it satisfies the previous properties. The elements of T are called open set.

25

3.1. BASIC NOTIONS

Definition 3.1.11. A sequence is any (x1, x2, ..., xn, ...), where ∀i ∈ N : xi ∈ QZ
d

. We denote a sequence
by (xn)n∈N.

A subsequence of (xn)n∈N is a sequence (xk1 , xk2 , ..., xkn , ...), where k1, ..., kn, ... is the set of index
satisfying ki < ki+1. We denote a subsequence of (xn)n∈N indexed by k as (xkn)n∈N.

Definition 3.1.12. Given a sequence by (xn)n∈N, we say that (xn)n∈N converges to x, denoted xn → x
or limn→∞ xn = x if

∀ε > 0, ∃n0 ∈ N, ∀n > n0 : d(xn, x) < ε.

Definition 3.1.13. A continuous function is any function F : QZ
d

→ QZ
d

such that for any sequence
xn → x satisfies

lim
n→∞

F (xn) = F (x).

The following theorem allows us to relate the CA to the continuity in QZ
d

.

Theorem 3.1.3 (Curtis–Hedlund–Lyndon [41]). (d, f,Q,N) is a cellular automaton if and only if F is
continuous in

(
QZ, d

)
and ∀i = 1, ..., d : F ◦ σi = σi ◦ F , where σi(x)z = xz−ei is a shift function and ei

is the vector with 1 at possition i and 0 otherwise.

Definition 3.1.14 (Compactness). A K ⊆ QZ
d

is compact if and only if every sequence (xn)n∈N on K
has a subsequence that converges to an element of K.

Theorem 3.1.4. (QZ
l

, d) is a compact metric space, i.e. is a compact set under the metric d.

Proof. Let (xn)n∈N be a sequence in QZ
d

and r = 1. Now, we have infinites patterns xn[−1,1]d of finite
values, so by pigeonhole principle at least there is one pattern that is repeated infinitely. Let k1 the first
index such that xk1

[−1,1]d
is this pattern and let x[−1,1]d be the pattern. Note that d(xk1

[−1,1]d
, x) ≤ 2−(r+1)

for any x configuration containig the pattern x[−1,1]d .

Inductively, we build a subsequence (xkr)r∈N and a sequence of patterns x[−r,r]d ∈ Q
[−r,r]d where for

all r:

xkn

[−r,r]d
= x[−r,r]d ,

then d(xkr

[−r,r]d
, x) ≤ 2−(r+1) for any x configuration containig the pattern x[−r,r]d . Let x be a configuration

containg all the patterns x[−r,r]d , then d(xkr

[−r,r]d
, x) ≤ 2−(r+1). Finally, d(xkr

[−r,r]d
, x)→ 0 then xkr → x.

In topology the compact sets have very nice properties, in particular we will use the following, called
Cantor’s intersection theorem.

Theorem 3.1.5 (Cantor’s intersection theorem). Any decreasing nested sequence of non-empty compact

subsets of QZ
d

has a non-empty intersection, i.e., supposing (Cn)n∈N is a sequence of non-empty, compact

subsets of QZ
d

satisfying:

C0 ⊇ C1 ⊇ · · ·Ck ⊇ Ck+1 · · ·

it follows that

⋂

k

Ck 6= ∅.

26

3.1. BASIC NOTIONS

3.1.2 Some terminology of dynamical systems

The dynamical system is a mathematical formalization for any fixed "rule" which describes the time
dependence of a point’s position in its ambient space. In our case we will consider the configurations as
point being changed over time by the cellular automaton. We are interested to study the behavior that
remains in the time, as the points that never change, called fixed points and the points that are reached
when indeterminately iterate the cellular automaton, called limit configuration.

Definition 3.1.15. Given a cellular automaton F , an orbit of a point c is the sequence (F t(c))t∈N

When we see a space-time diagram of a cellular automaton we see the orbit of the configuration from
below, where the base of the diagram is the initial configuration, upward, where we see the time advance.

Definition 3.1.16. A fixed point of F is a configuration c such that F (c) = c, i.e a configuration such
that its orbit is a singleton.

We see the fixed point in the space-time diagram of a cellular automata as a row repeated infinitely.

Example 3.1.7. The homogeneous configuration with only 0 is a fixed point for the game of life, life
without death, and Majority vote CA. A configuration with cells in state 1 surrounded by cells in state
0 is a fixed point for an automata that simulates Bootstrap percolation.

Definition 3.1.17. A limit configuration of c for F , denoted F∞(c) is the limit of the orbits of c, i.e.
limt→∞ F t(c) when this limit exists.

Example 3.1.8. For the Game of life, the limit configuration of a configuration with a single glider
is the homogeneous configuration with only 0, but a configuration with a pulsar does not have a limit
configuration, because if c is the configuration with a single pulsar, then (F 3t)t∈N converges to Figure
3.3a and (F 3t+1)t∈N converges to Figure 3.3b.

Proposition 3.1.6. Given a cellular automata F and a configuration c, if there is the limit configuration
F∞(c), then it is a fixed point.

With the orbit and limit configuration we study the long-term behavior of cellular automata. In this
context the limit set is the set that contains the configuration with an “infinite” behavior.

Definition 3.1.18. Given a cellular automaton F , the limit set of F , denoted ΩF is the set of configu-
ration c such that for any t, c has a t-th pre-image, i.e. F−t(c) is not empty. Formally

ΩF =
∞⋂

t=0

F t(QZ
d

).

Example 3.1.9. The fixed point always are in the limit set.

Example 3.1.10. In reversible cellular automata the limit set is QZ
d

.

3.1.3 Some graph terminology

In the study of cellular automata properties, it is very useful to study the relationship between neighboring
cells and the structure they form. These structures can be seen from the point of view of graph theory.
A graph is simply a finite set of points (called vertices) some of them connected in pairs by lines (called
edges). For example, a graph can be a group of people and two people are connected if they are friends.
Another more related example would be cells in a grid and two cells are connected when being neighbors.

We represent the vertices of a graph as disks and an edge between two vertices as a line connecting
them as Figure 3.7.

27

3.1. BASIC NOTIONS

(a) Example of a graph. (b) Example of a graph from a torus grid with von
Neumann neighborhood.

Figure 3.7: Example of graphs.

A formal definition is the following:

Definition 3.1.19. A graph is a pair G = (V,E) comprising a finite set V of vertices together with a
set E of edges, which are 2-element subsets of V .

Definition 3.1.20. Given a graph G = (V,E) the neighborhood of v ∈ V is the set N(v) = {u ∈ V :
{u, v} ∈ E} ∪ {v}, i.e. it is the set of all vertices connected with v by a single edge also by itself. The
degree of v is the number of adjacent cells of v or the neighborhood of v, denoted by δ(v) = |N(v)| − 1
and we maximum degree of G is ∆(G) = maxv∈V δ(v).

When the notation is confusing, we will add a sub-index indicating the graph on which we are calcu-
lating, e.g NG(v) is the set of neighbors of v in G.

Note that we do not consider that v is connected with v, but v is a neighbor to himself.

For a set of cells S ⊆ V , the subgraph induced by S denoted by G[S] = (S,E′) is the graph defined
with vertex set S, where two vertices of S are adjacent if the corresponding sites are neighbors for the
neighborhood, i.e. E = {u, v ∈ S : {u, v} ∈ E}. If c ∈ QV and q ∈ Q, we define G[q] = G[{v ∈ V : cv =
q}], meaning, G[q] is the subgraph induced by the vertices that are in state q in c.

For a graph G = (V,E), a sequence of vertices P = (v1, . . . , vk) is called a (v1− vk)- path if {vi, vi+1}
is an edge of G, for each i ∈ [k − 1]. Two (u− v)-paths P1, P2 are called disjoint if these only share the
vertices u and v. A (u−u)-path does not repeat vertices except u as first and last vertex is called a cycle.

Definition 3.1.21. A graph G is called k-connected if for every pair of distinct vertices u, v ∈ V (G), G
contains at least k two-by-two disjoint (u− v)-paths.

A 1-connected graph is simply called connected, a 2-connected graph is called bi-connected and a 3-
connected graph is called tri-connected. A maximal set of vertices of a graph G that induces a k-connected
subgraph is called a k-connected component of G.

28

3.1. BASIC NOTIONS

3.1.4 Some generalizations of cellular automata

Asynchronous cellular automata

When we study cellular automata, this is defined over a regular grid divided in cells, each cell having
a state which evolves according to the states of their neighbors in the grid in synchronous time-steps.
For some applications on real models as biological or social models, the hypothesis that each cell has a
clock capable of synchronizing the interactions between the cells is somehow unrealistic. A dynamical
system that considers this difficulty is the asynchronous cellular automata, where cells evolve one-by-one,
following an order called updating scheme.

Definition 3.1.22. An Asynchronous Cellular Automaton (ACA) F = (d,Q,N, f), with states Q,
neighborhood N ⊆ Zd and local function f : QN → Q, defines a global function F : QZ

d

→ QZ
d

, where
the new states of the configuration c are defined by the asynchronous application cell by cell of the local
function on c(x) following the order given by σ : N→ Zd. Formally the t-th asynchronous iteration of c
is given by,

Fσ(0)(c) = c

Fσ(t)(c)z =

{

f(F σ(t−1)(c)N(z)) if z = σ(t)

Fσ(t−1)(c)z otherwise,

where σ : N→ Zd, called updating scheme, is a function.

This definition means that in each time t we update only the cell σ(t) and the other cells remains in
their previous states.

If c is a periodic configuration with period T , we define σ : N→ [T]d, where for all a, b ∈ [T], a+ b is
computed modulo T . Thus, in dimension two this is equivalent to work on the torus.

An asynchronous cellular automaton is called freezing, monotone and/or totalistic if the CA with the
same local function is monotone, totalistic and/or freezing.

Triangular grid

Another important generalization of CA is the shape of the cells on the grid. In the plane we are using a
grid obtained by the regular tessellation of the plane by square cells, as in Figure 3.8b, but it is possible
to define CA over other regular tessellations. In this work we will also consider plane tessellations by
equilateral triangles, as in Figure 3.8a, which we will call a triangular grid.

u

p

qr

n

(a) Triangular grid, with its neighbors p, q and r.

u

p

q

r

s

n

(b) Square grid. Neighbors p, q, r and s.

Figure 3.8: Triangular (a) and square (b) grids with the von Neumann neighborhood of a cell u.

29

3.1. BASIC NOTIONS

Definition 3.1.23. In the triangular grid the von Neumann neighborhood of a cell u is the set of its
three adjacent cells and itself.

Definition 3.1.24. We define T (n) as the set of cells in the diamond of n cells per edge, as in Figure
3.8a. Let x ∈ QT (n) by a finite pattern as in Figure 3.8a, c(x) is the periodic configuration obtained by
the repetition of x in the plane. So, this is equivalent to defining a configuration on a torus.

Automata Network

Here we will introduce a more general dynamical system called Automata Network, where we replace the
grid by a graph, the cells by the vertices of the graph and the neighborhood by the set of adjacent cells.
Also, we allow different local functions for each cell.

Definition 3.1.25. An Automaton Network A is a triple (Q,G, F), whose components are as follows:

• Finite set of states Q.

• G = (V,E) is a finite undirected graph without self loops. The vertices of G are numbered using
the integers 1, 2, ..., n = |V |.

• For each vertex i of G, F specifies a local transition function, denoted by fi . This function maps
QN(i) into Q.

Also we consider updating schemes σ,

• σ is an ordered partition of V with n parts specifying the order in which nodes update their states
using their transition functions, i.e. at time t all the vertices σ(tmodn) are updated simultaneously.

When ∀t : σ(t) = V we say that σ is a parallel update scheme, if ∀t : |σ(t)| = 1 it is called an
asynchronous update scheme and σ is called a block sequential update scheme or serial-parallel update
scheme otherwise [42].

A configuration c of Q can be interchangeably regarded as a |V |-vector (c1, c2, ..., cn), where each
ci ∈ Q, or as a function c : V → Q. From the first perspective, ci is the state value of node i in
configuration c, and from the second perspective, c(i) is the state value of node i in configuration c.

We use F σ to denote the global transition function associated with Q following the updating scheme σ.
This function can be viewed as a function that maps DV into DV . Fσ represents the transitions between
configurations and can therefore be considered as defining the dynamic behavior of the Automaton
Network. Formally,

Fσ(0)(c) = c

Fσ(t)(c)v =

{

fv(F
σ(t−1)(c)N(v)) if v ∈ σ(t)

Fσ(t−1)(c)z otherwise.

Example 3.1.11. Given the initial configuration of Figure 3.9a, and a parallel update scheme we obtain
the following dynamics for the automata network where fv(c) = 1 if

∑

w∈N(v) cw ≥ 3 and fv(c) = 0
otherwise.

30

3.1. BASIC NOTIONS

1

01

1

1 0

(a) Initial state.

1

10

0

1 1

(b) Step 1.

1

01

1

1 0

(c) Step 2.

Figure 3.9: Dynamics on an automata network considering the parallel update scheme.

Example 3.1.12. Given the following configuration of Figure 3.10a, and a block sequential update
scheme we obtain the following dynamics for the automata network where fv(c) = 1 if

∑

w∈N(v) cw ≥ 3

and fv(c) = 0 otherwise.

1

01

1

1 0

(a) Initial state.

1

10

1

1 0

(b) Step 1.

1

10

1

1 0

(c) Step 2.

Figure 3.10: Dynamics on an automata network considering a block sequential update scheme, in this
cases σ(1) = {1, 2, 3} and σ(2) = {4, 5, 6}.

With this definition Automata Network are more general that the (asynchronous) cellular automata,
choosing (Q,G, F) properly.

Example 3.1.13. Let F = (2, Q, V N, f) be a cellular automaton over periodical configuration of size
n2, we can define an Automaton Network (Q,G, F ′) and choose an updating scheme σ, as follow,

• G(V,E) is a graph as Figure 3.7b and V = [n]2,

• F ′ is such that ∀v ∈ v : fv = f and

• σ is such that ∀t ∈ N : σ(t) = V .

Thus, ∀c ∈ QV : F (c) = F ′σ(t)(c).

We can extend this example to dimension d and an arbitrary neighborhood choosing (Q,G, F) prop-
erly. Moreover, we can extend this example to non-periodical configurations if we admit that G = (V,E)
has infinite vertex.

If in the previous example we change the graph by an analogous of the Figure 3.7b for a triangular
grid, the we can obtain also a cellular automaton over a triangular grid.

Example 3.1.14. Let F = (d,Q, V N, f) be an asynchronous cellular automaton over periodical config-
urations of size n2 and updating scheme σ, we can define Automaton Network (Q,G, F ′) and choose an
updating scheme σ′, as follows,

• G(V,E) is a graph as Figure 3.7b and V = [n]2,

• F ′ is such that ∀v ∈ v : fv = f and

• σ′ is such that ∀t ∈ N : σ(t) = σ′(t).

Thus, ∀c ∈ QV : Fσ(t)(c) = F ′σ′(t)(c).

31

3.2. COMPUTATIONAL COMPLEXITY

3.2 Computational Complexity

In computational complexity we study the time (number of operations) it takes for the algorithms (either
on Turing machines or another model, see [43, 44]) to respond, as a function of the size of the input. In
particular, we are interested in algorithms that solve decision problems, where the algorithm is capable
to decide if the input satisfies a property.

Example 3.2.1. The decision problem Prediction [31] has input a site u, a time T , a state q and a
finite configuration x such that it is possible to compute FT (c(x))u. It responds “Accept” if FT (c(x))u = q
and “Reject” if FT (c(x))u 6= q.

Prediction

Input: A time T > 0, a state q and a site u and a finite configuration x containing the T -th
neighborhood of u.
Question: Does FT (c) = q when c = c(x)?

where the 1-st neighborhood of u is N(u) and the T -th neighborhood of u is the union of the neighbors
of the (T − 1)-th neighborhood of u.

3.2.1 The big-O notation

In order to compare the efficiency of two algorithms we count the number of operations performed by
a Turing machine to compute the calculation as a function of the input size. But the difference in
computational cost between an algorithm that uses n2 operations and another that uses 2n2 operations
is little compared to the difference between an algorithm that uses n2 operations and another that uses
n4 operations when n→∞.

With this idea we introduce the asymptotic analysis, in which we only consider the higher order
coefficients in the polynomials. In asymptotic notation an algorithm that uses 2n2 + 3 operations is
denoted 2n2 + 3 = O(n2), hence the name The big-O notation.

We formalize this notion in the following definition.

Definition 3.2.1 ([43]). Let f and g be functions f, g : N → R+. Say that f(n) = O(g(n)) if there are
positive integers c and n0 such that for every integer n ≥ n0,

f(n) ≤ cg(n) .

When f(n) = O(g(n)), we say that g(n) is an upper bound for f(n), or more precisely, that g(n) is an
asymptotic upper bound for f(n), to emphasize that we are suppressing constant factors.

This means that a function f is asymptotically greater than a function g if f grows much faster than
g, regardless of whether g initially has higher values that f . When an algorithm is asymptotically greater
than another we say that it is more complex that the other.

A function of interest for its applications mainly in parallel algorithms is the logarithm function. First,
using the definition of the big-O notation, note that all logarithms have the same complexity, using the
identity logb(x) =

logk(x)
logk(b)

. Another properties of logarithm is that log(nk) = k log(n), then we will not

explicitly say the basis of the logarithm used in the expression O(log(n)) to say O(logb(n
k)).

A function f(n) = O(nk) is called a polynomial bound and a function f(n) = O(logk(n)) is a called
logarithmic bound and we will use this several times to measure the complexity of algorithms.

32

3.2. COMPUTATIONAL COMPLEXITY

3.2.2 Parallel Computation

The class P is the class of problems that can be solved by a deterministic Turing machine in time
O(nO(1)), where n is the size of the input. i.e. its execution time has a polynomial bound.

Proposition 3.2.1 ([31]). Prediction is in P.

Proof. The size of the configuration in dimension d is O(td), then each iteration use O(td) time in a
sequential machine and we need to repeat these once for each iteration. So, the total iterations steps are
O(td+1).

The class NC (Nick’s class) is a subclass of P, consisting of all problems solvable by a fast-parallel
algorithm. A fast-parallel algorithm is one that runs in a parallel random access machine (PRAM)
(model of share-memory multi-processor computer, where each processors accesses asynchronously to the
memory, for more details see [44]), in poly-logarithmic time (i.e. in time O((log n)O(1))) using O(nO(1))
processors or equivalently it can solve by a Boolean circuit with poly-logarithmic depth and a polynomial
number of gates, assigning one processor by gate and solving the circuit by levels.

Proposition 3.2.2. NC ⊆ P.

Proof. It is enough iterating gate by gate starting by the first level in the circuit. Given that there is a
polynomial number of gates the algorithm runs in a polynomial time in a sequential machine.

It is a wide-believed conjecture that the inclusion is proper [43]. Indeed, NC = P would imply that for
any problem solvable in polynomial time, there is a parallel algorithm solving that problem exponentially
faster.

The problems in P that are the most likely not to belong to NC are the P-complete problems. A
problem p is P-complete if it is contained in P and every other problem in P can be reduced to p via a
function computable in logarithmic-space. A very used P-complete problem is to calculate the value of
a Boolean circuit, called circuit value problem (CVP) in which the inputs are a Boolean circuit and an
assignment of values for their inputs, and you want to know the value obtained to the end of the circuit.

Circuit Value Problem
Input: A Boolean circuit and an assignment of values for their inputs.
Question: Is 1 the output value?

Note that if we can reduce CVP to another decision problem, then this is also P-complete. For further
details we refer to the books of [43, 45].

Example 3.2.2. Examples where Prediction is P-complete are: Majority Vote CA for dimension 3 or
higher [31], Life without Death [30] and Elementary CA Rule 110 [32]. Examples where Prediction is
in NC are some case of Bootstrap Percolation Model [39].

Thus, under the assumption that NC 6= P, there is not a faster parallel algorithm that computes the
T -th iteration of Majority Vote CA, Life without Death or Elementary CA Rule 110, but for some case
of Bootstrap Percolation Model there is a way to compute if a cell is in state 1 at time T faster than
iterating the CA.

33

3.2. COMPUTATIONAL COMPLEXITY

3.2.3 Sequential Computation

There is a kind of problem larger than P, called NP (for nondeterministic polynomial time), which
consists of all decision problems that can be solved by a non-deterministic Turing Machine in polynomial
time. From the definition of NP it is clear that P ⊆ NP, but the question of the equality of these two
sets is open. Probably this should be one of the most important questions in computer science1, because
of its implications in cryptography, optimization, among others.

There are also the NP-complete problems, those NP problems to which any NP problem can be
reduced in polynomial time. This way if there is an NP problem that is not in P, then all the complete
NP problems are not in P. Thus, just as NC is considered the kind of problems that can be solved
efficiently on a parallel machine and P-complete problems are considered inherently sequential problems,
unless NC = P, P is considered the kind of problems that can be solved efficiently on a sequential
machine and NP-complete would be the kind of problems that are difficult to solve on a sequential
machine.

The classical NP-complete problem is the satisfiability of a Boolean formula (SAT).

Satisfiability Problem (SAT)
Input: A Boolean formula.
Question: Is there an input value such that the output value is 1?

A Boolean formula is built from variables, AND operators (conjunction, denoted by ∧), OR (disjunc-
tion, denoted by ∨), NOT (negation, denoted by ¬), and parentheses. A formula is said to be satisfiable
if it can become TRUE (1) by assigning appropriate logical values (i.e., TRUE (1), FALSE (0)) to its
variables. From now on we will consider that all Boolean formulas are in their normal conjunctive form
(CNF), i.e. a conjunction of disjunctions or they are ANDs of ORs formulas.

Proposition 3.2.3 (Cook-Levin theorem [43]). SAT is NP-complete.

3.2.4 Parallel subroutines

In this subsection, we will give some NC algorithms that we will use as subroutines of our fast-parallel
algorithm.

Prefix-sum

First, we will study a general way to compute in NC called prefix sum algorithm [44]. Given an associative
binary operation ∗ defined on a group G, and an array A = (a1, . . . , an) of n elements of G, the prefix
sum of A is the vector B of dimension n such that Bi = a1 ∗· · ·∗ai. Computing the prefix sum of a vector
is very useful. For example, it can be used to compute the parity of 1s in a Boolean array by choosing
∗ = ⊻, the presence of a nonzero coordinate in an array by choosing ∗ = ∨, etc.

Proposition 3.2.4 ([44]). There is an algorithm that computes the prefix-sum of an array of n elements
in time O(log n) with O(n) processors.

Connected components

The following propositions state that the connected, bi-connected and tri-connected components of an
input graph G can be computed by fast-parallel algorithms.

1The question P = NP? is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute,
each of which carries a US$1,000,000 prize for the first correct solution.

34

3.2. COMPUTATIONAL COMPLEXITY

Proposition 3.2.5 ([44]). There is an algorithm that computes the connected components of a graph
with n vertices in time O(log2 n) with O(n2) processors.

Proposition 3.2.6 ([46]). There is an algorithm that computes the bi-connected components of a graph
with n vertices in time O(log2 n) with O(n3/ log n) processors.

Proposition 3.2.7 ([46]). There is an algorithm that computes the tri-connected components of a graph
with n vertices in time O(log2 n) with O(n4) processors.

Vertex level algorithm

Given a rooted tree we are interested in computing the level level(v) of each vertex v, which is the distance
(number of edges) between v and the root r. The following proposition shows that there is a fast-parallel
algorithm that computes the level of every vertex of the graph.

Proposition 3.2.8 ([44]). There is an algorithm that computes, on an input rooted tree (T, r) the level(v)
of every vertex v ∈ V (T) in time O(log n) and using O(n) processors, where n is the size of T .

All pairs shortest paths

Given a graph G of size n. Name v1, . . . , vn the vertices of G. A matrix B is called an All Pairs Shortest
Paths matrix if Bi,j corresponds to the length of a shortest path from vertex vi to vertex vj . The following
proposition states that there is a fast-parallel algorithm computing an All Pairs Shortest Path matrix of
an input graph G.

Proposition 3.2.9 ([44]). There is an algorithm that computes all Pairs Shortest Paths matrix of a
graph with n vertices in time O(log2 n) with O(n3 log n) processors.

3.2.5 Decision problems in cellular automata

To our knowledge, the first study related with the computational complexity of Cellular Automata was
done by E. Banks. In his PhD thesis he studied the possibility for simple Cellular Automata in two
dimensional grids, to simulate logical gates. If such simulation a is possible, the automaton is capable
of universal Turing computation [47]. Directly in the context of Prediction problems C. Moore et al
[31] studied the Majority Automata. They proved that for a given T ≥ 0, Prediction is P-complete in
three and more dimensions, but the complexity remains open in two dimensions.

In the case of freezing CA with |Q| state we have the following property: given a periodical config-
uration with N cells, it arrives to a fixed point at time |Q|N , because each cell can change at most |Q|
times. We will study this property in Chapter 4. Thus after |Q|N each cell was changed or remains in its
initial state forever. The cells that never changes are called stable and it induces the following decision
problem, called Stability, and this is to know if, given a configuration and a cell, the cell is stable.

Stability

Input: A finite configuration x of dimensions n× n and a site u ∈ [n]× [n] such that xu = 0.
Question: Is u stable for configuration c = c(x)?

Analogous to Prediction, if we find an algorithm faster than polynomial that decides Stability

for a freezing cellular automaton, then we have an algorithm capable of calculating the fixed point of the
freezing cellular automaton faster than iterating it |Q|N times.

Also, we define Stability for asynchronous freezing cellular automata, called Asynchronous Stability
(AsyncStability). In this case we say that a cell is stable if for any updating scheme the cell remains
in its initial state forever, then the decision problem is as follow:

35

3.3. SIMULATION BETWEEN CELLULAR AUTOMATA AND UNIVERSALITY

AsyncStability

Input: A finite configuration x of dimensions n× n and a site u ∈ [n]× [n] such that xu = 0.
Question: Does there exists an updating scheme σ and T > 0 such that Fσ(T)(c(x))u = 1?

In general, this problem is NP. Note that if the answer to AsyncStability is Accept, then there is
an update scheme σ that changes every time the local function is applied to a cell. This update scheme
reaches a fixed point at most n2Q = O(n2) iterations. If we build a Turing machine that applies the local
function in a non-deterministic way each cell, if the answer to AsyncStability is Accept, then if the
Turing machine applies the local function following σ, then in O(n2) it already changes the cell u and
decides.

Finally, for FCA, we consider a weaker version of Stability, in which we ask if, from an initial
configuration, the fixed point that it reaches is equal to a second given configuration. This problem is
called Reachability and is weaker than Stability, because if we can solve Stability in all the cells,
it would be enough to compare the stability result cell by cell with the configuration that we want to
know if it is reached.

Reachability

Input: Two finite configurations x and y∞ of dimensions n× n when y∞ a fixed point.
Question: Does there exists t > 0 such that F t(x) = y∞?

We can think of Stability as the computing of the fixed point of an initial configuration and Reach-

ability as the verification of the fixed point of an initial configuration.

3.3 Simulation Between Cellular Automata and Universality

Various classification ideas have been defined to categorize CAs. Some have been classified qualitatively,
such as [48], according to properties or behaviors observed in them; comparing the time it takes a
computer to calculate its t-th iteration or the quantity of information that two processors must exchange
to calculate the state of a cell at some time.

Another way to classify CAs is according to their ability to “simulate other CAs”. Different criteria
have been used for the idea of simulation, such as transformations between states, cell grouping, time
scales, etc. To our knowledge, the most general the notion of simulation is given by M. Delorme, J.
Mazoyer, N. Ollinger, G. Theyssier [25, 24] who, through three basic transformations, hierarchize the
CA. A cellular automata with the highest hierarchy in a class, i.e. it is capable of simulate all the other
CA that share the same class as him is called intrinsically universal cellular automata (for this class).

3.3.1 Geometric transformations

The simulation relation that we will study is based mainly on the idea of grouping different cells of the
space-time diagram into new macro-cells, which will be the cells of other more complex CA that will
simulate the cellular automata.

Definition 3.3.1. An pattern P is any finite subset of Zd. Given m ∈ Nd we define the m-rectangular
pattern as the pattern

⊞m = {0, ...,m1} × ...× {0, ...,md}.

36

3.3. SIMULATION BETWEEN CELLULAR AUTOMATA AND UNIVERSALITY

-5 -4 -3 -2 -1 0 1 2 3 4

-5

-4

-3

-2

-1

1

2

3

4

(a) Example of a pattern in Z
2.

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

1

2

3

4

5

(b) Pattern ⊞(5,4) in Z
2.

Figure 3.11: Different patterns in Z2.

Definition 3.3.2. We say V = (v1, ..., vd) ∈ (Zd)d is a base of Zd if {vi : i = 1, ..., d} is linearly
independent. In particular, given m ∈ Nd we define the base m-rectangular as

✷m = (m1e1, ...,mded).

Example 3.3.1. ✷(1,...,1) is the canonical base of Zd.

Example 3.3.2. ✷(1,2,3) =

1
0
0

 ,

0
2
0

 ,

0
0
3

.

Geometrically, ✷m are the edges touching the origin in the hyper-rectangle ⊞m.

Note that any base V = (v1, ..., vd) ∈ (Zd)d defines a “linear” transformation TV : Zd → Zd, where

∀z ∈ Z
d, TV (z) = V z =

d∑

i=1

zivi

considering the base V as a square matrix of size d.

Also, in contrast to linear transformations in R, there is no property that TV : Zd → Zd is injective if
and only if TV is surjective, but, if V is base, then TV is injective, so it is bijective in T (Zd).

Definition 3.3.3. A tiling of Zd is the pair (P, V) where P is a pattern and V is a base of Zd such that
the family {P + TV (z)}z∈Zd is a partition of Zd.

37

3.3. SIMULATION BETWEEN CELLULAR AUTOMATA AND UNIVERSALITY

-5 -4 -3 -2 -1 0 1 2 3

-5

-4

-3

-2

-1

1

2

3

v1

v2

(a) P = {(0, 0), (0, 1), (1, 1), (1,−1), (0,−1), (−1, 0)}
and base V = ((2, 0), (0, 3)).

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

1

2

3

4

5

(b) Pattern tessellating the plane.

Figure 3.12: Example of a tiling with pattern P and base V = (v1, v2)

Definition 3.3.4. Given a tiling (P, V) and a set of states Q, an packaging function 〈P, V 〉 is the function

〈P, V 〉 : QZ
d

→ (QP)Z
d

where ∀α ∈ QZ
d

, ∀z ∈ Zd, 〈P, V 〉 (α)z(p) = αTV (z)+p, ∀p ∈ P.

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

-5

-4

-3

-2

-1

1

2

3

4

5

5

1 2

1

2

z

p ∈ P

Figure 3.13: Example of packaging function. P = {(0, 0), (0, 1), (1, 1), (1,−1), (0,−1), (−1, 0)} and base
V = ((2, 0), (0, 3)). If z = (1, 1), then 〈P, V 〉 (α)z is the function p ∈ P → αTV (z)+p. In this case
p ∈ P → α(2,3)+p. The red cells represent q single cell in 〈P, V 〉 (α).

The previous definition meaning that, first a packaging function takes a configuration and divides this
in pattern configurations and then the packaging function create another configuration where each cell
in this new configuration is a pattern configurations on the initial configuration.

38

3.3. SIMULATION BETWEEN CELLULAR AUTOMATA AND UNIVERSALITY

Proposition 3.3.1 ([24, 25]). Let (P, V) be a tiling and Q a set of states, then 〈P, V 〉 is bijective.

Definition 3.3.5. A geometrical transformation is a pair (k,Λ), with k ∈ N and Λ : N×Zd → (N×Zd)k.
The space-time diagram transformation over set of states Q by a geometrical transformation (k,Λ) is the
function Λ : QN×Z

d

→ Q(N×Z
d)k defined as Λ(c)z = (cΛ(z)1 , cΛ(z)2 , ..., cΛ(z)k)

For example, the following are geometrical transformation and space-time diagram transformation
respectively.

Definition 3.3.6. Given a tiling (P, V) with P = {p1, ..., pk} ⊆ Zd and V ∈ (Zd)d, we define the function
packaging

PP,V : N× Zd → (N× Zd)k

(t, z) 7→ PP,V (t, z) = ((t, p1 + TV (z)), (t, p
2 + TV (z)), ..., (t, p

k + TV (z)))

t

i i+ 1

cti cti+1

N

Z

(a) Original space-time diagram.

t cti

cti

cti+1

Z

N

k = 2

⌊
i

2

⌋

(b) Packaged space-time diagram.

Figure 3.14: Example of a packaging on a configuration c, in this case the packaging is 〈⊞2,✷2〉.

Proposition 3.3.2 ([24, 25]). Given a CA A = (Zd, f,Q,N) with global function F and the packaging
(P, V), the space-time diagram transformation, PP,V of A is given by the space-time diagram of 〈P, V 〉 ◦

F ◦ 〈P, V 〉
−1

.

Definition 3.3.7. Given T ∈ N, we define the function cutting

CT : N× Zd → N× Zd

(t, z) 7→ CT (t, z) = (tT, z)

t

i

cti

N

Z

(a) Original space-time diagram.

Tt

i

cti

N

Z

(b) Cut space-time diagram.

Figure 3.15: Example of a cutting on a configuration c.

Proposition 3.3.3 ([24, 25]). Given a CA A = (Zd, f,Q,N) with global function F and the cut CT , the
space-time diagram transformation, CT is given by the space-time diagram of FT .

39

3.3. SIMULATION BETWEEN CELLULAR AUTOMATA AND UNIVERSALITY

Definition 3.3.8. Given s ∈ Zd, we define the function shifting

Ss : N× Zd → N× Zd

(t, z) 7→ ST (t, z) = (t, z + st)

t

i

cti

N

Z

(a) Original space-time diagram.

t

i i+ s

cti

N

Z

(b) Shifted space-time diagram.

Figure 3.16: Example of a shifting on a configuration c.

Proposition 3.3.4 ([24, 25]). Given a CA A = (Zd, f,Q,N) with global function F and the shifting Ss,
the space-time diagram transformation, Ss is given by the space-time diagram of σs ◦ F .

Definition 3.3.9. Given two geometrical transforms (k,Λ) and (k′,Λ′), we define the composition of
(k,Λ) and (k′,Λ′) as the geometrical transformation given by

(k,Λ) ◦ (k′,Λ′)(t, z) = (kk′,Λ ◦ Λ′)(t, z) = (Λ1(Λ
′
1(t, z)),Λ1(Λ

′
2(t, z)), ...,Λk(Λ

′
k′(t, z))).

In particular we are interested in the composition of packaging, cutting and shifting.

Definition 3.3.10. A PCS transformation is any function PP,V ◦CT ◦ Ss. Given the CA A we denote
the PCS transformation of A by PP,V ◦CT ◦ Ss as A<P,V,t,s>.

When we find geometrical transforms to simulate CA not every transformation defines properly a
simulation between CA. For example, in dimension 1 if

Λ(t, z) =

{

(t,−z) if |z| = 2k k ∈ N

(t, z) otherwise
,

then we have that the transformation of a space-time diagram of σ CA in general is not a space-time
diagram of another CA, because the exchanging of cells in coordinates |z| = 2k is not local, then we are
not interested in this kind of transforms.

Definition 3.3.11. We say that a space-time transformation (k,Λ) is nice if it satisfies the following
conditions:

1. ∀A ∈ A(Q,N), ∃B ∈ A(Qk,M) : ΛQ(Diagr(A)) = Diagr(B).

2. ∀t ∈ N,
⋃

z∈Zd

{Λ1(t+ 1, z), ...,Λk(t+ 1, z)} *
⋃

z∈Zd

{Λ1(t, z), ...,Λk(t, z)}.

Theorem 3.3.5 ([24]). A space-time transformation is nice if and only if is a PCS transformation.

40

3.3. SIMULATION BETWEEN CELLULAR AUTOMATA AND UNIVERSALITY

3.3.2 Quasi-order and simulation

Now that we have defined how we will group the cells, we will define the notion of simulation through
the definition of nice geometrical transformation, for cell grouping, and the concepts of sub-automaton
and quotient, for the relationship between cellular automata. The notion of simulation is an extension of
the definition of sub-automata and quotient, so that a greater variety of cellular automata can be related
to this definition, but without trivializing the relationship.

Definition 3.3.12 (sub-automata and quotient). Let A = (Zd, fA, QA, NA) and B = (Zd, fB , QB , NB)
be two CA. We say that

• A is a sub-automata of B, denoted A ⊑ B if there is an injective function φ : QA → QB such that

φ ◦ FA = FB ◦ φ

where, given a configuration α ∈ QA
Z

d

, we define that ∀i ∈ Zd, φ(α)i = φ(αi).

• A is a quotient of B, denoted A E B if there is a surjective ψ : QB → QA such that

ψ ◦ FB = FA ◦ ψ

where, given a configuration α ∈ QB
Z

d

, we define that ∀i ∈ Zd, ψ(α)i = ψ(αi).

It is possible to prove that ⊑ and E are quasi-orders (reflexive and transitive) and that they induce
an equivalence relationships, given by a bijection between the sets of states, denoted by ≡.

Definition 3.3.13. Given two relations R1 and R2 over the set A, we define the composition of R1 with
R2 as

R1 ·R2 = {(x, y) ∈ A×A : ∃z ∈ A, (x, z) ∈ R1 ∧ (z, y) ∈ R2}

and we denote E · ⊑=E⊑

The following theorem justifies working only with relationships ⊑, E and E⊑.

Theorem 3.3.6 ([24]). Denoted R to the set of all the finite compositions of ⊑ and E, then

• Every relationship R ∈ R is included in E⊑ (ARB ⇒ A E⊑ B).

• The only ones transitive relationship in R are ⊑, E and E⊑.

Definition 3.3.14 (Simulation). Lets A and B CA, we say that

• B simulates injectively to A, denoted A 4i B, if there is a two PCS α and β such that

A<α> ⊑ B<β>

• B simulates surjectively to A, denoted A 4s B, if there is a two PCS α and β such that

A<α> E B<β>

• B simulates mixed to A, denoted A 4m B, if there is a two PCS α and β such that

A<α> E⊑ B<β>

Example 3.3.3 ([24]). Consider the following CAs

Just gliders. Two states interpreted as particles moving left (<) and right (>) evolve in a quiescent
background state (�). When two opposite particles meet they annihilate, leaving a background
state (�).

41

3.3. SIMULATION BETWEEN CELLULAR AUTOMATA AND UNIVERSALITY

ECA 184. The line of cells is interpreted as a highway where states represent cars and represent free
portions of highways. Cars move to the right by one cell if they can (no car present on the next
cell), otherwise they don’t move.

and the context-free simulation given by φ : {<,>,�} → {�,�}{0,1} as following

• φ (<) = �� = • φ (>) = �� = • φ (�) = �� =

then ECA 184 injective simulates Just gliders, as in Figure 3.17, where we denote =

>
> > <

> > <
> > > < <
> > > < < < >

φ

Just Glider E184 E<⊞2,�,2,0>
184

Figure 3.17: Example of injective simulation. In the left figure, we have a space-time diagram for just
Glider. In the middle figure, we see the dynamic of E184 starting with the initial configuration given by
the substitution φ over the initial configuration of Just Glider. In the right, we see the dynamic of E184

with a PCS transformation, starting with the initial configuration given by the substitution φ over the
initial configuration of Just Glider.

Theorem 3.3.7 ([24]). The relations 4i, 4s and 4m are quasi-orders.

The top on quasi-orders 4i, 4s and 4m is a CA able to simulate any other CA. If there is a CA
with this property we denote them 4i-intrinsically universal CA, 4s-intrinsically universal CA and 4m-
intrinsically universal CA respectively. When is clear the simulation used we say simply intrinsically
universal CA.

Given a set of CA A, we say that U is intrinsically 4universal for A if U ∈ A and for any A ∈ A,
A 4 U , where 4 can be 4i, 4s or 4m.

The following examples consider 4i-simulations.

Example 3.3.4 (Dimension 1).

1. There exists an intrinsically universal 1D cellular automaton with 5 neighbors and 2 states [49, 47].

2. There exists an intrinsically universal 1D cellular automaton with first neighbors neighborhood and
4 states [50].

3. There exists an intrinsically universal 1D for reversible cellular automaton [21].

4. There exists an intrinsically universal 1D for conservative cellular automaton [20].

5. There exists an intrinsically universal 1D for time-symmetric cellular automaton [23].

6. There exists an intrinsically universal 1D for time-symmetric and conservative cellular automaton
[1].

Example 3.3.5 (Dimension 2).

42

3.3. SIMULATION BETWEEN CELLULAR AUTOMATA AND UNIVERSALITY

1. Game of life is intrinsically universal for 2D cellular automaton [18].

2. There exists an intrinsically universal for 2D cellular automaton with von Neumann neighborhood
and 2 states [49, 47].

43

3.3. SIMULATION BETWEEN CELLULAR AUTOMATA AND UNIVERSALITY

44

Chapter 4

Freezing Cellular Automata

The freezing cellular automata, introduced in [33], are cellular automata where in the evolution the state
each cell can only increase (or decrease depending on the point of view) following a relation of order.
This restriction endows this family of CA with specific dynamical and computational properties. We
discuss some properties of these CA like their inherent irreversibility or the properties of their fixed
points. In addition, from the point of view of computability, we discuss the decrease of complexity of
several problems including undecidable problems that turns decidable in freezing cellular automata.

4.1 Basic Dynamical Properties

The simulation on CA is a way to understand its dynamics. Limitation and possibilities on the simulations
talk about the properties on the studied system.

Proposition 4.1.1 ([33]). The family of freezing CA is closed under iterations, Cartesian product, sub-
automaton, local factor and grouping, but not under composition by shifts.

Proof. If a CA F is freezing then F t is also freezing, considering the same order relation. For grouping it
is enough to consider the order on the blocks given by the order cell by cell in each block grouping cells.

Now, let F and G be two FCA of dimensions d with set of states QF and QG and orders given
by the relations ≤F and ≤G respectively Then the CA given by the Cartesian product of F and G is
F ×G : QZ

d

F ×Q
Z

d

G → QZ
d

F ×Q
Z

d

G such that F ×G(cF , cG)z = (F (cF)z, G(cG)z) and considering the order
in QZ

d

F ×Q
Z

d

G given by (qF , qG) ≤× (q′F , q
′
G)⇔ (qF ≤F q′F)∧ (qG ≤G q′G) we obtain that F ×G is a FCA.

Let F be sub-automata of the FCA G by φ : QF → QG injective. Then considering the order relation
≤F on QF such that q ≤F q′ ⇔ φ(q) ≤G φ(q′) we obtain that F is a FCA with order ≤F .

Let F be sub-automata of the FCA G by ψ : QG → QF surjective. Then considering the order relation
≤F on QF such that q ≤F q′ ⇔ ψ−1(q) ≤G ψ−1(q′) we obtain that F is a FCA with order ≤F .

Finally, for the shift cases, it is enough to consider the identity automaton as a freezing cellular
automaton, but the shift automaton is not freezing.

The main property of FCA is that they progressively “freeze” any initial configuration. The idea is
that, given that cells can only change a finite number of times, then asymptotically all cells reaches a
state that can no longer go up.

45

4.1. BASIC DYNAMICAL PROPERTIES

Proposition 4.1.2 ([33]). Given a freezing CA F and any configuration c, the sequence (F t(c))t con-
verges in the Cantor metric to some limit configuration F∞(c) which is a fixed point for F.

Proof. Since the state of any cell can only increase, each cell can only change its state a finite number of
times. Therefore, starting from configuration x, for any n ≥ 0 there exists a time t such that no cell at
distance n from the center will change its state after time t. This is equivalent to the convergence of the
sequence (F t(x))t.

A corollary is that any periodic configuration reaches a fixed point in finite time.

Corollary 4.1.2.1 ([33]). Let F be a freezing cellular automaton and x be a finite configuration with N
cells, then c(x) reaches a fixed point in O(N) iterations.

Proof. Let F be a freezing cellular automaton and x be a finite configuration with N cells. It is enough
to note that each cell can change at most |Q| − 1 times and at least one cell changes in each iteration
before it reaches a fixed point, then, if there are N cells, at time (|Q| − 1)N every cell was changed, and
we have a fixed point.

A CA is balanced if every state has the same amount of preimages through the local function, i.e. if
the set of state is Q, the neighborhood is N and the set of all preimages of f is QN , then in a balanced
CA each state has |Q||N |−1 preimages. If a CA is not balanced, we say that it is unbalanced.

Proposition 4.1.3 ([33]). Given a FCA F then, exactly one of the following two statements is true:

• F is unbalanced.

• F = Id.

This proposition means that the only balance FCA is the identity map.

Proof. To prove that if F = Id then F is balanced is direct. Thus, we need to prove that if F is balanced
then F = Id.

Let F be a balanced FCA and q a maximal state. Without loss of generality, suppose that its
neighborhood N contains the center cell. Given that F is a FCA and q is maximal, then for all p ∈ QN

such that pθ = q and f(p) = q. Therefore, every pattern p ∈ QN such that pθ = q is a preimage of q.
There are |Q||N |−1 and given that F is balanced they are all the possible preimages of q.

Let Q′ be the set of states obtained by removing every maximal state of Q and q′ ∈ Q′ a maximal
state on Q′. Given that F is a FCA q′ can only remain in state q′ or change to a maximal state, but this
is not possible because every preimage of a maximal state has this state as center cell. Thus, a preimage
of q′ has a q′ as a center cell, then, given that F is balanced, there are any with q′ as center cell is the
preimage of q′.

Inductively we obtain that ∀p ∈ QN , f(p) = pθ, then F is the identity map.

It was proved that the balancedness is a necessary condition for surjectivity and then for reversibility.

Proposition 4.1.4 ([51]). If a CA is surjective then it is balanced.

Thus the “freezing” behavior is intrinsically irreversible except in the trivial case of the identity.

46

4.2. COMPUTATIONAL COMPLEXITY

Corollary 4.1.4.1 ([33]). If a freezing CA is surjective then it is the identity map.

Proposition 4.1.2 says that every orbit converges to a fixed point. This does not imply that the limit
set is made of fixed points. For example, if we consider the 1D CA with states {0, 1} and local function

f(a, b, c) = max {a, b, c} we obtain that for the configuration ciz =

{
1 if z ≤ i
0 otherwise

ci−1
z is a preimage,

then for any i ∈ Z, ci is in the limit set, but ci is not a fixed point (F (ci) = ci+1).

However, we can prove the following proposition which is not true for CA in general.

Proposition 4.1.5 ([33]). Let F be a freezing CA which is not nilpotent. Then it possesses two distinct
fixed points.

Proof. Let M be a maximal state for the order ≤ on states coming from the freezingness of F , and denote
by cM the uniform configuration everywhere equal to M . Since F is freezing, cM must be a fixed point
for F .

Let Ct = {c : F t(c)0 6= M}, then Ct is a compact set for all t. Given that F is not nilpotent, then
∀t ∈ N, ∃ct : F

t(ct)0 6= F t+1(ct)0 ≤M , thus ∀t ∈ N, Ct 6= ∅. Since F is freezing then Ct+1 (Ct.

By Cantor’s intersection theorem there is a c∗ ∈
⋂∞

t=1 C
t, then F∞(c∗) is a fixed point such that

c∗0 6=M .

Note:

• There exists a non nilpotent CA and without fixed point, e.g. f(x) = ¬x.

• There exists a FCA with exactly 2 fixed points, e.g. f(x, y, z) =

{
1 if x = 1 ∨ y = 1 ∨ z = 1
0 otherwise

.

• There exists a FCA with infinite fixed points, e.g. the identity map.

4.2 Computational Complexity

In this section we will study two types of problems, those that can be solved by a computer and those
that cannot. We will call the first decidable and the second undecidable. On the one hand, we will show
that there are problems that in cellular automata are undecidable, but if we restrict them to freezing
cellular automata they become decidable. On the other hand, we will classify the decidable problems
according to the time it takes a computer to solve them, in our case in the class NC ⊆ P. Here we will
also show that there are problems that reduce their complexity.

Theorem 4.2.1 ([33]). The nilpotency problem for freezing CA is:

- decidable (in polynomial time) for 1D CA;

- undecidable for CA in higher dimension.

Proof. First, in dimension 2 and more, the classical proof of undecidability of nilpotency (see [52]) works
without any modification for freezing CA: given a Wang tile set, we build a freezing CA with a spreading
error state, that checks locally if the configuration is a valid tiling and produces the error state in case of

47

4.2. COMPUTATIONAL COMPLEXITY

local error detection. This CA is nilpotent if and only if the tile set does not tile the plane. In dimension
1, from Proposition 4.1.5, we know that nilpotency is equivalent to the following first-order property

∀x∀y(x = F (x) ∧ y = F (y))⇒ x = y) .

From [53], it follows that any first-order property is decidable for one dimensional CAbb.

The previous theorem differs from the general case, in which the problem of knowing whether a CA
is nilpotent is undecidable [54].

Lemma 4.2.2. Let F be a freezing cellular automaton, then the problem Stability(F) is in P.

Proof. The application of one step of any FCA can be simulated in polynomial time, simply computing
the local function of every cell. Therefore, by corollary 4.1.2.1, computing F (|Q|−1)N (c(x)) we obtain a
fixed point, where N is the number of cells in x.

Finally we obtain that for every FCA F problem Stability(F) is in P.

Proposition 4.2.3 ([33]). 2D freezing CA are Turing-universal and there exists a 2D freezing CA with
a P -complete prediction problem.

Proof. Any 1D CA F with states Q and neighborhood V can be simulated by a 2D freezing CA with
states Q ∪ {∗} as follow. Let V ′ = {(v, −1) : v ∈ V }. A cell in a state from Q never changes. A cell
in states ∗ looks at cells in its V ′ neighborhood: if they are all in a state from Q then it updates to the
state given by applying F on them, otherwise it stays ∗. Starting from a fully −∗ configuration except
on one horizontal line where it is a Q-configuration c0, this 2D freezing CA will compute step by step the
space-time diagram of F on configuration c0. Then it is enough to consider the elementary CA with rule
110 where Prediction is P-complete [32] or any other 1D CA where Prediction is P-complete.

Note that, for the rule 110, 0 is a quiescent state, then it is not necessary to add the state ∗. If we
work on a 2D configuration with all cells in state 0, except on a line then we obtain a 2D CA where
Prediction is P-complete.

Proposition 4.2.4 ([33]). The prediction problem of any 1D freezing CA is NLOGSPACE.

Proof (sketch).
Consider (without loss of generality) a 1D freezing CA F of radius 1 with k states. To know that F
gives state q after n steps on some input u of size 2n + 1 it is sufficient to guess a sequence of 2n + 1
columns of states (Ci)−n≤i≤n, where Ci is of height n−|i|+1, and to check that they form a (triangular)
valid space-time diagram of F on input u that leads to state q (last letter of C0). The key observation is
that, since F is freezing, at most k changes of state can occur in any column, hence a column of height n
can be represented in space O(log(n)) (constant list of changes, each given by the time step at which it
occurs and the new state). We give the non-deterministic LOGSPACE algorithm to solve the prediction
problem of F :

Algorithm 1 Solving Prediction 1D

Input: x a finite configuration of dimensions in Q[−n,...,n].
1: To guess columns C−n and C−n+1 and set current position to −n+ 1.
2: for p with −n+ 1 ≤ p < n do
3: To guess columns Cp+1.
4: for i with 0 ≤ i < |Cp| do
5: To check that f(CP−1[i], Cp[i], Cp+1[i]) = Cp[i+ 1]
6: end for
7: end for
8: return C0[n]

48

4.3. TURING UNIVERSALITY

Note that the compatibility test between neighboring columns in the main loop can be done using the
compact log-space representation of columns.

4.3 Turing universality

In one-dimensional CA, the elementary 110 CA is Turing-universal, i.e. can simulate any Turing machine,
then the 1D or higher dimension CA are Turing-universal, but the elementary 110 CA is not freezing,
then we need another way to prove its Turing-universality.

First, we note that we can simulate any one-dimensional CA by a two-dimensional freezing CA,
simulating its space-time diagram on the two-dimensional cellular space.

Lemma 4.3.1 ([33]). Given a one-dimensional CA F = (1, Q,N, f) there is a two-dimensional 1-change

freezing CA F ′ = (2, Q′, N ′, f ′) such that for any configuration c ∈ QZ there is a configuration c′ ∈ QZ
2

such that

F t(c)z = F∞(c′)(z,t)

Proof. It is enough to follow the ideas in proposition 4.2.3 to simulate the rule 110 on a two-dimensional
FCA and use the Turing universality of this rule.

Theorem 4.3.2 ([33]). 2D or higher dimension freezing CA are Turing-universal.

To simulate a Turing machine in a one-dimensional FCA, first we study another Turing-complete
system, the counter machine, then we will give an abstract version of its simulation on a CA and then
we will simulate this in a FCA.

Theorem 4.3.3 ([33]). 1D freezing CA are Turing-universal.

4.3.1 Turing universality on Counter Machine

A k-counter machine (CM) [11] is a kind of only-read multi-tape Turing machine whose heads can only
differentiate the initial position (the leftmost squares denoted Z) from the rest of the positions on the
tape (denoted P). In each step the CM only can read or move a head, then it can change its state.

Minsky prove that the k-counter machines can simulate any Turing machine [11].

49

4.3. TURING UNIVERSALITY

Finite Control

Z P P P P

Z P P P P

Z P P P P

Counter 1

Counter 2

Counter k

...

state: q

· · ·

Figure 4.1: Scheme of a k-counter machine.

Definition 4.3.1. A k-counter machine is a tuple M = (k,Q, δ, q0, qf) where,

• k ∈ N.

• Q is a finite set.

• q0 ∈ Q is an initial state.

• qf ∈ Q is a final state.

• δ ⊆ (Q× {1, ..., k} × {Z,P} ×Q) ∪ (Q× {1, ..., k} × {−, O,+} ×Q).

On one hand, if (q, i, Z, q′) ∈ δ meaning that if the CM is in state q and in the i-th head is in the
starting cell (cell with index Zero) then change to state q′. If we change Z by P then we check if the
head is not in the starting cell (cell with Positive index). These are reading actions.

On another hand, if (q, i,+, q′) ∈ δ means that if the CM is in state q then it moves the i-th head
one cell to the right. This represent adds to the i-th counter. Analogously we move the i-th head to the
left and we do not move the head with (q, i,−, q′) ∈ δ and (q, i, 0, q′) ∈ δ respectively. These represent
remove one to counter and do not change the value in the counter. These are moving actions.

We can represent δ in a labeled graph, as in the example 4.3.1, called Finite state representation,
analogous to the Turing machines, where the vertices are the states and a label (i, Z) on an edge (q, q′)
meaning that q changes to q′ if the i-th head is in the stating cell. A label (i,+) on an edge (q, q′) meaning
that q changes to q′ and moves the i-th head to the right. Analogously we define the labels (i, P),(i,−)
and (i, 0).

Example 4.3.1. To consider the following 2-counter machine M = (2, {q0, qf , 1, 2, 3}, δ, q0, qf), depicted
in Figure 4.2.

50

4.3. TURING UNIVERSALITY

q0

1

2

3

qf

(1, P) (1,−)

(2,+)(2,+)

(1, Z)

Figure 4.2: Finite state representation of a 2-counter machine multiplying by 2 the value in the first
counter (distance from the head to the first cell in the first counter). The output is the distance from the
head to the first cell in the second counter.

This CM checks if the first counter (input) is 0. If it is not 0, then it moves the head of the first
counter to the left (remove one of the counter), then it moves twice the head of the second counter (add
2 to the second counter). Repeat this process until the first head arrives to the starting cell.

This is equivalent to the following code, where we call Ci to the value in the i-th head (its position
on the counter).

Algorithm 2 Multiplying by 2 CM

Input: C1 = n and C2 = 0.
1: while C1 > 0 do % q0 → 1 or q0 → qf
2: Remove one C1 % 1→ 2
3: Add one C2 % 2→ 3
4: Add one C2 % 3→ q0
5: end while
6: return C2 % q0 → qf

Minsky [11] proves that any Turing machine can be simulated by a 2-counter machine, so both models
are equivalent.

Theorem 4.3.4 ([11]). For any Turing machine T there is a 2-counter machine M that simulates T .

Lemma 4.3.5. For each k-counter machine, we can build a CA simulating it.

Example 4.3.2. The following example shows as work the simulation of the k-counter machine in the
example 4.3.1 by a CA.

51

4.3. TURING UNIVERSALITY

....c.

....C. ..o. fzp

....c. ..o. fzp fzpw

....C. ..o. ..o. fzpw xxxx

....c. ..o. fzp xxxx xxxx

....k. ..o. fzpw xxxx xxxx

....C. ..+. 1zp xxxx xxxx xxxx

....c. ..+. 1zpw xxxx xxxx xxxx

....k. 3zp xxxx xxxx xxxx xxxx

....C. ..+. 3zpw xxxx xxxx xxxx xxxx

....c. 2zp xxxx xxxx xxxx xxxx xxxx

....C. .Co. 2ppw xxxx xxxx xxxx xxxx xxxx

....Cc. 1pp xxxx xxxx xxxx xxxx xxxx xxxx

....C. .co. 1ppw xxxx xxxx xxxx xxxx xxxx xxxx

....Cc. 0pp xxxx xxxx xxxx xxxx xxxx xxxx xxxx

....ck. 0ppw xxxx xxxx xxxx xxxx xxxx xxxx xxxx

....CC. 3pp. xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

....cc. 3ppw xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

....C.. 2pz xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

.... .C.. .-.. 2pzw xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

.... .c.. 1pz xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

.C.. .o.. 1pzw xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

.c.. 0pz xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

.... 0pzw xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

C2 = 4

C1 = 2

Figure 4.3: A 1D freezing CA simulating a 2-CM

Note that our CA simulating a counter machine is freezing, because for each part of each column on
the simulation there is a finite numbers of changes.

Theorem 4.3.6 ([33]). For each k-counter machine, we can build a freezing CA simulating it.

4.3.2 Freezing cellular automata with P-complete Stability problem

To prove that a certain problem is P-complete it is enough to prove that it is possible to reduce another
P-complete problem to it. One option would be to make the reduction from the circuit value problem,
but there are several other P-complete problems more appropriate on which to make the reduction. The
one that we will use in the next cases will be the monotone circuit value problem (MCVP). This problem
is similar to CVP, but we restrict our input circuits to monotonous Boolean circuits, i.e. circuits where
there are only AND and OR gates.

52

4.3. TURING UNIVERSALITY

Monotone Circuit Value Problem
Input: A monotone Boolean circuit and an assignment of values for their inputs.
Question: Is 1 the output value?

To build a circuit on a configuration we need:

• wires,

• wires duplicator,

• turning wires and

• gates.

In dimension 2 it is also necessary that the cables can be crossed. One way to achieve this is to use a
gate with two inputs and two outputs c(p, q) = (q, p). This gate can be constructed from XOR gates (⊻)
as follows:

p q

⊻

⊻ ⊻

q p

Figure 4.4: Building a crossing gate from XOR gates.

Freezing Majority-Vote Cellular Automata

In [31] is studied the Majority-Vote Cellular Automata in dimension 3, and is showed that Prediction

is P-complete for this rule. Its local function is the following:

f(cV N3(z)) =

1 if
∑

w∈V N3(z)

cw ≤ 4

0 otherwise
.

Theorem 4.3.7 ([31]). Prediction is P-complete for Majority-Vote Cellular Automata in dimension
3.

53

4.3. TURING UNIVERSALITY

Figure 4.5: Signal (oranges cells) traveling on a wires (yellows cells). Transparent cells are cells in state
0.

Proof. We will build a wire and signal on a configuration of Majority-Vote Cellular Automata. For a wire
to the right we will consider a structure with six cells in state 1, the cells {(0,±1, 0), (0,±1,−1), (0, 0,−1)},
then coping this figure n cell to the right we obtain a wire of length n. Note that any cell in state 1 in
a wire remains in this state. Now if we change the cell (0, 0, 0), then the cell (1, 0, 0) has 4 neighbors in
state 1, then in the next step this cell will change to 1. This is a signal traveling on a wire, see Figure 4.6

(a) AND gate. (b) OR gate.

(c) Wire turning. (d) Duplicator.

Figure 4.6: Elements to build any monotone circuit on a configuration of Majority-Vote Cellular Au-
tomata.

54

4.3. TURING UNIVERSALITY

In the case of the Majority-Vote Cellular Automata build a crossing gate is not needed, because it is
enough to turn a wire to build a bridge over another wire using the third dimension.

Now, we need to know if is possible to build a configuration simulating circuit using a log-space
algorithm. For this, we consider without loss of generality that the circuit is given by layers where the
gates in the layer l are input only for gates on layer higher that l. We denote a gate in the layer l by gl.

The goal is to put the gates in the plane XY and draw the i-th wire in the coordinates (x, y, 10i),
except when entering and leaving a gate, in this case, the wire starts in its gate and travel until you reach
its coordinates (x, y, 10i). Thus, the wires do not cross each other. We say that the wire is a deep i.

The following algorithm allows us to understand the log-space reduction:

Algorithm 3 LOGSPACE reduction for Majority-Vote Cellular Automata

Input: A Boolean circuit with gates V = {g11 , ..., g
L
n} and connections E ⊆ V × V .

1: w = 0.
2: for l = 1, ..., L do
3: for i such that gli is a gate do
4: to put on the plane XY at position (20i, 20l) the gate gli, as the Figures 4.6a and 4.6b.
5: end for
6: end for
7: for (gli, g

m
j) ∈ E do

8: to draw a wire at deep w connecting the gates gli and gmj .
9: w = w + 1.

10: end for

The input is size O(|V |2). In this algorithm the unique variables are w, l and i.

• w is at most the number of connections between the gates, i.e w isO(|V |2), then we needO(log(|V |2))
space.

• l is at most the number of levels in the circuit, i.e l is O(|V |), then we need O(log(|V |)) space.

• i is at most the number of gates in the circuit, i.e i is O(|V |), then we need O(log(|V |)) space.

In line 4 we place the gates in coordinates (20i, 20l) not to overlap the gates. In lines 4 and 8 there
are more details, as duplicate the signals, but they are possible to calculate in LOGSPACE.

x y z

∨ ∧

∧

(a) Circuit.

x y z

∨ ∧

∧

(b) Scheme of the circuit on a configuration.

Figure 4.7: Example of a simulation of a circuit by the Majority-Vote Cellular Automata.

Note that in Figure 4.6 every cell in state 1 remains in this state and when a cell changes to 1

55

4.3. TURING UNIVERSALITY

the it remains in this state forever, then we can deduce that Stability is P-complete for the Freezing
Majority-Vote Cellular Automata.

Corollary 4.3.7.1. Stability is P-complete for the Freezing Majority-Vote Cellular Automata.

The bootstrap percolation problem

The bootstrap percolation phenomena consist in a lattice with cells in states active or inactive. When
there are enough active cells in the neighbors of a cell they can activate an inactive cell. This dynamics
is observed in some physical systems as the model of ferromagnetism on statistical mechanics [34], fails
on dense storage arrays [55] and neuronal activation on Living Neural Networks [56]. We can see that
this is a freezing dynamics (only the inactive cells can belong active).

Here we will study the case when the dynamics is synchronous, on a finite arbitrary lattice.

Definition 4.3.2. We will consider the following automata network A = ({0, 1}, G, F), where for all
c ∈ {0, 1}G

f(cN(z)) =

1 if cz = 1

1 if
∑

w∈N(z)

cw >
|N(z)|

2
∧ cz = 0

0 if
∑

w∈N(z)

cw ≤
|N(z)|

2
∧ cz = 0

We call this automata network the freezing strict majority rule.

This is a special case of bootstrap percolation which corresponds to a simple model introduced by
Chalupa to study properties of some magnetic materials [34] or equivalently is the bootstrap percolation
model when the threshold for each cell is the strict majority of its neighborhood.

Goles, Montealegre and Todinca [39] studied Stability for the freezing strict majority rule.
Theorem 4.3.8 ([39]). For the freezing strict majority rule:

1. On the family of graphs G = (V,E) such that ∆(G) ≥ 5 ,the problem Stability is P-Complete.

2. On the family of graphs G = (V,E) such that ∆(G) ≤ 4 ,the problem Stability is in NC.

Proof (for 1.) Following the same steps of theorem 4.3.7 we need build the gates AND and OR. The
duplicator is built using the same figure that the OR gate, but using the output as input. We do not
need a crossing gate, because we can build it directly on the graph. This is not valid if we restrict this
problem to planar graphs .

x

y

0

(a) AND Gate.

x

y

0

1

1

(b) OR Gate - duplicator.

x

1

1

0

0

0

0

(c) Diode.

Figure 4.8: Logic gates for a graph with maximum degree at less 5.

56

4.3. TURING UNIVERSALITY

For the part 2. of the theorem we need the following definition and lemmas.

Definition 4.3.3. Given a graph G = (V,E) and a configuration c ∈ {0, 1}V , we say that S (V is a
community if for all v ∈ S : cv = 0 and δG[S](v) ≥ 2.

Directly from the definition of community and the fact that in a graph G with ∆(G) ≤ 4 the inactive
cells with two inactive neighbors remains inactive, we obtain the following lemma.

Lemma 4.3.9 ([39]). Let G = (V,E) be a graph with ∆(G) ≤ 4 and a configuration c ∈ {0, 1}V . If
S ⊆ V is a community, then is stable.

The following lemma gives a characterization of the stable sets.

Lemma 4.3.10 ([39]). Let G be a graph with ∆(G) ≤ 4. A vertex v is stable if and only if there exists
a path P of G[0, v] that contains v and, if u is one of its ends, then

1. u belongs to a cycle in G[0, v], or

2. δ(u) ≤ 2,

where G[0, v] is the community in G[0] containing v and connected.

Proof. Suppose first that v is stable. We know that at most after T = |V | steps, the dynamics given by
c gets into a fixed point, by freezing. Let G′[0, v] be the connected component of inactive vertices of G
in the step T that contains v. Notice that G′[0, v] is a subgraph of G[0, v]. Take P as the longest path
in G′[0, v] that contains v. Let u be an end of P . Suppose first that u has only one neighbor in G′[0, v],
since u is stable, u has at most one more neighbor in G, hence δ(u) ≤ 2. Suppose now that u has more
than one neighbor in G′[0, v]. Since P is the longest path that contains v in G′[0, v], both neighbors of u
must belong to P . Then u belongs to a cycle in G[0, v].

Let us prove the converse. Let P be a path in G[0, v], with v ∈ P satisfying (1) or (2). Let X be the
set of vertices of P , plus, for each end-point u of P satisfying condition(1),the corresponding cycle Cu

of G′[0, v] containing u. Note that, since ∆(G) ≤ 4, X forms a community of initially inactive vertices.
Indeed, each interior vertex of P (P minus its ends) has at least half of its neighbors in X, and the same
holds for the vertices of the cycles added to X. If an end point u of P satisfies condition (2), it also has
at least half of its neighbors in X, thus X is a community. The proof follows from lemma 4.3.9.

Now we are ready to prove the second part of the Theorem 4.3.8.

Proof (Theorem 4.3.8 part 2.). From Lemma 4.3.10, to decide Stability it is enough to determine if v
belongs to a path in G[0] with ends satisfying (1) or (2).

To determine if v belongs to a path with ends satisfying (1) or (2), we build another graph G = (V , E)
from G[0, v] and a new vertex called ∞, where:

V = V [0, v] ∪ {∞}

E = E[0, v] ∪ {(u,∞)|u ∈ V [0, v]}

satisfying (1) or (2).

Notice that v is stable if and only if there are two different paths from v to∞. Then, v is stable if and
only if there is a cycle in G that contains v and∞. Thus, we must calculate the biconnected components
of G, and then decide if v and ∞ are in the same component.

57

4.4. MONOTONE FREEZING CELLULAR AUTOMATA

Algorithm 4 Solving Stability for bootstrap percolation rule

Input: A graph G = (V,E) and c a configuration in {0, 1}V .
1: Calculate A[0], the adjacency matrix of G[0].
2: Calculate A[0, v], the adjacency matrix of G[0, v], using A[0].
3: if v is isolated in A[0, v] then
4: return Reject
5: end if
6: Calculate B the vector with the bi-connected component A[0, v].
7: Calculate D, the vector of degree of G.
8: Define A, the adjacency matrix of G, using A[0, v], D and C.
9: Calculate B the vector with the bi-connected of A.

10: if v and ∞ are in a cycle (same bi-connected component) then
11: return Accept
12: end if
13: return Reject

Let N = |V |2 be the size of the input. Step 1 can be done in O(logN) time with O(N2) processors:
|E| = O(N) processors per vertex verify if {v, u} ∈ E. Step 2 can be done in O(log2N) time with
O(N) processors using connected component algorithm 3.2.5. Step 3-5 can be done in O(logN) time
with O(N) processors using prefix sum algorithm 3.2.4. It is enough to compute the OR on the vector
non containing A[0, v]v,v, (A[0, v]v,v1 , ..., A[0, v]v,v|V |

). Step 6 can be done in O(log2N) time with
O(N2/ logN) processors using bi-connected component algorithm 3.2.6. Step 7 can be done in O(logN)
time with O(N) processors using prefix sum algorithm 3.2.4. We use |V | processors by vertex. It is enough
to compute the addition on each vertex u vector non containing A[0, v]u,u, (A[0, v]u,v1 , ..., A[0, v]u,v|V |

).

Step 8 can be done in O(logN) time with O(N2) processors: |E| = O(N) processors per vertex verify
if {v, u} ∈ E as step 1. Step 9 can be done in O(log2N) time with O(N2/ logN) processors using
bi-connected component algorithm 3.2.6 as step 6. Step 10-12 can be done in O(logN) time with O(1)
processors. It is enough to verify Bv = B∞.

Note that this case includes when G = (V,E) is a torus.

4.4 Monotone freezing cellular automata

Several CA applications are freezing and monotonous, such as the SIR model [36], forest fires [57] and
bootstrap percolation [34], in addition to freezing threshold CA. We are interested in the results about
the fixed points and the asymptotic configurations of these.

The first property is that the fixed point is invariant for the updating schemes.

Lemma 4.4.1. Let F be a FCA monotone, σ a updating scheme and c ∈ QZ
d

, then a fixed point of
Fσ(∞) is a fixed point for any other updating scheme, in particular, Fσ(∞)(c) is a fixed point any other
updating scheme.

Proof. Let F be a freezing cellular automaton, σ,σ′ two updating schemes and c ∈ QZ
d

a fixed point for
σ. By definition of fixed point ∀t : Fσ(t)(c) = c, then as F is a freezing cellular automaton

∀z ∈ Z
d : f(cN(z)) = cz. (4.1)

Suppose that this is not true, then let z ∈ Zd be such that the equation 4.1 is false and let tz = min{t :
z ∈ σ(t)}, then Fσ(tz)(c)z > cz, concluding that F σ(∞)(c)z > cz.

58

4.4. MONOTONE FREEZING CELLULAR AUTOMATA

Finally, by equation 4.1, ∀t : Fσ′(t)(c) = c.

Definition 4.4.1. A CA F is confluent if given σ, σ′ two different updating schemes and c ∈ QZ
d

, then
F σ(∞)(c) = Fσ′(∞)(c), i.e. every iteration has the same asymptotic configuration.

The following theorem shows the interaction between the monotony and freezing.

Theorem 4.4.2. Let F be a FCA monotone, then this is confluent.

Proof. By monotony

c ≤ Fσ(∞)(c) ∧ c ≤ Fσ′(∞)(c)

applying Fσ′

to the term on the left side and F σ to the term on the right side and lemma 4.4.1

Fσ′

(c) ≤ Fσ′

(Fσ(∞)(c)) = F σ(∞)(c) ∧ Fσ(c) ≤ Fσ(F σ′(∞)(c)) = Fσ′(∞)(c)

repeating this process t times and taking t→∞

Fσ′(∞)(c) ≤ F σ(∞)(c) ∧ Fσ(∞)(c) ≤ Fσ′(∞)(c)

i.e.

Fσ′(∞)(c) = Fσ(∞)(c)

59

4.4. MONOTONE FREEZING CELLULAR AUTOMATA

60

Chapter 5

Universality in Freezing Cellular

Automata

In the pioneering works impulsed by J. von Neumann and S. Ulam in the 50-60s, when cellular automata
were formally defined for the first time, two important themes were already present: universality [13, 58,
59] and growth dynamics [60]. Growing dynamics in cellular automata were also much studied, mostly
through (classes of) examples with different points of view [61, 30, 62, 36]. More recently, substantial
works have been published on models of self-assembly tilings, most of which can be seen as a particular
non-deterministic 2D CA where structures grow from a seed. Interestingly, the question of intrinsic
universality was particularly studied in that case [63, 64].

A common feature of all these examples is that only a bounded number of changes per cell can occur
during the evolution. To our knowledge, the first time that the class of CAs with that feature was
considered as a whole is in [65] with a point of view of language recognition. More recently the notion
of freezing CA was introduced in [33] which captures essentially the same idea with an explicit order
on states, and a systematic study of this class (dynamics, predictability, complexity) was started. In
particular it was established that the class is Turing universal (even in dimension 1).

In this chapter, we study intrinsic universality in freezing CA as a first step to understand universality
in growth dynamics in general. Our central result is the construction of such intrinsically universal freezing
CA: it shows that the class of freezing CA is a natural computational model with maximally complex
elements which can be thought of as machines that can be ‘programmed’ to produce any behavior of the
class. Moreover, the universal CA that we construct are surprisingly small (5 states, see Section 5.2.1)
which is in strong contrast with the complicated construction known to obtain intrinsic universality for
the classical self-assembly aTAM model [63]. Our contribution also lays in the negative results we prove
(Theorems 5.3.1, 5.3.3 and 5.3.5): interpreting them as necessary conditions to achieve universality for
freezing CA, we obtain a clear landscape of the fundamental computational or dynamical features of this
class.

The chapter is organized as follows. In Section 5.1 we define the main concepts and prove that the
use of context-free simulation cannot lead to universality. Section 5.2 gives a general construction scheme
to obtain universal freezing CA giving three positive results in three different settings depending on the
dimension, the neighborhood and the maximum number of state changes per cell. In section 5.3, we
show several obstacles to the existence of universal freezing CA: dimension 1, 1 change per cell with von
Neumann neighborhood in 2D, and monotonicity. Finally in section 5.4 we characterize the set of CA
that can be simulated by a freezing CA, through a notion of local decreasing energy.

The content of this chapter corresponds to publication Universality in Freezing Cellular Automata
[2]. In this chapter we will consider that the states are decreasing to be consistent with the final part of
local decreasing energy.

61

5.1. CLASSICAL LIMITATION

5.1 Classical Limitation

In the context of freezing CAs, context-free (also called sub-automaton) universality, is prevented by the
irreversibility of any computation performed by U combined with the injectivity of the coding map, as
witnessed by the following theorem.

Theorem 5.1.1 (No freezing context-free universality). Let d ∈ N, there is no F ∈ FCAd which is
context-free (called previously injective) FCAVNd

-universal.

Proof. Let d ≥ 1 be any fixed dimension. By contradiction suppose that such an universal Fu with
alphabet Qu exists and consider for any n > 0 the CA Fn with states Qn = {−1, . . . ,−n} and von
Neumann neighborhood with the following rule: a cell in state q changes to state r if r < q and all its
neighbors are in state r, otherwise it stays in state q, formally,

f(cN(u)) =

{
r if (cu > r) ∧ (∀w ∈ N(u) : cu = r)
cu otherwise.

The CA Fn is <-freezing. By hypothesis Fu must simulate each Fn because they are all freezing CA
by definition. For each n let Bn be the block size in the injection φn : Qn → QBn

u given by simulation of
Fn by Fu (it is a context free simulation so the context C is a singleton). Since Qn is unbounded then
Bn is unbounded, so we can choose n such that Bn has at least one side which is at least two times the
radius ru of the neighborhood of Fu. Without loss of generality we suppose that the left to right side of
Bn is long. Consider the configuration x of Fu made by a block φn(−1) at position ~0 ∈ Zd surrounded
by blocks φn(−2). Since Fu on x simulates Fn on the configuration x′ made of a −1 surrounded by −2,
the block at position ~0 in x must become φn(−2) after some time and in particular it must change: let
t0 be the first time such that F t0

u (x) does not contain the block φn(−1) at position ~0, and consider any
position ~i ∈ Bn such that F t0

u (x)~i 6= x~i. Note that for any ~k 6∈ Bn and any time t we have F t
u(x)~k = x~k

because cells in state −2 don’t change during the evolution of x′ under Fn so the corresponding blocks in
the evolution of x under Fu don’t change either: indeed, if such a block becomes different from φn(−2)
at some time it will never become again φn(−2) (by the freezing condition on Fu and by injectivity
of φn) thus contradicting the simulation of Fn by Fu through the coding φn. Therefore it holds that
F t0−1
u (x) = x and necessarily t0 = 1 so that Fu(x)~i 6= x~i. However, since Fu(x)~i depends only on the x~i+~z

for ‖~z‖∞ ≤ ru and since mn ≥ 2ru, it is always possible to construct a pair of configurations y of Fu and
y′ of Fn satisfying the following conditions:

1. y = φ(y′) (i.e. y is a valid encoding of y′);

2. y′~0 = −1 and Fu(x)~i = Fu(y)~i;

3. any position in y′ is in state −1 or −2 and has both state −1 and state −2 in its von Neumann
neighborhood.

Concretely, using symmetries we can suppose without loss of generality that~i belong to the left part of the
block it belongs to. Then one can choose y′~j = x′~j for ~j ∈ {(−1, 0), (−1,−1), (−1, 1), (0, 0), (0,−1), (0, 1)}

and complete it in a greedy way to satisfy condition 3. Such a choice guaranties that Fu(x)~i = Fu(y)~i
because for any ~z with ‖~z‖∞ ≤ ru we have x~i+~z = y~i+~z (by the assumption that~i belongs to the left part
of its block and the fact the Bn is long enough from left to right). y′ is a fixed point of Fn (by condition
3) so y must be a fixed point of Fu (by the freezing condition on Fu and the injectivity of φn): this
contradicts condition 2 which implies Fu(y)~i 6= y~i.

This limitation forces us to look for a more general, but not trivial, definition, that allows us to find
a freezing cellular automaton.

62

5.2. CONSTRUCTING INTRINSICALLY UNIVERSAL FCA

Definition 5.1.1 (Context-sensitive). Let T > 0, and B ⊆ Zd be a d-dimensional rectangular block, with
size-vector b ∈ Zd. Let C (Zd be a finite set, with ~0 ∈ C. Let F = (d,Q,N, f) and G = (d,Q′, N ′, g)
be two d-dimensional cellular automata. F context-sensitive simulates G with slowdown T , block B

and context C if there is a injective coding map φ : QC
G → QB

F such that the global map φ̄ : QZ
d

G → QZ
d

F

verifies:

∀c ∈ QZ
d

G : φ̄(G(c)) = FT (φ̄(c)).

where φ̄ is defined by: for z ∈ Zd, r ∈ B, φ(c)bz+r = φ(c|z+C)r

When G Context-sensitive simulates F with slowdown 0, block {0}, then it is said that F is a sub-
automaton of G, as in [24, 25].

Context-sensitive simulation can get us over this hurdle as we show below; it is akin to the notion of
conjugacy in symbolic dynamics [66].

Given the theorem 5.1.1, the notion of simulation used from now on will be the Context-sensitive
simulation.

5.2 Constructing Intrinsically Universal FCA

We give a number of constructions for intrinsically universal freezing cellular automata. All of these
exhibit the same running theme: if there is a environment of crossing information asynchronously, then
universality can be reached. This insight yields three constructions which are concrete implementations
under various technical constraints of a common abstract construction. The abstract construction can be
described by: the structure of macro-cells, the mechanism to trigger state change in each macro-cell, and
the wiring between neighboring macro-cells to ensure communication. At this abstract level we assume
that there is a mean to cross wires without interference. Another aspect of wiring is the necessity to
put delays on some wires in order to keep synchronicity of information: it is a standard aspect of circuit
encoding in CAs [47, 67], which we won’t address in detail here but which can be dealt with by having
wires make zigzag to adjust their length as desired. The freezing condition imposes strong restrictions
on the way we can code, transport and process information. We focus below on where our construction
differs from the classical approach in general CAs.

Wires are Fuses. It is not possible to implement classical wires where bits of information travel
freely without violating the freezing condition. In all of our constructions wires are actually fuses that
can be used only once and they are usually implemented with two states: 1 stays stable without presence
of neighboring 0s and 0 propagates over neighboring 1s. With that behavior our wires can be trees
connecting various positions in such a way that a 0 appearing at any position is broadcasted to the whole
tree. A finite wire can either be uniformly in state b ∈ {0, 1} in which case all leaves ’agree’ on the bit of
information transported by it, or not uniform in which case information is incoherent between leaves. As
it will become clear later, our constructions will use wires between adjacent blocks (or macro-cells) in the
simulator CA and our encodings require that those wires are in a coherent state (uniformly b ∈ {0, 1}):
it is precisely in this aspect that we use the power of context sensitive simulations, because the content
of a block (or macro-cell) cannot be fixed independently of its neighbors in that case.

State Codification. In each macro-cell we must code in some way a (possibly very big) state
that can change a (possibly very big) number of times: a classical binary encoding would violate the
freezing condition so we actually use a unary coding. Given a finite set S and a quasi order (Q,�),
let q0 � . . . � q|Q|−1 be a linearization of �, and let ι(qi) = i. Then let Qu = 1∗0+ ∩ {0, 1}|Q|, and
φ ∈ Q→ Qu : q 7→ 1ι(q)0|Q|−ι(q). Note that for any i < |Q| we have q � q′ ⇔ φ(q)i ≤ φ(q

′)i (where ≤ is
the lexicographic order). Since φ is a bijection, for any cellular automaton F with state set Q, φ̄◦F ◦ φ̄−1

is a cellular automaton isomorphic to F , with state set Qu, which we call the unary representation of F .
If F is �-freezing, then its unary representation is ≤-freezing. We will use this unary encoding everywhere

63

5.2. CONSTRUCTING INTRINSICALLY UNIVERSAL FCA

in the structure of our macro-cells: each state of a simulated CA F will be represented by a collection of
wires representing the bits of an element of Qu defined above. This encoding is coherent with the freezing
property of the simulated CA because the fact that states can only decrease corresponds to the fact that
the number of wires uniformly equal to 0 increases.

Neighborhood Matchers. The fundamental basic block of our construction is a circuit that detects
a fixed pattern in the neighborhood and outputs a bit of information saying: “given this particular
neighborhood pattern w, the new state of the macro-cell must be smaller than l”. Our unary encoding is
adapted for this because the predicate “smaller than l” for a state translates into a condition on a single
bit of an element of Qu, that is to say a single wire in our concrete representation of states. Without
loss of generality we assume that F = (Z2, Qu, f,N) is a FCA with state in unary representation. Take
L = |Qu|, and m = |N |. For l ∈ Qu, let {wl

1, ..., w
l
Kl
} =

⋃

s′≤l f
−1(s′) = {n ∈ (Qu)

N |f(n) ≤ l}. Take,
for some state l, wl

k = (q1, ..., qm) ∈
⋃

s′≤l f
−1(s′) a fixed neighborhood with output smaller than l; each

state qi is in {0, 1}L, so wl
k is a binary word in {0, 1}mL.

x y

∃ ∀

α

Output

· · ·

∈ 1(wl
k) ∈ 0(wl

k)

Input

Bl
k

(a) Neighborhood matcher Bl
k. Notations

0(w) and 1(w) stand for the set of all indexes
i s.t. wi = 0 and wi = 1 respectively. This
block triggers a 0 on the output wire exactly
when the input is wl

k.

ρ1 B1
1 B1

2 B1
K1· · ·

ρ2 B2
1 B2

2 B2
K2· · ·

ρL BL
1 BL

2 BL
KL· · ·

...

1

2

3

L
STATE

(b) Construction of a macro-cell. Single line represent
wires transporting one bit and double lines represent
multi-bit wires (representing a state).

Figure 5.1: Recognizing one neighborhood (left), and wiring these neighborhood matchers into a macro-
cell which computes the local function of F (right).

Given l and k, the logic gates diagram of Figure 5.1a, the Neighborhood Matcher, called Bl
k, outputs

0 if and only if in the input in the wires is exactly wl
k or the output cable was already in state 0. The

i-th wire joins the i-th letter in w with either the ∃ gate on the left if the i-th letter of wl
k is 1 or the ∀

gate on the right if the i-th letter of wl
k is 0. Gate ∃ triggers a 0 on wire x if at least on of its incoming

wire is 0, while gate ∀ triggers a 0 on wire y if all incoming wires are 0. Note that both behaviors are
compatible with the freezing conditions since the set of wires in state 0 can only grow during evolution.
The gate α at the top triggers a 0 on the output wire if wire y is in state 0 and wire x is in state 1 (see
Figure 5.1a). It is also a freezing gate, meaning that once it has triggered a 0 it will never change its
state again, even if the wire x turns to state 0. Moreover this gate also turns into “trigger” state as soon
as the output wire is 0.

Local Function Computation. Now we can compute the local function of F through a macro-cell
CF , receiving the states x = (xn)n∈N of the neighborhood as input, and yielding the next state f(x)
as output. For this we will divide the space into rows ρl for l ∈ Qu, and some number of columns.
Intuitively, the role of row ρl is to maintain the information “the current state of the macro-cell is less

64

5.2. CONSTRUCTING INTRINSICALLY UNIVERSAL FCA

than l”. For a given l ∈ Qu, ρl contains all block Bl
k for k ∈ {1, . . . ,Kl}. The inputs are distributed to

each block, and the outputs of all blocks in ρl are connected together by a broadcast wire. Thus, the
final output in ρl is 0 as soon as one block Kl

k triggers, i.e. as soon as f(x) ≤ l, see Figure 5.1b. Notice
that once a neighborhood matcher Bl

k in row l has output 0, the output of the macro-cell it belongs to
must be less than l for ever: indeed, at the time when the Bl

k was triggered to output 0 the output value
of the Macro-Cell must be less than l by definition of Bl

k, after that time the output is always less than
l thanks to the freezing condition on the CA being simulated. Concatenating rows in the right order,
we obtain as output of the gate the correct state codification f(x) for any state of the neighborhood x
received as input.

Information exchanging. Given these basic blocks, one needs to embed one macro-cell per sim-
ulated cell on the simulator CA, and wire the inputs and outputs of neighboring macro-cells, as in
Figure 5.2. The wiring between macro-cells depends on the neighborhood of the simulated CA. In order
to clarify the presentation we will always assume that the simulated CA has a von Neumann neighborhood
which is enough to achieve universality thanks to the following lemma.

Lemma 5.2.1. For any dimension d and any F ∈ FCAd there is G ∈ FCAd with von Neumann neigh-
borhood that simulates F .

Proof. Consider a FCA F with state set Q, freezing order ≺, neighborhood N = {~n1, . . . , ~nk} ⊆ Zd and
local transition map δ : QN → Q. For a suitable choice of m and for each i (1 ≤ i ≤ k) consider a von
Neumann connected path Pi = (~pi,1, . . . , ~pi,m) of length m linking ~ni to ~0: ~pi,1 = ni and ~pi,m = ~0 and
~∆i,j = ~pi,j − ~pi,j+1 ∈ VNd for 1 ≤ j < m. Now define a FCA G with von Neumann neighborhood and
state set made of mk + 1 copies of Q, denoted by projections π0, π1,1, . . . , πk,m from Qmk+1 → Q, and
with the following behavior at each step:

• π0(G(c)~z) = δ
(
π1,m(c~z), . . . , πk,m(c~z)

)
if δ
(
π1,m(c~z), . . . , πk,m(c~z)

)
≺ π0(c~z) and π0(c~z) otherwise,

• πi,j+1(G(c)~z) = πi,j(c~z+~∆i,j
) if πi,j(c~z+~∆i,j

) ≺ πi,j+1(c~z) and πi,j+1(c~z) otherwise, for 1 ≤ j < m

and 1 ≤ i ≤ k,

• πi,1(G(c)~z) = π0(c~z) if π0(c~z) ≺ πi,1(c~z) and πi,1(c~z) otherwise, for 1 ≤ i ≤ k.

Intuitively, G realizes in parallel the propagation of neighboring Q-states along paths of the form z + Pi

from any cell ~z and the application of the local transition δ in each cell using the Q-components cor-
responding to the end of each propagation path Pi. Let’s show that G is a freezing CA that simulates
F . First, it is clear that G is freezing because in any transition, any component of the state can only

decrease according to ≺. Now consider the encoding map φ : QZ
d

→
(
Qkm+1

)Zd

defined by:

• π0(φ(c)~z) = πi,1(φ(c)~z) = c~z for 1 ≤ i ≤ k,

• πi,j+1(φ(c)~z) = πi,j(φ(c)~z+~∆i,j
) for 1 ≤ j < m and 1 ≤ i ≤ k.

A configuration φ(c) is such that the Q-value is constant along Pi paths so only the π0 components
can change when applying G and we necessarily have π0(G(φ(c))~z) = F (c)~z for 1 ≤ i ≤ k, because F is
freezing for the order ≺ and πi,m(φ(c)~z) = c~z+~ni

by the second item above and the definition of paths Pi.
Then, in G(φ(c)), only the πi,1 components can change and it holds that

πi,1(G
2(φ(c))~z) = π0(G(φ(c))~z) = F (c)~z

for 1 ≤ i ≤ k. Similarly it is straightforward to check that after m+ 1 steps the two item of the definition
of φ are again verified and we have: Gm+1(φ(c)) = φ(F (c)). This shows that G simulates F and the
lemma follows.

65

5.2. CONSTRUCTING INTRINSICALLY UNIVERSAL FCA

The von Neumann wiring between macro-cells in dimension 2 is shown on Figure 5.2. It is straight-
forward to generalize it to any dimension. Technically, thanks to Lemma 5.2.1, all the encoding map φ
we use later have a von Neumann neighborhood context (C in Definition 5.1.1).

1 B1
1 B1

2 B1
K1· · ·

2 B2
1 B2

2 B2
K2· · ·

L BL
1 BL

2 BL
KL· · ·

...

1

L
ST TE

ρ1 B1
1 B1

2 B1
K1· · ·

2 B2
1 B2

2 B2
K2· · ·

L BL
1 BL

2 BL
KL· · ·

...

1

L
ST TE

ρ1 B1
1 B1

2 B1
K1· · ·

2 B2
1 B2

2 B2
K2· · ·

L BL
1 BL

2 BL
KL· · ·

...

L
ST TE

1 B1
1 B1

2 B1
K1· · ·

2 B2
1 B2

2 B2
K2· · ·

L BL
1 BL

2 BL
KL· · ·

...

1

2

3

L
STATE

ρ1 B1
1 B1

2 B1
K1· · ·

ρ2 B2
1 B2

2 B2
K2· · ·

ρL BL
1 BL

2 BL
KL· · ·

...

1

2

3

L
STATE

ρ1 B1
1 B1

2 B1
K1· · ·

ρ2 B2
1 B2

2 B2
K2· · ·

ρL BL
1 BL

2 BL
KL· · ·

...

L
ST TE

1 B1
1 B1

2 B1
K1· · ·

2 B2
1 B2

2 B2
K2· · ·

L BL
1 BL

2 BL
KL· · ·

...

L
STATE

1 B1
1 B1

2 B1
K1· · ·

2 B2
1 B2

2 B2
K2· · ·

L BL
1 BL

2 BL
KL· · ·

...

L
STATE

1 B1
1 B1

2 B1
K1· · ·

2 B2
1 B2

2 B2
K2· · ·

L BL
1 BL

2 BL
KL· · ·

...

L
ST TE

Figure 5.2: The dashed block in the middle is a macro-cell, as in figure 5.1b. The fat arrows exchange
the state of each macro-cell with its neighbors.

Context-sensitive encoding. Given a configuration c of the simulated CA, the encoding is defined
as follows. All wires of the construction are in a coherent state (same state along the wire). Each macro-
cell holds a state of the configuration c represented in unary by the rows ρl described above. Wires
incoming from neighboring macro-cells hold the information about neighboring states (hence the context-
free encoding) which is transmitted to each block Bl

k. Inside each of these blocks the inputs arrive at gates
“∃" and “∀" and these gates have eventually triggered a 0 on wires x and y. However, gate “α" has not yet
triggered to preserve the property that the main wire of row ρl is coherent and represents the information
on the current state of the macro-cell. Starting from that well encoded configuration, a simulation cycle
begins by the possible triggering of “α” gates. After some time a well encoded configuration is reached
again because changes coming from triggerings of α gates are broadcasted on each row, and, in each block

66

5.2. CONSTRUCTING INTRINSICALLY UNIVERSAL FCA

Bl
k, the content up to the α gate is determined by the inputs.

We can now state three variants of the construction which differ essentially in the way crossing of
information is implemented.

5.2.1 A 2D, 2-change, von Neumann Neighborhood Intrinsically Universal

FCA

Theorem 5.2.2. ∃U ∈ FCAVN2
with 5 states which is 2-change and FCA2-universal.

We can make a direct implementation of the abstract construction as a universal FCA is U =
{Z2, {�,�,�, ↔ , l , α , α , ∃ , ∃ , ∀ , ∀ }, V N, fu}. This is a 2-change FCA with freezing order:

�,�, α , ∃ , ∀ ≥ ↔ , l ≥ �, α , ∃ , ∀ .

It implements all elements of Section 5.2 and the states have the following meaning:

• � is the quiescent background,

• � is a wire waiting for a signal,

• � is a signal,

• ↔ (resp. l) an intermediate states to manage a crossing when a first signal already passed
horizontally (resp. vertically),

• α (resp. ∃ and ∀) is the α (resp. ∃ and ∀) gate waiting the conditions to trigger,

• α (resp. ∃ and ∀) is the α (resp. ∃ and ∀) gate once it has triggered.

All wires described by the abstract construction are made by drawing trees of degree at most 3 of
VN-connected cells in state �. The case of � with 4 neighbors in state � is reserved to manage crossings.
Also gates ∃ and ∀ have unbounded fan-in in the abstract construction. Here we simulate unbounded
fan-in by fan-in 2 (which is possible because the semantics of these gates is associative). More precisely,
all gates (α , ∃ and ∀) receive there first (resp. second) input from their left (resp. right) neighbor and
send their output to the top.

The local rule is given by the following set of transitions, any cell which is in a local context not
appearing in this list stays unchanged:

Normal wires: if � ∈ {n, e, s, w}

•
n

w � e
s

7→ � if � ∈ {n, e, s, w}

•
n

w � e
s

7→ � if ↔ ∈ {e, w} or l ∈ {n, s}

Crossings: if {n, e, s, w} ⊆ {�,�}

•
n

w � e
s

7→ ↔ if � ∈ {e, w} and � 6∈ {n, s}

67

5.2. CONSTRUCTING INTRINSICALLY UNIVERSAL FCA

•
n

w � e
s

7→ l if � 6∈ {e, w} and � ∈ {n, s}

•
n

w � e
s

7→ � if � ∈ {e, w} and � ∈ {n, s}

•
n

w ↔ e
s

7→ � if � ∈ {n, s}

•
n

w l e
s

7→ � if � ∈ {e, w}

Gates triggering: if {e, w} ⊆ {�,�}

•
n

� α �

s
7→ α ,

•
n

w ∃ e
s

7→ ∃ if � ∈ {e, w},

•
n

� ∀ �

s
7→ ∀

Gates output:

•
n

w � e
s

7→ � if s ∈ { α , ∃ , ∀ }

It appears that the south state in the gate triggering transitions above is not used. Moreover no
transition involves the background state � and the behavior of l is similar to that of gate output
transitions. This allows us to reduce the state set to {�,�,�, ↔ , l } and to code all triggered gates by
l and (untriggered) gates α (resp. ∃ and ∀) by a � state having at south a � (resp. ↔ and l).

More precisely, we keep all transitions for normal wires and crossings and add the following ones which
replace the gates triggering: if {n, e, w} ⊆ {�,�}

•
n

� � �

�

7→ l ,

•
n

w � e
↔

7→ l if � ∈ {e, w},

•
n

� � �

l

7→ l .

The gates output transitions are already realized by the behavior of l on normal wires. Finally,
it is important to note that the crossing transition that transforms a l into � will not interfere here
because it applies only when all states surrounding l belongs to {�,�} and in the 3 transitions above
to simulate gates, the l state generated will have a state among {�, ↔ , l } as south neighbor. We
conclude that 5 states are enough to achieve universality with von Neumann neighborhood in 2D.

68

5.2. CONSTRUCTING INTRINSICALLY UNIVERSAL FCA

5.2.2 A 3D, von Neumann neighborhood, 1-change, intrinsically universal

FCA

Theorem 5.2.3. ∃U ∈ FCAVN3
with 2 states which is 1-change and FCA3-universal.

The abstract construction works exactly the same way in 3D, the only difference being that there
are more neighbors in the 3D version of von Neumann neighborhood. Moreover, the 2D CA constructed
in Section 5.2.1 can be used almost as is to obtain a 3D FCA-universal example. Indeed, all the logic
circuitry of macro cell can be done in a planar way and the third dimension matters only in the wiring
between 3D macro-cells.

Figure 5.3: Crossing signal in 3-D.

To do so, it is sufficient to add the 3-dimensional equivalent of the normal wires transition of Sec-
tion 5.2.1. Moreover, we can build a 3D FCA-universal CA which is only 1-change. This is possible by
substituting all the crossings mechanics used in Section 5.2.1 for the crossing given in the Figure 5.3.
Note that crossing transitions are the only place where the intermediate states ↔ and l can disappear.
Therefore, when removing those transitions, we get a 1-change FCA with freezing order:

�,� ≥ ↔ , l ,�.

At this point states ↔ and l are totally unrelated to crossings and are just used to code the behavior
in the gates triggering transitions and the propagation of a � at triggered gate outputs. However a cell
in 3D has 6 von Neumann neighbors, therefore there is room to code all the different behaviors using less
states.

In fact 2 states are enough and FCA-universality is achieved by the 3D von Neumann FCA on {0, 1}
given by:

• a 1 surrounded by exactly two 0s becomes 0;

• 0s stay unchanged.

The 2D version of this FCA was studied in section 6.3.3 were it was shown that it can implement all
necessary synchronous logical gates. By using such planar constructions in the 3D version and using the
third dimension to implement asynchronous crossings as above, we can realize the abstract construction
of Section 5.2.

5.2.3 2D, Moore Neighborhood, 1-change, intrinsically universal FCA

Theorem 5.2.4. ∃U ∈ FCAMN2
with 4 states which is 1-change and FCA2-universal.

69

5.2. CONSTRUCTING INTRINSICALLY UNIVERSAL FCA

We build an intrinsically universal FCA UM with Moore Neighborhood.

UM = CA(Z2, {�,�,�, l , ↔ },MN, fM}) .

The local function fM is an extension of the CA defined in Section 5.2.1, adding rules using the Moore
neighborhood to build a crossing as follows:

• fM

(

�
�

�

)

= �

• fM

(

�
�

�

)

= �

• fM

(

�
�

�

)

= �

• fM

(

�
�
�

)

= �

• fM

(

�
�
�

)

= �

• fM

(

�
�
�

)

= � ,

and the rotations and reflexions of these transitions, where match both � and � , and

fM

α a β
e c b
γ d δ

 = fu

a
c

d

e b

 if

α a β
e c b
γ d δ

is not in the previous cases

where fu is the 5-states CA defined in Section 5.2.1 without the crossings transition. It is therefore a
1-change CA with freezing order �,� ≥ �, ↔ , l .

With this local function the realization of crossings is given by Figure 5.4.

In 1 In 2

Out 1 Out 2

(a) Crossing gadget.

In 1 In 2

Out 1 Out 2

(b) Crossing gadget with a signal.

Figure 5.4: Crossing signal in Moore neighborhood. If the cell in In 1 (2) is in state �, then after five
iterations the cell in Out 2 (1) change to state � (as seen on Figure 5.4b).

As in previous constructions there is room for optimization of the number of states. For instance, one
can remove the ↔ state used in fu to encode a type of gate. Instead we can use the space allowed by
the Moore neighborhood to encode the gate by using different patterns of � and l in the bottom row
of the neighborhood. This give a FCA-universal example with only 4 states.

A natural candidate with only 2 states in this setting is “life without death”. It is quite possible that
it is FCA-universal. However the circuitry built in [30] to show the P-completeness of this CA cannot be
used directly here, in particular it does not yield an implementation of asynchronous crossing. We leave
the question of FCA-universality of “life without death” open.

70

5.3. OBSTACLES TO FCA-UNIVERSALITY

5.3 Obstacles to FCA-Universality

The one-dimensional case. Although one-dimensional freezing CA can be computationally universal
[33], they cannot be FCA1-universal. This is a major difference with CA in general. The intuition behind
this limitation is the following: in any given 1D freezing CA, there is a bound on the number of times a
zone of consecutive cells can be crossed by a signal; and above this bound, the zone becomes a blocking
word preventing any information flow between left and right halves around it.

Theorem 5.3.1 (Dimension 1). There is no F ∈ FCA1 which is FCAVN1
-universal, even with context-

sensitive simulation.

Proof. Suppose that Fu is a freezing 1D CA with radius r and alphabet Qu that can simulate any freezing
1D CA. There is a constant M ≤ |Qu|

r such that the global state of a group of r consecutive cells of Fu

cannot change more than M times. Consider now the CA F with states QM = {0, . . . ,M + 1} defined
by: F (c)i = min(ci, ci+1) for any configuration c and any i ∈ Z. F is a freezing CA for the natural order
on integers so by hypothesis Fu simulates F using (context-sensitive) encoding map φ : QZ

M → QZ

u defined
from a local map φ as in Definition 5.1.1. If a configuration c of F is such that

ci =

q if − k ≤ i ≤ k

≥ q if i < k

< q if i > k

for k larger than the radius of map φ, then there is t such that φ(c)[0,r−1] 6= F t
u(φ(c))[0,r−1]: indeed if

F t
u(φ(c))[0,r−1] stays constant with t, then, considering the configuration d such that ci = di for i ≤ k

and di = q for i > k, we also have that F t
u(φ(d))[0,r−1] is constant (because F t(d)i is constant for any

i ≥ −k and k is larger than the radius of φ). Moreover φ(d)i = φ(c)i for i < r, therefore we should have
F t
u(φ(c))i = F t

u(φ(d))i for all i < r and all t which would contradict the simulation of F by Fu since F t(c)i
and F t(d)i differ for some t and i < 0.

Consider the following configuration of F :

d = ∞(M + 1) ·Mk1(M − 1)k23k3 · · · 1kM 0∞

where the leftmost occurrence of state M is at position i = k0 for a choice of large enough k0, . . . , kM . By
the reasoning above, we must have that

(
F t
u(φ(d))[0,r−1]

)

t
must change M + 1 times but this contradicts

the definition of M .

2D von Neumann 1-change FCA: information crossing. We will show that there is no freezing
universal FCA which is 1-change and has the von Neumann neighborhood. This result is to be contrasted
with the case of self-assembly tiling where an intrinsically universal system exists [63] (although with an
unavoidably more technical definition of simulation). The intuition is that the propagation of state
changes in such FCA produces 4-connected paths that can not be crossed in the future of the evolution
because only 1 state change per cell is possible. As shown in the construction of Theorem 5.2.2, two
changes per cell are enough to get rid of this limitation, even with the von Neumann neighborhood.

We will show that no 1-change von Neumann FCA can simulate the following 2-change FCA (Z2, QF ,LN, f),
with QF = {0,←, ↓,←↓} and where f is defined by

f(0, ↓, 0) =↓ f(0, 0,←) =← f(0, ∗,←↓) =← f(↓, ∗,←) =←↓

and f(a, ∗, ∗) = a else, where ∗ stands for any state and the arguments of f correspond to neighborhood
LN in the following order: center, north, east.

Given a FCA F with von Neumann neighborhood, we call changing path from z to z′ between con-
figurations c and F t(c) a path z1, . . . , zn such that:

71

5.3. OBSTACLES TO FCA-UNIVERSALITY

• z1 = z,

• zn = z′,

• zi+1 ∈ VN(zi), ∀i = 1, . . . , n,

• czi 6= F t(c)zi , ∀i = 1, . . . , n.

We also say that a position z is stable in a configuration c if F (c)z = cz and unstable if it is not stable.

Lemma 5.3.2 (Changing path lemma). Let z be a position in some configuration c and let t ≥ 1 be such
that F t(c)z 6= cz, then there exists an unstable position z′ in c and a changing path of length at most t
from z to z′ between configurations c and F t(c).

Proof. Consider the first time t′ such that F t′(c)z 6= cz. If t′ = 1 we are done because in this case z itself
is unstable in c. Otherwise, z is stable in c and therefore one of its neighbors must have changed before
time t′. Therefore we can apply inductively the lemma on this neighbor with a time t < t′ ≤ t to get a
changing path of length at most t− 1 from an unstable position to this neighbor, which we complete into
a changing path of length at most t from an unstable position to z.

Theorem 5.3.3. There is no automaton in FCAVN2
which is 1-change and able to simulate F . Therefore

there is no automaton in FCAVN2
which is 1-change and FCAVN2

-universal.

Proof. Suppose by contradiction that such a 1-change FCA U = (Z2, Q, V N, fs) exists. Let φ : QC
F → QB

be the encoding map ensuring the simulation of F by U in T steps:

φ(F (c)) = UT (φ(c)),

with φ(c)~z depending exactly on cells ⌊~z/b⌋+ C of c, where b ∈ Z2 is the size-vector of B. The injectivity
of φ, the simulation and Lemma 5.3.2 ensure that there is a finite set E ⊆ Z2 (depending on C, b and T)
such that for any configuration c ∈ QZ

2

F :

• if some position z is unstable in c then some position z′ ∈ bz + E is unstable in φ(c);

• if all positions in z + C are stable in c then all positions in bz +B are stable in φ(c).

Let us consider configuration cn ∈ QZ
2

F for any n ≥ 0 defined by:

cn(z) =

↓ if z = (0, n),

← if z = (n2, 0),

0 else.

By definition of F , for any t, F t(cn) contains exactly two unstable positions: (0, n− t) and (n2 − t, 0)
(↓ propagates downward, ← propagates to the left eventually crossing a ↓ and everything else stays
unchanged). Using the observations above and Lemma 5.3.2 we deduce that for any large enough n there
exist a changing path Pn = (z1, . . . , zm) of length Ω(n) from z1 ∈ b · (0, n) + E to zn ∈ b · (0,−n) + E
between configurations φ(cn) and U2nT (φ(cn)). Moreover, choosing n large enough, each position of the
path Pn is at distance at most K from the vertical axis where K is a constant given by the simulation
that do not depend on n: indeed changes between cn and F 2n(cn) occur on the vertical axis or at distance
at least n2 − 2n from it. Then, for a suitable choice of a t0 ∈ o(n) we have that:

• there is an unstable position z = (x, y) in U (n2−t0)T (φ(cn)) with y > K and at distance o(n) from
the center (0, 0), while all other unstable positions are at distance Ω(n) from the center;

• there is a position z′ = (x′, y′) with y′ < K and at distance o(n) from the center such that
U (n2+t0)T (φ(cn))z′ 6= φ(cn)z′ .

72

5.3. OBSTACLES TO FCA-UNIVERSALITY

−K K

Pn

|P ′
n| ∈ o(n)

Ω(n)

Figure 5.5: Changing paths Pn and P ′
n that must cross each other.

Using Lemma 5.3.2 again, we deduce the existence of a changing path P ′
n of length o(n) from z

to z′ between configurations U (n2−t0)T (φ(cn)) and U (n2+t0)T (φ(cn)). Given the respective length and
endpoints of Pn and P ′

n (see Figure 5.5), they must necessarily cross each other: this is a contradiction
because all positions of Pn have already made a change under the action of U after time 2nT , so none of
them can change later since U is 1-change.

Monotone FCA: synchronous vs. asynchronous information. As for classical real function,
we can consider the property of monotonicity in CA: given two configurations, one smaller that the other,
their images by the CA compare in the same order. We are particularly interested in the case where
the order on configurations is given by the order on states of a freezing CA. Several examples of such
monotone FCAs were studied in literature. In particular, a simple model called bootstrap percolation was
proposed by Chalupa in 1979 [34] to understand the properties in some magnetic materials. This model
and several variants were studied from the point of view of percolation theory [61, 62], but also from the
point of view of complexity of prediction [39].

The intuitive limitation of monotone freezing CAs is that they must always produce a smaller state
when two signals arrive simultaneously at some cell compared to when one of the two signals arrives
before the other. We now exhibit a freezing non monotone CA F that does precisely the opposite (non-
simultaneous arrival produces a smaller state). Next theorem shows that F cannot be simulated by any
freezing monotone CA. F is defined by (Z2, {0, s1, s2, w,△}, LN, f) with f given by:

• f

w

si

0

 = si

• f

w

0

si

 = si

• f

s1

s2

0

 = s2

• f

s1

s2

w

 = s2

• f

△

s1

s1

 = s1

• f

△

s1

w

 = s2,

and unspecified transitions let the state unchanged. F is ≺-freezing for the following order on states:
s2 ≺ s1 ≺ 0,∆, w. Essentially F is a FCA sending the signals s1 and s2 towards south or west along the
wires materialized by state w. s2 can also move on wires made of s1. ∆ plays the role of a non-monotone
local gate: when two signals arrive simultaneously, a s1-signal is sent to the south, but when only one
signal arrives, a s2-signal is sent to the south. F cannot be simulated by any monotone FCA, hence no
monotone FCA can be FCA-universal.

The key to understand the limitations of monotone FCAs is to establish that some configurations is
’above’ another one for the freezing order, and then use the fact that this relation is preserved under

73

5.3. OBSTACLES TO FCA-UNIVERSALITY

iterations. The next lemma gives a tool to obtain such relations in the context of a simulation between
FCAs.

Given a CA F and a finite set E ⊆ Zd, we say that a configuration y is E-locally reachable from a
configuration x if for any ~i ∈ Zd there are configurations xi and yi with:

• x
~i

|~i+E
= x|~i+E ;

• y
~i

|~i+E
= y|~i+E ;

• F t(x
~i) = y

~i for some t ≥ 0.

Lemma 5.3.4 (Local reachability lemma). Let G be a ≺-freezing CA that (context sensitively) simulates
a CA F , both of dimension d. Then there exists a finite set E ⊆ Zd such that, if a configuration y is
E-locally reachable by F from a configuration x, then φ(y) ≺ φ(x) where φ is the encoding map given by
the simulation as in Definition 5.1.1.

Proof. Using the notations of definition 5.1.1, there exists some finite set E ⊆ Zd such that for any
x, y ∈ Qd

F and any ~i ∈ Zd it holds:

x|~i+E = y|~i+E ⇒ φ(x)|b~i+B = φ(y)|b~i+B .

Suppose now that y is E-locally reachable from x by F . We have in particular φ(y~i) ≺ φ(x~i) because G
is ≺-freezing and the simulation ensures that φ(y~i) is in the orbit of of φ(x~i) under G because y~i is in the
orbit of x~i under F . From the E-locality condition and the remark above we deduce:

∀j ∈ B : φ(y)b~i+j ≺ φ(x)b~i+j

and since the relation holds for any ~i we finally have: φ(y) ≺ φ(x).

If F is a freezing CA and c is any configuration then the limit lim
t→∞

F t(c) always exists (in the Cantor

topology), is always a fixed point, and will be denoted F∞(c) [33].

Theorem 5.3.5. For any d ≥ 1, there is no freezing monotone CA of dimension d which is FCAVNd
-

universal.

Proof. The case of dimension 1 is already handled by Theorem 5.3.1. We do the proof for d = 2 using
F defined above. It is straightforward to extend the argument to higher dimensions. Suppose by con-
tradiction that there is a monotone ≺-freezing G that can simulate F and let E be the set given by
Lemma 5.3.4 for this simulation. Let us define xn, x∞ and yn, y∞ as follows (see Figure 5.6):

s1
w

w

w

△
w

w

w

w w w s1

s1
s1
s1
s1
s1
s1
s1
s1

s1 s1 s1 s1
F∞

(a) Configuration yn with n = K = 3.

s1
w

w

w

△
w

w

w

w w w w

s1
s1
s1
s1
s2
s2
s2
s2

w w w w
F∞

(b) Configuration y∞ with K = 3.

Figure 5.6: Configurations yn and y∞ and the limit fixed point reached under F .

74

5.4. ON THE SIMULATION POWER OF FCA

xn(~i) =

s2 if ~i = (0, b) with b > −n

s1 if ~i = (0, b) with b ≤ −n

0 else.

yn(~i) =

s1 if ~i = (0, b) with b > K

w if ~i = (0, b) with b ≤ K and b 6= 0

△ if ~i = (0, 0)

s1 if ~i = (a, 0) with a > n

w if ~i = (a, 0) with a ≤ n and a > 0

0 else.

where K is a large enough constant (compared to E) and x∞ (resp. y∞) is the limit of xn (resp. yn)
when n goes to∞. Choosing n = K large enough (compared to E) it is straightforward to check that x∞

(resp. yn) is E-locally reachable from xn (resp. y∞). From Lemma 5.3.4, we deduce that φ(x∞) ≺ φ(xn)
and φ(yn) ≺ φ(y∞) where φ is the encoding map involved in the simulation of F by G. Thus we also have
G∞

(
φ(yn)

)
≺ G∞

(
φ(y∞)

)
(by monotonicity of G), which is equivalent to φ(F∞(yn)) ≺ φ(F∞(y∞)) by

the simulation. Denoting by P the half-plane of all positions (a, b) with b < −n, we have F∞(y∞)|P = x∞|P
and F∞(yn)|P = xn|P . This translates by the simulation into φ(F∞(y∞))|P ′ = φ(x∞)|P ′ and φ(F∞(yn))|P ′

= φ(xn)|P ′ where P ′ is some half-plane contained in P (depending on parameters of the simulation). We
reached a contradiction because the left-hand terms and the right-hand terms of this pair of equality
compare differently with respect to ≺ as established above, and they cannot be all equal because φ(xn)
is distinct from φ(x∞) over P ′ by injectivity of φ.

5.4 On the simulation power of FCA

A freezing-universal CA can simulate all freezing CA of same dimension, but it can simulate CAs which
are not freezing. For instance, a CA with states Q = {0, . . . , k} ∪ {ι} and neighborhood V = {0, 1} that
increases or decreases the local state depending on the presence of ι in the context, defined by the local
map:

f(a, b) =

ι if a = ι,

max(a+ 1, k) else if b = ι,

min(a− 1, 0) else.

Such a CA is not freezing but can be simulated by a freezing CA (which can be seen directly, and is also
a consequence of Theorem 5.4.2 below). However it is straightforward to check that a freezing CA cannot
simulate a CA where there is no bound on the number of state change per cell.

Given a CA F : QZ
d

→ QZ
d

, we say that e : QZ
d

→ {0, . . . , k}Z
d

is an explicit local energy for F if it
is a sliding block map, i.e. ∀c ∈ QZ

d

, ∀z ∈ Zd, e(c)z = λ(c|z+N) for some finite N ⊆ Zd and local map
λ : QN → {0, . . . , k}, and verifies ∀c ∈ QZ

d

, ∀z ∈ Zd:

• e(F (c))z ≤ e(c)z and

• F (c)z 6= cz ⇒ e(F (c))z < e(c)z.

An explicit local energy for some CA F gives a proof that its cells can only change a bounded number
of time steps their state. For instance, the example given above admits the following explicit local energy:

e(c)z =

0 if cz = ι,

cz else if cz+1 6= ι,

k − cz else.

75

5.5. CONCLUSION

Such local energy maps are also naturally found in some classes of CA like FCA or nilpotent CAs (recall
that F is nilpotent if Fn is a constant map for some n).

Lemma 5.4.1. Any freezing CA and any nilpotent CA admits an explicit local energy.

It turns out that we can characterize the set of CA that can be simulated by freezing CAs through
the notion of explicit local energy.

Theorem 5.4.2. A CA F admits an explicit local energy if and only if it is context-sensitive simulated
by a freezing CA G.

Proof. First suppose that F admits an explicit local energy e : QZ
d

→ {0, . . . , k}Z
d

. We consider G over
alphabet QG = Q× {0, . . . , k} ∪ {ǫ}, with neighborhood the union of that of F and e, and defined as
follows:

• if ǫ is not in the neighborhood and the two components of states locally look like c ∈ QZ
d

and
e(c) ∈ {0, . . . , k}Z

d

then the new state has components defined by F (c) and e(F (c));

• in any other case generate the state ǫ.

Defining the order � on QG by

• ǫ � (q, i) for any q ∈ Q and i ∈ {0, . . . , k};

• (q, i) � (q′, i′) if i < i′;

• x � x for any x ∈ QG,

it is straightforward to check that G is �-freezing. Let φ : QZ
d

→ (Q× {0, . . . , k})Z
d

be the encoding
defined by φ(c) equal to c on the first component of states and e(c) on the second, it is straightforward
to check that φ ◦ F = G ◦ φ which shows that G simulates F .

To prove the converse direction of the theorem, suppose now that a freezing CA G simulates a CA
F with slowdown T and block size m. Since iterating and applying a grouping operation on a freezing
CA gives a freezing CA, we can suppose without loss of generality that m = 1 and T = 1. That is to say
the simulation holds through the encoding φ coming from a local map φ : QV

G → QF so that we have:
φ(F (c)) = G(φ(c)). Lemma 5.4.1 ensures that G admits an explicit local energy e : QZ

d

G → {0, . . . , k}
Z

d

.
One can check that e ◦ φ : QV

F → {0, . . . , k} is the local map of an explicit local energy Ψ for F , indeed:

• Ψ(F (c))z = e(φ(F (c))z = e(G(φ(c)))z ≤ e(φ(c))z = Ψ(c)z;

• moreover, if F (c)z 6= cz then the condition of local injectivity on φ (item 1 of Definition 5.1.1)
ensures that φ(F (c))z 6= φ(c)z that is to say G(φ(c))z 6= φ(c)z. e being an explicit local energy for
G we deduce that: e(G(φ(c)))z < e(φ(c))z that is to say Ψ(F (c))z < Ψ(c)z.

5.5 Conclusion

We have studied the freezing cellular automata from the point of view of intrinsic universality. First,
we show that with the usual definition of simulation it is not possible to find an intrinsically universal

76

5.5. CONCLUSION

freezing cellular automata, so we have introduced an adequate and nontrivial definition that allows us to
find intrinsic universality.

For the construction of a intrinsically universal automata we have given an abstract structure with the
sufficient components so that a cellular automata can be intrinsically universal. Eventually, we could use
this same abstract structure to build more general intrinsically universal cellular automata, for example
to look for intrinsic universality in bounded change cellular automata.

Using the previous construction, we have built an intrinsically universal cellular automaton with von
Neumann neighborhood and three changes and we explore how the number of changes decreases if we
relax the neighborhood or the number of dimensions.

We also studied the limitations of the previous results, showing that it is not possible to decrease
the number of changes to find intrinsically universal cellular automata, because these automata can not
cross signals. It is not possible to find intrinsically universal freezing cellular automata that are also
monotonous, since they reach the same fixed point independent of the updating scheme, which leads to
a contradiction trying to simulate non-monotonous automata.

Finally, we have characterized the cellular automata that can be simulated by freezing cellular au-
tomata, obtaining that they are those to which a decreasing local energy can be defined.

These results can be extended in several ways. On the one hand we can look for intrinsic universality
in more general cellular automata, such as bounded changes and study if these are closed by simulation,
i.e. if they can only simulate cellular automata bounded changes. If it is the case, the intrinsic universal
automata would be the maximal element by simulation of this family of cellular automata, in the same
way that it happens in the reversible cellular automata.

On the other hand, we can look for intrinsic universality in more particular cellular automata, as in
the families of freezing cellular automata where there is no intrinsic universality, restricting the intrinsic
universality to the ability to simulate automatons within this family. So we could look for a freezing,
one change, von Neumann neighborhood cellular automaton capable of simulating ot other freezing, one
change, von Neumann neighborhood cellular automata and analogously with monotone freezing cellular
automata.

Regarding the latter, if we consider asynchronous iteration schemes, they are very close to the aTAM
model and could be studied as a generalization of these or others models such as the Deterministic
Tilings.

77

5.5. CONCLUSION

78

Chapter 6

On the Complexity of the Stability

Problem of Binary Freezing Totalistic

Cellular Automata

Consider a one or two dimensional cellular automaton on a finite torus and states active and inactive or
1 and 0.

An important problem in complexity of CA consists in predicting the future state of a cell, given
an initial configuration. This decision problem is called Prediction [31]. In computational complexity
the question is how fast we could determine the solution of Prediction?, and in particular if we may
answer faster than simulating of the automaton. In freezing cellular automata, every initial configuration
converges in at most N steps to a fixed point (where N the size of the torus), thus if we could decide
Prediction for a sufficiently large time, then we could compute if a cell changes or remains stable (always
in the same state). We call this problem Stability.

In order to find a FCA with higher complexity, the result of [33] shows that it is necessary to study
FCA in more than one dimension. In this context, we should mention that D. Griffeath and C. Moore
studied the Life without Death automaton (i.e. the game of life such that active sites remains unchanged),
showing that the Stability problem for this rule is P-Complete [30]. We remark that Life without Death
is a two-dimensional freezing cellular automaton with Moore neighborhood.

Moreover, in [39] the freezing majority cellular automaton, also known as bootstrap percolation model
was studied in arbitrary undirected graph. In this case, an inactive cell becomes active if and only if the
active cells are the most represented in its neighborhood. It was proven that Stability is P-Complete
over graphs whose maximum degree is (number of neighbors) ≥ 5. Otherwise (graphs with maximum
degree ≤ 4), the problem is in NC. This clearly includes the two dimensional case, with von Neuman
neighborhood.

In this chapter we study the two simplest ways to tessellate the bi-dimensional grid: tessellation with
triangles and with squares and we consider the von Neumann neighborhood. In each one of theses grids
we study the family of freezing totalistic cellular automata (FTCA).

More precisely, we classify FTCAs in four groups:

• Simple rules: Rules that exhibit very simple dynamics which reach fixed points in a constant number
of steps.

• Topological rules: Rules where the stability of a cell depends on some topological property given
by the initial configuration.

79

6.1. PRELIMINARIES

• Algebraic rule: Rules where the dynamics can be accelerated, exploiting some algebraic properties
given by the rule.

• Turing universal rules: Rules capable of simulating Boolean circuits and capable to simulate Turing
computation.

• Fractal growing rules: Rules that produce fractal shapes growing.

The present chapter is structured as follows: in Section 6.2 , the FTCA for the triangular grid are
studied. In Section 6.3, we study the FTCA on the square grid. In Section 6.4, we extend our study to
FCA with rotation invariant rules. In Section 6.5, we study a weaker version of the stability problem.
Finally, in Section 6.6 we give some conclusions.

The content of this chapter corresponds to publication On the Computational Complexity of the
Freezing Non-strict Majority Automata [3] in the conference AUTOMATA 2017, and has been accepted
for publication on journal Information and Computation, for a special issue of the same conference.

6.1 Preliminaries

In this chapter we will study the family of freezing totalistic cellular automata (FTCA) with von Neumann
neighborhood and two states over the square and triangular grid. In this family, the cells in state 1 (active
cells) remain active, because are freezing, and the cells in state 0 (inactive cells) are activated depending
the sum of the state of their neighbors. This sum is always less or equal to |N |.

Let f the local function of a FTCA and If ⊆ {0, 1, 2, 3, 4}. The number i in If means that f activates
the central cell if it has i active neighbors. Thus, there is a bijection between the sets If and the FTCA
with local rule f . From this bijection we denote a FTCA with local rule f as the concatenation of the
elements of If increasingly. For example, the majority vote FCA in triangular grid activates a cell if it
has 2 or 3 activated neighbors, then we call this rule the rule 23.

Given that the numbers of sets If is 2|N |+1 then there is 16 FTCA in the triangular grid and 32 in
the square grid, but we will center our analysis on the rules where 0 is a quiescent state, i.e. if the sum
of the states of the neighborhood equals to 0 remains the center cell inactive, obtaining 8 FTCA in the
triangular grid and 16 in the square grid with 0 as quiescent state.

Remember that in this CA the cells in state 1 remain in state 1 forever and the cells in state 0 can
change, but not every one do it.

6.2 Triangular Grid

We will start our study over the regular grid where each cell has three neighbors, as Figure 3.8a. In
this topology, the sixteen FTCA are reduced to eight non-equivalent, considering the inactive state as a
quiescent state. According to our classifications, the eight FTCAs in the triangular grid are grouped as
follows:

• Simple rules: φ, 123 and 3.

• Topological rules: 2 and 23.

• Algebraic rule: 12.

• Fractal growing rules: 1 and 13.

80

6.2. TRIANGULAR GRID

Is easy to check that simple rules are in NC. For rule φ, we note that every configuration is a fixed
point (then Stability for this rule is trivial). For rule 123, no site is stable unless the configuration
consists of every cell inactive. We can check in timeO(log n) andO(n2) processors whether a configuration
contains an active cell using a prefix-sum algorithm (sum the states of all cells, and then decide if the
result is different than 0). Finally, for rule 3 we notice that all dynamics reach a fixed point after one
step. Therefore, we check if the initial neighborhood of site u makes it active in the first step (this can
be decided in O(log n) time in a sequential machine).

We continue our study with the Topological FTCA.

6.2.1 Topological Rules

We say that rules 2 and 23 are topological because, as we will see, we can characterize the stable sites
according to some topological properties of the initial configurations.

As we mentioned before, rule 23 is a particular case of the freezing majority vote CA (that we called
simply Majority). In [39] the authors show that Stability for Majority is in NC over any graph with
degree at most 4. This result is based on a characterization of the set of stable cells, that can be verified
by a fast-parallel algorithm. Thus we can apply this result to solve Stability for rule 23, considering
the triangular grid as a graph of degree 3. Then we have the next theorem:

Theorem 6.2.1 ([39]). There is a fast-parallel algorithm that solves Stability for 23 in time O(log2 n)
and O(n4) processors. Then Stability for 23 is in NC.

(a) Initial random configuration. (b) Time 9 (fixed point).

Figure 6.1: Example of fixed point for the rule 23. The cells in state 0 in the fixed point are stable cells.

For the sake of completeness, we give the main ideas used to prove Theorem 6.2.1. This is to find a
characterization of the set of stable sites.

Proposition 6.2.2 ([39]). Consider the freezing majority vote CA defined over a graph G of degree at
most 4. Let c be a configuration of G, and let G[0] be the subgraph of G induced by the vertices (cells)
which are inactive according to c.

An inactive vertex u is stable if and only if,

(i) u belongs to a cycle in G[0], or

(ii) u belongs to a path P in G[0] where both endpoints of P are contained in cycles in G[0].

Moreover, there is a fast-parallel algorithm that checks conditions (i) and (ii) in time O(log2 n) using
O(42) processors.

81

6.2. TRIANGULAR GRID

Therefore, the proof of Theorem 6.2.1 consists in (1) noticing that a finite configuration on the
triangular grid, seen as a torus, is a graph of degree 3, then it satisfies the hypothesis of Proposition
6.2.2; (2) using the algorithm given in Proposition 6.2.2 to check whether the given site u is stable.

We will use the previous result to solve the stability problem for rule 2.

Theorem 6.2.3. Stability is in NC for the freezing CA 2.

Proof. When we compare rule 2 and rule 23, we noticed that they exhibit quite similar dynamics. Indeed,
a cell u which is stable for rule 23 is also stable for rule 2. Therefore, to solve Stability for 2 on input
configuration x and cell u, we can first solve Stability for 23 on those inputs using the algorithm given
by Theorem 6.2.1. When the answer of Stability for 23 is Accept, we know that Stability for 2 will
have the same answer. In the following, we focus in the case where the answer of Stability for 23 is
Reject, i.e. u is not stable on configuration x in the dynamics of rule 23.

Suppose that u is stable for rule 2, but is not stable for rule 23. Let t be the first time-step where u
becomes active in the dynamics of rule 23. Note that, since u is stable for rule 2, necessary in step t− 1
the three neighbors of u are active. Moreover, at least two of them simultaneously became active in time
t− 1.

Let now G be the graph representing the cells of the triangular grid covered by configuration x. Let
G[0] be the subgraph of G induced by the initially inactive cells, and let G[0, u] be the connected com-
ponent of G[0] containing cell u. We claim that G[0, u], in the dynamics of rule 23, every vertex (cell) in
G[0, u] must become active before u, i.e. in a time-step strictly smaller than t.

Claim 1: Every vertex of G[0, u] is active after t applications of rule 23.

Indeed, suppose that there exists a vertex (cell) w in G[0, u] that becomes active in a time-step greater
than t. Call P a shortest path in G[0, u] that connects u and w, and let u∗ be the neighbor of u contained
in P . Note that except the endpoints, all the vertices (cells) in P have at least two neighbors in P ,
which are inactive. Moreover, both endpoints of P are inactive at time t. Therefore, all the vertices in
P will be inactive in time t. This contradicts the fact that the three neighbors of u become active before u.

Claim 2: G[0, u] is a tree.

Indeed, G[0, v] is connected, since it is defined as a connected component of G[0] containing u. More-
over, suppose that G[0, u] contains a cycle C. From Proposition 6.2.2, we know that all the cells in C are
stable, which contradicts Claim 1.

Call Tu the tree G[0, u] rooted on u. Let d be the depth of Tu, i.e. longest path between u and a leaf
of Tu.

Claim 3: Every vertex of G[0, u], except u, is active after d applications of rule 2.

Notice that necessarily a leaf of Tu has two active neighbors (because they are outside G[0, u]) and
one inactive neighbor (its parent in Tu). Therefore, in one application of rule 2, all the leaves will become
active. We will reason by induction on d. Suppose that d = 1. Then all vertices w of Tu except u are
leaves, so the claim is true. Suppose now that the claim is true for all trees of depth smaller than or
equal to d, but Tu is a tree of depth d + 1. We notice in one step the leaves are the only vertices of Tu
that become active (every other vertex has two inactive neighbors). Then, after one step, the inactive

82

6.2. TRIANGULAR GRID

sites of Tu induce a tree T ′
u of depth d. By induction hypothesis, all the cells in T ′

u, except u, become
active after d applications of rule 2. We deduce the claim.

Let u1, u2, u3 be the three neighbors of u. For i ∈ {1, 2, 3}, call Tui
the subtree of Tu rooted at ui,

obtained taking all the descendants of ui in Tu. Call di the depth of Tui
. Without loss of generality,

d1 ≥ d2 ≥ d3.

Claim 4: u is stable for the dynamics of rule 2 but not for the dynamics of rule 23, if and only if
d1 = d2 ≥ d3.

Recall that u is stable for the dynamics of rule 2 but not for the dynamics of rule 23 if and only if
u has three active neighbors at time-step t, and at least two of them become active at time t − 1. The
claim follows from the application of Claim 3 to trees Tu1

, Tu2
and Tu3

.

We deduce the following fast-parallel algorithm solving Stability for 2: Let x be the input config-
uration and u the cell that we want to decide stability. First, use the fast-parallel algorithm given by
Theorem 6.2.1 to decide if u is stable for the dynamics of rule 23 on configuration x. If the answer is
affirmative, then we decide that (x, u) is an Accept-instance of Stability for 2. If the answer is negative,
the algorithm looks for cycles in G[0, u]. If there is a cycle, then the algorithm Rejects, because Claim 2
implies that u cannot be stable for rule 2. If G[0, u] is a tree, then the algorithm computes in parallel the
depth dv of the subtrees Tv, for each v ∈ N(u). Finally, the algorithm accepts if the conditions of Claim
4 are satisfied, and rejects otherwise.

The steps of the algorithm are represented in Algorithm 5.

Algorithm 5 Solving Stability 2

Input: x a finite configuration of dimensions n× n and u a cell.
1: if the answer of Stability for rule 23 is Accept on input (x, u) then
2: return Accept
3: else
4: Compute G[0, u]
5: Compute C the set of cycles of G[0, u]
6: if C 6= ∅ then
7: return Reject
8: else
9: for all v ∈ N(u) do in parallel

10: Compute dv the depth of Tv
11: end for
12: if ∃a, b, c ∈ (N(u)) : da = db ≥ dc then
13: return Accept
14: else
15: return Reject
16: end if
17: end if
18: end if

Let N = n2 be the size of the input. Algorithm 5 runs in time O(log2N) using O(N3/ logN)
processors. Indeed, the condition of step 1 can be checked in time O(log2N) using O(N2) processors
according the algorithm of Theorem 6.2.1. Step 4 can be done in time O(log2N) using O(N2) processors
using a connected components algorithm given in [44]. Step 5 can be done in time O(log2N) using
O(N3/ logN) processors using a bi-connected components algorithm given in [44]. Step 10 can be solved
in time O(logN) using O(N) processors using a vertex level algorithm given in [44]. Finally, Step 12
can be done in O(logN) time in a sequential machine.

83

6.2. TRIANGULAR GRID

6.2.2 Algebraic Rule

Now we continue with the study of rule 12. We say that this rule is algebraic because, as we will see, we
can speed-up the dynamics using some algebraic properties of this rule. Using this speed-up we will build
an algorithm that decides the stability of a cell much faster than the simple simulation of the automaton.
In other words, we will show that Stability for rule 12 is in NC.

Let x be a finite configuration on the triangular grid, u a cell. Let v be a neighbor of u. We define
a semi-plane Sv as a partition of the triangular grid in two parts, cut by the edge of the triangle that
share cell u and v, as shown in Figure 6.2.

u
v

Figure 6.2: Triangular grid divided in semi-planes according to u and v. The hatch pattern represent the
semi-plane Sv Gray cells are at the same distance from u.

We say that two cells v1, v2 are at distance d if a shortest path connecting v1 and v2 is of length d.
In the following, we call Dd the set of cells at distance d from u. We can be more explicit and use the
property above to give a way to speed-up the dynamics of rule 12.

Lemma 6.2.4. Let d ≥ 2 be the distance from u to the nearest active cell. Then the distance to the
nearest cell to u in F (c) is d− 1.

Proof. Let w be an active cell at distance d of u in configuration x, and call P a shortest (u,w)-path.
Call w1 the neighbor of w contained in P , and let w2 be the neighbor of w1 in P different than w (these
cells exist since d ≥ 2). Note that w2 might be equal to u. Since P is a shortest path, w2 is at distance
d−2 from u. Then all the neighbors of w2 are inactive, so w2 it is necessarily inactive in F (c). Moreover,
w1 has more than one active neighbor, and less than three active neighbors, so w1 is active in F (c). Then
the distance from u to the nearest active cell in F (c) is d− 1.

Lemma 6.2.5. Let d ≥ 2 be the distance from u to the nearest active cell, and let v ∈ N(u). Then v
is active after d − 1 applications of rule 12 (i.e. F d−1(c)v = 1) if and only there exists an active cell in
Sv ∩Dd.

Proof. We reason by induction on d. In the base case, d = 2, suppose that Sv does not contain an active
site at distance 2. Then every neighbor of v is inactive in the initial configuration, so v is inactive after
one application of rule 12 (i.e. F (c)v = 0). Conversely, if F (c)v = 0, then every neighbor of v is initially
inactive, in particular all the sites in Sv at distance 2 from u.

84

6.2. TRIANGULAR GRID

Suppose now that the statement of the lemma is true on configurations where the distance is d, and let
c be a configuration where the distance from u to nearest active cell is d+ 1. Let c′ be the configuration
obtained after one application on c of rule 12 (i.e. c′ = F (c)).

Claim 1: F d−1(c′)v = 1 if and only if in c′ there exists an active cell in Sv ∩Dd.

From Lemma 6.2.4, the distance from u to the nearest active cell in c′ is d. The claim follows from
the induction hypothesis.

Claim 2: Suppose that F d−1(c′)v = 0. Then in c, all the cells in Sv ∩Dd+1 are inactive.

Notice that, from Claim 1, the fact that F d−1(c′)v = 0 implies that in c′ all the cells in Dv ∩Sv must
be inactive. Suppose, by contradiction, that there is a cell w in Sv ∩Dd+1 that is active in c. Let w′ be
a neighbor of w contained in Sv ∩ Dd, and let w′′ be a neighbor of w′ not contained in Dd+1 (then w′

belongs to Dd ∪Dd−1). Note that w′ has an active neighbor in c, but must be inactive in c′. The only
option is that all the neighbors of w′ are active in c, in particular w′′ is active in c. This contradicts the
fact the nearest active cell is at distance d+ 1 in c.

Claim 3: Suppose that F d−1(c′)v = 1. Then there is a cell in Sv ∩Dd+1 that is active in c.

From Claim 1, the fact that F d−1(c′)v = 0 implies that there is a cell w ∈ Sv ∩Dd that is active in
c′. Suppose by contradiction that all the cells in Sv ∩ Dd+1 are inactive in c. Since w is active in c′,
necessarily w has at least one neighbor w′ that is active in c. Since w′ is not contained in Sv ∩ Dd+1

(because we are supposing that all those cells are inactive in c), we deduce that w′ belongs to Dd∪Dd−1.
This contradicts the fact the nearest active cell is at distance d+ 1 in c.

We deduce that F d−1(c′)v = 1 if and only if there is a cell in Sv ∩ Dd+1 that is active in c. Since
c′ = F (c), we obtain that F d(c)v = 1 if and only if there is a cell in Sv ∩Dd+1 that is active in c.

Theorem 6.2.6. Stability is in NC for the freezing CA 12.

Proof. In our algorithm solving Stability for 12, we first compute the distance d to the nearest active
cell from u (if every cell is inactive, our algorithm trivially accepts). Then, for each v ∈ N(u), the
algorithm computes the set of cells Sv ∩ Dd, and checks if that set contains an active cell. If it does,
we mark v as active, and otherwise we mark v as inactive. Finally, the algorithm rejects if the three
neighbors of u are active, and accepts otherwise. The steps of this algorithm are described in Algorithm
6

From Lemma 6.2.5, we know that v becomes active at time d − 1 if and only if Sv ∩Dd contains an
active cell in the initial configuration. Since the nearest active cell from u is at distance d, necessarily
after d − 1 steps at least one of the three neighbors of u will become active. If the three neighbors of u
satisfy the condition of Lemma 6.2.5, then the three of them will become active in time d− 1, so u will
remain inactive forever. Otherwise, u will have more than one and less than three active neighbors at
time-step d− 1, so it will become active at time d.

85

6.3. SQUARE GRID

Algorithm 6 Solving Stability 12

Input: x a finite configuration of dimensions n× n and u a cell.
1: if For all cell w, xw = 0 then
2: return accept
3: else
4: Compute a matrix M = (mij) of dimensions 2n2 × 2n2 such that

mij is the distance from cell i to cell j.
5: Compute the distance d to the nearest active cell from u.
6: for all v ∈ N(u) do in parallel
7: Compute the set of cells Sv ∩Dd

8: if there exists w ∈ Sv ∩Dd such that xw = 1 then
9: Mark v as active

10: else
11: Mark v as inactive
12: end if
13: end for
14: if there exists v in N(u) that is marked inactive then
15: return Reject
16: else
17: return Accept
18: end if
19: end if

Let N = n2 the size of the input. This algorithm runs in time O(logN) using O(N) processors.
Indeed, the verifications on steps 1-3 and 8-10 can be done in time O(logN) using O(N) processors
using a prefix-sum algorithm. Finally, step 7 can be done in time O(logN) using O(N) processors,
assigning one processor per cell and solving three inequations of kind ax+ by < c.

6.3 Square Grid

Now we continue our study, considering the square grid. As we said in the Chapter 3, we can define 32
different FTCAs over this topology. Again, considering the inactive state as a quiescent state, the set of
non-equivalent FTCAs is reduced to 16. According to our classifications, this list of FTCAs is grouped
as follows:

• Simple rules: φ, 1234 and 4.

• Topological rules: 234, 3 and 34.

• Algebraic rules: 12, 123, and 124.

• Turing Universal rules: 2, 24.

• Fractal growing rules: 1, 13, 14 and 134.

In complete analogy to the triangular topology, we verify that the Stability problem in simple rules
is NC. We will directly continue then with the Topological Rules.

86

6.3. SQUARE GRID

6.3.1 Topological Rules

We study these rules by characterizing their fixed points and building a faster algorithm to find them.
This characterization is based on the structure of the set of stable cells, called stable sets. Naturally, the
structure of stable-sets depends on the rule.

Rules 34 and 3.

First, notice that the rule 34 corresponds to a freezing version of the majority automaton over the square
grid. We remark that a finite configuration over the square grid, seen as a torus, is a regular graph of
degree 4. Therefore, we can use the algorithm given in Proposition 6.2.2 to check whether a given site is
stable for rule 34. We deduce the following theorem (also given in [39]).

Theorem 6.3.1 ([39]). Stability is in NC for rule 34.

Likewise, in analogy to the behavior of rule 2 with respect to rule 23 in the triangular grid, we can
use the algorithm solving Stability for the rule 34 to solve Stability for the rule 3. Let (x, u) be an
instance of problem Stability. Clearly, if u is stable for rule 34 we have that u is stable for rule 3.
Suppose now that u is not stable for rule 34 but stable for rule 3. Let G[0, u] the connected component of
G[0] containing u. Using the exact same proof used for rule 2 on the triangular grid, we can deduce that
G[0, u] is a tree, and we call Tu this tree rooted in u. Moreover, let u1, u2, u3, u4 be the four neighbors of
u, and let Tui

be the subtree of Tu obtained by taking all the descendants of ui, i ∈ {1, 2, 3, 4}. Call di
the depth of Tui

which without loss of generality we assume that d1 ≥ d2 ≥ d3 ≥ d4. We have that u is
stable for rule 3 but not for rule 34 if and only if d1 = d2 ≥ d3 ≥ d4. We deduce that, with very slight
modifications, Algorithm 5 solves Stability for rule 3. We deduce the following theorem.

Theorem 6.3.2. Stability is in NC for rule 3.

Rule 234.

Notice that rule 234 is the freezing version of the non-strict majority automaton, the CA where the
cells take the state of the majority of its neighbors, and in tie case they decide to become active. In
the following, we will show that the stability problem for this rule is also in NC by characterizing the
set of stable sets. This time, the topological conditions of the stable sets will be the property of being
tri-connected.

Theorem 6.3.3. Stability is in NC for the freezing CA 234.

Lemma 6.3.4. Let x ∈ {0, 1}[n]×[n] be a finite configuration and u ∈ [n] × [n] a site. Then, u is stable
for c = c(x) if and only if there exists a set S ⊆ [n]× [n] such that:

• u ∈ S,

• cu = 0 for every u ∈ S, and

• G[S] is a graph of minimum degree 3.

Proof. Suppose that u is stable and let S be the subset of [n]× [n] containing all the sites that are stable
for c. We claim that S satisfy the desired properties. Indeed, since S contains all the sites stable for c,
then u is contained in S. Moreover, since the automaton is freezing, all the sites in S must be inactive on
the configuration c. Finally, if G[S] contains a vertex v of degree less than 3, it means that necessarily
the corresponding site v has two non-stable neighbors that become 1 in the fixed point reached from c,
contradicting the fact that v is stable.

87

6.3. SQUARE GRID

x x x x x
x x x x x

x x x x x

x x x x x

x x x x x

0 n n2 + n−n2

Figure 6.3: Construction of the finite configuration D(x) obtained from a finite configuration x of dimen-
sion n× n = 2× 2. Note that D(x) is of dimensions 7× 7.

On the other direction suppose that S contains a site that is not stable and let t > 0 be the minimum
step such that a site v in S changes to state 1, i.e., v ∈ S and t are such F t−1(c)w = 0 for every w ∈ S,
and F t(c)v = 1. This implies that v has at least two active neighbors in the configuration F t−1(c). This
contradicts the fact that v has three neighbors in S. We conclude that all the sites contained in S are
stable, in particular u.

For a finite configuration x ∈ {0, 1}[n]×[n], let D(x) ∈ {0, 1}{−n2−n,...,n2+2n}2

be the finite configu-
ration of dimensions m × m, where m = 2n2 + 3n, constructed with repetitions of configuration x in
a rectangular shape, as is depicted in Figure 6.3, and inactive sites elsewhere. We also call D(c) the
periodic configuration c(D(x)).

Lemma 6.3.5. Let x ∈ {0, 1}[n]
2

be a finite configuration, and let u be a site in [n]× [n] such that xu = 0.
Then u is stable for c = c(x) if and only if it is stable for D(c).

Proof. Suppose first that u is stable for c, i.e. in the fixed point c′ reached from c, c′u = 0. Call c′′ the
fixed point reached from D(c). Note that D(c) ≤ c (where ≤ represents the inequalities coordinate by
coordinate). Since the 234 automata is monotonic, we have that c′′ ≤ c′, so c′′u = 0. Then u is stable for
D(c).

Conversely, suppose that u ∈ [n]× [n] is not stable for c, and let S be the set of all sites at distance
at most n2 from u. We know that in each step on the dynamics of c, at least one site in the periodic
configuration changes its state, then in at most n2 steps the site u will be activated. In other words, the
state of u depends only on the states of the sites at distance at most n2 from u. Note that for every
v ∈ S, cv = D(c)v. Therefore, u is not stable in D(c).

Note that the perimeter of width n of D(x) contain only inactive sites. We call this perimeter the
border of D(x), and D(x)−B the interior of D(x). Note that B is tri-connected and forms a set of sites
stable for D(c) thanks to Lemma 6.3.4. We call Z the set of sites w in [m]× [m] such that D(x)w = 0.

Lemma 6.3.6. Let u be a site in [n]× [n] stable for D(c). Then, there exist three disjoint paths on G[Z]
connecting u with sites of the border B. Moreover, the paths contain only sites that are stable for B(c).

Proof. Suppose that u is stable. From Lemma 6.3.4 this implies that u has three stable neighbors. Let
0 ≤ i, j ≤ n be such that u = (i, j). We divide the interior of D(c) in four quadrants:

• The first quadrant contains all the sites in D(x) with coordinates at the north-east of u, i.e., all the
sites v = (k, l) such that k ≥ i and l ≥ j.

88

6.3. SQUARE GRID

uu3 u1

u2

?

(a) Case 1

u? u1

u2

u3

(b) Case 2

uu2 u1

?

u3

(c) Case 3

uu2 ?

u1

u3

(d) Caso 4

Figure 6.4: Four possible cases for u1, u2 and u3. Note that one of these four cases must exist, since u
has at least three stable neighbors. From u1 we will extend a path through the first quadrant, from u2 a
path through the second quadrant, and from u3 a path through the third quadrant.

• The second quadrant contains all the sites in D(x) with coordinates at the north-west of u, i.e., all
the sites v = (k, l) such that k ≤ i and l ≥ j.

• The third quadrant contains all the sites in D(x) with coordinates at the south-west of u, i.e., all
the sites v = (k, l) such that k ≤ i and l ≤ j.

• The fourth quadrant contains all the sites in D(x) with coordinates at the south-east of u, i.e., all
the sites v = (k, l) such that k ≥ i and l ≤ j.

We will construct three disjoint paths in G[Z] connecting u with the border, each one passing through
a different quadrant. The idea is to first choose three quadrants, and then extend three paths starting
from u iteratively picking different stable sites in the chosen quadrants, until the paths reach the border.

Suppose without loss of generality that we choose the first, second and third quadrants, and let u1, u2
and u3 be three stable neighbors of u, named according to Figure 6.4.

Starting from u, u1, we extend the path P1 through the endpoint different than u, picking iteratively a
stable site at the east, or at the north if the site in the north is not stable. Such sites will always exist since
by construction the current endpoint of the path will be a stable site, and stable sites must have three
stable neighbors (so either one neighbor at east or one neighbor at north). The iterative process finishes
when P1 reaches the border. Note that necessarily P1 is contained in the first quadrant. Analogously,
we define paths P2 and P3, starting from u2 and u3, respectively, and extending the corresponding paths
picking neighbors at the north-west or south-west, respectively. We obtain that P2 and P3 belong to the
second and third quadrants, and are disjoint from P1 and from each other.

This argument is analogous for any choice of three quadrants. We conclude that there exist three
disjoint paths of stable sites from u to the border B.

Lemma 6.3.7. Let u, v be two sites in [n]×[n] stable for D(c). Then, there exist three disjoint (u, v)-paths
in G[Z] consisting only of sites that are stable for D(c).

Proof. Let u, v be stable vertices. Without loss of generality, we can suppose that u = (i, j), v = (k, l)
with i ≤ k and j ≤ l (otherwise we can rotate x to obtain this property). In this case u and v divide the
interior of D(x) into nine regions (see Figure 6.5). Let Pu,2, Pu,3, Pu,4 be three disjoint paths that connect
u with the border through the second, third and fourth quadrants of u. These paths exist according to
the proof of Lemma 6.3.6. Similarly, define Pv,1, Pv,2, Pv,3 three disjoint paths that connect v to the
border through the first, second and third quadrants of v.

Observe fist that Pu,3 touches regions that are disjoint from the ones touched by Pv,1, Pv,2 and Pv,3.
The same is true for Pv,1 with respect to Pu,2, Pu,3, Pu,4. The first observation implies that paths Pu,3 and
Pv,1 reach the border without intersecting any other path. Let w1 and w2 be respectively the intersections
of Pu,3 and Pv,1 with the border. Let now Pw1,w2

be any path in GB connecting w1 and w2. We call P1,3

the path induced by Pu,3 ∪ Pw1,w2
∪ Pv,1.

89

6.3. SQUARE GRID

u

Pv,2
Pv,1

Pv,4

v

Pu,2

Pu,3

Pu,4

•

•

0

0

0

0

0

0

0

0

0

0

0

0

0

00 00 00 00

0 00 00 00

•

Figure 6.5: Vertices u and v divides the interior of D(x) into four regions each one. Together they split
the space into nine regions. According to Lemma 6.3.6, we can choose three disjoint paths connecting u
and v, in such a way that each of the nine regions intersect at most one path. We use the border of D(x)
to connect the paths that do do not intersect in the interior of D(x).

Observe now that Pu,2 and Pv,4 must be disjoint, as well as Pu,4 and Pv,2. This observation implies
that Pu,2 either intersects Pv,2 or do not intersect any other path, and the same is true for Pu,4 and Pv,4.
If Pu,2 does not intersect Pv,2, then we define a path P2,2 in a similar way than P1,3, i.e., we connect
the endpoints of Pu,2 and Pv,2 through a path in the border (we can choose this path disjoint from P1,3

since the border is tri-connected). Suppose now that Pu,2 intersects Pv,2. Let w the first site where Pu,2

and Pv,2 intersect, let Pu,w be the u,w-path contained in Pu,2, and let Pw,v be the w, v-path contained
in Pv,2. We call in this case P2,2 the path Pu,w ∪ Pw,v. Note that also in this case P2,2 is disjoint from
P1,3. Finally, we define P4,4 in a similar way using paths Pu,4 and Pv,4. We conclude that P1,3, P2,2, and
P4,4 are three disjoint paths of stable sites connecting u and v in G[Z].

Now we are ready to show our characterization of stable set of vertices.

Lemma 6.3.8. Let x ∈ {0, 1}[n]×[n] be a finite configuration, and let u be a site in [n]× [n]. Then, u is
stable for c = c(x) if and only if u is contained in a tri-connected component of G[Z].

Proof. From Lemma 6.3.5, we know that u is stable for c if and only if it is stable D(c). Let S be the
set of sites stable for D(c). We claim that S is a tri-connected component of G[Z]. From Lemma 6.3.7,
we know that for every pair of sites in S there exist three disjoint paths in G[S] connecting them, so the
set S must be contained in some tri-connected component T of G[Z]. Since G[T] is a graph of degree at
least three, and the sites in T are contained in Z, then Lemma 6.3.4 implies that T must form a stable
set of vertices, then T equals S.

On the other direction, Lemma 6.3.4 implies that any tri-connected component of G[Z] must form a
stable set of vertices for D(c), so u is stable for c.

At this moment we are ready to study the complexity of Stability for this rule.

Proof of Theorem 6.3.3 . Let (x, u) be an input of Stability, i.e. x is a finite configuration of dimen-
sions n × n, and u is a site in [n] × [n]. Our algorithm for Stability first computes from x the finite
configuration D(x). Then, the algorithm uses the algorithm of Proposition 3.2.7 to compute the tri-
connected components of G[Z], where Z is the set of sites w such that D(x)w = 0. Finally, the algorithm
answers no if u belongs to some tri-connected component of G[Z], and answers yes otherwise.

90

6.3. SQUARE GRID

Algorithm 7 Solving Stability 234

Input: x a finite configuration of dimensions n× n and u ∈ [n]× [n] such that xu = 0.
1: Compute the finite configuration D(x) of dimensions m×m with m = 2n2 + 3n
2: Compute the set Z = {w ∈ [m]× [m] : D(x)w = 0}.
3: Compute the graph G[Z].
4: Compute the set T of tri-connected components of G[Z].
5: for all T ∈ T do in parallel
6: if u ∈ T then
7: return Accept
8: end if
9: end for

10: return Reject

The correctness of Algorithm 7 is given by Lemma 6.3.8. Indeed, the algorithm answers Reject on
input (x, u) only when u does not belong to a tri-connected component of G[Z]. From lemma 6.3.8, it
means that u is not stable, so there exists t > 0 such that F t(c(x))u = 1.

Let N = n2 the size of the input. Step 1 can be done in O(logN) time with m2 = O(N2) processors:
one processor for each site of B(x) computes from x the value of the corresponding site in B(x). Step
2 can be done in time in O(logN) with O(N2) processors, representing Z as a vector in {0, 1}m

2

, each
coordinate is computed by a processor. Step 3 can be done in time O(logN) and O(N2) processors:
we give one processor to each site in Z which fill the corresponding four coordinates of the adjacency
matrix of G[Z]. Step 4 can be done in time O(log2N) with O((N2)4) processors using the algorithm
of Proposition 3.2.7. Finally, steps 5 to 10 can be done in time O(logN) with O(N2) processors: the
algorithm checks in parallel if u is contained in each tri-connected components. All together the algorithm
runs in time O(log2N) with O(N8) processors.

6.3.2 Algebraic Rules

We will now study the family of FTCA where the cells become active with one or two neighbors. We
consider the rules 12, 123, 124. Of course, rule 1234 will fit in our analysis, but we already know that this
rule is trivial. As we already mentioned, these rules are algebraic in the sense that, in order to answer
the Stability problem, we will accelerate the dynamics using algebraic properties of these rules.

In the following, we assume that the cells are placed in the Cartesian coordinate system, where each
cell is placed on a coordinate in N×N. Moreover, without loss of generality, our decision cell is u = (0, 0)
and the configuration c has at least one active cell. Let τ > 1 be the distance from u to the first active
cell. Like for rule 12 in the triangular grid, we called Dτ the set of cells at distance τ from u. Due to its
shape in the squared grid, the set Dτ is called in this context the diamond at distance τ from u. Note
that Dτ = {(i, j) ∈ N2 : |i − j| ≤ τ}. We also call dI(τ) the diagonal at distance τ of u in the first
quadrant, defined as follows:

dI(τ) := {(i, j) ∈ N
2 : |i− j| = τ and i, j > 0}.

Then, we place ourselves in the case where all the cells in Dτ−1 are inactive.

Let c′ be the configuration obtained after one step, i.e. c′ = F (c), where F is one of the rules in
{12, 123, 124}. Notice that all the cells in Dτ−1 will remain inactive in c′. Moreover, the states of cells in
dI(τ − 1) can be computed as follows (see figure 6.6a):

∀(i, j) ∈ dI(τ − 1), c′i,j = ci+1,j ∨ ci,j+1,

where ∨ is the OR operator (i.e. c′i,j = 1 if ci+1,j = 1 or ci,j+1 = 1). If we inductively apply this formula,
we deduce:

F τ−2(c)1,1 =
∨

(i,j)∈dI(τ)

ci,j .

91

6.3. SQUARE GRID

Note that if the cell (1, 1) is inactive at time τ − 1, then necessarily all the cells in dI(τ) are inactive at
time 0. Moreover, we can apply the same ideas to every cell (i, j) ∈

⋃

1≤k≤τ dI(k) such that i, j ≥ 1,
obtaining:

F τ−1−i(c)i,1 =
∨

(k, j) ∈ D(τ)
k ≥ i

ck,j and F τ−1−j(c)1,j =
∨

(i, k) ∈ D(τ)
k ≥ j

ci,k. (6.1)

Analogously, we can define dII(τ) (resp. dIII(τ), dIV (τ)) the diagonals at distance τ of u in the second
(resp. third, fourth) quadrant, and deduce similar formulas in the other three quadrants. Concretely we
can compute the states of cells (±i,±1), i = 1, ..., τ − 1 at time τ − i and the states of cells (±1,±j),
j = 1, ..., τ − 1 at time τ − j. These cells are represented as the hatch patterns in Figure 6.6b. We call
this way of calculating cells the OR technique, because we compute the new cells value as the operator
OR applied to the states of its neighbors.

∨

∨

∨

∨

∨

∨

∨

∨

τ−1

τ−2

...

3

2

1

τ−1τ−2· · ·321

(a) Computation of dI(τ − 1) after one application
of rule F .

(b) Cells (±i,±1) and (±1,±j), where i, j, ..., τ−1,
represented with a hatch pattern.

Figure 6.6: Computation in a diamond of size τ , where only the cells at distance τ from (0, 0) can be
initially active.

We define the following sets of cells.

• The north-east triangle is the set of cells in the first quadrant between the cells in the hatch
pattern (including them) and the gray zone, i.e. is the set Dτ,I = {(i, j) ∈ N2 : |i − j| ≤
τ and i, j ≥ 1}. Analogously we define north-west, south-west and south-east triangles, and denote
them Dτ,II , Dτ,III and Dτ,IV , respectively.

• The north corridor is the set of cells in the positive y-axis contained in the diamond , i.e. is the
set {(0, i) ∈ N2 : 1 ≤ i ≤ τ}. Analogously we define west, south and east corridors.

Consider now a smaller diamond at distance 2 of u = (0, 0) depicted in Figure 6.7. As we explained,
we can compute the states of cells b, d, f and h at time τ − 1 using the OR technique. The use of this
information in order to solve Stability, will depend on which rule we are considering. In the following,
we will show how to use this information to solve stability for rule 123, then for rule 12 and finally for
rule 124.

92

6.3. SQUARE GRID

a

b

c

d

e

f

g

h p

q

r

s u

Figure 6.7: Notation for the cells in the small diamond. Cells p, q, r and s correspond to the neighbors
of cell u.

Solving Stability for rule 123

Rule 123 is the simplest of the algebraic rules. Its simplicity follows mainly from the following claim.
Remember that τ is the distance from u to the nearest active cell.

Claim 1: Either u becomes active at time τ or u is stable.

We know that at least one of the cells in {b, d, f, h} will be active at time τ − 2. Indeed the states of
those cells depend only on the logical disjunction of the sites in the border of the diamond Dτ , and we
are assuming that there is at least one active site in Dτ \Dτ−1. Therefore, at time τ − 1, necessary at
least one neighbor w ∈ N(u) will become active, since it will have more than one active neighbor, and
less than four (because u is inactive at time τ − 1). Suppose now that u does not become active at time
τ . Since u has one active neighbor at time τ − 1, the only possibility is that the four neighbors of u are
active τ − 1. Since the rule is freezing, u will remain stable in inactive state.

At this point, we know how to compute the states of b, d, f and h at time τ − 2, and we know that
the only possibility for u to become active is on time τ . Therefore, in order to decide Stability for rule
123 we need to compute the states of cells p, q, r and s at time τ − 1. In the following, we show how to
compute the state of site p at time τ − 1. The arguments for computing cells q, r and s will be deduced
by analogy (considering the same arguments in another quadrant).

Call xt(i,j) the state of cell (i, j) at time t, with the convention of x0(i,j) is the input state of (i, j).
First, note that, for all i ∈ {0, . . . , τ −2}, the state of (0, i) at time 1 will be inactive. Moreover, the state
of cell (0, τ − 1) will be active if and only if at least one of its three neighbors (−1, τ − 1), (1, τ − 1) or
(0, τ) is active at time 0. Then, we deduce the following formula for x1(0,τ−1):

x1(0,τ−1) = x0(−1,τ−1) ∨ x
0
(0,τ) ∨ x

0
(1,τ−1)

For the same reasons, we notice that at time j > 0 the nearest neighbor from u is in the border of Dτ−j .
Therefore,

xj(0,τ−j) = xj−1
(−1,τ−j) ∨ x

j−1
(0,τ) ∨ x

j−1
(1,τ−j)

In particular
xτ−1
p = xτ−1

(0,1) = xτ−2
(−1,1) ∨ x

τ−2
(0,1) ∨ x

τ−2
(1,1).

Remember that we know how to compute xτ−2
(−1,1) and xj−1

(1,1) according to Equation 6.1. We deduce that

we can compute ,xτ−1
p as follows:

xτ−1
p =

τ∨

k=1

x0(−k,τ−k) ∨ x
0
(0,τ) ∨

τ∨

k=1

x0(k,τ−k) (6.2)

In other words, the state of p at time τ − 1 can be computed as the OR of all the cells to the north of
the u contained in Dτ \Dτ−1. Analogously we can compute xτ−1

q , xτ−1
r and xτ−1

s .

93

6.3. SQUARE GRID

Solving stability for rule 12

For rule 12 the computation of a, c, e and g is not so simple as the previous case. First of all, there is
one case when cell u remains active, though we can also assume Claim 1 for this rule.

Indeed, remember that we know that at least one of cells in {b, d, f, h} will be active at time τ − 2.
Suppose that u remains inactive at time τ . There are three possibilities: (1) none of the neighbors of u
will become active at time τ − 1, (2) three neighbors of u become active at time τ − 1; and (3) the four
neighbors of u become active at time τ − 1. See figure 6.8.

∗

∗

∗

∗

∗

∗

∗

∗ 1

1

1

1 0

(a) Sum equal to 4.

∗

∗

∗

∗

∗

∗

∗

∗ 1

1

1

0 0

(b) Sum equal to 3.

1

1

1

1

1

1

1

1 0

0

0

0 0

(c) Sum equal to 0.

Figure 6.8: Possibles cases of rule 12 at time τ such that u remains inactive.

Note that the in cases in Figure 6.8a and 6.8b we directly obtain that u is stable, because the decision
cell is surrounded by active cells .

The case when the sum in its neighborhood is 0 is slightly more complicated. As we said, we know
that at least one of {b, d, f, h} becomes active at time τ − 2. Suppose, without loss of generality, that
b satisfies this condition. Moreover, we are assuming that p and q remain inactive at time τ − 1. Since
these cells have one active neighbor at time τ − 2, the sole possibility is that cells h, a, c and d are active
at time τ − 1. Applying the same arguments to cells r and s, we deduce that all cells a, b, c, d, e, f, g and
h will be active at time τ − 2 (as depicted in Figure 6.8c). Since the rule is freezing, we deduce that cells
p, q, r and s are stable, obtaining that also u is stable.

From Equation 6.1, we know how to compute the states of cells b, d, f and h at time τ − 2. To decide
the stability of u, we need to compute the states of p, q, r and s at time τ − 1. In this case, however, the
dynamics in the corridors is more complicated. In the following, we will show how to compute the east
corridor (in order to compute q), depicted in Figure 6.9. We will study only this case, since the other
three corridors are analogous.

94

6.3. SQUARE GRID

a

p

u

r

e

· · ·· · ·

xτ−2
1, 1

xτ−2
1,1

xτ−2
2,0

xτ−3
2, 1

xτ−3
2,1

xτ−3
3,0

xτ−4
3, 1

xτ−4
3,1

x0τ−1, 1

x0τ−1,1

x0τ,0

x1τ−2, 1

x1τ−2,1

x1τ 1,0x2τ 2,0

xtτ t 1, 1

xtτ t 1,1

xtt τ,0xt+1
t τ 1,0xτ−1

1,0

Figure 6.9: Computation of east corridor. Recall that xt(i,j) is the state of cell (i, j) at time-step t. The
gray cells were previously computed using the OR technique. Dashed lines connect cells which potentially
change states at the same time.

Remember that, using Equation 6.1 we can compute the values of xτ−1−i
(i,1) and xτ−1−i

(−i,1) , for every

i ∈ {1, . . . , τ −2}. Notice first that, if xτ−1−i
(i,1) 6= xτ−1−i

(−i,1) , then necessarily xτ−i
(i,0) = 1. Indeed, we know that

xτ−i−1
(i−1,0) = 0 (otherwise we contradict the definition of τ). Then, xτ−1−i

(i,1) 6= xτ−1−i
(−i,1) implies that at time

τ − 1 − i the cell (i, 0) will have more than one and less than three active neighbors, so it will become
active at time τ − i.

Let i∗ be the minimum value of i ∈ {1, . . . , τ} such that xτ−1−i
(i,1) 6= xτ−1−i

(−i,1) . If no such an i exists,

then set i∗ = τ . Call I∗ the set {1, . . . , i∗ − 1}. In other words, we know that xτ−1−i
(i,1) = xτ−1−i

(−i,1) for every

i ∈ I∗. Moreover, we also know that xτ−i∗

(i∗,0) = 1.

We now identify two situations, concerning the values of xτ−1−i
(i,1) , for i ∈ I∗.

If xτ−1−i
(i,1) = xτ−1−i

(−i,1) = 0 then, the value of xτ−i
(i,0) will equal the value of xτ−1−i

(i+1,0). Indeed, at time τ−1−i,
the cell (i, 0) will have three inactive neighbors ((−i, 1), (i, 1), (i−1, 0)). Then it will take the same
state than cell (i+ 1, 0) at time τ − i− 1.

If xτ−1−i
(i,1) = xτ−1−i

(−i,1) = 1 then, the value of xτ−i
(i,0) will be the opposite than value of xτ−1−i

(i+1,0). Indeed, at
time τ −1− i, the cell (i, 0) will have two active neighbors ((−i, 1), (i, 1)) and one inactive neighbor
((i − 1, 0)). Then cell (i, 0) is active at time τ − i if and only if cell (i + 1, 0) is inactive at time
τ − 1− i.

We imagine that a signal drives along the corridor. The signal starts at (i∗, 0) with value xτ−i∗

(i∗,1). The

movement of the signal satisfies that, each time it encounters an i ∈ I∗ such that xτ−1−i
(i,1) = xτ−1−i

(−i,1) = 1,

the state switches to the opposite value. Let z = |{i ∈ I∗ : xτ−1−i
(i,1) = xτ−1−i

(−i,1) = 1}| (i.e. z is the number
of switches). From the two situations explained above, we deduce the following lemma.

Lemma 6.3.9. xτ−1
(1,0) equals xτ−i∗

(i∗,1) if z is even, and xτ−1
(1,0) is different than xτ−i∗

(i∗,1) when z is odd.

Therefore, to solve Stability for rule 12, we compute the values of xτ−1
p , xτ−1

q , xτ−1
r , xτ−1

s according
to Lemma 6.3.9.

95

6.3. SQUARE GRID

Solving Stability for rule 124

The analysis for the rule 124 is more complicated than the one we did for rule 12 and 123. In fact, one
great difference is that Claim 1 is no longer true for this rule. In other words, u might not be stable but
change after time-step τ .

For this rule, the cases when the cell u remains inactive are the cases when u has zero or three active
neighbors. The possible cases when the cell u remains inactive at time τ are given in Figure 6.10.

1

1

1

1

1

1

1

1 0

0

0

0 0

(a) Sum equal to 0.

∗

∗

∗

∗

∗

1

1

1 1

1

1

0 0

(b) Sum equal to 3.

∗

∗

∗

∗

∗

0

0

0 1

1

1

0 0

(c) Sum equal to 3.

Figure 6.10: Possible cases of rule 124 at time τ such that u remains inactive.

The case when u has four inactive neighbors at time τ − 1 is exactly the same that we explained for
rule 12 (see Figure 6.10a). Suppose that u has three active neighbors, and without loss of generality
assume that p, q, r are active and s is inactive. Then there are two possibilities, either s has three active
neighbors (h, g, f), in which case u and s remain inactive (see Figure 6.10b) The difference with the rule
12 is that we can not decide immediately if the cell u remains inactive when the sum at time τ is 3.
Indeed, in the case depicted in Figure 6.10b, it is possible that s becomes active in a time-step later than
τ − 1.

Thus we need to study only the case when the sum at time τ − 1 of the states of neighbors of s is 0
or equivalently xτ−2

f = xτ−2
g = xτ−2

h = 0. Note that, by the OR technique, the fact that xτ−2
f = xτ−2

g =

xτ−2
h = 0 means that all the cells in the left side border of Dτ are initially inactive, as shown in Figure

6.11.

0

0

0

0

0

∗

0

0

0

0

0

0

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗ ∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

u

p

q

r

s

h

g

fτ

(a) Configuration at time 0.

1

1

1

1

1

0

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

τ τ

τ−1

τ−1

τ−1

τ−1

τ−1

τ−1τ

(b) Diagram with the times when a cell can be acti-
vated.

Figure 6.11: Schedule for to compute xτu if xτ−2
f = xτ−2

g = xτ−2
h = 0.

96

6.3. SQUARE GRID

Knowing that xτ−2
f = xτ−2

g = xτ−2
h = 0, we can compute their states at time-step τ − 1, considering

the OR-techinique in the diamond Dτ+1. Using this information, we can compute the state of s at time
τ , i.e. compute xτs .

Remember that we are in the case where xτ−1
p = xτ−1

q = xτ−1
r = 1 and xτ−1

s = 0. If the cell s becomes
activated at time τ , then u will have four active neighbors at time τ , and it will become active. Now we
suppose that s also remains inactive at time τ . Again, we have two possible cases:

∗

∗

∗

∗

∗

1

1

1 1

1

1

0 0

(a) Sum equal to 3.

∗

∗

∗

∗

∗

0

0

0 1

1

1

0 0

(b) Sum equal to 3.

Figure 6.12: Possible cases of rule 124 at time τ + 1 such that u remains at state 0.

In the case in Figure 6.12a (i.e., when s remains inactive at time τ because f, g and h were active at
time τ − 1) the cell u is stable.

For the case shown in Figure 6.12b (i.e. s remains inactive at time τ because e f, g and h were inactive
at time τ − 1) we must repeat the previous analysis. Indeed, we know that xτ−1

f = xτ−1
g = xτ−1

h = 0.
The OR technique implies that every cell in the left border on the diamond Dτ+1 (see Figure 6.11) have
to be initially inactive too. In this case, however we study the next diamond Dτ+1, shifting it one cell to
the left, as the Figure 6.13.

0

0

0

0

0

∗

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 ∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

u

p

q

r

s

h

g

fτ + 1

∗

∗

(a) Configuration at time 0.

2

2

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

τ−1

τ−1

τ−1

τ−1

τ

τ

τ τ+1τ + 1

0

0

(b) Diagram with the times when a cell can be acti-
vated.

Figure 6.13: Schedule to compute xτs if xτ−1
f = xτ−1

g = xτ−1
h = 0.

This new diamond is centered in the cell s and (considering only the sides at the north-west and south-
west), consists 0f the sites at distance τ +1 from s. Again, using the OR technique, we can compute the
states of cells f , g and h at time τ , and then the sate of cell s at time τ + 1.

97

6.3. SQUARE GRID

Again, if the cell s becomes active at time τ +1, then the problem is solved, because u becomes active
at time τ +2. Further, suppose that s is not active at time τ +1. Notice that this means that g, h and f
must have the same state at time τ . Remember that p and r are active at time τ − 1, then cells h and f
have at least one active neighbor at time τ − 1. If h, f and g are active at time τ , then s will be stable,
as well as u. If h, f and g are inactive at time τ , it means that h and f have three active neighbors at
time τ − 1, including cells (−2, 1) and (−2,−1). Since these cells are also neighbors of g, and g remains
inactive at time τ , necessarily cell (−3, 0) must be active at time τ − 1. This means that f, g and h have
three active neighbors, so they are stable. Implying also that s and u are stable.

We deduce that either u becomes active at time τ, τ + 1 or τ + 2, or u is stable.

Lemma 6.3.10. Let F be rule 124. Given a finite configuration x, a cell u and τ the distance from u to
the nearest active cell. Then u becomes active at time τ, τ + 1 or τ + 2, or u is stable.

Now we give an algorithm for to decide the Stability inn NC for the rule 124. The algorithms for
rules 12 and 123 can be deduced from this algorithm.

Theorem 6.3.11. Stability is in NC for the freezing CA 12, 123 and 124.

Proof. Let (x, u) be an input of Stability, x is a finite configuration of dimensions n×n and u is a site
in [n] × [n]. The following parallel algorithm is able to decide Stability using the fast computation of
the first neighbors of u by the OR technique. Let N2(u) be the set of cells at distance at most 2 from u.
For t ≥ 0, we call xtN(u) the set of states at time t of all cells in N(u).

Algorithm 8 Solving Stability 124

Input: x a finite configuration of dimensions n× n and u ∈ [n]× [n].
1: Compute τ the distance form u to the nearest active cell in x.
2: Compute xτ−2

N2(u) using the OR technique and the corridors.
3: if xτu = 1 then
4: return Reject
5: end if
6: if xτu = 0 and xτ−2

N2(u) is as 6.10b then

7: return Accept
8: end if
9: Compute s the neighbor of u such that xτ−1

s = 0.
10: Compute xτ−1

N2(s) using the OR technique and the corridors.

11: if xτ+1
u = 1 then

12: return Reject
13: end if
14: if xτ+1

u = 0 and xτ−1
N2(u) is as 6.10b then

15: return Accept
16: end if
17: return Reject

Let N = n2 the size of the input. Step 1 can be done in O(logN) time with O(N) processors: one
processor for each cell for to choose the active cells and to compute its distances to u, then in O(logN)
compute the nears cell to u. Steps 2 and 10 can be done in O(logN) time with O(N) processors: the
OR technique and the corridors can be computed with prefix sum algorithm (see proposition 3.2.4) for
the computation of consecutive ∨ and parity of z in the corridors. The other steps can be computed in
O(log n) time in using a sequential algorithm.

98

6.3. SQUARE GRID

6.3.3 Turing Universal Rules

For the rules 2 and 24 the problem Stability is P-Complete by reducing a restricted version of the Circuit
Value Problem [45] to this problem. Instances of circuit value problem are encoded into a configuration
of the CA 2 and 24 using the idea in the proof of the P-completeness of Planar Circuit Value Problem
(PCV) [68]. Moreover, we use an aproach given in [69], were the authors show that a two-dimensional
automaton capable of simulating wires, OR gates, AND gates and crossing gadgets is P-Complete.

In Figure 6.14 we will give the gadgets that simulate these structures for rules 2 and 24. We remark
that both rules have the same structures, because the patterns with four active neighbors never appear
in the gadgets.

in out

(a) Turning wire at time 0.

in out

(b) Turning wire at time 52.

in

out

out

(c) Duplicator.

in

in

out

(d) AND gate.

in

in

out

(e) OR gate.

in

in

out

(f) XOR gate.

Figure 6.14: Gadgets for the implementation of logic circuits for the rules 2 and 24.

We represent the information traveling on wires which are based, roughly, on a line of active sites.
Then, all the sites over (under) this line will have one active neighbor. If a cell over the line becomes
active, then in the next step a neighbor of this cell will become active, so the information flows over the
wire.

These constructions of the gates are quite standard. Maybe with one exception is the XOR gate. The
crucial observation is that we manage to simulate the XOR using the synchronicity of information. An
XOR gate consists roughly in two confluent wires. If a signal arrives from one of the two wires, the signal
simply passes. If two signals arrive at the same time, the next cell in the wire will have more than two
neighbors, so it will remain active.

Using the XOR gate (Figure 6.14f), one can build a planar crossing gadget, concluding the P-
completeness constructions.

Theorem 6.3.12. Stability is P-complete for the freezing CA 2 and 24.

Remark: In our construction we use strongly neighborhoods composed only of inactive cells, so these
constructions cannot be used for rules 02 and 024, where zero is not a quiescent state. So in these cases
stability could have less complexity.

99

6.4. ROTATION INVARIANT RULES

6.4 Rotation Invariant Rules

If we consider a more general family of CA where the rule is the same for neighborhoods equivalents for
rotations and reflections, we obtain the same totalistic rules already studied for the triangular grid, but
for the square grid we have two different cases for the neighborhoods with exactly two active neighbors:

• the cases when the two active cells are over a line (i.e. when north and south are active and its
rotations) called I configurations,

• the cases when the two active cells are perpendicular (i.e. when north and east are active and its
rotations) called L configurations.

In general, the complexity of a totalistic rule with number containing the digit 2 is the same as the
rule exchanging the digit 2 by L in its number. Respectively the rules without the digit 2 in its number
rule has the same complexity as the same rule adding I. The exception for this are the rule I34 and L34,
both are analogous to 34 (see Theorem [39]) but forbidding the patterns L and I respectively in the set
of stable cells.

another difference is that the rules I and I4, both with NC complexity, are not so trivially as φ and
4. Here is enough to study all the possibles configurations in the von Neumann neighborhood of radius
2 of the decision cell.

We have the same division of the rules: topological, algebraical, P-complete and fractal growing rules.
This are:

Trivial: I and I4. It is enough to study the von Neumann neighborhood of radius 2 of the decision cell.

Topological: I3, I34, L3 and L34. We can use the same argument that for the rule 34, but checking
that in the stable set of the rules with I do not appear patterns L and vice versa.

Algebraical: 1L, 1L4, 1L3 and 1L34. Given that the or technique (see figure 6.6a) use the diagonal to
compute the new cells, the rules with 1 and L compute the cells in the next diagonal as the OR of
its neighbors.

P-complete: L and L4. Is possible to build the same gadgets (figures 6.14a, 6.14c, 6.14d, 6.14e and
6.14f) for to obtain the P-completeness.

Fractal growing rules: 1I , 1I4, 1I3 and 1I34. This rule show a similar behavior to the rule 1. We
think that solving one of this rules this will give clues for to solve the others ones.

6.4.1 Trivial Rules

We will show that it is enough to study the Von Neumann neighborhood of radius 2 to decide if a cell
will change or not.

Note that the following pattern in figure 6.15

100

6.4. ROTATION INVARIANT RULES

∗ ∗

∗

∗

∗∗

∗

∗ 0 0

00

Figure 6.15: Stable pattern.

is stable, then we will study only the configurations without this pattern in the von Neumann neighbor-
hood. These patterns are given in the following figure:

1 ∗ 1

∗ 0 ∗

1 ∗ 1

∗

∗

∗

∗

Case 1.

1 ∗ ∗

∗ 0 1

1 ∗ ∗

∗

∗

∗

∗

Case 2.

1 ∗ ∗

∗ 0 1

∗ 1 ∗

∗

∗

∗

∗

Case 3.

∗ ∗ ∗

1 0 1

∗ ∗ ∗

∗

∗

∗

∗

Case 4.

Figure 6.16: All possible Von Neumann neighborhood of radius 2, non equivalent by rotations or reflections
and non containing the pattern with four 0 (figure 6.15).

Lemma 6.4.1. Let x ∈ {0, 1}[n]×[n], c = c(x), u ∈ [n] × [n] and F be the function of I. For all
t > 1, F t(x)u = F 2(x)u.

Proof. It is enough to study the four previous cases.

Case 1:

1 a1 1

b1 0 c1

1 d1 1

a2

c2

d2

b2

We use a1, b1, c1, d1, a2, b2, c2, d2 ∈ Z2 to denote coordinates, not states.

We will consider only the non-equivalent, by symmetry, cases for
xa1

, xb1 , xc1 , xd1
, xa2

, xb2 , xc2 , xd2
.

Sub-case 1.1 If xa1
= xd1

= 1 and xb1 = xc1 = 0, then F (c)z = 1

Sub-case 1.2 If xa1
= xc1 = 1, then ∀t ∈ N, F t(x)z = 0

101

6.4. ROTATION INVARIANT RULES

Sub-case 1.3 If xa1
= xb1 = xc1 = 0, then is enough to note that F (c)a1

= ¬F (c)a2
and

repeat the sub-cases 1.1 and 1.2 changing x by F (c). If F 2(x)z = 0 meaning that
F (c)a1

= F (c)d1
= 1 or a2 = b2 = c2 = d2 = 1.

Case 2:

1 c1 d1

b 0 1

1 c2 d2

e1

∗

e2

a

We use a, b, c1, c2, d1, d2 ∈ [n]× [n] for to denote coordinates, not states.

The only way to activate xu is activating xb to 1 and to keep F (c)ci = 0. To change xb to 1 is
necessary xa = 0. To keep F (c)ci = 0 we have two ways: ei = 1 or di = ei = 0.

Case 3:

1 ∗ ∗

∗ 0 1

∗ 1 ∗

∗

∗

∗

∗

The cell u is a stable cell for any value in ∗.

Case 4:

∗ a ∗

1 0 1

∗ b ∗

∗

∗

∗

∗

We use a, b ∈ Z2 for to denote coordinates, not states.

The cell xu is stable if xa = 1 or xb = 1, otherwise F (c)u = 1.

102

6.4. ROTATION INVARIANT RULES

Lemma 6.4.2. Let F ′ the CA with rule I4, x ∈ {0, 1}[n]×[n] and z ∈ [n]× [n]. For all t > 1, F ′t(x)u =
F ′3(x)u.

Proof. If F 2(x)z = 1, then F ′2(x)z = 1. If F 2(x)z = 0, then is enough to know if all the neighbors of z
are active after two iterations.

Theorem 6.4.3. Stability is in NC for the freezing CA I and I4.

Proof. Given the lemma 6.4.1 and 6.4.2 the following algorithm compute Stability for the rule I.

Algorithm 9 Solving Stability I, I4

Input: x a finite configuration of dimensions n× n and z ∈ [n]× [n] such that xu = 0.
1: if F 3(x)u = 1 then
2: return yes
3: else
4: return no
5: end if

6.4.2 Topological Rules

In [39] was showed that Stability for 34 are in NC. For this, was characterized the stable cells as the
cells in a bi-connected component or in a paths between two bi-connected component on the graph of
cells initially inactive, called G[0].

We will show that the previous idea is valid for the rules I34 and L34 too. In our case it is not enough
to consider the graph G[0], it is necessary to add the geometrical conditions for this rules: in I34 if a 0
has two co-linear inactive neighbors it is not stable and if a 0 has two perpendiculars inactive neighbors
it is not stable for L34. We will prove that considering this restriction on G[0] the characterization given
in [39] works also for the FCA I34 and L34.

(a) Fixed point for FCA L34. (b) Fixed point for FCA I34.

Figure 6.17: � = 1. In L34 the stable cells are vertical or horizontal paths of inactive cells and in I34
are zig-zag paths of inactive cells.

103

6.4. ROTATION INVARIANT RULES

Note that in I34 (L34) a cell is stable if it has at least two perpendicular (co-linear) neighbors stables.

Lemma 6.4.4. Let x ∈ {0, 1}[n]×[n] be a finite configuration, u ∈ [n] × [n] a site and F the FCA I34
(L34) then u is stable if and only if it is in a bi-connected component or in a path between two bi-connected
components in G = (V,E) defined by

V = {u ∈ x ⊆ [n]× [n] : cz = 0}

E =

{

{a, b} ⊆ V 2

∣
∣
∣
∣

∃a′ ∈ N(a) \ {b} : (a− a′) · (a− b) = 0
∃b′ ∈ N(b) \ {a} : (b− b′) · (b− a) = 0

}

(

E =

{

{a, b} ∈ V 2

∣
∣
∣
∣

∃a′ ∈ N(a) \ {b} : (a− a′) · (a− b) 6= 0
∃b′ ∈ N(b) \ {a} : (b− b′) · (b− a) 6= 0

})

.

Note that E is the set of edges in a zig-zag or “U” shape, see figure 6.18a (6.18b),(vertical or horizontal)
path of cells inactive.

a b

a′

b′

0 0

0

0∗

∗

a b

a′ b′

0 0

0 0

∗ ∗

(a) Edges for I34.

a ba′ b′

b′

0 00 0

∗∗ ∗ ∗

∗ ∗ ∗ ∗

(b) Edges for L34.

Figure 6.18: Different edges for I34 and L34. Continuous line represent the edge. Dashed lines are not
necessary edges. ∗ can be 1 or 0.

Proof.
=⇒ Let u ∈ [n] × [n] a stable cell, then it must have two stable neighbors perpendicular (co-linear)
u1 6= u−1. Thus,

∃u′ = u′−1 ∈ N(u) \ {u1} : (u− u
′) · (u− u1) = 0 (6= 0). (6.3)

Since u1 is also stable, then it also has two stable neighbors u1 6= u2. Thus,

∃u′1 = u2 ∈ N(u1) \ {u} : (u1 − u
′
1) · (u1 − u) = 0 (6= 0). (6.4)

From equations (6.3) and (6.4) you have that {u, u1} ∈ E.

Given that u1 is stable we can repeat this process and build an arbitrary long (u−u1−uj)-path in G,
but V is finite, then we can chose j such that there is a i satisfying ui = uj . Then we have two options:

1. u is in the (ui − uj)-path, then u is in a cycle (bi-connected component) of G.

2. u is in the (u− u1 − ui)-path arriving to (ui − uj)-path.

We can repeat this analysis but starting by u−1 and building a path u−1...u−k...u−l, where u−k = u−l.
Then we obtain the same two options:

1’. u is in the (u k − u l)-path, then u is in a cycle (bi-connected component) of G.

104

6.4. ROTATION INVARIANT RULES

2’. u is in the (u−1 − u−l)-path arriving to (u−k − u−l)-path.

If 1. or 1’. are true, then u is in a bi-connected component, if not then, by 2. and 2’., u is in a path
between two bi-connected component.

⇐= Let c = c(x) and u in a bi-connected component or in a path between two bi-connected components
of G called S. Note that for all vertex in S its neighbors are perpendicular (co-linear) and are inactive,
then

F (c)|S = c|S .

We can repeat this over F (c), obtaining

∀t ∈ N : F t(c)
∣
∣
S
= c|S .

in particular

F t(c)u = cu = 0.

Thus u is a stable cell.

Theorem 6.4.5. Stability is in NC for the freezing CA I34, I3, L3 and L34.

Proof. Note that G is a sub-graph of the graph G[0] used in [39], then we can use the same algorithm for
to find bi-connected components or paths between them on the rules I34, I3, L3 and L34. This algorithm
is in NC.

6.4.3 Algebraic Rules

Algebraic rules are the rules 1L, 1L3 and 1L4 and they are analogous to 12, 123 and 124, but it is
necessary to consider the fact that I 6∈ I. This modifies the computation of the corridors, the cells (±t, 0)
and (0,±t), where 0 < t < τ in figure 6.9. Now the cases when the cells (±t, 0) and (0,±t) are in state 1
do not generate a signal.

Theorem 6.4.6. Stability is in NC for the freezing CA 1L, 1L3 and 1L4.

6.4.4 Turing Universal Rules

Replacing the figure 6.14 by figure 6.19 we can build the same circuits that the cases 2 and 24, then
Stability is P-complete also for the rules L and L4.

105

6.5. REACHABILITY

in out

(a) Turning wire at time 0.

in out

(b) Turning wire at time 65.

in

out

out

(c) Duplicator.

in

in

out

(d) AND gate.

in

in

out

(e) OR gate.

in

in

out

(f) XOR gate.

Figure 6.19: Gadgets for the implementation of logic circuits for the rules L and L4.

Theorem 6.4.7. Stability is P-complete for L and L4.

6.5 Reachability

The complexity of Stability remains open for rules such that a cell is may be activated with exactly
one active neighbor (i.e., rules 1, 13, 14 and 134).

It is important to point out that if we have a fast algorithm to solve Stability then, we may apply it,
given an initial configuration, to determine the fixed point reached faster than the automaton simulation.

The following definitions considering a configuration x of dimensions n×n, z ∈ [n]×[n] and u, v ∈ 1(x)
defined as follow:

• 1(x) = {v ∈ [n]× [n] : xv = 1}, the set of active cells in x.

• dx(u, v) is the length of the shortest path in G[1(x)]. If u and v are disconnected then dx(u, v) =∞.
(G, d) is a metric space.

• dx(v, S) = min
s∈S

dx(v, s).

Clearly, if we determine a fast algorithm for Stability then we directly may apply it for Reach-

ability. We do not have that algorithm, but we will show that Reachability in NC for the rule
1.

Theorem 6.5.1. There is a NC algorithm for verifying if a configuration is a fixed point obtained from
another configuration, i.e. Reachability is in NC.

Note that, given that each cell is activated with exactly one neighbor, the new active cells in F t(x)
are product of a single cell in x. We call this seminal cell its seed.

106

6.5. REACHABILITY

(a) Initial configuration x. (b) Configuration F 6(x) (fixed
point).

5 5 1 3 2 3

5 4 5 1 0 1 3 6

3 1 1 1 3 7

3 2 1 0 1 1 0 1 2 3

3 1 1 3

5 3 1 2

4 3 2 1 0 1 2 2 3 5

3 1 1 3

4 5 3 2 2 1 0 1 2 3

5 3 3 1 1 3

3 4 5 5 3 3 2 1 0 1 2

5 5 4 3 2 3 3 1 3

(c) Distances to 1(x) in F 6(x).

Figure 6.20: Examples of the previous definitions. The black cells are active or equivalently are in 1(x)
and 1(F 6(x)). In (c) the number meaning the distance from the cell to the cells initially active i.e. to
1(x), then the cells in 1(x) have the number 0. Note that this number coincides with the iteration number
in which the cell is activated.

We will show a characterization of the images of a initial configuration using our metric showed
in the figure 6.20c. After this, we will build a NC algorithm to decide if a configuration has this
characterization.

Definition 6.5.1. Let x and xt configurations of dimensions n× n such that F t(x) = xt, v ∈ 1(x) and
z ∈ 1(xt) \ 1(x).

• The cell v is seed of z ∈ N(v) if xz = 0 ∧ F (x)z = 1.

• The cell v is seed of z ∈ [n]× [n] if there is a time t such that F t−1(x)z = 0 ∧ F t(x)z = 1 and the
unique active neighbor of z at time t− 1 has v as its seed.

Note that if an active cell has a seed, it is the only one. Moreover, if a cell is activated by the action
of another cell, both share the same seed and the distance to the seed is 1 plus the distance from the
neighbor to the seed.

We say that an inactive cell at time t is blocked if this cell has two or more active cells at this time.
A blocked cell is stable.

Lemma 6.5.2. Necessary conditions for F t(x) = xt are:

• 1(x) ⊆ 1(xt)

• max
z∈1(xt)

d(z, 1(x)) ≤ t.

Corollary 6.5.2.1. The previous lemma is valid also if t = ∞, it means that it is valid for the fixed
point reached starting by x.

Proof. Is enough to take t = n2, because x has at most n2 inactive cells, then, in the worst case, we need
to active all the cells one by one until to activate everyone. This takes n2 steps.

Lemma 6.5.3. Let x, yT two configurations of dimensions n × n satisfying the lemma 6.5.2, where
T = max

z∈1(yT)
dyT (z, 1(x)) and for all t = 0, ..., T

ytz =

{

0 if dyT (z, 1(x)) > t

yTz otherwise
.

107

6.5. REACHABILITY

Then yT = FT (x) if and only if

∀t = 1, ..., T, ∀z ∈ 1(yt) \ 1(yt−1) : ytz = 1⇔ |N(z) ∩ 1(yt−1)| = 1 (6.5)

Note that in the previous lemma,

1. y0 = x,

2. 1(x) ⊆ 1(y1) ⊆ ... ⊆ 1(yT).

Proof. By induction over T . Let T = 1. We will call y to y1, then we must prove that y = F (x) if and
only if ∀z ∈ 1(y) \ 1(x) : yz = 1⇔ |N(z) ∩ 1(y)| = 1.

⇐ It is true because every new active cell in y = F (x) comes from a single active cell in 1(x).

⇒ It is enough to study the cells in 1(y) \ 1(x) because 1(x) ⊆ 1(y). Let z ∈ 1(y) \ 1(x)

If yz = 1 this is equivalent to |N(z) ∩ 1(x)| = 1, then, by definition of F , yz = F (x)z = 1.

If yz = 0 we have two possibles cases:

Case |N(z) ∩ 1(x)| = 0. In this case z has no active neighbors, then yz = F (x)z = 0.

Case |N(z) ∩ 1(x)| ≥ 2. Here z blocked, then yz = F (x)z = 0.

Then ∀z ∈ [n]× [n] : yz = F (x)z.

Now we suppose that the induction hypothesis is true, i.e.

yT = FT (x) if and only if ∀t = 1, ..., T, ∀z ∈ 1(yt) \ 1(yt−1) : ytz = 1⇔ |N(z) ∩ 1(yt−1)| = 1.

We take the case T + 1, i.e. we must prove

yT+1 = FT+1(x) if and only if ∀t = 1, ..., T + 1, ∀z ∈ 1(yt) \ 1(yt−1) : ytz = 1⇔ |N(z) ∩ 1(yt−1)| = 1
︸ ︷︷ ︸

(∗)

.

By induction hypothesis (*) true for t = 1, ..., T is equivalent to yT = FT (x), then we need to prove

yT+1 = F (yT) if and only if ∀z ∈ 1(yT+1) \ 1(yT) : yT+1
z = 1⇔ |N(z) ∩ 1(yT)| = 1.

This is true taking T = 1, x = yT and y = yT+1 at the beginning of this demonstration.

We are ready to prove that Reachability is in NC.

Theorem 6.5.1 . The following algorithm verifies if the configuration y∞ is a fixed point obtained form
x. For this, we check that y∞ is a fixed point and then we check the lemma 6.5.3 for the time when the
image of x become a fixed point.

108

6.6. CONCLUDING REMARKS

Algorithm 10 Solving Reachability 1

Input: x and y∞ a finites configurations of dimensions n× n.
1: VERIFY(x,y∞)
2: D ← DISTANCE(x,y∞) % D(u, v) = dT (u, v)
3: D1← DISTANCE1(x,y∞,D) % D1(u) = dT (u, 1(x))
4: for all z ∈ [n]× [n] \ 1(x) do in parallel
5: if y∞z = 1 and

∑

z′∈ N(z)
D1(z′)=D1(z)−1

y∞z′ = 1 then

6: return Reject
7: else if y∞z = 0 and

∑

z′∈ N(z)
D1(z′)=D1(z)−1

y∞z′ 6= 1 then

8: return Reject
9: end if

10: end for
11: return Accept

This algorithm works as follow:

Step 1: VERIFY checks that x and y∞ satisfies 1(x) ⊆ 1(y∞) and that y∞ is a fixed point.

Step 2: DISTANCE computes a matrix D, where D(z, v) is the distance between z and v over the graph
induced by 1(y∞). It can be done in time O(log2N) using O(N2) processors using the adjacency
matrix and its products computed by the prefix-sum algorithm given in 3.2.4.

Step 3: DISTANCE1 computes a vector D1, where D(z) is the distance between z and 1(x) over the
graph induced by 1(y∞). It can be done in time O(log2N) using O(N2) processors using the
adjacency matrix and its products computed by the prefix-sum algorithm given in 3.2.4.

Steps 5-6: Verifies that z satisfies the characterization of active cells in Lemma 6.5.3. If it does not, it
answers Reject. There is a constant number of operations, then it can be done in O(logN) time in
a sequential machine.

Steps 7-8: Verifies that z satisfies the characterization of inactive cells in Lemma 6.5.3. If it does not,
it answers Reject. There is a constant number of operations, then it can be done in O(logN) time
in a sequential machine.

Step 11: Accepts if all the cells satisfies Lemma 6.5.3.

6.6 Concluding Remarks

6.6.1 Summary of our results

In this chapter we have studied the complexity of the Stability problem for the Freezing Totalistic
Cellular Automata (FTCA) on the triangular and square grid with von Neumann neighborhood and
two states. We find different complexities for these FTCA, including a P-complete case on square grid.
For the rules where Stability is in NC we have considered two approaches: a topological approach
(theorems 6.2.3, 6.2.1, 6.3.1, 6.3.2, and 6.3.3) and an algebraic approach (theorems 6.2.6 and 6.3.11).

109

6.6. CONCLUDING REMARKS

Rule Stability Theorem
φ O(1) Trivial
3 NC Trivial
2 NC Thm 6.2.3
23 NC Thm 6.2.1
12 NC Thm 6.2.6
123 NC Trivial

Table 6.1: Summary of rules and their complexity of Stability on triangular grid.

Rule Stability Theorem Rule Stability Theorem
4 NC Trivial 234 NC Thm 6.3.3
3 NC Thm 6.3.2 12 NC Thm 6.3.11
34 NC Thm 6.3.1 124 NC Thm 6.3.11
2 P-Complete Thm 6.3.12 123 NC Thm 6.3.11
24 P-Complete Thm 6.3.12 1234 O(1) Trivial

Table 6.2: Summary of rules and their complexity of Stability on square grid.

Also we study the cases when the rules are not totalistic, but they are invariant by rotation and
reflection, obtaining the following table:

Rule Stability Theorem Rule Stability Theorem
I O(1) Trivial L3 NC Thm 6.4.5
I4 O(1) Trivial L34 NC Thm 6.4.5
I3 NC Thm 6.4.5 1L NC Thm 6.4.6
I34 NC Thm 6.4.5 1L4 NC Thm 6.4.6
L P-Complete Thm 6.4.7 1L3 NC Thm 6.4.6
L4 P-Complete Thm 6.4.7 1L34 NC Thm 6.4.6

Table 6.3: Summary of invariant by rotation rules and their complexity of Stability on square grid.

6.6.2 About Fractal-Growing Rules

In this chapter we have not included a study of fractal growing rules. In fact, the complexity of Stability

remains open for these rules, even for fractal rules defined over a triangular grid.

To obtain an intuition about the dynamical complexity of those rules, see Figures 6.21 and 6.22, where
starting with only the center active we obtain a fractal behavior.

110

6.6. CONCLUDING REMARKS

(a) Rule 1 (b) Rule 13 (c) Rule 14 (d) Rule 134

Figure 6.21: Examples of different rules with the similar fractal dynamics starting with a single active
cell on square grid.

(a) Rule 1 (b) Rule 13

Figure 6.22: Examples of different rules with the similar fractal dynamics starting with a single active
cell on triangular grid.

It is important to remark that non-freezing version of rule 13 is the usual XOR between the four
neighbors, which is a linear cellular automaton. Using a prefix-sum algorithm, we can compute any step
of a linear cellular automaton, so the non-freezing rule 13 is in NC. Although we might imagine that
adding freezing property simplifies the dynamics of a rule, the non-linearity of rule 13 increases enough
the difficulty to prevent us to characterize its complexity.

6.6.3 On P-Completeness on the triangular grid

It is important to point out that for triangular grid (despite rule 1 or 13 might be candidates), we do
not exhibit a rule such that Stability is P-complete. The reader might think that, like in the one-
dimensional case, every freezing rule defined in a triangular grid is NC. This is not the case. Moreover,
three states (that we call 0, 1, 2) suffice to define a P-complete FTCA. The general freezing property
means that states may only grow (so, in this case state 2 is stable). In this context, for a triangular grid,
consider the following the local function.

f

(

xu,
∑

z∈N+u

xz

)

=

1, if xu = 0 ∧ (
∑

z∈N(u) xz = 2 ∨
∑

z∈N(u) xz = 12)

1, if xu = 10 ∧
∑

z∈N(u) xz = 11

xu, otherwise

The proof of P-Completeness follows similar arguments than the ones we used for rules 2 and 24 in the
squared grid (Theorem 6.3.12), i.e. reducing the Circuit Value Problem (CVP) to Stability on this
rule. Instances of CVP are encoded into a configuration of this FTCA using the idea in the construction
of the logical gates. In figures 6.14d and 6.23d we exhibit the gadgets.

111

6.6. CONCLUDING REMARKS

(a) Wire at time 0. (b) Wire at time 30. (c) AND gate. (d) XOR gate.

Figure 6.23: Gadgets for the implementation of logic circuits. The thick line marks the cell that makes
the calculation from signals. The color code is: : 1, : 10 and : 0

6.6.4 Limitation on the complexity for the rule 234

We showed that the Stability problem for the two-dimensional freezing non-strict majority automaton
is in NC. This question was posed in [31] and [39].

In [39] it is shown that the prediction problem for freezing non-strict majority automaton on an
arbitrary graph of degree at most four is P-complete, and in graphs of degree at most three is in NC.
The authors conjectured that this problem is in NC on any planar topology. We remark that if we remove
the hypothesis that the topology is a grid, then our characterization of stable sets (Theorem 6.3.8) is no
longer true, even for planar regular tri-connected graphs of degree four, as we can see in Figure 6.24.

0

0

0

0 0 0

0

0

0

0

1

0 0

(a) Initial configuration.

0

0

0

0 0 0

0

0

0

0

0 0

(b) Graph obtained after to remove the active cells.

Figure 6.24: Non-tri-connected graph of inactive cells, but stable.

This opens a way to study for a characterization of the graphs in which the theorem is true.

6.6.5 About non-quiescent rules

Finally, it is convenient to say a word about rules where cells become active with zero active neighbors,
i.e., rules where state 0 is not quiescent. Clearly, after one step for those rules, every cell will have at least
one active neighbor. Then, their complexity is at most the complexity of the same rule, not considering
the case of zero active neighbors as an activating state. For example, consider rule 034 in the square
grid. After one step of rule 034, the dynamics are exactly the same that the one of rule 34. Therefore,
rule 034 is in NC. Although, there are some interesting cases. First, notice that rule 01 is trivial (in the
triangular or square grids), because after only one step the rule reaches a fixed point. This contrasts with
rule 1, which is a Fractal-Growin rule. Second, consider rule 02 or 024 in the square grid. We know that
rule 2 and 24 are P-Complete. However, the reader can verify that the gadgets used to reduce CVP to
Stability do not work for rule 02 and 024. This fact opens the possibilty that rules 02 and 024 belong
to NC.

112

Chapter 7

Fast-Parallel Algorithms for Freezing

Totalistic Asynchronous Cellular

Automata

In this chapter, we relax the synchronizing hypothesis of cellular automata and consider freezing asyn-
chronous cellular automata (FACA), where cells evolve one by one, following a predefined order called
updating scheme.

An active research topic in the context of the study of CA, is the prediction problem, i.e. anticipate
the future state of a cell given an initial configuration. In the context of ACA, this problem can be
translated into finding a sequential updating scheme that changes the state of a cell. Our objective
is to study the prediction in the context of the Computational Complexity Theory. More precisely, our
objective is to classify the prediction problem of a ACA (CA) in one of the following clases: P of problems
solvable in polynomial time on a deterministic Turing machine; NC of problems that can be solved by a
fast-parallel algorithm, and NP the problems that can be solved in polynomial time in a non-determinstic
Turing machine. It is known that NC ⊆ P ⊆ NP, and the prediction problem is at most in NP. It is
a wide-believed conjecture that the inclusion are proper, then this classification give us an idea of the
complexity of these automata.

In particular we are interested in studding freezing ACA. It is direct that, in freezing ACA, every
initial configuration consisting of N cells reaches a fixed point in O(N2) steps, on every updating scheme.
However, there are cells that remain inactive regardless of the chosen updating scheme. These cells are
called stable. We call AsyncStability the problem of deciding, given an initial configuration, if a given
cell is stable on any updating scheme.

The freezing majority cellular automaton, also known as bootstrap percolation model [39] was studied
in arbitrary undirected graph. In this case, an inactive cell becomes active if and only if the active cells
are the most represented in its neighborhood. In that chapter, it is shown that in these ACA any updating
scheme converges at the same fixed point and it was proved that AsyncStability is P-Complete over
graphs such that its maximum degree (number of neighbors) ≥ 5. Otherwise (graphs with maximum
degree ≤ 4), the problem is in NC. This clearly includes the two dimensional grid with von Neumann
neighborhood.

In this chapter, we consider a family of two-state two dimensional Freezing Totalistic Asynchronous
Cellular Automaton (FTACA) defined on a triangular and square grid.

We show that for every graph in this family the problem AsyncStability is in NC. We show this
result following two approaches:

113

7.1. DEFINITIONS

• Infiltration approach: FTACA where there is a connected set S of inactive cells such that, if any set
in the perimeter of S becomes active, then for every cell in the connected set there is an updating
scheme that activates it (we say that the set was infiltrated).

• Monotone approach: We use a result of [39] that relates the behavior of monotone rules on asyn-
chronous updating schemes with respect to the same rules in synchronous updating schemes.

This chapter is structured as follows: First, in Section 7.1, we give the main definitions and notations.
In Sections 7.2 and 7.3 we study the complexity of AsyncStability in the triangular grid and the square
grid respectively. In Sections 7.2.1 and 7.3.1 we study the complexity of FTACA using the infiltration
approach in the triangular grid and the square grid respectively. In Sections 7.2.2 and 7.3.2, we study
the complexity of FTACA using the monotone approach in the triangular grid and the square grid
respectively. Finally, in Section 7.6 we give some conclusions.

Part of the content of this chapter correspond to publication Fast-Parallel Algorithms for Freezing
Totalistic Asynchronous Cellular Automata [4].

7.1 Definitions

We will study the family of two-state freezing totalistic asynchronous cellular automata (FTACA), over
the triangular or square grids, with von Neumann neighborhood. In this family, the active cells remain
active, because the rule is freezing, and the inactive cells become active depending only in the sum of
their neighbors.

Let F be a FTACA. We can identify F with a set IF ⊆ {0, 1, 2, 3} for the triangular grid and
IF ⊆ {0, 1, 2, 3, 4} for the square grid such that, for every configuration c and site u:

f(cN(u)) =

{
1 if (cu = 1) ∨ (

∑

v∈N(u)\{u} cv ∈ IF),

0 otherwise.

We will name the FTACA according to the elements contained in IF , as the concatenation of the
elements of IF in increasing order (except when IF = ∅, that we call φ). For example, let Maj be the
freezing majority vote CA, where an inactive cell becomes active if the majority of its neighbors is active.
Note that Freezing Majority-Vote Cellular Automata is the rule 23 in this notation for triangular grid
and for square grid Freezing (non) Strict Majority-Vote Cellular Automata is the rule 34 (234).

We deduce that there are 24 different FTCA for the triangular grid and 25 different for square grid,
each of them represented by the corresponding set IF . We will focus our analysis on the FTACA
where the inactive state is a quiescent state, which means that the inactive sites where the sum of their
neighborhoods is 0 remain inactive. Therefore, we will consider initially only 8 different FTACA.

7.2 Triangular grid

Here we study the complexity of AsyncStability for the FTACA on a triangular grid, obtaining that
in all these rules this problem is in NC. We grouped these rules according the strategy used to prove its
complexity: 1, 12 and 13 we use the infiltration technique; 2, 23 we use the monotony and the rules φ, 3
and 123 are trivial.

114

7.2. TRIANGULAR GRID

7.2.1 The infiltration technique

In this section we study the rules where an inactive cell becomes active with one active neighbor. This
cases include the rules 1, 12 and 13. For all these rules we define, for an initial configuration x, V+1 the
set of all cells in T (n) that need exactly one active neighbor to be activated, formally

V+1 = {v ∈ [n]× [n] : xv = 0 ∧
∑

w∈N(v)

xw + 1 ∈ IF}.

We define G+1 as the graph induced by V+1. Also we define B+1, called boundary of G+1, as the cells
in the complement of V+1 with at least one neighbor in V+1, formally

B+1 = {v 6∈ V+1 : V+1 ∩N(v) 6= ∅}.

b

a

Figure 7.1: : Cells in V+1. : Cells in B+1. : Active cells . Example of V+1 and B+1 for rule 1. The
cell (a) is not in V+1 because it can not evolve. The cell (b) is not in V+1 because it evolves immediately.

Without loss of generality, we suppose that G+1 is connected and contains u (otherwise, we restrict
to the connected component of G+1 containing u). The following lemma explains what happens if a cell
infiltrate the border.

Lemma 7.2.1. If there is an updating scheme such that some cell in B+ becomes activated, then there
is a updating scheme activating u.

Proof. Roughly, if a boundary cell v becomes active (it infiltrates V+1), then, by connectivity, we choose
the shortest (v, u)-path of cells in V+. Then, choosing an updating scheme activating the cells of the
(v − u)-path one by one from v we activate u.

Now we will see that it is enough to check the information of the neighborhood of each border cell
to know if this cell is stable or it infiltrates V+1. We are not interested in the cells that become active
with three active neighbors, because this cells can belong to B+ and also they cannot affect its neighbors,
because every one of this is already active and can not evolve.

Lemma 7.2.2. To decide if a boundary cell v ∈ B+ will become active or it is stable depends only of
N(v).

Proof. Let v ∈ B+1. We will consider the following facts:

115

7.2. TRIANGULAR GRID

• By definition of B+1, v has at least one inactive neighbor, the neighbor in V+1.

• Given that v 6∈ V+1, then it has at least one active neighbor, otherwise v ∈ V+1.

• If v has exactly one active neighbor, then v evolves in one time-step and we are done.

• If v has exactly two active neighbors, then v evolves in one iteration and we decide (because 2 ∈ IF)
or it does not evolve, then v is stable and we decide (because 2 /∈ IF).

We deduce the lemma.

Theorem 7.2.3. AsyncStability is in NC for the rules 1, 12 and 13.

Proof. Let (x, u) be an input of AsyncStability, i.e. x is a finite configuration of dimensions n × n,
and u is a site in [n] × [n]. Our algorithm for AsyncStability first check if the neighborhood of u is
a stable pattern or can evolve in one step, then computes V+1 and G+1. Then, the algorithm computes
the connected components of G+1 and restricts G+1 to the connected component containing u and then
compute B+1. Finally, the algorithm answers Reject if there is a vertex v ∈ B+1 that can be activated.
Otherwise answer Accept.

This algorithm works too on the rules changing with three active neighbors, because to activate a
boundary cells with three neighbors implies to have a active cell in V+.

Algorithm 11 AsyncStability solving 1, 12 and 13

Input: x ∈ {0, 1}T (n) and u ∈ T (n) such that xu = 0.
1: if N(u) is a stable pattern then
2: return Accept
3: end if
4: if f(xN(u)) = 1 then
5: return Reject
6: end if
7: Compute the V+1 = {v ∈ Z2 : xv = 0 ∧ |xN(v)|1 + 1 ∈ IF }.
8: Compute the graph G+1 = G[V+1].
9: Compute the connected components of G+1, {Ci}

M
i=1 .

10: Redefine V+1 = Ci : u ∈ Ci.
11: Compute the B+1 = {v 6∈ V+1 : V+1 ∩N(v) 6= ∅}.
12: for all v ∈ B+1 do in parallel
13: if f(xN(v)) = 1 then
14: return Reject
15: end if
16: end for
17: return Accept

Let N = n2 the size of the input.

Steps 1-6 are computed easily in time O(logN) using O(N) processors.

Step 7 is computed in time O(logN) using O(N) processors, 1 processor by cell v ∈ [n] × [n] and it
tests that |xN(v)|1 + 1 ∈ IF .

Step 8 is computed in time O(logN) using O(N) processors, 1 processor by edge (u, v) in the grid
(there is O(N) edges) and it add (u, v) to the edges of G+1 if u and v are in V+1.

Step 9 is computed in time O(logN) using O(N) processors by proposition 3.2.5.

116

7.2. TRIANGULAR GRID

Step 10 is computed in time O(logN) using O(N) processors, 1 processor by cell v in each connected
component, it tests that v = u and defines i as the index of the connected component containing
u. Each processor remove from V+ its vertex is not in Ci.

Step 11 is computed in time O(logN) using O(N) processors, 1 processor by cell v 6∈ V+ and it tests
that V+1 ∩N(v) 6= ∅.

Steps 12-16 are computed in time O(logN) using O(N) processors, 1 processor by cell v ∈ B+ and
it tests that f(xN(v)) = 1. If there is a cell that verifies this condition return Reject.

7.2.2 Monotone rules

Given that we know the complexity of Stability for 23 then AsyncStability has at the most the same
complexity.

Theorem 7.2.4. AsyncStability is in NC for the rule 23.

Proof. In [39] is shown an algorithm solving Stability in time O(log2 n) with O(n3/ log n) processors.
Roughly the stable cells are characterized as the cells in a bi-connected component (cycles) or a cell in
a path between two cycles in the graph induced by inactive cells. The complexity of the algorithm is
then given by the complexity of computing bi-connected components. More information about this can
be found in [46].

Figure 7.2: Example of a fixed point for the rule 23. Cells with lines are cells in a bi-connected component
of inactive cells. The white cells are cells in a path of inactive cells connecting two bi-connected component
of inactive cells.

Moreover, we can use this fact to know the complexity of AsyncStability in its non-monotone
versions, the ACA 2.

Lemma 7.2.5. Let x be a configuration and u a cell with at least one inactive neighbor. Then u is stable
for the rule 23 if and only if u is stable for the rule 2.

117

7.3. SQUARE GRID

Proof. Note that a site u that is stable for rule 23 is directly stable for rule 2. Indeed an updating scheme
that activates u for rule 2 also activates u on rule 23. Suppose now that u is not stable for rule 23, and
let σ be an updating scheme such that after t time-steps u becomes active. Moreover, we pick σ such
that t is minimum. Since t is minimum, we can assume that every cell that is updated before u is initially
inactive, and switches from inactive to active. Moreover, note that a cell with three active neighbors does
not affect the dynamics of other cells, because active cells remain active. Therefore, we assume that every
cell updated in σ before u had exactly two inactive neighbors. Finally, suppose that in t − 1 cell u had
three active neighbors. Since we are assuming that u had at least one inactive neighbor, it means that
there is a time step in 0, . . . , t− 2 in which u had two active neighbors. This contradicts the minimality
of t. We deduce that u had exactly two active neighbors at time t. Therefore u becomes active on rule 2
updated according to σ.

The previous lemma shows that it is possible to use the algorithm to solve AsyncStability for 23
to solve AsyncStability for the rule 2.

Theorem 7.2.6. AsyncStability is in NC for the rule 2.

Proof. The following algorithm verifies the conditions to deduce the rule 2 from the rule 23, then solves
stability for the rule 23.

Algorithm 12 AsyncStability solving 2

Input: x ∈ {0, 1}T (n) and u ∈ T (n) such that xu = 0.
1: if N(u) has three active neighbors then
2: return Reject
3: end if
4: To solve AsyncStability for the rule 23.
5: return The same answer obtained in the previous line.

Let N = n2 the size of the input.

Steps 1-3 are computed easily in time O(logN) using O(N) processors, because is to compute the sum
of the states of three cells.

Steps 4 are computed in time O(log2 n) using O(n3/ log n) processors, because is the complexity of
AsyncStability for the rule 234, see theorem 7.2.4.

7.3 Square grid

Here we study the complexity of AsyncStability for the FTACA on a square grid, obtaining that in
some rules this problem is in NC. We grouped these rules according to the strategy used to prove its
complexity: 1, 12, 13, 14, 123, 134 and 124 use the infiltration technique; 23, 234, 3 and 34 use the
monotony and the rules φ, 4 and 1234 are trivial.

7.3.1 The infiltration technique

In this section we study the rules where an inactive cell becomes active with one active neighbor. This
cases include the rules 1, 12, 13, 14, 123, 134 and 124. As well as for the triangular grid we we define,

118

7.3. SQUARE GRID

for an initial configuration x, V+1 the set of all cells in Z2 that need exactly one active neighbor to be
activated, formally

V+1 = {v ∈ [n]× [n] : xv = 0 ∧
∑

w∈N(v)

xw + 1 ∈ IF},

and we define G+1 as the graph induced by V+1. Also we define the boundary B+1 as the cell in the
complement of V+1 with at least one neighbor in V+1, formally

B+1 = {v 6∈ V+1 : V+1 ∩N(v) 6= ∅}.

b

a

Figure 7.3: : Cells in V+1. : Cells in B+1. : Active cells . Example of V+1 and B+1 for rule 1. The
cell (a) is not in V+1 because it can not evolve. The cell (b) is not in V+1 because it evolves immediately.

Without loss of generality, we suppose that G+1 is connected and containing u (otherwise, we restrict
to the connected component of G+1 containing u). Note that the infiltration lemma (Lemma 7.2.1) is
valid too for the square grid, then we need to show that border cells only depend on their neighborhood
to decide if they are stable or not.

Lemma 7.3.1. For the rules 1, 12, 13, 14, 123, 134 and 124 at least one of the following is true for each
boundary cell v ∈ B+1:

• To decide if this boundary cell will become active or if it is stable depends only on N(v).

• A cell in V+1 becomes active.

Proof. Let v ∈ B+1. We will consider the following facts:

• The cell v has not four active neighbors, in the opposite case meaning then at least one neighbor
in V+1 becomes active. Thus we will not consider the case when v has four active neighbors.

• By definition of B+1, v has at least one inactive neighbor, the neighbor in V+1.

• Given that v 6∈ V+1, then we need to explore the following cases, where v has at least one active
neighbor. v ∈ V+1 otherwise.

119

7.3. SQUARE GRID

– If v has exactly one active neighbor, then v evolves in one time-step and we are done, because
always 1 ∈ IF .

– If v has exactly two active neighbors, then v evolves in one iteration and we decide (i.e. 2
belongs to IF) or it does not evolve. Note that if v ∈ B+1 and does not evolve, then 3 6∈ IF ,
otherwise v ∈ B+1. Thus v is stable and we decide.

– If v has exactly three active neighbors, then it becomes active (i.e. 3 belongs to IF) or remains
inactive, (i.e. 3 6∈ IF), then v is stable. Remember that if v has four active neighbors, then at
least one cell in V+1 was activated.

Thus we deduce the lemma.

Theorem 7.3.2. AsyncStability is in NC for the rules 1, 12, 13, 14, 123, 134 and 124.

Proof. Let (x, u) be an input of AsyncStability, i.e. x is a finite configuration of dimensions n × n,
and u is a site in [n] × [n]. Our algorithm for AsyncStability first checks if the neighborhood of u is
a stable pattern or can evolve in one step, then computes V+1 and G+1. Then, the algorithm computes
the connected components of G+1 and restricts G+1 to the connected component containing u and then
computes B+1. Finally, the algorithm answers Reject if there is a vertex v ∈ B+1 that can be activated.
It answers Accept otherwise.

This algorithm works on the rules changing with three four neighbors too, because if a boundary with
four active neighbors was activated, then there is a active cell in V+1.

Algorithm 13 AsyncStability solving 1, 12, 13, 14, 123, 134 and 124

Input: x ∈ {0, 1}[n]×[n] and u ∈ [n]× [n] such that xu = 0.
1: if xN(u) is a stable pattern then
2: return Accept
3: end if
4: if f(xN(u)) = 1 then
5: return Reject
6: end if
7: Compute the V+1 = {v ∈ Z2 : xv = 0 ∧ |xN(v)|1 + 1 ∈ IF }.
8: Compute the graph G+1 = G[V+1].
9: Compute the connected components of G+1, {Ci}

M
i=1 .

10: Redefine V+1 = Ci : u ∈ Ci.
11: Compute the B+1 = {v 6∈ V+1 : V+1 ∩N(v) 6= ∅}.
12: for all v ∈ B+1 do in parallel
13: if f(xN(v)) = 1 then
14: return Reject
15: end if
16: end for
17: return Accept

Let N = n2 the size of the input.

Steps 1-6 are computed easily in time O(logN) using O(N) processors.

Step 7 is computed in time O(logN) using O(N) processors, 1 processor by cell v ∈ [n] × [n] and it
checks that |xN(v)|1 + 1 ∈ IF .

Step 8 is computed in time O(logN) using O(N) processors, 1 processor by edge (u, v) in the grid
(there is O(N) edges) and it adds (u, v) to the edges of G+1 if u and v are in V+1.

120

7.3. SQUARE GRID

Step 9 is computed in time O(logN) using O(N) processors by proposition 3.2.5.

Step 10 is computed in time O(logN) using O(N) processors, 1 processor by cell v in each connected
component, it checks that v = u and define i as the index of the connected component containing
u. Each processor removes from V+ its vertex if it is not in Ci.

Step 11 is computed in time O(logN) using O(N) processors, 1 processor by cell v 6∈ V+ and it checks
that V+1 ∩N(v) 6= ∅.

Steps 12-16 are computed in time O(logN) using O(N) processors. It is used 1 processor by cell
v ∈ B+ and this processor checks that f(xN(v)) = 1. If there is a cell that verifies this condition,
then returns Reject. Accepts otherwise.

7.3.2 Monotone rules

Given that we know the complexity of Stability for the monotone rules on square grid then Async-

Stability has at most the same complexity.

Theorem 7.3.3. AsyncStability is in NC for the rule 234 and 34.

Proof. In [39] is shown an algorithm solving Stability in time O(log2 n) with O(n3/ log n) processors
for the rule 34 non strict majority FCA. Roughly the stable cells are characterized as the cells in a bi-
connected component (cycles) or a cell in a path between two cycles in the graph induced by inactive
cells. The complexity of the algorithm is given by the complexity of computing bi-connected components.

For the rule 234 we use the algorithm in theorem 6.3.3, it is based on the characterization of the stable
cells, it is

(a) Fixed point for rule 34. (b) Fixed point for rule 234.

Figure 7.4: Example of fixed points for the rule 34 and 234. For the rule 34 the stable cells are bi-
connected components of inactive cells or path of inactive cells connecting bi-connected components of
inactive cells. For the rule 234 the stable cells are a tri-connected components of inactive cells.

121

7.4. RULES WITH 0 NON QUIESCENT

We can extend this result to the non-monotone ACA 23 and 3 using the monotony of 234 and 34
respectively.

Lemma 7.3.4. Let x a configuration and u a cell with at least one inactive neighbor. Then u is stable
for the rule 234 (34) if and only if u is stable for the rule 23 (3).

Proof. We will call F23 and F234 the FCA with rules 23 and 234 respectively.

It is direct that if u is stable for rule 234 then it is stable for rule 23 and note that for any upgrade
scheme rules 23 and 234 are only different for cells with four active neighbors.

Suppose that there is a stable u cell for 23 but not for 234, i.e. there is a σ updating scheme and
a t time such that Fσ(t)

234 (c)u = 1 and F
σ(t)
23 (c)u = 0. So F

σ(t)
23 (c) has four stable neighbors. Be t′ the

least time where F sigma(t′)
23 (c)u has three active neighbors. Note that Fσ(t′)

234 (c)u also has three active
neighbors. If we define σ′ as σ until the time t′ − 1 and σ′(t′) = u, we get an updating scheme that
changes to u for rule 234, contradicting the fact that u is stable for 234.

For rules 34 and 3 is analogous.

From the previous lemma we get that the problem AsyncStability is NC for the rules 23 and 3.

Theorem 7.3.5. AsyncStability is in NC for the rule 23 and 3.

Proof. The following algorithm verify the conditions to deduce the rule 2 from the rule 23, then solve
stability for the rule 23.

Algorithm 14 AsyncStability solving 23 (3)

Input: x ∈ {0, 1}[n]×[n] and u ∈ [n]× [n] such that xu = 0.
1: if xN(u) has four active neighbors then
2: return Reject
3: end if
4: To solve AsyncStability for the rule 234 (34).
5: return The same answer obtained in the previous line.

Let N = n2 the size of the input.

Steps 1-3 are computed easily in time O(logN) using O(N) processors, because it is computing the
sum of the states of its neighbors.

Steps 4 are computed in time O(log2 n) using O(n3/ log n) processors., because is the complexity of
AsyncStability for the rule 234 (34), see theorem 7.3.3.

7.4 Rules with 0 non quiescent

If we consider the rules where 0 is not quiescent the infiltration approach can be modified to compute
AsyncStability in NC too. For the infiltration approach is enough to remove the inactive cells with
only inactive cell in its neighborhood to V+1. For monotone approach note that for all configuration c
and updating scheme σ we have Fσ

23(c) ≤ F
σ
023(c).

122

7.5. NP COMPLETENESS

Theorem 7.4.1. AsyncStability is in NC for the rules 01, 012 and 013 in the triangular grid and
for the rules 01, 012, 013, 014, 0123, 0134 and 0124 in the square grid.

Proof. Let F be one of the rules of the theorem and u the decision cell. We calculate V+1 as if rule 0
were quiescent. If in V+1 there is a cell with all its neighbors inactive, so u is not stable, otherwise the
algorithm for the rule with 0 quiescent will give the correct answer, because there are no cells with all its
neighbors inactive in V+1 nor in B+1, because all its cells have at least one active cell.

The following algorithm is able to solve AsyncStability using the algorithms for rules with 0 as a
quiescent state.

Algorithm 15 AsyncStability solving 01, 012 and 013 in the triangular grid and 01, 012, 013, 014,
0123, 0134 and 0124 in the square grid.

Input: x ∈ {0, 1}[n]×[n] and u ∈ [n]× [n] such that xu = 0.
1: Compute the V+1 = {v ∈ Z2 : xv = 0 ∧ |xN(v)|1 + 1 ∈ IF }.
2: for all v ∈ V+1 do in parallel
3: if |xN(v)|1 = 0 then
4: return Reject
5: end if
6: end for
7: To solve AsyncStability for the rule same rule, but with 0 as quiescent state.
8: return The same answer obtained in the previous line.

Let N = n2 the size of the input.

Step 1 is computed easily in time O(logN) using O(N) processors, because is to compute the sum of
three or four cell.

Steps 3-6 are computed in time O(logN) using O(N) processors, one per cell to compute the sum of
its neighbors.

Steps 7 is computed in time O(log2 n) using O(n3/ log n) processors, by theorems 7.2.4, 7.2.6, 7.3.3 and
7.3.5.

7.5 NP completeness

We will show that using the FTCA 2 on the tri-dimensional square grid, the AsyncStability problem is
NP-complete. It is NP because we can verify if a given updating scheme activates a cell in a polynomial
time for any FTACA. Note that if we consider the rule 2 in a tri-dimensional space, we can build the
logic gates AND and OR and duplicate signals over a plane simulating a two dimensional FTCA 2. This
work also in an asynchronous way. Instead of using an XOR gate for wire crossings, we can simply use
the third dimension to pass one wire over the other, similar to Figure 4.6.

We will build an abstract system similar to CNF formulas, but considering three state instead of
two, we will prove that this has system a NP-complete problem and we will use them to prove that
AsyncStability is NP-complete too.

We consider the following states T = {(0, 1), (1, 0), (0, 0)}. To give an intuition, we will call 0 =
(0, 1), 1 = (1, 0) and e = (0, 0), then T = {0, 1, e}. Also consider the operators on T defined by the table
7.1.

123

7.5. NP COMPLETENESS

X Y X ∨∨ Y
0 0 0

0 1 1

1 0 1

1 1 1

0 e e
1 e 1

e 0 e
e 1 1

X Y X ∨∨ Y
(0, 1) (0, 1) (0, 1)
(0, 1) (1, 0) (1, 0)
(1, 0) (0, 1) (1, 0)
(1, 0) (1, 0) (1, 0)
(0, 1) (0, 0) (0, 0)
(1, 0) (0, 0) (1, 0)
(0, 0) (0, 1) (0, 0)
(0, 0) (1, 0) (1, 0)

(a) The OR on T. In the right table, the first component of X ∨∨ Y is computed as X1 ∨Y1

and the second one is computed as X2 ∧ Y2.

X Y X ∧∧ Y
0 0 0

0 1 0

1 0 0

1 1 1

0 e 0

1 e e
e 0 0

e 1 e

X Y X ∧∧ Y
(0, 1) (0, 1) (0, 1)
(0, 1) (1, 0) (0, 1)
(1, 0) (0, 1) (0, 1)
(1, 0) (1, 0) (1, 0)
(0, 1) (0, 0) (0, 1)
(1, 0) (0, 0) (0, 0)
(0, 0) (0, 1) (0, 1)
(0, 0) (1, 0) (0, 0)

(b) The AND on T. In the right table, the first component of X ∧∧ Y is computed as X1∧Y1

and the second one is computed as X2 ∨ Y2.

X ¬¬ X
0 1

1 0

e e

X ¬¬ X
(0, 1) (1, 0)
(1, 0) (0, 1)
(0, 0) (0, 0)

(c) The negation on T. The first and second components of ¬¬ X are compute as the
negations of the first and second component of X respectively.

Table 7.1: Logical operator on T. The left tables has the values X and Y as symbols and the right tables
has the values X and Y as pairs.

We can interpret e as an unknown value. In the usual logic for any value of e, e ∨ 1 = 1, see row
8 in Figure 7.1a, but the value of e ∨ 0 depends on e, so if e is unknown, then e ∨ 0 is also unknown,
“e ∨ 0 = e”, see row 7 in Figure 7.1a.

We call to C a T-CNF formula if these use the symbols ∨∨, ∧∧ and ¬¬ and exchanging this symbols by
∨, ∧ and ¬ respectively we obtain a CNF formula. If C is a CNF formula, we call C a T-CNF formula
obtained by the previous exchange.

Also we define φ : {0, 1} → T as φ(0) = 0 and φ(1) = 1 and for all n, φ : {0, 1}n → Tn is the function
that applies φ component by component.

These definitions induce the following decision problem analogous to SAT, called T-SAT.

Satisfiability Problem on T (T-SAT)
Input: A T-CNF formula.
Question: Is there an input value such that the output value is 1?

Looking only the rows non containing e is easy to check that if we only consider inputs 0 and 1 for
the T-CNF formulas, then SAT and T-SAT are equivalent.

The following lemma says that if X satisfies a T-CNF formula, then if we replace an entry of X with

124

7.5. NP COMPLETENESS

a e value with the value 1 and call it X ′, then X ′ also satisfies our T-CNFformula. So if a T-CNF formula
is satisfactory, we can always find X ′ without e entries that satisfies our T-CNF formula.

Lemma 7.5.1. Let C a T-CNF formula induced by C, then if we consider only inputs without e values,
then the formula C is satisfiable if and only if the T-formula is satisfiable. Moreover, if the answers of
T-SAT with formula C is yes by X without e values, then the answers of SAT with formula C is yes by

φ
−1

(X), i.e. C(φ
−1

(X)) = 1.

Lemma 7.5.2. Let C a T-CNF formula X = (X1, ..., Xn) satisfies C. Let

X
i
=

{

Xi if Xi 6= e

1 otherwise.
,

then X also satisfies C.

Proof. Let C a T-CNF formula and the answers of T-SAT is yes by X = (X1, ..., Xn), i.e. C(X) =
1 = (1, 0), then there are C1, C2 CNF formulas such that C1(x1, x2) = 1 and C2(x1, x2) = 0, where
xi = (X1

i , ..., X
n
i). Moreover, C1 is the CNF formula exchanging the symbols ∨∨ and ∧∧ by ∨, ∧ respectively,

the literals Xi by x1i and ¬¬ Xi by x2i. Analogously, we define C2.

Note that C1 and C2 are monotone circuit, then if the output of each of these circuit is 1 for an input,
then is 1 also for an input obtained by exchanging 0 input values by 1 input values.

Finally, to exchange e by 1 is equivalent to add 1 values in inputs of C1, then the first component of
the output of C is 1 too. It is not possible that the second component of the output of C changes to 1
too, because this means that by composition of ∨∨ and ∧∧ and ¬¬ we can obtain an output (1, 1), but all
these operators are closet on T.

Proposition 7.5.3. T-SAT is NP-complete.

Proof. T-SAT is in NP because if a T-CNF formula is satisfiable and we know the input that satisfies
the T-CNF formula, then we need to compute the outputs of this formula. We can do it in polynomial
time because circuit value problem is in P.

Let C a CNF formula, we need to prove that C is satisfiable if and only if C is satisfiable too.

If C is satisfiable, then there is an input x such that c(x) = 1, then, by lemma 7.5.1, C(X) = 1 and
C is satisfiable.

Conversely, if C is satisfiable, then there is an input X such that C(X) = 1. If all the values Xi are 0

or 1, then, by lemma 7.5.1, C(φ
−1

(X)) = 1 and the C is satisfiable. Otherwise, by lemma 7.5.1, we can

build an input X such that all the values X
i

are 0 or 1. Thus, C(φ
−1

(X)) = 1 and the C is satisfiable.

We use polynomial time to build the T-CNF formula, because it is simply build a CNF formula copy
of the original and another copy but with the AND gates exchanged with OR gates.

This proves the NP-completeness of T-SAT.

We will use this new NP-complete problem to prove the NP-completeness of rule 2 on a square
tri-dimensional grid, but for this we need the following gadget.

Lemma 7.5.4. There is a gadget that allows to generate at most one signal in one of two directions for
every updating scheme.

125

7.5. NP COMPLETENESS

Proof. With no loss of generality, let σ an updating scheme that in each iteration the iterated cell changes,
except when the fixed point is reached.

Note that σ should begin by iterating the a or c cell in the Figure 7.5. By symmetry we will study
the case when the first iterated cell is the cell a, i.e. σ(1) = a. If the second iterated cell is c then a fixed
point is reached. So, after iterating the a cell it is only possible to iterate b, σ(2) = b. This prohibits
iterate c and allows to iterate only d, σ(3) = d. Finally this allows to continue iterating cells until change
the cell x, but no way to iterate that has iterated a, b and d can change the cell y.

a b c

dx y

Figure 7.5: Gadget sending at most one signal for one of two outputs.

Theorem 7.5.5. AsyncStability is NP-complete for the rule 2 on a square tri-dimensional grid.

Proof. Let’s reduce T-SAT to AsyncStability. Let C be a T-CNF formula with literals X1, ..., X2. We
will simulate your C1 and C2 formulas of the lemma 7.5.2 by building them in two layers in a three-
dimensional configuration. Each one of the formulas C1 and C2 are constructed according to the theorem
6.3.12 on a different parallel layer.

Note that the wiring of each layer is the same and only the gates change. So,

• 1 is represented by a signal on layer 1 and the absence of signal on layer 2,

• 0 is represented by a signal on layer 2 and the absence of signal on layer 1 and

• e is represented by absence of signal on both layers.

Now we need to introduce signals in layers 1 and 2.

For each literal Xi we put a gadget as in Figure 7.5 and connect its output 1 with the positions of
the inputs of the literals x1i and output 2 with the inputs of the literals x2i. So each pair of wires in
layers 1 and 2 has at most one signal.

The construction in polynomial time is due to the fact that the construction of each circuit can be
done in polynomial time.

Note that T-SAT is NP-complete also if the question is Is there an input value such that the output
value is 0?, but the question Is there an input value such that the output value is e? is trivial, it is enough
to choose all the inputs with value e.

Observes that if a T-CNF formula is satisfied by X containing a variable with state e means that any
choice of states of this variable also satisfies the T-CNF formula.

126

7.6. CONCLUDING REMARKS AND FUTURE WORKS

7.6 Concluding Remarks and Future Works

In this chapter we proved that the AsyncStability problem is in NC for all Freezing Totalistic Asyn-
chronous Cellular Automata (FTACA) in the triangular and square grid with the von Neumann Neigh-
borhood. There are 16 FTACA on the triangular grid and 32 on the square grid. We focused our study
on 8 rules on the triangular grid and 16 on the square grid, where the inactive state is quiescent. There
are some rules that are trivial (φ, 123 and 3 on triangular grid and φ, 1234 and 4 on square grid). Rules
1, 12 and 13 are in NC by the infiltration approach and the rules 2 and 23 are in NC by the monotone
approach.

Problems where the complexity of AsyncStability remains open are those where the complexity of
Stability is P-complete, i.e. they are rules 2 and 24 on the square grid. In these cases we can no longer
use the XOR gate, because different updating scheme produce different outputs for the same inputs. we
have used the XOR gate to build a crossover and simulate non-planar Boolean circuits. That way, we
can only build monotone planar circuits, then we can only solve the planar and monotone circuit value
problem, but this problem is in NC [68]. We study the rule 4 in dimension three in order to avoid the
problem to crossing signals and we prove that in this cases AsyncStability is NP-complete, the higher
complexity for AsyncStability.

If we consider the rules where 0 is not quiescent the infiltration approach and monotone approach
can be modified to compute AsyncStability in NC too. For the infiltration approach is enough to
remove the inactive cells with only inactive cell in its neighborhood to V+, because now this cell can not
1 neighbor to active.

Another way to explore is to find different kinds of FTACA, with other Neighborhoods, more states
or dimension, where we can find FTACA with higher complexity, as FTACA where the complexity of
AsyncStability its NP-complete.

127

7.6. CONCLUDING REMARKS AND FUTURE WORKS

128

Chapter 8

Conclusion et travaux futurs

Dans ce travail, nous avons étudié la complexité des automates cellulaires coagulants de différents points
de vue. D’une part, nous avons étudié s’il existe un seul automate cellulaire coagulant montrant tous les
comportements que l’on peut trouver sur ces automates cellulaires. Nous en trouvons un et nous avons
étudié ses propriétés et ses limites.

D’autre part, nous avons étudié la complexité d’un automate cellulaire coagulant avec des états et des
quartiers très limités. Nous avons trouvé un quartier de von Neumann à deux états gelant des automates
cellulaires totalistes avec une complexité "P "-complète pour Stability.

On peut conclure que, malgré l’apparente limitation de la propriété coagulation, cette famille d’automates
cellulaires présente un comportement très riche et intéressant.

8.1 Universalité des automates cellulaires coagulants

Nous avons commencé notre étude des automates cellulaires coagulants par la recherche d’un automate
cellulaire coagulant intrinsèquement universel, c’est-à-dire capable de simuler tout autre automate cel-
lulaire coagulant. Nous avons montré qu’avec la définition habituelle de la simulation, il n’existe pas
d’automate de ce type. Nous étudions donc une notion plus générale de la simulation appelée simula-
tion contextuelle. Selon cette notion, où la macrocellule simulante dépend non seulement de la cellule
simulée, elle dépend aussi de ses voisins, il a été possible de trouver un automate cellulaire coagulant
intrinsèquement universel. Il a deux changements et il n’est pas possible d’en trouver un avec moins
de changements, parce que les automates cellulaires coagulants avec un seul changement ne peuvent pas
croiser les signaux, alors il ne peut pas simuler un automate cellulaire avec des signaux de passage, car
il y a aussi les automates cellulaire coagulants qui changent deux ou plus. De plus, nous avons utilisé le
deuxième changement uniquement pour croiser les signaux.

Nous avons construit un automate cellulaire coagulant intrinsèquement universel avec un seul change-
ment en utilisant la troisième dimension pour faire les croisements. Puisque les circuits utilisés pour
construire l’automate cellulaire coagulant intrinsèquement universel étaient possibles avec l’automate cel-
lulaire coagulant avec la règle 2, alors avec sa version tridimensionnelle nous avons trouvé un automate
cellulaire coagulant intrinsèquement universel avec quartier von Neumann et seulement deux états, donc
avec seulement un changement.

Une autre façon d’obtenir un automate cellulaire coagulant intrinsèquement universel avec un change-
ment sans ajouter d’autres dimensions, était d’agrandir un peu son voisinage, dans ce cas nous avons vu
qu’avec le quartier Moore nous avons pu faire des croix planes en utilisant les diagonales de ce quartier,
comme les fous sur les places avec différentes couleurs ne touchent pas.

129

8.2. SUR LA COMPLEXITÉ DU PROBLÈME DE STABILITÉ DES AC BINAIRES COAGULANTS
TOTALISTIQUES

Lorsque nous avons imposé plus de conditions aux automates cellulaires coagulants intrinsèquement
universels, nous avons également rencontré des obstacles. Il n’existe pas d’automates cellulaires coagulants
monotones intrinsèquement universels. La coagulation et la monotonie nous donnent un AC confluent,
c’est-à-dire, où chaque schéma de mise à jour se termine au même point fixe. S’il y avait eu un auto-
mate cellulaire coagulant monotone intrinsèquement universel, il doit simuler des automates cellulaires
coagulants non monotones, avec lesquels une contradiction a été construite.

Enfin, nous avons trouvé une caractérisation des automates cellulaires qui peut être simulée en fonction
du contexte par des automates cellulaires coagulants : les CA ne sont pas nécessairement des automates
coagulants mais ont un comportement très semblable. Elle se caractérise par l’existence d’une énergie
locale explicite, une fonction qui attribue à chaque quartier une valeur numérique (l’énergie) qui diminue
à mesure que la dynamique de l’AC progresse. Comme pour les automates cellulaires coagulants dans
ces cas, il y a une quantité locale qui est perdue à chaque itération.

Quelques sujets qui pourraient être suivis seraient la recherche d’un plus petit automate cellulaire
coagulant intrinsèquement universel avec quartier von Neumann, c’est-à-dire qui a le moins d’états possi-
ble. Puisqu’il doit avoir deux changements, cela signifie que le nombre minimum d’états qu’il peut avoir
est de trois. On pourrait également rechercher l’universalité intrinsèque dans les sous-classes coagulant
: par exemple en recherchant un automate cellulaire monotone et ccoagulant intrinsèquement universel
pour la classe des automates cellulaires coagulants monotones et un automate cellulaire coagulant à un
changement intrinsèquement universel pour l’automate cellulaire à un changement.

8.2 Sur la complexité du problème de stabilité des automates

cellulaires binaires coagulants totalistiques

Nous avons concentré notre étude sur une famille très simple d’automates cellulaires coagulants : les
automates cellulaires coagulants totalisateurs avec voisinage von Neumann et deux états. Nous étudions
cette famille dans deux types de grille : la grille tessellée avec des carrés et avec des triangles, où chaque
cellule a respectivement 3 et 4 voisins, donc dans chaque cas nous avons 16 et 32 règles différentes, mais
au début nous avons considéré seulement les règles où l’état inactif est quiescent. Nous identifions ces
règles avec la concaténation de tous les nombres de sorte que la règle active la cellule centrale avec ce
nombre de voisins actifs.

Ici, nous nous sommes intéressés à la complexité informatique du problème de savoir si une cellule va
changer ou non, ce que nous appelons Stability.

Dans les deux grilles, nous regroupons les règles en fonction des approches que nous utilisons pour
résoudre Stability:

• Règles simples : sont celles où Stability est décidée trivialement. Par exemple, règle 4 pour la
grille carrée, où la cellule est stable à moins qu’elle n’ait initialement 4 voisins actifs.

• Règles topologiques : ce sont celles où la stabilité est donnée par la structure qui a l’ensemble des
cellules inactives. Par exemple la règle 34 dans la grille carrée, un ensemble de cellules inactives
où toutes les cellules ont au moins deux voisins à l’intérieur, est un ensemble stable, car après
l’application de la règle aucune cellule n’est activée. Ici, nous utilisons les algorithmes NC pour
calculer les composants connectés, bi-connectés et tri-connectés.

• Règles algébriques : sont celles où la valeur d’une cellule inactive peut être calculée par des opéra-
tions algébriques du reste pour accélérer le calcul. Par exemple la règle 12 pour la grille carrée, une
cellule change avec un ou deux voisins actifs ou l’équivalent pour calculer le OU des voisins, même
s’il y a plusieurs voisins inactifs connectés il est possible de calculer la valeur comme le OU des
voisins les plus éloignés. Ici nous utilisons les algorithmes NC pour calculer la somme du préfixe.

130

8.3. ALGORITHMES PARALLÈLES POUR LES AC TOTALISTES ET COAGULANTS

• Règles fractales : ce sont celles où dans la dynamique on observe un comportement fractal. Par
exemple, la règle 1 pour la grille carrée, commencée avec une seule cellule active, montre une
croissance similaire à celle d’un flocon de neige.

Dans la grille triangulaire nous avons montré que Stability est dans NC pour toutes les règles sauf
les règles fractales. Pour obtenir une complexité maximale, nous avons ajouté un état supplémentaire à
la règle 2 pour simuler des circuits logiques comme la règle 2 dans la grille carrée.

Pour la grille carrée, nous avons deux règles où le problème de stabilité est P-complet. C’est la plus
grande complexité pour Stability sur les automates cellulaires coagulants. Ce sont les règles 2 et 24,
où il était possible de simuler des circuits logiques.

Etant donné la difficulté d’étudier Stability dans les règles fractales, nous avons étudié un problème
plus simple, à savoir la "Reachability, si avec deux configurations on peut atteindre l’une de l’autre
par itérations de l’automate cellulaire. Si nous pouvons résoudre Stability alors nous pouvons résoudre
Reachability. Nous avons montré que dans le cas de la règle 1 Reachability est en NC.

Pour le reste des règles où l’état inactif n’est pas quiescent, il a été possible de lier la complexité de
calcul de Stability par la complexité de la même règle mais avec l’état inactif comme quiescent. La
complexité des règles 02 et 024 reste ouverte (les versions de 2 et 24 où 0 n’est pas un état quiescent), où
la complexité pourrait éventuellement diminuer.

8.3 Algorithmes parallèles rapides pour les automates cellulaires

asynchrones totalistes et coagulants

Dans ce dernier chapitre, nous étudions la même famille d’automates cellulaires coagulants sur la même
grille que le chapitre précédent, mais nous modifions le schéma de mise à jour par un schéma asynchrone.
Nous nous sommes donc intéressés au calcul de la complexité de calcul de la version de Stability pour
les automates cellulaires asynchrones, appelée problème AsyncStability, où une cellule est stable si
elle est stable pour tout schéma de mise à jour.

Dans les deux grilles, nous regroupons les règles en fonction des approches que nous utilisons pour
résoudre la AsyncStability:

• Règles simples : sont ces règles où AsyncStability est décidée trivialement.

• Règle d’infiltration : sont les règles qui activent une cellule avec exactement un voisin actif. Nous
résolvons AsyncStability en cherchant une cellule dans le composant connecté de cellules inactives
se connectant à la cellule de décision qu’il est possible d’activer. s’il existe, nous disons qu’une cellule
s’infiltre et ceci peut "voyager" sur le composant connecté de cellules inactives se connectant à la
cellule de décision jusqu’à leur activation.

• Règles monotones : ce sont les règles qui sont monotones, puis elles sont confluentes. Alors nous
avons pu résoudre la Stability sur sa version synchrone et donner la même réponse.

Pour la grille triangulaire, AsyncStability est dans NC pour toutes les règles. Tandis que pour la
grille carrée, nous savons que AsyncStability in NC pour toutes les règles sauf les règles 2 et 24. Notez
que ce sont les règles P-completes pour le cas synchrone. Pour ces cas ouverts, nous étudions ses versions
tridimensionnelles, où nous pouvons construire des portes logiques et utiliser la troisième dimension pour
croiser les signaux. Ensuite, avec un gadget spécial, c’est l’équivalent de trouver un schéma de mise à jour
changeant une cellule sur une configuration (simulant un circuit logique) que de trouver une affectation
satisfaisante à une formule booléenne. Puis AsyncStability dans NP-complet pour les règles 2 et
24 dans sa version tridimensionnelle. C’est la plus grande complexité pour AsyncStability sur les
automates cellulaires coagulants.

131

8.4. REMARQUES FINALES ET PROBLÈMES OUVERTS

La complexité de AsyncStability pour les règles 2 et 24 en deux dimensions reste ouverte. Aussi il
devrait être intéressant ce qui se passe dans d’autres quartiers ou supprimer l’hypothèse totaliste sur les
règles étudiées.

8.4 Remarques finales et problèmes ouverts

Malgré leur limite apparente par le fait que chaque cellule ne peut que croître, les automates cellulaires
coagulants présentent une grande diversité et complexité. Que nous pouvons les ordonner de la manière
suivante, du moins complexe au plus complexe : 1D automates cellulaires coagulants, 2D automates
cellulaires coagulants 2D avec le voisinage von Neumann et un changement, et le reste des automates
cellulaires coagulants.

• Les automates cellulaires coagulants 1D sont les moins complexes puisque la Stability est au
maximum NLOGSPACE ;

• les automates cellulaires coagulants 2D von Neumann voisinage et un changement, parce qu’il a un
automate cellulaire coagulant où Stability est P-complète, mais ils n’en ont pas un intrinsèque-
ment universel ;

• le reste des automates cellulaires coagulants où il existe un automate cellulaire coagulant intrin-
sèquement universel.

Si nous relâchons le synchronisme dans les schémas de mise à jour, nous obtenons que la plupart
des automates cellulaires coagulants étudiés ont une faible complexité dans la dimension deux, mais si
nous les étudions dans la dimension trois, nous obtenons qu’il y en a un où le problème de stabilité est
NP-complet.

Il y a encore quelques questions à clore dans l’élaboration de cette thèse, telles que :

• de trouver un automate cellulaire coagulants intrinsèquement universel en dimension
deux avec seulement 3 états (le nombre minimum d’états possibles).

Dans la construction des automates cellulaires coagulants intrinsèquement universels, nous utilisons
un grand nombre d’états mais seulement deux changements par cellule. A partir de là, nous avons
construit un système de circuit logique capable de simuler la fonction locale de n’importe quel
automate cellulaire coagulant. Nous connaissons déjà un automate cellulaire coagulant capable
de simuler n’importe quelle fonction Booblean et en particulier la fonction locale d’un automate
cellulaire coagulant. Cet automate est la règle 2, mais, comme nous le savons déjà, il n’a qu’un
seul changement et ne peut être intrinsèquement universel. Le problème est que pour croiser les
informations, cet automate utilise un gadget construit en utilisant la porte XOR, où les signaux
d’entrée doivent arriver en même temps pour simuler le passage. Après le passage d’un signal, il
est inutilisable. Ceci pourrait être résolu en ajoutant un troisième état à la règle 2 et ainsi obtenir
un automate cellulaire coagulant intrinsèquement universel avec seulement 3 états et un voisinage
von Neumann.

• rechercher un automate cellulaire coagulant intrinsèquement universel pour la classe
des automates cellulaires d’un seul changement

Puisque les automates cellulaires coagulants avec un seul changement par cellule et le voisinage de
von Neumann n’ont pas d’automates intrinsèquement universels, alors nous pourrions étudier ces
automates comme une famille indépendante d’automates cellulaires et voir s’il existe un automate
cellulaire avec un seul changement capable de simuler tout autre automate cellulaire coagulant avec
seulement un changement. Une façon de montrer que ce n’est pas possible serait de trouver un
comportement qui "deviendra plus complexe" à mesure que le nombre d’états augmente, de sorte
qu’il ne puisse pas être simulé par des automates avec moins d’états, donc tout candidat à être
intrinsèquement universel aurait un automate avec plus d’états qu’il ne peut simuler.

132

8.4. REMARQUES FINALES ET PROBLÈMES OUVERTS

• déterminer la complexité des règles fractales :

Pour donner une idée de la difficulté de ces règles, nous allons analyser la règle 1, mais sans utiliser
le voisinage de von Neumann, en utilisant le voisinage pour simuler le diagramme espace-temps des
automates cellulaires 1D dans des automates cellulaires 2D.

u

Figure 8.1: Quartier simulant sur grille 2D un automate cellulaire 1D des premiers voisins, où u est la
cellule centrale.

Avec ce voisinage, la règle 1 simule le diagramme espace-temps des automates cellulaires élémentaires
22 (ECA 22). L’ECM 22 a été classé par Wolfram dans la classe 3 [70], où la classe 4 contient les
automates les plus complexes. Avec cette version 1D de la règle 1, nous pouvons explorer les
résultats des études statistiques de cette règle [71, 72] ou la théorie du langage [73].

133

8.4. REMARQUES FINALES ET PROBLÈMES OUVERTS

134

Chapter 9

Conclusion and Future Works

In this work we have studied complexity of freezing cellular automata from different points of view. On
the one hand, we have studied if there is a single freezing cellular automaton showing all the behaviors
that we can find on this cellular automata. We find one and we have studied its properties and limitations.

On the other hand, we have studied how complex a freezing cellular automata with very limited states
and neighborhood can be. We found a two state von Neumann neighborhood freezing totalistic cellular
automata with a P-complete Stability complexity.

We can conclude that, despite the apparent limitation of the freezing property, this family of cellular
automata shows a very rich and interesting behavior.

9.1 Universality in Freezing Cellular Automata

We began our study of the freezing cellular automata with the search for an intrinsically universal freezing
cellular automata, that is, capable of simulating any other freezing cellular automata. We showed that
with the usual definition of simulation there is no such automaton. Thus we study a more general notion
of simulation called context-sensitive simulation. Under this notion, where the simulating macro cell not
only depend on the simulated cell, also depends on its neighbors, it was possible to find an intrinsically
universal freezing cellular automaton. It has two changes and it is not possible to find one with fewer
changes, because the freezing cellular automata with only one change cannot cross signals, then it cannot
simulate a cellular automaton crossing signals, as some freezing cellular automata with two or more
changes. Moreover, we have used the second change just to cross signals.

We built an intrinsically universal freezing cellular automaton with only one change using the third
dimension to make the crossings. Since the circuitry used to build the intrinsically universal freezing
cellular automaton was possible to do with the freezing cellular automaton with rule 2, then with its
three-dimensional version we have found an intrinsically universal freezing cellular automaton with von
Neumann neighborhood and only two states, therefore with only one change.

Another way to obtain an intrinsically universal freezing cellular automaton with one change without
adding another dimensions, was to enlarge a little its neighborhood, in this case we saw that with the
Moore neighborhood we have been able to make plane crosses using the diagonals of this neighborhood,
similar to how bishops in squares with different color never touch.

When we imposed more conditions on the intrinsically universal freezing cellular automata candidate
we also encounter impediments. There is no monotone intrinsically universal freezing cellular automata.
Freezing and monotony give us a confluent CA, that is, where every updating scheme ends at the same

135

9.2. ON THE COMPLEXITY OF THE STABILITY PROBLEM OF BINARY FREEZING
TOTALISTIC CA

fixed point. If there had been a monotone intrinsically universal freezing cellular automaton, it must
simulate non-monotone freezing cellular automata, with which a contradiction was constructed.

Finally, we found a characterization of cellular automata that can be simulated context-sensitive by
freezing cellular automata: the CA are not necessarily freezing, but have a very similar behaviors. It is
characterized by the existence of an explicit local energy, a function that assigns to each neighborhood a
numerical value (the energy) that decreases as the dynamics of the CA advances. Similar to the freezing
cellular automata in these cases there is a local quantity that is lost an each iteration.

Some topics that could be followed would be to look for an smallest intrinsically universal freezing
cellular automata with von Neumann neighborhood, i.e. that has as few states as possible. Since it must
have two changes, it means that the minimum number of states it can have is three. One could also look
for intrinsic universality in sub-classes of freezers: for example in looking for an monotone and freezing
cellular automata intrinsically universal for the monotone freezing class and a one change freezer cellular
automata intrinsically universal for the one change freezing cellular automata.

9.2 On the Complexity of the Stability Problem of Binary Freez-

ing Totalistic Cellular Automata

We have focused our study on a very simple family of freezing cellular automatons: the totalistic freezing
cellular automata with von Neumann neighborhood and two states. We study this family in two types
of grid: the tessellated grid with squares and with triangles, where each cell has 3 and 4 neighbors
respectively, so in each case we have 16 and 32 different rules, but initially we have considered only the
rules where the inactive state is quiescent. We identify these rules with the concatenation of all the
numbers such that the rule activates the central cell with that number of active neighbors.

Here we were interested in the computational complexity of the problem of knowing if a cell is going
to change or not, which we call Stability. In both grids we group the rules according to the approaches
we use to solve Stability:

• Simple rules: are those where Stability is decided trivially. For example, rule 4 for the square
grid, where the cell is stable unless it initially has 4 active neighbors.

• Topological rules: they are those where the stability is given by the structure that has the set of
inactive cells. For example rule 34 in the square grid, a set of inactive cells where all cells have at
least two neighbors within, is a stable set, because after applying the rule no cell is activated. Here
we use the NC algorithms to compute connected, bi-connected and tri-connected components.

• Algebraic rules: are those where the value of an inactive cell can be calculated by algebraic opera-
tions of the rest to speed up the calculation. For example rule 12 for the square grid, a cell changes
with one or two active neighbors or equivalent to calculate the OR of the neighbors, also if there are
several inactive neighbors connected it is possible to calculate the value as the OR of the farthest
neighbors. Here we use the NC algorithms to compute the prefix sum.

• Fractal rules: they are those where in the dynamics a fractal behavior is observed. For example,
rule 1 for the square grid, started with just one active cell, shows a growth pattern similar to a
snowflake.

In the triangular grid we have shown that Stability is in NC for all rules except in the fractal rules.
To achieve maximum complexity we added an extra state to rule 2 to simulate logic circuits like rule 2
in the square grid.

For the square grid we have two rules where the stability problem is P-complete. This is the higher
complexity for Stability on freezing cellular automata. These are rules 2 and 24, where it was possible
to simulate logic circuits.

136

9.3. FAST-PARALLEL ALGORITHMS FOR FREEZING TOTALISTIC ASYNCHRONOUS CA

Given the difficulty of studying Stability in the fractal rules, we have studied a simpler problem,
namely Reachability, whether given two configurations it is possible to reach one from the other by
iterations of the cellular automaton. If we can solve Stability then we can solve Reachability. We
have shown that in the case of rule 1 Reachability is in NC.

For the rest of the rules where the inactive state is not quiescent, it was possible to bound the
computational complexity of Stability by the complexity of the same rule but with the inactive state
as quiescent. The complexity for the rules 02 and 024 remains open (the versions of 2 and 24 where 0 is
not a quiescent state), where possibly the complexity could decrease.

9.3 Fast-Parallel Algorithms for Freezing Totalistic Asynchronous

Cellular Automata

In this last chapter we study the same family of freezing cellular automata on the same grid that the
previous chapter, but we change the updating scheme by an asynchronous one. Thus we were interested in
computing the computational complexity of the version of Stability for asynchronous cellular automata,
called AsyncStability problem, where a cell is stable is it is stable for any updating scheme.

In both grids we group the rules according to the approaches we use to solve AsyncStability:

• Simple rules: are those rules where AsyncStability is decided trivially.

• Infiltration rule: are those rules that activate a cell with exactly one active neighbor. We solve
AsyncStability searching some cell in the connected component of inactive cells connecting to
the decision cell that is possible to be activated. if there exists, we say that a cell infiltrate and this
can “travel” on the connected component of inactive cells connecting to decision cell until activate
them.

• Monotone rules: are those rules that are monotone, then these are confluent. Then we have been
able to solve Stability on its synchronous version and give the same answer.

For the triangular grid, AsyncStability is in NC for all the rules. While for the square grid, we
know that AsyncStability in NC for all the rules except the rules 2 and 24. Note that this are the
P-complete rules for the synchronous case. For these open cases we study its three-dimensional versions,
where we can built logics gates and use the third dimension to cross signals. Then, with a special gadget,
it is equivalent to find a updating scheme changing a cell on a configuration (simulating a logical circuit)
that to find a satisfying assignment to a boolean formula. Then AsyncStability in NP-complete for
the rules 2 and 24 in its tri-dimensional version. This is the higher complexity for AsyncStability on
freezing cellular automata.

The complexity of AsyncStability for the rules 2 and 24 in two dimension remains open. Also it
should be interesting what happens in others neighborhoods or remove the totalistic hypothesis on the
studied rules.

9.4 Final remarks and open problems

Despite their apparent limitation by the fact that each cell can only grow, freezing cellular automata show
great diversity and complexity. That we can order these in the following way from the least complex
to the most complex: 1D freezing cellular automata, 2D freezing cellular automata with von Neumann
neighborhood and one change, and the rest of the freezing cellular automata.

• The 1D freezing cellular automata are the least complex since Stability is at most NLOGSPACE;

137

9.4. FINAL REMARKS AND OPEN PROBLEMS

• the freezing cellular automata 2D von Neumann neighborhood and one change, because it has a
freezing cellulare automaton where Stability is P-complete, but they do not have one intrinsically
universal;

• the rest of freezing cellular automata where there is an intrinsically universal freezing cellular
automata.

If we relax the synchronism in the update schemes, we obtain that most of the freezing cellular
automata studied have a low complexity in dimension two, but if we study them in dimension three we
obtain that there is one where the stability problem is NP-complete.

There are still some questions to be closed about in the development of the this thesis, such as:

• to find an intrinsically universal freezing cellular automaton in dimension two with
only 3 states (the minimum number of possible states).

In the construction of the intrinsically universal freezing cellular automata we use a large number of
states but only two changes per cell. From this, we built a logic circuit system capable of simulating
the local function of any freezing cellular automata. We already know a freezing cellular automata
capable of simulating any Booblean function and in particular the local function of any freezing
cellular automata. This automata is rule 2, but, as we already know, it has only one change and
can not be intrinsically universal. The problem is that to cross information this automata uses a
gadget built using XOR gate, where the input signals must arrive at the same time to simulate the
crossing. After a signal passes through a crossing, it is unusable. This could be solved by adding a
third state to rule 2 and thus obtain an intrinsically universal freezing cellular automata with only
3 states and von Neumann neighborhood.

• to look for an intrinsically universal freezing cellular automaton for the class of the
cellular automata of only one change

Since freezing cellular automata with only one change per cell and von Neumann neighborhood do
not have an intrinsically universal automata, then we could study these automata as an independent
family of cellular automata and see if there is a cellular automata with only one change capable of
simulating any other freezing cellulare automata with only one change. A way to show that this is
not possible would be to find a behavior that will "become more complex" as the number of states
increases, so that it cannot be simulated by automata with fewer states, so any candidate to be
intrinsically universal would have a automata with more states that it can not simulate.

• to determinate the complexity of fractal rules:

To give an idea of the difficulty of these rules, we will analyze rule 1, but not using the von Neumann
neighborhood, using the neighborhood to simulate the space-time diagram of 1D cellular automats
in 2D cellular automatas.

u

Figure 9.1: Neighborhood simulating on 2D grid a 1D first neighbors cellular automaton, where u is the
center cell.

With this neighborhood rule 1 simulates the space-time diagram of the elementary cellular automata
22 (ECA 22). The ECM 22 has been classified by Wolfram as Class 3 [70], where class 4 contains
the most complex automata. With this 1D version of rule 1 we can explore results about statistical
studies of this rule [71, 72] or language theory [73].

138

PERSONAL BIBLIOGRAPHY

Personal Bibliography

[1] D. Maldonado, A. Moreira, and A. Gajardo. Universal time-symmetric number-conserving cellular
automaton. In J. Kari, editor, Cellular Automata and Discrete Complex Systems - 21st IFIP WG 1.5
International Workshop, AUTOMATA 2015, Turku, Finland, June 8-10, 2015. Proceedings, volume
9099 of Lecture Notes in Computer Science, pages 155–168. Springer Berlin Heidelberg, 2015.

[2] F. Becker, D. Maldonado, N. Ollinger, and G. Theyssier. Universality in freezing cellular automata.
In F. Manea, R. G. Miller, and D. Nowotka, editors, Sailing Routes in the World of Computation -
14th Conference on Computability in Europe, CiE 2018, Kiel, Germany, July 30 - August 3, 2018,
Proceedings, pages 50–59, Cham, 2018. Springer International Publishing.

[3] E. Goles, D. Maldonado, P. Montealegre, and N. Ollinger. On the computational complexity of the
freezing non-strict majority automata. In Cellular Automata and Discrete Complex Systems - 23rd
IFIP WG 1.5 International Workshop, AUTOMATA 2017, Milan, Italy, June 7-9, 2017, Proceedings,
pages 109–119, 2017.

[4] E. Goles, D. Maldonado, P. Montealegre-Barba, and N. Ollinger. Fast-parallel algorithms for freezing
totalistic asynchronous cellular automata. In G. Mauri, S. El Yacoubi, A. Dennunzio, K. Nishinari,
and L. Manzoni, editors, Cellular Automata - 13th International Conference on Cellular Automata for
Research and Industry, ACRI 2018, Como, Italy, September 17-21, 2018, Proceedings, pages 406–415,
Cham, 2018. Springer International Publishing.

Bibliography

[5] M. Gardner. The fantastic combinations of John Conway’s new solitaire game “life”. Scientific
American, 223:120–123, October 1970.

[6] J. Hardy, Y. Pomeau, and O. de Pazzis. Time evolution of a two-dimensional classical lattice system.
Phys. Rev. Lett., 31:276–279, Jul 1973.

[7] J. Hardy, O. de Pazzis, and Y. Pomeau. Molecular dynamics of a classical lattice gas: Transport
properties and time correlation functions. Phys. Rev. A, 13:1949–1961, May 1976.

[8] R. Landauer. Irreversibility and heat generation in the computing process. IBM Journal of Research
and Development, 5(3):183–191, July 1961.

[9] A. Church. A Set of Postulates for the Foundation of Logic.

[10] E. L. Post. Formal reductions of the general combinatorial decision problem. Am. J. Math., 65:197–
215, 1943.

[11] M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1967.

[12] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceed-
ings of the London Mathematical Society, 2(42):230–265, 1936.

[13] J. V. Neumann. Theory of Self-Reproducing Automata. University of Illinois Press, Champaign, IL,
USA, 1966.

[14] A. R. Smith. Simple computation-universal cellular spaces and self-reproduction. In 9th Annual
Symposium on Switching and Automata Theory (swat 1968)(FOCS), volume 00, pages 269–277, 10
1968.

[15] K. Lindgren and M. G. Nordahl. Universal computation in simple one-dimensional cellular automata.
Complex Systems, 4(3), 1990.

139

BIBLIOGRAPHY

[16] M. Cook. Universality in elementary cellular automata. Complex Systems, 15(1):1–40, 2004.

[17] J. Albert and K. C. II. A simple universal cellular automaton and its one-way and totalistic version.
Complex Systems, 1(1), 1987.

[18] B. Durand and Z. Róka. The Game of Life: Universality Revisited, pages 51–74. Springer Nether-
lands, Dordrecht, 1999.

[19] N. Ollinger and G. Richard. Four states are enough! Theor. Comput. Sci., 412(1-2):22–32, 2011.

[20] A. Moreira. Universality and decidability of number-conserving cellular automata. Theoretical
Computer Science, 292(3):711 – 721, 2003. Algorithms in Quantum Information Prcoessing.

[21] J. Durand-Lose. Intrinsic universality of a 1-dimensional reversible cellular automaton. In R. Reis-
chuk and M. Morvan, editors, STACS, volume 1200 of Lecture Notes in Computer Science, pages
439–450. Springer, 1997.

[22] K. Morita. Universality of one-dimensional reversible and number-conserving cellular automata. In
E. Formenti, editor, AUTOMATA JAC, volume 90 of EPTCS, pages 142–150, 2012.

[23] A. Gajardo, J. Kari, and A. Moreira. On time-symmetry in cellular automata. J. Comput. System
Sci., 78(4):1115–1126, 2012.

[24] M. Delorme, J. Mazoyer, N. Ollinger, and G. Theyssier. Bulking I: an abstract theory of bulking.
Theoret. Comput. Sci., 412(30):3866–3880, 2011.

[25] M. Delorme, J. Mazoyer, N. Ollinger, and G. Theyssier. Bulking II: classifications of cellular au-
tomata. Theoret. Comput. Sci., 412(30):3881–3095, 2011.

[26] J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms. 117:285–285, 05
1965.

[27] J. Edmonds. Paths, trees, and flowers. Canad. J. Math., 17:449 – 467, 1965.

[28] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third Annual
ACM Symposium on Theory of Computing, STOC ’71, pages 151–158, New York, NY, USA, 1971.
ACM.

[29] L. A. Levin. Universal sequential search problems. Problems of Information Transmission, 9(3):265–
266, 1973.

[30] D. Griffeath and C. Moore. Life without death is P-Complete. Working papers, Santa Fe Institute,
1997.

[31] C. Moore. Majority-vote cellular automata, ising dynamics, and p-completeness. Working papers,
Santa Fe Institute, 1996.

[32] T. Neary and D. Woods. P-completeness of cellular automaton rule 110. In M. Bugliesi, B. Preneel,
V. Sassone, and I. Wegener, editors, Automata, Languages and Programming, pages 132–143, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[33] E. Goles, N. Ollinger, and G. Theyssier. Introducing Freezing Cellular Automata. In Cellular Au-
tomata and Discrete Complex Systems, 21st International Workshop (AUTOMATA 2015), volume 24
of TUCS Lecture Notes, pages 65–73, Turku, Finland, June 2015.

[34] J. Chalupa, P. L. Leath, and G. R. Reich. Bootstrap percolation on a bethe lattice. Journal of
Physics C: Solid State Physics, 12(1):L31, 1979.

[35] T. Ghisu, B. Arca, G. Pellizzaro, and P. Duce. An improved cellular automata for wildfire spread.
Procedia Computer Science, 51:2287 – 2296, 2015. International Conference On Computational
Science, ICCS 2015.

[36] M. Fuentes and M. Kuperman. Cellular automata and epidemiological models with spatial depen-
dence. Physica A: Statistical Mechanics and its Applications, 267(3):471–486, 1999.

140

BIBLIOGRAPHY

[37] M. J. Patitz. An introduction to tile-based self-assembly. In J. Durand-Lose and N. Jonoska,
editors, Unconventional Computation and Natural Computation, pages 34–62, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[38] P. Bak, K. Chen, and C. Tang. A forest-fire model and some thoughts on turbulence. Physics Letters
A, 147(5-6):297 – 300, 1990.

[39] E. Goles, P. Montealegre-Barba, and I. Todinca. The complexity of the bootstraping percolation
and other problems. Theoretical Computer Science, 504:73–82, 2013.

[40] S. Wolfram. Statistical mechanics of cellular automata. Rev. Mod. Phys., 55(3):601–644, July 1983.

[41] G. Hedlund. Endomorphisms and automorphisms of the shift dynamical system. Math. Syst Theory.,
3(4):320–375, 1969.

[42] F. Robert. Discrete iterations: a metric study. Springer series in computational mathematics.
Springer-Verlag, 1986.

[43] M. Sipser. Introduction to the Theory of Computation. Cengage Learning, Boston, MA, USA, 3
edition, 2012.

[44] J. JáJá. An Introduction to Parallel Algorithms. Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 1992.

[45] R. Greenlaw, H. Hoover, and W. Ruzzo. Limits to Parallel Computation: P-completeness Theory.
Oxford University Press, Inc., New York, NY, USA, 1995.

[46] J. JáJá and J. Simon. Parallel algorithms in graph theory: Planarity testing. SIAM J. Comput.,
11(2):314–328, 1982.

[47] E. R. Banks. Universality in cellular automata. In SWAT (FOCS), pages 194–215. IEEE Computer
Society, 1970.

[48] S. Wolfram. Universality and complexity in cellular automata. Physica D, 10:1–35, 1984.

[49] E. R. Banks. Information processing and transmission in cellular automata. Technical Report
AITR-233, MIT Artificial Intelligence Laboratory, 1971.

[50] N. Ollinger and G. Richard. A particular universal cellular automaton. In Proceedings International
Workshop on The Complexity of Simple Programs, CSP 2008, Cork, Ireland, 6-7th December 2008.,
pages 205–214, 2008.

[51] A. Maruoka and M. Kimura. Condition for injectivity of global maps for tessellation automata.
Information and Control, 32(2):158 – 162, 1976.

[52] K. C. II, J. Pachl, and S. Yu. On the limit sets of cellular automata. SIAM Journal on Computing,
18(4):831–842, 1989.

[53] K. Sutner. Model checking one-dimensional cellular automata. J. Cellular Automata, 4:213–224,
2009.

[54] J. Kari. The nilpotency problem of one-dimensional cellular automata. SIAM J. Comput., 21(3):571–
586, 1992.

[55] S. Kirkpatrick, W. W. Wilcke, R. B. Garner, and H. Huels. Percolation in dense storage arrays.
Physica A: Statistical Mechanics and its Applications, 314(1):220 – 229, 2002. Horizons in Complex
Systems.

[56] H. Amini. Bootstrap percolation in living neural networks. Journal of Statistical Physics, 141(3):459–
475, Nov 2010.

[57] I. Karafyllidis and A. Thanailakis. A model for predicting forest fire spreading using cellular au-
tomata. Ecological Modelling, 99(1):87 – 97, 1997.

141

BIBLIOGRAPHY

[58] J. H. Holland. A universal computer capable of executing an arbitrary number of subprograms
simultaneously. In A. W. Bukrs, editor, Essays on Cellular Automata, pages 264–276. U. of Illinois
Press, 1970.

[59] J. W. Thatcher. Universality in the von neumman cellular model. In A. W. Bukrs, editor, Essays
on Cellular Automata, pages 132–186. U. of Illinois Press, 1970.

[60] S. Ulam and R. Schrandt. On recursively defined geometric objects and patterns of growth. Technical
report, Los Alamos Scientific Laboratory, 1967.

[61] J. Gravner and D. Griffeath. Cellular automaton growth on z2: Theorems, examples, and problems.
Advances in Applied Mathematics, 21(2):241 – 304, 1998.

[62] B. Bollobás, P. Smith, and A. Uzzell. Monotone cellular automata in a random environment. Com-
binatorics, Probability and Computing, 24(4):687–722, 2015.

[63] D. Doty, J. H. Lutz, M. J. Patitz, R. T. Schweller, S. M. Summers, and D. Woods. The tile assembly
model is intrinsically universal. In FOCS 2012 Proceedings, pages 302–310, 2012.

[64] P. Meunier, M. J. Patitz, S. M. Summers, G. Theyssier, A. Winslow, and D. Woods. Intrinsic
universality in tile self-assembly requires cooperation. In SODA 2014 Proceedings, pages 752–771,
2014.

[65] R. Vollmar. On cellular automata with a finite number of state changes. In W. Knödel and H.-J.
Schneider, editors, Parallel Processes and Related Automata, volume 3 of Computing Supplementum,
pages 181–191. Springer Vienna, 1981.

[66] D. A. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge U. Press,
New York, NY, USA, 1995.

[67] N. Ollinger. Universalities in cellular automata. In Handbook of Natural Computing, pages 189–229.
Springer, 2012.

[68] L. M. Goldschlager. The monotone and planar circuit value problems are log space complete for P.
SIGACT News, 9(2):25–29, July 1977.

[69] E. Goles, P. Montealegre, K. Perrot, and G. Theyssier. On the complexity of two-dimensional signed
majority cellular automata. J. Comput. Syst. Sci., 91:1–32, 2018.

[70] A New Kind of Science. Wolfram Media Inc., Champaign, Ilinois, US, United States, 2002.

[71] J. G. Zabolitzky. Critical properties of rule 22 elementary cellular automata. Journal of Statistical
Physics, 50(5):1255–1262, Mar 1988.

[72] P. Grassberger. Long-range effects in an elementary cellular automaton. Journal of Statistical
Physics, 45(1):27–39, Oct 1986.

[73] J. Zhisong and W. Yi. Complexity of limit language of the elementary cellular automaton of rule
22. Applied Mathematics-A Journal of Chinese Universities, 20(3):268–276, Sep 2005.

142

Diego MALDONADO

Universalité et complexité des automates cellulaires
coagulants

Résumé :

Les automates cellulaires forment une famille bien connue de modèles dynamiques discrets, introduits par S.

Ulam et J. von Neumann dans les années 40. Ils ont été étudiés avec succès sous différents points de vue

: modélisation, dynamique, ou encore complexité algorithmique. Dans ce travail, nous adoptons ce dernier

point de vue pour étudier la famille des automates cellulaires coagulants, ceux dont l’état d’une cellule ne

peut évoluer qu’en suivant une relation d’ordre prédéfinie sur l’ensemble de ses états. Nous étudions la com-

plexité algorithmique de ces automates cellulaires de deux points de vue : la capacité de certains automates

coagulants à simuler tous les autres automates cellulaires coagulants, appelée universalité intrinsèque, et la

complexité temporelle de prédiction de l’évolution d’une cellule à partir d’une configuration finie, appelée com-

plexité de prédiction. Nous montrons que malgré les sévères restrictions apportées par l’ordre sur les états,

les automates cellulaires coagulants peuvent toujours exhiber des comportements de grande complexité.

D’une part, nous démontrons qu’en dimension deux et supérieure il existe un automate cellulaire coagulants

intrinsèquement universel pour les automates cellulaires coagulants en codant leurs états par des blocs

de cellules ; cet automate cellulaire effectue au plus deux changements d’états par cellule. Ce résultat

est minimal en dimension deux et peut être amélioré en passant à au plus un changement en dimensions

supérieures.

D’autre part, nous étudions la complexité algorithmique du problème de prédiction pour la famille des auto-

mates cellulaires totalistiques à deux états et voisinage de von Neumann en dimension deux. Dans cette

famille de 32 automates, nous exhibons deux automates de complexité maximale dans le cas d’une mise à

jour synchrone des cellules et nous montrons que dans le cas asynchrone cette complexité n’est atteinte qu’à

partir de la dimension trois. Pour presque tous les autres automates de cette famille, nous montrons que leur

complexité de prédiction est plus faible (sous l’hypothèse P 6= NP).

Mots clés: Universalité, Complexité, Automates Cellulaires Coagulants, Systèmes Dynamiques Discrets

Universality and complexity on freezing cellular automata

Abstract :

Cellular automata are a well know family of discrete dynamic systems, defined by S. Ulam and J. von Neu-

mann in the 40s. The have been successfully studied from the point of view of modeling, dynamics and

computational complexity. In this work, we adopt this last point of view to study the family of freezing cellular

automata, those where the state of a cell can only evolve following an order relation on the set of states. We

study the complexity of these cellular automata from two points of view, the ability of some freezing cellular

automata to simulate every other freezing cellular automata, called intrinsic universality, and the time com-

plexity to predict the evolution of a cell starting from a given finite configuration, called prediction complexity.

We show that despite the severe restriction of the ordering of states, freezing cellular automata can still exhibit

highly complex behaviors.

On the one hand, we show that in two or more dimensions there exists an intrinsically universal freezing

cellular automaton, able to simulate any other freezing cellular automaton by encoding its states into blocks

of cells, where each cell can change at most twice. This result is minimal in dimension two and can be even

simplified to one change per cell in higher dimensions.

On the other hand, we extensively study the computational complexity of the prediction problem for totalistic

freezing cellular automata with two states and von Neumann neighborhood in dimension two. In this family of

32 cellular automata, we find two automata with the maximum complexity for classical synchronous cellular

automata, while in the case of asynchronous evolution, the maximum complexity can only be achived in

dimension three. For most of the other automata of this family, we show that they have a lower complexity

(assuming P 6= NP).

Keywords: Universality, Complexity, Freezing Celular Automata, Discrete Dynamical System.

LIFO - Bâtiment IIIA, Rue Léonard de Vinci, B.P. 6759,
F-45067, ORLEANS Cedex 2

	Introduction (French version)
	Introduction (English version)
	Preliminaries
	Basic Notions
	Some terminology of topology
	Some terminology of dynamical systems
	Some graph terminology
	Some generalizations of cellular automata

	Computational Complexity
	The big-O notation
	Parallel Computation
	Sequential Computation
	Parallel subroutines
	Decision problems in cellular automata

	Simulation Between Cellular Automata and Universality
	Geometric transformations
	Quasi-order and simulation

	Freezing Cellular Automata
	 Basic Dynamical Properties
	 Computational Complexity
	Turing universality
	Turing universality on Counter Machine
	Freezing cellular automata with P-complete Stability problem

	Monotone freezing cellular automata

	Universality in Freezing Cellular Automata
	Classical Limitation
	Constructing Intrinsically Universal FCA
	A 2D, 2-change, von Neumann Neighborhood Intrinsically Universal FCA
	A 3D, von Neumann neighborhood, 1-change, intrinsically universal FCA
	2D, Moore Neighborhood, 1-change, intrinsically universal FCA

	Obstacles to FCA-Universality
	On the simulation power of FCA
	Conclusion

	On the Complexity of the Stability Problem of Binary FTCA
	Preliminaries
	Triangular Grid
	Topological Rules
	Algebraic Rule

	Square Grid
	Topological Rules
	Algebraic Rules
	Turing Universal Rules

	Rotation Invariant Rules
	Trivial Rules
	Topological Rules
	Algebraic Rules
	Turing Universal Rules

	Reachability
	Concluding Remarks
	Summary of our results
	About Fractal-Growing Rules
	On P-Completeness on the triangular grid
	Limitation on the complexity for the rule 234
	About non-quiescent rules

	Fast-Parallel Algorithms for Asynchronous FTCA
	Definitions
	Triangular grid
	The infiltration technique
	Monotone rules

	Square grid
	The infiltration technique
	Monotone rules

	 Rules with 0 non quiescent
	NP completeness
	Concluding Remarks and Future Works

	Conclusion et travaux futurs
	Universalité des automates cellulaires coagulants
	Sur la complexité du problème de stabilité des AC binaires coagulants totalistiques
	Algorithmes parallèles pour les AC totalistes et coagulants
	Remarques finales et problèmes ouverts

	Conclusion and Future Works
	Universality in Freezing Cellular Automata
	On the Complexity of the Stability Problem of Binary Freezing Totalistic CA
	Fast-Parallel Algorithms for Freezing Totalistic Asynchronous CA
	Final remarks and open problems

